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ABSTRACT 
This study of galactic evolution involves three mechanisms for triggering star formation in 

interstellar clouds: (i) star formation triggered by a galactic spiral density wave, (ii) star formation 
triggered by shock waves from supernovae, and (iii) star formation triggered by an expanding H n 
region. Useful analytic approximations to the birthrate per unit mass are obtained by treating 
the efficiencies of these various mechanisms as time independent. In situations where shock waves 
from high-mass stars (either expanding H n regions or supernova explosions) are the only 
important star-forming mechanisms, the birthrate is exponential in time. This case is appropriate 
for the past evolution of an elliptical galaxy, nuclear bulge, or galactic halo. In the disk of a spiral 
galaxy where all three mechanisms operate, the birthrate consists of an exponential term plus a 
time-independent term. In both situations, the value of the time constant T in the exponential term 
is directly related to the efficiency of the shock waves from massive stars in initiating star 
formation. 

For our Galaxy, this simplified model is used to compute the radial distributions of young 
objects and low-mass stars in the disk, and the past and present birthrates in the solar-neighbor- 
hood shell. 
Subject headings: galaxies: evolution — galaxies: stellar content — stars: formation — 

stars: stellar statistics — stars: supernovae 

I. INTRODUCTION 

The rate of star formation is one of the important 
factors governing the evolution of galaxies. In 
constructing models for galactic evolution, one should 
connect the functional form adopted for the stellar 
birthrate to one or more mechanisms for producing 
stars. Various star-formation mechanisms have been 
suggested in the literature, and it is probable that 
several different types of star-forming mechanisms 
operate within galaxies. In this paper, we investigate 
simplified galactic-evolution models which incorporate 
three star-forming mechanisms for which there is both 
observational and theoretical evidence. These are (i) 
star formation triggered by passage of a galactic spiral 
density wave through an interstellar cloud, (ii) star 
formation triggered by passage of a shock wave from 
a supernova through an interstellar cloud, and (iii) 
star formation triggered by passage of the shock front 
from an expanding H n region through an interstellar 
cloud. Young stars and H n regions are often found 
near the edges of dense molecular clouds (Woodward 
1976). This suggests that some triggering mechanism 
is usually involved in star formation. 

The above mechanisms for triggering star formation 
have received much attention in recent literature. 
Toomre (1977) summarizes the main observational 
evidence for spiral density shock waves in certain 
spiral galaxies, e.g., the presence of dust lanes coincid- 
ing with the peak radio continuum flux on the 
concave side of the visible spiral arms and the agree- 

ment between the optical and H i arms. Hydrodynamic 
calculations of Woodward (1976) for plane-parallel 
shocks indicate that spiral density shock waves can 
trigger nonuniform gravitational collapse of a suitable 
interstellar cloud. Bash, Green, and Peters (1977) 
interpret CO line profiles in terms of star clusters born 
in spiral density shock waves. Jensen, Strom, and 
Strom (1976) show that star formation by spiral 
density waves can account qualitatively for the metal- 
abundance gradients observed in various disk galaxies. 
On the other hand, a growing number of observations 
link expanding H n regions to the formation of 
protostars in neighboring molecular clouds (see 
Elmegreen and Lada 1977; Loren 1977). Elmegreen 
and Lada show that when the shock and ionization 
fronts of an expanding H n region propagate into a 
molecular cloud, a dense neutral layer forms between 
the two fronts. If the initial cloud density is sufficiently 
large, this neutral layer becomes gravitationally un- 
stable within a few million years. Observations also 
connect the shock waves from supernovae with new 
star formation: Ögelman and Maran (1976) and 
Herbst and Assousa (1977, 1978) find very young stars 
near the edges of old, expanding supernova remnants. 
Furthermore, the simple explanation which Cameron 
and Truran (1977) give for the observed excess of 
26Mg in the Allende meteorite (Lee, Papanastassiou, 
and Wasserburg 1976) associates the origin of the Sun 
with the explosion of a nearby supernova. Chevalier 
and Theys (1975) show that if a supernova shock 
wave which is optically thin and radiating impinges 
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on a local inhomogeneity in the interstellar medium, 
significant density enhancement can result. While 
supernova shock waves are not plane parallel, 
Woodward’s results can probably be applied, in a 
qualitative sense, to supernova shocks. 

My object is to show how the general character of 
galactic evolution is governed by these postulated star- 
forming mechanisms. We shall make simplifying 
assumptions that enable us to obtain analytic solu- 
tions. Quantities associated with star formation 
triggered by the spiral density shock waves, supernova 
shock waves, and expanding H n regions will be 
denoted by the subscripts “sp,” “SN,” and “H n,” 
respectively. We often lump together star formation 
induced by expanding H n regions and star formation 
induced by shock waves from supernovae and call the 
process “star formation by high-mass stars,” since, 
aside from uncertainties about the progenitors of Type 
I supernovae, both mechanisms depend on the existing 
number of high-mass stars. Quantities associated with 
star formation by high-mass stars will be denoted by 
the subscript “HM.” 

After setting forth basic terminology in § II, we 
consider in § III the simple case where only star 
formation by high-mass stars operates. Under simple 
assumptions, we show that the birthrate, as a function 
of time, is a decaying exponential. Now, decaying 
exponential birthrates are popular in studies of galactic 
evolution and are assumed in the models of Truran 
and Cameron (1971), Searle, Sargent, and Bagnuolo 
(1973), Ostriker and Thuan (1975), Tinsley (1976), 
etc. Also, in a closed system, taking a birthrate 
proportional to the mass of interstellar gas (as in 
Salpeter 1959) is approximately equivalent to adopting 
a decaying exponential birthrate. The derivation in 
§ III provides a physical justification for using a 
decaying exponential birthrate where spiral structure 
is unimportant, and relates the time constant to 
the efficiency of the shockwaves in initiating star 
formation. 

In § IV we obtain an expression for the stellar birth- 
rate in a galactic disk where star formation by the 
spiral density wave and by high-mass stars both 
operate. The resulting birthrate consists of an exponen- 
tial term plus a time-independent term. In Kaufman 
(1979, hereafter Paper II), we use the observed 
distribution of high-excitation H n regions to estimate 
the relative importance of the two star-formation 
mechanisms in our Galaxy and solve for the value of 
the time constant in the exponential term. In § V we 
solve for the values of the other birthrate parameters 
appropriate to our Galaxy and compute (i) the radial 
distribution of young objects in the disk, (ii) the 
birthrate and the stellar age distribution in the solar 
neighborhood, and (iii) the radial distribution of low- 
mass stars and the metal-abundance gradient in the 
disk. These predictions are compared with observa- 
tions. We summarize our results in § VI. 

II. BASIC TERMINOLOGY 
Divide the portion of the galaxy to be modeled into 

a series of coaxial, similar shells, concentric with the 

center of the galaxy. Each shell has mass dMr, 
where r is a measure of the distance to the galactic 
center. For the disk of a spiral galaxy, each shell is 
a cylindrical shell with radius {dr, r) and height equal 
to the thickness of the disk. For an elliptical galaxy, 
nuclear bulge, or galactic halo, each shell is a spheroi- 
dal shell which has major axis {dr, r) and excludes the 
disk (in a spiral galaxy). We use the notation {dr, r) 
to mean within an interval dr centered on r. 

Now focus on a particular shell with {dr,r). Let 
B{m, t, r)dmdtdMr equal the number of stars of mass 
{dm, m) born at model age {dt, t) in this shell. We 
assume that the birthrate B{m, t, r) is a separable 
function of stellar mass and time. Thus 

B(m, t, r) = B{t, r)<fi(m), (1) 

where ÿ{m), the initial mass function (IMF), is 
normalized so that 

i*mU 
ijj{m)dm = 1 , (2) 

JrriL 
and 0(m) is zero outside this mass range. To save on 
notation we write the same 0(m) for all three star- 
forming mechanisms. Now, observations indicate that 
star formation by high-mass stars and star formation 
by the spiral shock wave can both produce massive 
stars. In Paper II we use the specific assumption that 
the upper IMF is the same in all cases. However, unless 
otherwise noted, our arguments are independent of 
whether the lower IMF is the same for all mechanisms. 
For numerical estimates, we adopt the usual approxi- 
mation ijj{m) azm~a + x) and take x = 1.3 for m = mL 
to 0.4 m©, x = 0.25 for m/m0 = 0.4-1, and x — 1.35 
for m/m0 = 1-3 from Tinsley and Ostriker (1977), 
and x = 1.9 for m = 3 mQ to mu = 60 m0 from 
Kaufman (1975æ). For mL, we use either 0.1 m0 or 
0.2 m0. We let S{t, r)dMr represent the total number 
of stars born in the shell up to time t. 

It is useful to divide the evolution of spiral galaxies 
into two galactic eras: a short, transient, initial era 
(Collapse Phase) and a long subsequent era (Disk 
Phase). For the disk models, we take ¿ = 0 when the 
spiral density wave first turns on. This is presumably 
near the beginning of the Disk Phase and has been 
preceded by star formation during the Collapse 
Phase. Similarly, the formulation in § III, where only 
star formation by high-mass stars operates, assumes 
some prior star-formation mechanism, e.g., collisions 
of gas clouds as the galaxy contracts (see Larson 1969) 
or contraction of massive clouds as the galaxy forms. 
Here the definition of i = 0 is less natural but may 
be taken as near the end of the Collapse Phase. 

Finally, t1 refers to the present time and rQ to the 
solar-neighborhood shell. For the disk of our Galaxy, 
we take t1 equal to 8 x 109 yr, unless otherwise noted, 
and rQ equal to 10 kpc. 

III. CONSEQUENCES OF STAR FORMATION BY 
HIGH-MASS STARS 

Let us study the simple case where star formation 
by high-mass stars is the only mechanism for producing 
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stars. This case could apply to a halo surrounding a 
disk galaxy, to an elliptical galaxy, or to those portions 
of a spiral galaxy interior to the inner Linblad 
resonance or exterior to the outer Linblad resonance. 

Consider a particular galactic shell with {dr, r), and 
let í?hm(L r) equal the stellar birthrate in this shell. 
Now 1?hmU> 0 has two contributions: 

r) — ^Sn(L **) + r) > (3) 

where i?SN is the birthrate associated with star forma- 
tion by shock waves from supernovae and I?Hn is the 
birthrate for star formation by expanding H n 
regions. Since í?sn(¿> '*) is determined by the supernova 
rate in the shell at time t — rf, where rf is the average 
time interval between supernova explosion and new 
star formation, we have 

/•mu' 
BsÁt, r) = ^SN B(t - rm* - Tf, r)>/i(m)dm . 

Jm8 

(4) 

Here is the average number of stars bom for each 
supernova, rm* is the stellar lifetime, the mass range 
is the stars that become the appropriate type of 
supernova, and the integral represents the supernova 
rate at time t — rf. We choose > 40 mQ and ms 
equal to either 5 m© or 9 m©. 

Observations by Herbst and Assqusa (1977), 
Herbst, Racine, and Warner (1978), and Ögelman and 
Maran (1976) indicate values of rf < 106 yr. However, 
it is difficult to detect the supernova remnant if Tf is 
appreciably larger than 106 yr. Because of this 
observational selection effect, it is not clear whether 
time scales as short as 106 yr are typical. An approxi- 
mate upper limit to rf can be deduced as follows: As 
the interior pressure in an expanding supernova 
remnant (SNR) approaches interstellar values, the 
ability of the SNR to trigger star formation decreases. 
For spherically symmetric models, the SNR reaches 
pressure equilibrium with the interstellar medium 
1-2 x 106yr after the explosion (Smith 1977; 
Ikeuchi 1978). If the SNR encounters a cloud with 
initial hydrogen (proton) density n > 102 cm-3, then 
the protostars formed require at most 2 x 106 yr to 
reach the main sequence, and hence, 17 < 4 x 106 yr. 

We expect the birthrate ^HII to be proportional to 
the number of OB subgroups (and OB field stars) in 
the galactic shell. Since the number of OB stars in a 
subgroup is observed to be nearly constant (Blaauw 
1964), we take 

pmu 
r) = AanB(t - rHn, r) ÿ(m)dm, (5) 

* moB 

where Anu is the average number of stars born for 
each OB star via the expanding H n region mechanism, 
the mass range describes stars or groups of stars 
producing a sufficient number of Lyman-continuum 
photons, and thu is the average time interval between 
the birth of an OB star and the birth of the stars formed 
by its expanding H u region. 

The theory of Elmegreen and Lada (1977) and the 
observations of Blaauw (1964) indicate that rHlI can 
be as small as 2-3 x 106 yr. In the observed examples, 
the shock fronts encounter rather dense clouds with n 
equal to 103-104 cm-3. Consequently, gravitational 
instability and contraction to the main sequence occur 
rapidly. Again, observational selection effects favor 
finding dense molecular clouds and short time scales 
tHii. Larger values of rHlI would apply if the shock- 
ionization front has to travel some distance before 
encountering a sufficiently dense cloud or if the OB 
stars trigger gravitational instability in adjacent 
clouds which have initial densities 102 < n < 103 

cm-3. An approximate upper limit to rHlI is the 
lifetime of the OB stars which supply the Lyman- 
continuum photons necessary to drive the shock- 
ionization front. 

We look for the solution at model age t » rm*, i.e., 
i » 9 x 107 yr if ms is as small as 5 m0. Then we can 
use the linearization, 

B(t-T,r) = B(t,r)-T^. (6) 

Since we are combining two star-formation rates, we 
simplify notation by introducing (1) the net efficiency 
of star formation by high-mass stars, 

Arm = Asn + Ajju ; (7) 

(2) the effective fraction of the initial mass function 
involved in star formation by high-mass stars, 

/h: 
_ ^SN f 

mu' 
i/j{m)dm 

ms 

a rmu 
ip(m)dm ; 

mon 
(8) 

(3) the time interval rHM between the birth of a given 
high-mass star and the formation of the new stars 
triggered by shock waves from this high-mass star ; 
and (4) the average value of rHM as given by the 
expression 

a rmxj' 
^hm = -/-/hm 1 (Tm* + Tf)ifí{rri)dm 

Jms 

a rmu 

+ -T^ /hm'^hii <A(m)¿/m . (9) 
JmoB 

With this notation, the above equations give 

r) — ^hm(^ r) — ^hm/hm 
_ dB' 

" Thm ' 

(10) 

The value of fHM lies in the range 2 x 106yr to 
1.6 x 107 yr if ras = 9 ra©, and in the range 2 x 106 

to 4 x 107yrifms = 5 mG. The lower portions of these 
ranges pertain if ASN is negligible in comparison with 
AHii and the values assumed by Elmegreen and Lada 
for cloud parameters apply. 
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As an approximation, we assume that the global 
values of /Hm and the efficiency AKU are time in- 
dependent. The distribution of interstellar clouds is 
subject to statistical fluctuations which determine 
whether a particular shock wave is successful in 
triggering star formation. In taking ^hm as globally 
time independent we are assuming that interstellar 
clouds remain sufficiently numerous in the galaxy (or 
in the portion of the galaxy modeled) so that the rate 
of star formation is governed by the triggering 
mechanisms. Then the solution to equation (10) is 

= (11) 

with time constant 

jr _ ^hm./hmthm . (12) 

Note that this birthrate has the same functional 
form as the birthrates assumed in the models of Searle, 
Sargent, and Bagnuolo (1973), Tinsley (1976), etc. We 
now have a physical interpretation: this type of birth- 
rate applies to star formation by massive stars with 
approximately constant efficiency. 

The exponential-type solution could have been 
anticipated, since the process (each massive star giving 
birth to vÍhm new stars) is mathematically identical to 
population growth. The derivation is presented to 
show the relation between the time constant T in the 
birthrate and the star-formation efficiency ^4Hm- If 
interstellar conditions are such that v4Hm/hm < 1? then 
the birthrate is the popular decaying exponential; 
otherwise the birthrate is a growing exponential 
(which might apply during the Collapse Phase). 

Since this birthrate is unstable against either 
exponential growth or decay, it seems unlikely that 
the efficiency would adjust to yield a time- 
independent birthrate, i.e., if star formation by high- 
mass stars is the only mechanism operating, we do not 
expect a constant birthrate. Thus in galactic models, 
such as those of Mueller and Arnett (1976) and 
Gerola and Seiden (1978), which attempt to explain 
spiral structure in terms of star formation by high- 
mass stars in a differentially rotating galaxy, one must 
either assume that a spiral galaxy somehow knows the 
correct value of ^hm to maintain zero population 
growth via some negative feedback mechanism or that 
some other type of star-forming mechanism is also in 
operation. 

Once T is specified, the value of the efficiency ^Hm 
follows from equation (12), i.e., the average number of 
new high-mass stars created by each high mass star is 

y — ^hm/hm = j^i + 

We define y as the ratio of the number of high-mass 
stars formed in each generation to the number of 
high-mass stars in the previous generation. Thus y is 
not the same as the probability Pst in Gerola and 
Seiden (1978). To obtain the value of y corresponding 
to Pst in the models of Gerola and Seiden, one must 

sum appropriately over all their geometric cells since 
Pst is the probability that one “star” will trigger star 
formation in a particular geometric cell. Their require- 
ment that “a propagating structure have a probability 
of unity to survive to the next time step” indicates 
that y x l in their models. 

According to Tinsley (1975), a decaying exponential 
birthrate with time constant T < 109 yr and age 
¿! = 12 x 109 yr yields UBV colors in agreement 
with the observed mean colors of elliptical galaxies. 
This upper limit on T implies that the average past 
efficiency of star formation by high-mass stars is small 
enough to explain the usual absence of young stars in 
present elliptical galaxies. The most active star 
formation in an elliptical galaxy occurs when the 
elliptical galaxy is young, when both expanding H n 
regions and supernova shock waves trigger star 
formation. For values of T in the range 108-109 yr 
(this is the range of values for the time constant in the 
massive halo models of Ostriker and Thuan 1975) and 
thm in the range 2 x 106 to 4 x 107 yr, the value of 
^hm/hm lies between 0.71 and 0.998. Note that most 
of the high-mass stars have two opportunities to 
trigger star formation (first by developing an H n 
region and later by becoming a supernova). The value 
of ^hm/hm represents the sum of both opportunities. 
If (i) m0B = rns, or (ii) ASN is negligible, or (hi) AHii 
is negligible, we obtain the values of ^hm listed in 
Table 1 for the above values of T and fHM. In this 
table, wHm is the relevant lower mass limit (i.e., either 
ms or m0B) in equation (8). 

The assumption in equation (11) that AKM is time 
independent is obviously an approximation. If the 
interstellar gas becomes so depleted in an elliptical 
galaxy (e.g., by the action of galactic winds) or in a 
galactic halo that the number of interstellar clouds 
falls below some critical value, then the values of 
v4Hm and T would decrease. Now, observational 
limits on the present star formation rate in normal 
elliptical galaxies cannot distinguish between a present 
birthrate of zero and a birthrate that is merely down 
by a factor of e~12 (for T = 109yr) from its initial 
value. Thus a lack of young stars could be attributed 
either to the effects of galactic winds or to a low 
value for the efficiency ^Hm- Equation (11) should 
provide a useful description for elliptical galaxies 

TABLE 1 
Average Number of Star Births Triggered by Each 

Massive Star if T = 108-109 Years 

mL mHM 
(m©) (fw©) /hm 

0.2  9 4.6 x IO"3 0.86 190 
1.00 220 

0.1  9 2.2 x 10"3 0.86 400 
1.00 460 

0.2.......... 5 1.4 x 10"2 0.71 50 
1.00 70 

0.1....  5 6.8 x IO"3 0.71 100 
1.00 150 
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until e tlT becomes very small; thereafter the precise The physical requirement that both <Æ(0, r)> and 
form of the birthrate is not of much interest. ^yOO) positive constrains the value of 

IV. THE BIRTH RATE IN DISK MODELS 

We consider star-forming mechanisms appropriate 
to the annulus in a galactic disk where star formation 
by the spiral density wave operates, i.e., from the 
inner Linblad resonance at r± to the outer Linblad 
resonance at r2. The frequency of star-forming events 
associated with the spiral density shock wave is 
7r"1[Q(r) — Qp], where is the angular speed of the 
spiral pattern and Q(r) is the rotational speed of the 
matter. The combined stellar birthrate for a cylindrical 
shell with radius (dr, r) is 

*0 = -^hm + ^sp ? (14) 
with 

^sp = - ^p], (15) 

and í?hm giyen by equations (3), (4), and (5). The 
efficiency Asp is tt-1 times the number of stars born 
per unit shell mass when the spiral shock passes. 

Let us make the simplifying assumptions that 
and Asp are time independent and again use the 

linearization given by equation (6). Then from equa- 
tions (4), (5), (14), and (15), we obtain 

B(t, r) = B(0, r)e~^ + r(r)(l - e~^) , (16) 

where T is given by equation (12) and 

y(r) = /X') . (H) 
\tHM/ 

Thus the birthrate consists of an exponential term, 
[£(0, r) — y(r)]e~t/T, and a “constant” term, y(r). 

Note that for applications involving only young 
stars, as in § Vb and Paper II, we do not need to assume 
that Ahm and Asp are time independent for all t. In 
such cases, we require only the weaker assumption 
that the efficiencies remain constant for a time interval 
long compared to either rHM or T. 

In § V we solve for values of the parameters B(0, r) 
and y(r) appropriate to our Galaxy. To avoid prob- 
lems with shells that are not closed systems, we work 
in terms of averages (angular brackets) over the 
relevant mass shells in the galactic disk: 

=±-^B{t,r)dMr 

= JfD\ B{t, r)2Tro(r)rdr (18) 

and 

{S(t,r)y = r (B(t', ry)dtf, (19) 
Jo 

Kh) = 
<£(¿1, r)> 
<^i, 0> ’ 

i.e., <i?(0, 0> is positive for 

(21) 

Kh) > 
h exp (t^T) 

exp (hIT) - 1 
- T, (22) 

while <y(r)> is positive for < T [exp (t^T) - 1]. 
Although the second inequality can always be 
satisfied for a small enough value of T, no value of T 
will satisfy the first inequality unless Thus 
we require A^) > 4 x 109 yr if the disk age ^ > 
8 x 109 yr. 

The value ^ is a critical value for the 
behavior of the birthrate (B(t, r)>. If h^) > then 
[<2?(0, r)> - <y(r)>] is positive, so <i?(¿, r)> will 
decrease monotonically with time to a constant 
value (y(r)). However, if A^) < tl9 then (B(t, r)) will 
increase monotonically with time to a constant value 
(y(r)). We conclude in § Va that for the Disk Phase 
in our Galaxy, the monotonically decreasing case is 
preferred. This agrees with the choice usually made 
in the literature. 

Using equations (10) and (17), we find that the 
relative importance of star formation by the spiral 
density wave is 

^sp _ thm y(r) ~ thm y(r) 
Bkm T B(t — fHM, r) ~ T B(t,ry 

If the birthrate is a decreasing function of time, then 
Bspl7?hm increases with time and approaches a constant 
value rHM/r for large t. In this case, as a young spiral 
galaxy ages, the spiral arms increase in prominence 
until the “constant” term y(r) dominates in the 
birthrate. 

V. SOLUTIONS APPROPRIATE TO THE DISK 
OF OUR GALAXY 

a) Values for the Parameters in the Birthrate 

In Paper II, we find that T = (2.4 ± 1.6) x 107 yr 
for the present disk of our Galaxy. Using this value, 
we can calculate values for the unknown parameters 
<y(r)> and <Æ(0, r)> if, for example, we have estimates 
for Asn(¿i), the present total supernova rate in the 
disk, and /x(i), the mass fraction of the disk locked up 
in long-lived stars (and remnants of stars) born during 
the Disk Phase. If we let 

/»mu' 
/sn = >p(m)dm (24) 

Jms 

and 
where a(r) is the projected surface density and 

MD = Ï 2 27To(r)rdr . (20) 

+ Tf)ilj(m)dm (25) 

(analogous to the definitions of /HM and rHM), then 
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equations (4), (16), and (18) yield the following 
expression for the supernova rate: 

x expi-^/r) + <y(r)> . (26) 

8 x 109 yr, then values for the ratio <£(0, r)>/<y(r)> 
range from 1 [when h{t^) = to 51 [when = 
9 x 109 yr] to 550 [when MA) = 19 x 109 yr]. Large 
values for the birthrate at the beginning of the Disk 
Phase would be consistent with the predictions of 
Larson (1974) and Kaufman (19756) for the birthrate 
near the end of the Collapse Phase. 

Let a equal the average mass locked up per star 
(a = 0.3-0.5 m0). Then 

KO = «<^1, 0> 5 (27) 

provides a second relation between the unknown 
parameters. If no mass flows into the disk, then K0 = 
G(0) — G(t), where G(t) is the mass fraction of the 
disk in the form of interstellar matter. More generally, 

MO = G(0) - G(0 + [1 - G(0)][l - , (28) 

so /x can exceed G(0) — G(t) if inflow has increased 
the mass of the disk. 

In Paper II we find that T/G « 1 for our Galaxy. 
Hence we can use the following approximations: {a) 
the present birthrate Æ(G> 0 ^ y(0; (b) equation (26) 
reduces to MD<y(r)> æ «sn//sn; (0 the observed 
value of 6(G) can be obtained from 

h(tl) ~ í7Íí)^/§n; (29) 
a 

and {d) the ratio of the initial birthrate in the disk to 
the present birthrate in the disk is 

<¿(0, 0> = Ä(G) [i G-71 
<y(r)> T |_A 6(G) J * 

(30) 

Note, for small values of T/G, that there are no 
physically allowable solutions if 6(G) < G — T7. This 
eliminates all models for the Disk Phase of our 
Galaxy in which the birthrate increases with time to a 
constant value, except for the small range of models 
with G — T < 6(G) < G- 

To compute numerical values for <y(r)> and 
<Æ(0, r)>, we specify values for the input parameters 
ms, AfD(G), etc. Initially we try the following values. 
We take 6sn(g) as either 0.02 yr-1, from counts of 
SNRs (Ilovaisky and Lequeux 1972), or 0.05 yr-1, 
from observations of other Sbc galaxies (Tammann 
1970, 1974, 1977). Allowing for star formation during 
the Collapse Phase and assuming G(G) in the range 
0.1-0.2, we set KG) equal to either 0.7 or 0.5. For the 
remaining parameters, we choose ms = 5 or 9 m0, 
raL = 0.1 or 0.2 mQ, MD(ti) = 6 x 1010 or 1011 m0, 
G ^ 8 x 109 yr, and T = 2 x 107 yr. We then rule 
out combinations of input values that yield 6(G) < 8 
x 109 yr. Furthermore, constraints presented in § Vc 
eliminate values of 6(G) > 19 x 109yr. So choosing 
combinations that give 6(G) in the range 8-19 x 
109 yr, we find that the present total birthrate in the 
disk MD<y(r)) is in the range 3.5-11 yr-1. If G is 

b) The Radial Distribution of Young Objects 

We compare our model with the observed radial 
distribution of young objects such as giant H n regions, 
CO, OH, and near-infrared radiation. Since T/G « 1 
in our Galaxy, the present birthrate B{tu r) has the 
same radial dependence as y(r), i.e., the radial gradient 
is governed by the spiral density wave. For y(r), we 
treat two possible cases: in case (I), the efficiency 
Asp is proportional to the compression in the spiral 
shock wave, with the expression for the compression 
and values of the angular drift speed Q(r) — Qp from 
Shu, Milione, and Roberts (1973); in Case II, Asp is 
independent of the spiral shock compression. In both 
cases, the birthrate decreases as r increases from a*! to 
r2, since y(r) behaves either like r2[Q,(r) — Qp]3 or 
like Q(r) — Qp. 

Let b(r) represent the number of young objects per 
pc2 projected onto the galactic plane and averaged 
over a shell with radius (dr, r). For our model, b(r) 
equals a(r)B(t, r), and we use values of the projected 
mass surface density KO from Innanen (1973). In 
Table 2, we compare predicted and measured values 
for b(r) in the 5 kpc ring and in the solar-neighborhood 
shell. For the measured values of b(r), we choose 
various types of radiation thought to be associated 
with young objects. We see that the various measured 
values cover a sufficiently wide range to include both 
of our predicted values. 

Bash, Green, and Peters (1977) construct a galactic 
model based on star formation by the spiral density 
wave, alone. Their predicted radial gradient in b(r) 
is not as steep as we obtain because we defined B(t, r) 
as the birthrate per unit mass rather than the birthrate 
per unit volume. Their model does not account for 
star formation at either r < rx or r > r2. Our model 
has the advantage that star formation by high-mass 
stars can operate throughout the galaxy. 

TABLE 2 
Radial Distribution of Young Stars in Our Galaxy 

6(5.5 kpc) 
Object 6(10 kpc) Reference 

Predicted for case I  
Predicted for case II  
Young OH/IR stars  
2.4 /xm surface brightness 
CO emission  

HI09a emission  
HI09a emission  
HI66a emission  

16 
8 

11 Oort and Baud 1978 
18 Okuda et al. 1978 
5.5 Gordon and Burton 

1976 
8 Mezger 1972 
4.7 Burton 1976 

21 Burton 1976 
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c) The Local Birthrate: Past and Present 

Let jfiTi(r) equal S(tly r)IB(tu r), the ratio of the 
time-integrated birthrate to the present birthrate for 
a shell with radius (dr, r). The observed value of 
tfi(r0) for the solar-neighborhood shell provides a 
constraint on the values for model parameters. From 
limits on the local IMF near 1 mQ, Tinsley (1976) 
estimates 8 < /fi(r©)/109 yr < 20. The local IMF is 
based on Gliese’s (1957, 1969) catalog, and there are 
some indications that this catalog is incomplete for 
nearby GV stars (see Wei-Hwan 1978). Keeping this 
in mind as a source of uncertainty, we shall proceed to 
use Tinsley’s range of values for ifi(r0). 

For Tlt1 « 1, equation (16) gives 

d) Low-Mass Stars 

We now discuss the radial variation in the number 
of stars born up to the present time. In numerical 
examples, we set t1 equal to 8 x 109 yr. 

In the disk, S^, r) = H^r^r). If we assume that 
2?(0, r) is independent of r, then we can use equation 
(32) for i/i(r) and obtain the following relation 
between the radial gradient in 5(^1, r) and the radial 
gradient in young stars: 

= (i1-r)|5(i1>r)v (33) 

H^x^^T+h-T. (31) 

Note that Z?(0, r) is defined as the initial birthrate per 
unit shell mass. As an approximation, we now assume 
that 2?(0, r) is nearly uniform and set £(0, rQ) = 
<i?(0, r)>. Then letting <p(r) = Y(r)Ky(r)} [where 
<y(r)> depends on the present galactic mass distribu- 
tion], we have 

Thus i/i(r) is determined largely by the value adopted 
for A(ii). With the surface-density distribution a(r) 
of Innanen (1973), case I of § Vè gives <p(r0) = 0.5, 
while case II gives (p(rQ) = 0.9. If tx equals 8 x 109 yr, 
then the above limits on //i(r0) imply that 8 < 
A^/IO9 yr < 14 in case I and 8 < A(ii)/109 yr < 19 
in case II. Thus we rule out certain combinations of 
values for the input parameters listed in § Va. The 
condition 8 < A(ii)/109yr <14 can still be satisfied 
by choosing (a) MD = 6 x 1010 m©, ^ = 0.5, ms = 
9 m©, and «SN = 0.02 yr-1; or (b) MD = 1011 wz0, 
ms = 9 mQ, mL = 0.2 w0, and /iSN = 0.05 yr-1; or 
(c) Md = 6 x 1010 w0, = 0.5, ms = 5 mG, mL = 
0.1 m0, and /zSN = 0.05 yr"1. (Unspecified param- 
eters are allowed to take any of the values listed 
in § Va.) So it is not difficult to obtain a suitable 
value for T/i(r0) with plausible values for the input 
parameters. 

Tinsley (1976) estimates that the present birthrate 
per pc2 in the solar neighborhood is 3.2-13 x 10"9 

m© pc"2 yr"1. If we adopt a value of 80 m0 pc"2 for 
cr(rQ) and the above limits on h(ti), then y(rQ)<j(rQ), the 
mean present birthrate per pc2 in the solar-neighbor- 
hood shell, is 3-6 x 10"9 m0 pc“2 yr"1 in case I and 
4-11 x 10"9 m0 pc"2 yr"1 in case II. Thus within 
the context of our disk models, the global values 
assumed for the present supernova rate and the total 
number of stars born up to the present time in our 
Galaxy are consistent with the observed values of the 
present local birthrate per pc2 and the total number 
of stars born up to the present time in the solar 
neighborhood. 

For r close to rQ, dcp/dr = 0.27 kpc"1 (case I) or 
0.23 kpc"1 (case II) and dS/dr lies in the range 0.11- 
0.33 kpc"1. In Table 3 we show the decrease in 
S(ti, r) between the 5.5 kpc ring and the solar- 
neighborhood shell for the range of values of A^) 
found appropriate in § Vc. Let ALM(i, r) equal the 
average number of low-mass stars per pc2 in a shell 
with radius (dr,r)\ ALM(¿, r) = a^)»^, r). With 
cr(r) from Innanen (1973), we have N^-^tx, 5.5 kpc)/ 

rQ) = 2>S(h, 5.5 kpc)IS(t1, rQ). 
The radial color gradient in the disk depends on 

the gradient in the ratio of old-to-young stars, 

dH1 hih) + T — t1 d<p 
dr ~ <p2 dr V 

on the gradient in the metal abundance Z, and on the 
gradient in reddening by dust. Table 3 lists the increase 
in i/i(r) between the 5.5 kpc ring and the solar- 
neighborhood shell. Using the relation between B — V 
color and H1 from Larson and Tinsley (1978), we find 
that the gradient in H1 alone would make the 5.5 kpc 
ring bluer than the solar neighborhood by A(Æ — V) 
< 0.03 if //i(r0) < 10 x 109 yr, or by A(2? - V) = 
0.08-0.1 if //i(r0) is 20 x 109 yr. On the other hand, 

TABLE 3 
Number of Stars Born up to the Present Time as a 

Function of Radius 

HxiS.S kpc) Sfa, 5.5 kpc) SU,, r0) 

Case I: Aap oc Compression 

8..  1.0 5.4 200.0 
9  0.84 4.5 4.9 

10  0.73 3.9 3.0 
14   0.51 2.7 1.7 

Case II: Asp Independent of Compression 

8   1.0 2.6 360.0 
9  0.93 2.4 8.0 

10  0.87 2.3 4.6 
14  0.72 1.9 2.2 
19  0.63 1.6 1.7 
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the observed gradient in metal abundance would act 
to make the 5.5 kpc ring redder than the solar 
neighborhood. If the observed abundance gradients 
derived by Peimbert (1978) for r = 8-14 kpc apply 
also to the range r = 5-10 kpc, then the average value 
of O/H is about 3 times higher at 5.5 kpc than at 10 
kpc. According to Larson and Tinsley (1978), this 
increase in Z would make B — V larger by roughly 
0.08. Thus, if //i(r0) < 1010 yr, the outward blueing 
associated with the metal-abundance gradient would 
dominate the outward reddening associated with the 
gradient in the ratio of old-to-young stars. 

If the same IMF applies both to star formation by 
the spiral density wave and to star formation by high- 
mass stars, then we can compare the number of low- 
mass stars per pc3 in the disk with the number of low- 
mass stars per pc3 in the nuclear bulge. For the nuclear 
bulge, we adopt the model of § III and let SnVLC(t, r) 
represent the time-integrated birthrate for a mass shell 
in the nucleus. Since T/tx « 1, Snw(ti, r) ss B(0, r)T. 
Again assuming £(0, r) independent of r, we obtain 

ro) 1 + h -T 
Kh) — tx + T 

<p(rQ). (35) 

Values for this ratio are listed in Table 3. With 
Innanen’s (1973) mass-density distribution for our 
Galaxy, we find that there are 0.07-15 times as many 
low-mass stars per pc3 at r = 1 kpc as in the solar- 
neighborhood shell. With the mass-density distribu- 
tion of Sanders and Lowinger (1972), we find that the 
number of low-mass stars per pc3 at r = 100 pc is 
3-70 times the number of low-mass stars per pc3 in 
the solar-neighborhood shell. Equation (35) does not 
apply to the high-density region in the central pc of 
our Galaxy, since collisions between interstellar 
clouds would be important in triggering star formation 
there. 

e) Comments on the Metal-Abundance Gradient 

The rate at which Z increases in some region of a 
galaxy depends on the yield p9 the star formation rate, 
and the amount of interstellar gas with which the 
supernova ejecta mix before new stars are formed. The 
“simple model” for chemical evolution devised by 
Searle and Sargent (1972) postulates that p is constant 
and that each zone in the galaxy can be treated as 
isolated (see Pagel and Patchett 1975 for a more 
detailed description). This means that the mass 
fraction in the form of interstellar gas G(t, r) = 
(7(0,7*) — aS(t, r). Dividing our Galaxy into a series 
of isolated mass shells (as in Talbot and Arnett 1975), 
we find that the radial gradient in the interstellar 
metal abundance is 

dZ ~ ap dS 
dr ~ G(t, r) dr 

(36) 

provided we can neglect the radial dependence of 
Z(0, r) and the radial dependence of G(0, r). If 
p ^ 0.01 (Talbot and Arnett 1973) and G{t, r0) = 0.1- 
0.2, then equations (33) and (36) give — dZ¡dr = 

0.003-0.012 kpc"1 for the solar-neighborhood shell. 
With Z(t,rQ) = 0.02, Peimbert’s (1978) observed 
gradient in O/H implies that —dZ/dr = 0.005 kpc-1 

at rG. 
However, I caution the reader against accepting at 

face value the apparent agreement between the 
predicted and observed local abundance gradients. 
Peimbert (1978) finds a variety of values for O/H in 
H ii regions with approximately the same percentage 
of interstellar gas, while the “simple model” predicts 
that, aside from variations in Z(0, r) and (7(0, r), 
regions with the same value for G(t, r) should all have 
the same metal abundance. Furthermore, in writing 
equation (36), we judiciously chose to use the theo- 
retical gradient in S(tu r) rather than the observed 
gradient in G(¿i, r). The latter is much flatter (see 
Gordon and Burton 1976) and would yield a metal- 
abundance gradient much flatter than observed. The 
implication is that various mass shells in the disk are 
not isolated; gas flows such as differential infall or 
radial flows in the disk must play a significant role in 
determining G(t, r). 

The conclusion is that, indeed, the observed metal- 
abundance gradient does correlate with the predicted 
star-formation gradient, but further study of the gas- 
flow problem is required. This I postpone to a later 
paper. 

As noted in § I, several authors have used models 
with decaying exponential birthrates to treat either 
the chemical evolution of our Galaxy or the colors of 
other galaxies. In our disk model, the birthrate consists 
of an exponential term plus a “constant” term: the 
exponential term is important during the early stages 
of the model but makes a negligible contribution to 
the current birthrate. To what extent does the 
exponential term influence the chemical evolution of 
the disk of our Galaxy? Let </exp(0) represent the 
fractional contribution of the exponential term to the 
total time-integrated birthrate for the disk. For 
T/tx « 1, we find that </eXp(¿i)> = IM¿i) + T - txV 
h(tx). So the value of </eXp(*i)) varies from 2.5 x 10 3 

if h(tx) = ii = 8 x 109 yr to 0.5 if h(tx) = 19 x 
109 yr. 

/) Stellar Age Distribution in the 
Solar Neighborhood 

For the solar-neighborhood shell, let N{t¡) equal 
the number of stars with ages in an interval dr about 
r*. For stellar ages r* < 7.5 x 109 yr, our disk model 
has {tx — t) » T, and, consequently, the constant 
term dominates in the birthrate. This means that the 
age distribution in our disk model is the same as an 
age distribution calculated with a time-independent 
birthrate. Tinsley (1974) compares the age distribution 
for a time-independent birthrate with the observed 
age distributions given in Cayrel de Strobel (1973) and 
Clegg and Bell (1973). The two observed age distribu- 
tions are not in good agreement with each other. This 
indicates problems with the stellar age determinations 
and/or the completeness of star counts. The age 
distribution predicted for our model (see Table 4) is a 
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TABLE 4 
Stellar Age Distribution 

tx t2 Observed Predicted 
(109 yr) (109 yr) NÍtJ/NÍtz) NítJ/nItz) Reference 

3-5  1-3 0.55 ± 0.18 0.55 1 
5- 7  1-3 0.47 ± 0.17 0.21 1 
6- 8  3-4 0.40 ± 0.11 0.11 2 

References.—(1) Cayrel de Strobel 1973; (2) Clegg and 
Bell 1973. 

bit steeper than the observed distribution in Cayrel de 
Strobel and considerably steeper than the observed 
distribution in Clegg and Bell. Unless Í! < 8 x 109 yr, 
Tinsley’s (1976) simple exponential models which 
satisfy her limits on Hx also have steeper age distribu- 
tions than observed by Clegg and Bell. While the 
stellar age distribution is potentially a test of the 
model, a more accurate determination of the observed 
distribution is required. 

VI. SUMMARY 

The simplified galactic-evolution models in this 
paper are based on three star-formation mechanisms 
for which there is both observational and theoretical 
evidence. These mechanisms are star formation 
triggered by a galactic spiral density wave, star forma- 
tion triggered by an expanding H n region, and star 
formation triggered by shock waves from supernovae. 
The latter two mechanisms are called star formation 
by high-mass stars. 

With the assumption that the efficiencies of the above 
star-forming mechanisms remain approximately con- 
stant in time for the duration of the galactic model 
(which starts at the end of the initial Collapse Phase), 
we obtain the following results. 

1. If star formation by high-mass stars is the only 
important star-forming mechanism, then the birthrate 
is exponential in time. This provides a physical 
interpretation for the exponential-type birthrates used 
by many authors to discuss the chemical evolution and 
colors of galaxies and indicates that exponential 
birthrates are appropriate for describing the past evo- 

lution of an elliptical galaxy, nuclear bulge, or galactic 
halo. The value of the time constant T in the exponen- 
tial is determined by the efficiency with which shock 
waves from massive stars initiate star formation. 

2. In the disk of a spiral galaxy, all three star- 
forming mechanisms operate, and the total birthrate 
contains contributions from the birthrate for 
star formation by high-mass stars, and from J9sp, the 
birthrate for star formation by the spiral density wave. 
The birthrate then consists of an exponential term 
plus a time-independent term. The efficiency of star 
formation by high-mass stars determines the time 
constant T in the exponential term. 

3. For our Galaxy, we have the following specific 
results, (i) Since the time constant T x 2 x 107 yr 
(see Paper II) for the disk, the birthrate in the disk 
decreases with time during the early Disk Phase and 
then remains nearly constant in time for disk age 
t > 109 yr. (ii) In the disk, the radial gradient in the 
birthrate is governed by the spiral density wave and 
is in reasonably good agreement with the observed 
radial distributions of various types of young objects, 
(iii) Our model is consistent with the observed values 
for the present local birthrate per pc2 and the total 
number of stars born up to the present time in the 
solar neighborhood. The present birthrate per unit 
mass in the solar neighborhood shell is smaller by a 
factor <p(r0) = 0.5-0.9 than in the disk as a whole, (iv) 
We compute the radial variation in S, the total number 
of stars born up to the present time, and compare the 
disk with the nuclear bulge region. In the disk, the 
predicted gradient in S correlates with the observed 
metal-abundance gradient. Jensen, Strom, and Strom 
(1976) obtain a similar result for other disk galaxies. 
Considering only star formation by the spiral density 
wave, they find that metal-abundance gradients are 
correlated with star-formation gradients, (v) If 
#i(f©) < 1010yr, then the outward blueing of the 
disk associated with the metal-abundance gradient 
dominates the outward reddening associated with the 
gradient in the ratio of old-to-young stars. 

Thus we have a simplified theory of galactic 
evolution that applies to both elliptical and spiral 
galaxies and yields results in reasonably good agree- 
ment with observations. 
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