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Observational evidence, which is necessarily confined to a region of the universe limited in space (within
the observer’s horizon), implies a high degree of homogeneity and isotropy for the large-scale structure of
the universe. In principle, substantial deviations of the properties of the real universe from the parameters
of an idealized Friedmann cosmological model could have prevailed on scales exceeding that of the
horizon. Constraints on the amplitude of perturbations with such long wavelengths are imposed by the
virtual isotropy (8 T/ T < 10~*) of the observed background radiation. This information on 8§ T/ T together
with the natural hypothesis that the perturbations are statistically independent implies that on spatial
scales exceeding the horizon there exist no significant (with amplitude of order greater than 67/T)
perturbations in density. For certain types of perturbations in the metric (in the gravitational field), the
amplitude could be appreciable without contradicting the empirical limits on §T/T.

PACS numbers: 98.80.—k, 98.70.Vc

Studies of the 3°K microwave background radiation
are a most valuable tool for probing the large-scale struc-
ture of the universe.! Empirical evidence concerning the
spectrum and angular distribution of this radiation can
set limits on the perturbations that may exist — the de-
partures of the properties of the real world from the pa-
rameters of an idealized Friedmann cosmological model.
But the observations are necessarily confined to a region
restricted in space. If we nevertheless take advantage of
the measurements that have been made and invoke a few
general hypotheses, what can we say about the state of the
universe beyond the region which is in principle accessi-
ble to observation today? To answer this question, we
should at the outset make clear what is meant by the ob-
servable region, perturbations and their Fourier spec-
trum, and statistical independence,

We are presently observing photons emitted by the
primordial plasma in the remote past, at an epoch when
the plasma had become transparent as a result of recom-
bination. Thus the photons of the background radiation
have been traveling freely, without being scattered, for
an extremely long although finite time. The time of free
photon propagation determines the spatial scale that we
call the horizon of recombination.

Small perturbations of the Friedmann model can be
expanded in Fourier harmonics, each characterized by
the corresponding wavelength A ,. As time passes the
wavelength changes in proportion to the scale factor of
the isotropic universe.

Among the perturbations of various wavelengths, there
are some for which A, exceeds not only the horizon of re-
combination but also the observer's horizon (or simply
the horizon), as specified by the finite time of expansion
from a superdense (singular) state to the present epoch.
(Actually the relative difference between the recombina-
tion horizon and the observer's horizon is small, amount-
ing to just a few percent.) Such waves are said to be long.

Now we should ascertain what quantitative constraints
on the amplitude of long-wavelength perturbations can be
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imposed in view of the observed high degree of isotropy
of the background radiation: 8T /T < 10™% Might it not
turn out that at our present epoch, on scales greater than
the horizon, substantial perturbations in the density and
in the metric exist (say with an amplitude 6p/p ~ 1071,
or with a dimensionless amplitude in the metric of the
same order) which we do not even suspect, because we
cannot yet observe them directly? Such effects would be-~
come accessible only to astronomers of the very remote
future, t > 2 - 10%0 yr, when the observer's horizon and
the recombination horizon become comparable with the
corresponding wavelength.

We would emphasize that we are here interested in
smooth, long-wavelength perturbations that encompass the
region of space inside the horizon as well, rather than
perturbations that originate beyond the horizon, remain-
ing always unchanged within it. In other words, we shall
make the natural assumption that harmonic perturbations
of differing wavelength are not specially correlated. K
this were not the case, they could be selected in such a
way that within the horizon the deviations from the Fried-
mann model would be particularly small (and hence 6 T/T
would be small), but beyond the horizon the perturbations
would be large. But such a choice of different harmonics
is most unlikely, for it would imply that an observer on
the earth is in a singular position. Our starting assump-
tion is, on the contrary, that all observers are equivalent
and perceive approximately the same picture; thus for
all observers, even for those causally unrelated, 6T/T <
1074, The question nevertheless remains of whether small
deviations, not noticeable with measurements of the pres-
ent accuracy within each observer's horizon, might add
up to a substantial large-scale perturbation. Graphically
expressed, might not observers living on the slopes and
humps and in the valleys of a long density wave or gravita-
tional wave be able to recognize this fact by examining,
with limited accuracy, only their immediate neighborhood?

The conclusion we shall reach may be stated as fol-
lows. Measurements of 6T/ T indicate that the density
perturbations cannot be appreciable; on any scale they
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are limited to an amplitude which is an infinitesimal of
at least the same order as 6T/T. As for the perturba-
tions in the metric, for the same empirical constraints
on 6T/T these can be iarger than 6T/T, and indeed in the
range of long wavelengths the metric perturbations can
reach values approaching unity, so that they are at the
limit of applicability of the theory of small perturbations.

In this respect, with a restriction of order 6 T/T im-
posed on the dimensionless amplitude of the perturba-
tions, the result may appear paradoxical. At first glance
it may seem obvious that for a fixed recombination hori-
zon, a transition to increasingly long wavelengths would
be equivalent to smoothing out the perturbations within
the horizon, diminishing their contribution to 6T/T, and
thereby permitting a rise in the admissible amplitude of
the perturbations without coming into conflict with the ob-
servations. Actually, however, it is not only the spatial
dependence of a perturbation that is important, but also
the speed of its time variation. A long-wavelength per-
turbation will manifest itself not as a wave but as an an-
isotropy in the deformation. It will make some contribu-
tion to 6T/ T even as the wavelength characterizing the
spatial periodicity increases without bound.

However, perturbations of the metric also exist which
vary slowly with time and induce a particularly small de-
formation anisotropy. The constraints on the amplitude
of such perturbations resulting from their connection with
8T/ T will be relaxed. This is the reason why perturba-
tions of the metric with a growing density mode, as well
as metric perturbations such as the nonsingular mode of
gravitational waves, may exceed 6 T/T and reach substan-
tial values for values of long wavelength.

We shall examine here a homogeneous and isotropic
model with flat three-dimensional space, the density being
equal to the critical density. Assume that "smeared out"
matter has the equation of state P = 0, which is a good ap-
proximation for the postrecombination era. Then the met-
ric of the universe (the gravitational field), including small
perturbations, can be described by the line element

ds’=a* (1) (Nethe) de*da’=a’ (1)
(A" —d2* —dy*—dz?) 0 (n) hadz®da’.

The corrections h,;, are determined by solutions of the
Einstein equations. As Lifshits demonstrated,? three in-
dependent types of corrections can be identified: 1) den-
sity perturbations; 2) eddy perturbations; 3) gravitational
waves.

One should keep in mind that prior to recombination
matter was hot, possessing entropy, so that density per-
turbations could have been either adiabatic or nonisen-
1:ropic.3 After recombination the adiabatic perturbations
could have had a growing and decaying mode, whereas the
entropy perturbations in the long-wavelength range would
have been transformed only into the decaying mode of den-
sity perturbations. In the discussion below we shall con-
sider the entropy perturbations separately.

The metric hgy, will be represented in the form pro-
posed by Sachs and Wolfe,* except for trivial changes of
notation. I P =0, the equations given by Lifshits? and
Sachs and Wolfe? coincide for all perturbations except
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for the eddy (rotational) perturbations.

Suppose that the photons become free instantaneously
at the epoch g of emission. Let nR denote the epoch of
reception today. I the last scattering of photons occurred
at the epoch of recombination, when z ~1400, then!
ng/mg ~ 1/40. The direction of arrival of a light ray
is defined by a vector e% having the components e% =
{ sin 6 cos ¢, sin 6 sing, cos 0}. If at the epoch ng of
photon emission the temperature of the primordial back-
ground radiation was everywhere the same and equal to
TE, then at the time of photon arrival it would possess
variations depending on the angle of arrival and on the ob-
server's position. The temperature will take the value

‘l'lzzz 6T
To=T —-( 1 +___),
R B T]az T
wherez)
8T 1 T Ohy Bk
— ] 5_2 ﬂ) d . (1)
T 2 J. ( P e'e 7 e} dw

The integration extends along the light geodesic n = ng —w,
x¥ = ¢%w, with a parameter w varying from zero to nR~NE-

We shall consider the three types of perturbations in-
dividually, representing each of them by a single plane
wave.

1. Density perturbations. The growing
mode of density perturbations is described by the equa-
tions

Sp 1

= _h(nn)2ef@xtd
3 (nn)’e ,

b= (10hn s Hhn nng) e 034D Ry =0, )
where h depends, in general, on n. The number n, the
modulus of the wave vector, characterizes the spatial
periodicity of the perturbation. For long waves the con-
dition nnp < 1 is satisfied. Here and subsequently we
shall regard the z axis as directed along the vector n,
with the observer having coordinates x =y =z =0,

Substituting the expressions (2) into Eq. (1) and in-
tegrating, we find that

6T
_T_ i hefi[in.nn cos e“'in'flx cos Bein(nr~nz)cos e+1_ein(nx—ns)c°! °]_

In the long-wavelength limit, with nng < 1, we have

6r 1 >
——=—nh(nnz)*cos* 0 {(1 _ = ) cos §
T 2 "']ﬂ2
1 2 :
——nqxcosﬂ(1—32—+2n—x-)sin‘§}. ®)
3. nﬂz nﬂa

Since Y%hnng)? = (6p/ p)R. it is evident from Eq. (3) that

at the present epoch large 6 p/ p values are precluded in
the long-wavelength range by the high degree of isotropy
of the background radiation. As for the amplitude of the
metric, these restrictions become considerably weaker

because of the small value of the factor (nnR)z.

The parameter { describes the relative position of
the observer. For h > 0 and £ = 0 the observer will be
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at a maximum point of the density perturbation; for £ = 7,
at a minimum. The integral of 6T/T over a sphere will
be greater than zero for £ =0, so that at the density maxi-
mum the radiation will appear somewhat hotter than the
average over all space. Correspondingly, if £ = 7 the
radiation will seem just as much cooler. Only the angular
variations in the temperature are significant for the ob-
server, since he has no opportunity to compare the mean
temperature he observes with the temperature averaged
over all space.

If the observer is located near the inflection points,
that is, at £ =~ +7/2, then for fixed limits on 6 T/T the
quantity (6 /, p)R can be increased because of the small
factor nng cos 6. However, the probability that the ob-
server will be situated in this range of { values is very
small, since the departures from £ = + 7/2 should not
exceed a small quantity of order nnpcos 6. As very long
wavelengths are approached (ng — 0), this £ interval
will also tend to zero.

For the decaying mode of density perturbations we
have

) 1 1 1 .
o _ T hnt — PIC LU . :I_B_hnunﬂe:(nxm,

ho=0.
p 2 n o

4

If nnp < 1, an evaluation of 6T/ T yields
R

6T 1 1
—_— ——hnzcosze—»{( 1-— 0=
T 2 1 M=

3

3)cos§

3 3 8o\
——nnncose(1— A= + = )sin§}=—- (_p) cos’0 @ (g, 0), (5)
2. 214 P e

where ®(£, 0 ) designates the expression in braces.
Since

1 1
a2
2 . "']E3 Y E

the density and metric perturbations at epoch ng could
not have exceeded 6T/ T, and a fortiori they should be
small today.

After recombination, entropy perturbations in the
long-wavelength range will have gone over primarily to
the decaying mode of the density perturbations. In fact,
the general equations for entropy perturbations® provide
us with asymptotic relations in the long-wavelength limit
which are applicable both before and after recombination.
During the stage when radiation dominates (but after the
annihilation of antibaryons has terminated, when kT <«
mpczj, an entropy perturbation of the total density will
grow according to the slower of the two modes charac-
teristic of adiabatic perturbations, that is, according to
the law
L (6—S) L (n<n), (6)

€ S /..

whereas the fast mode would give a law of the form
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e /e ~n? [In Eq. (6), ne designates the epoch when the
radiation density and the nonrelativistic plasma density
are equal; 0S/S = const - X represents the entropy per-
turbation.] During the stage when nonrelativistic plasma
dominates (when 1 > 7.), the slower mode will be the de-
caying mode 6p/p ~ 173 of density perturbations; by con-
trast, the growing mode will give 6p/p ~ 12. One finds
that after recombination a density perturbation will in
fact follow the 6p/p ~ 1% law (at least until the wave-
length of the perturbation exceeds the scale of the hori-
zon). This statement is demonstrated by an actual cal-
culation. K 71 > ng, one can obtain for perturbations in
the metric and in the density the approximate relations

be dp 1 Ne\° Ne\°
~=—=——an(—-) eitaxth)  p =C(-—:-) itnx+8)
e P 2 1 uB 7 nunBe (7)
ho=0 (nn<1),

where C is a constant related to 6S/S. The perturbations
in the velocity are negligible. In the long-wavelength
range, then, we obtain from entropy perturbations after
recombination the decaying mode of density perturba-
tions.

An intuitive explanation can also be given for this
fact.! An entropy perturbation, by changing the state of
primordial matter in various regions of space (within
the wavelength of the perturbation) in the initial state,
will insignificantly alter the total density and space geom-
etry of the universe near the singularity. In every part
of space, a three-dimensionally flat world will remain
practically flat. After recombination, the density will be
determined by nonrelativistic gas with a pressure P = 0
and, without regard to initial deviations in the entropy, it
will fall off according to the law p = [67G(t + 7)%]"L. The
quantity 7 corrects for the fact that one cannot consider
P = 0 at the beginning of the expansion. Entropy perturba-
tions will cause 7 to differ in different parts of space.

It is readily verified that the difference in density
(that is, the perturbation) will diminish with increasing t
as 6p/p = —267/t + 7, where the time t is measured from
the singularity. Thus as time passes the density pertur-
bation will behave in accordance with the decaying mode.
This process will continue until the wavelength of the per-
turbation becomes comparable with the horizon. At that
time very insignificant initial deviations in the geometry
of various parts of space from a flat geometry and dif-
ferences in the radiation density will become important.
Various parts of the universe will now increasingly re-
semble a spatially open or a spatially closed world. The
growing mode of density perturbations, negligibly small
immediately after recombination, will surpass the decay-
ing mode in amplitude a certain time after equality be-
tween the horizon and the wavelength has been achieved,
and will thenceforth determine &p/p.

With regard to the question of the 6T/ T produced by
long-wavelength perturbations, we are interested in the
solution (7). This solution coincides with Eq. (4) and leads
to the same conclusions. We may infer from the limits
8 T/T < 10~ that density perturbations (originating as
entropy perturbations) and the corresponding perturba-
tions in the metric are bounded by a quantity of order 1074
in the long-wavelength range.
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2. Eddy perturbations. A rotational per-
turbation in the metric will have the form

2 8 2
8p=0, hy=——(nr,tnmng) (—’ + f—) gl (nx+8)
n 7 1/

2
ho=—i—nx,e' ™, win,=0.
1

The last condition here means that »* has the components
n# = (Cy, Cy, 0). The angular velocity vector Q¥ of mat-
ter lies in the (x, y) plane. If C; = 0 the vector Q¢ will be
oriented along the x axis; if Cy = 0, along the y axis. The

observer is located at the maximum absolute value 2, Q%

for £=0 and £ =, and the orientation of Q% is here dis-

tinguished by sign.

If nnp < 1, we obtain for 6T/ T the expression

or
- = 8sin 20 (C, cos p+C. sin @)

s Lfowne (-]

The bracketed term owes its origin to the components hoy -
The integral of 6T/T over a sphere everywhere vanishes.

Equation (8) implies that with the constraints that can
now be placed on the quantity 6 T/ T, the amplitude of eddy-
type perturbations in the metric cannot be significant for
long wavelengths. R is worth recalling, incidentally, that
near the singularity the eddy perturbations in the metric
are large and are divergent.®’

3. Gravitational waves.
in the metric is

The perturbation

6p=0, hygz= _.)_&:;(1_5,“]) )
.
ho=0, =0, dp=0. o)

The nonvanishing components of the matrix daB will be
written in the form dyy = —dy; = Cy, dpg = dgy = Cy, Where
Cj, C; correspond to the two possible polarizations of the
wave.

In the form (9) given above, the real part of the solu-
tion describes the decreasing (singular) mode of the per-
turbations, divergent near the singularity; the imaginary
part of the solution corresponds to the nonsingular mode,
which, like the growing mode of density perturbations, is
compatible with a quasi-isotropic (locally Friedmann) so-
lution near the singularity.

K nny < 1, we have approximately for the decaying
mode

2
- _d—";‘L(1+ (rn) +...)e““‘“’,
1 . :
which gives
6T 1 . 1
=" 5in*0(C; cos 2¢+C, sin 2¢)— O (, 0). (10)
T 2 'I']EJ

Since the components Cy, C, directly yield the character-
istic amplitude of the wave for the decaying mode (that
is, the value of the metric at the epoch when the length of
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the perturbation becomes comparable with the horizon),
Eq. (10) implies that the amplitude of the decaying mode
cannot be greater than 6T/ T.

For the nonsingular mode we have approximately

~(n7)?

1
hw%—?dwns(i_ _'_”_)et'(nx+é),
which leads to the expression

8T n®
- = %smz 8(C, cos 29+C; sin 2¢) (nns)*

2 2
X{( 1 —lx?) cos §—nngcose(1—2"—’+"‘_, )} .
Ne Nr M=~

(11)

In this case the characteristic amplitude of the wave is
determined by the quantities Cyn®, Cyn®. In the main ap-
proximation the perturbation in the metric is constant and
does not depend on time, so that the main terms make no
contribution to §T/T. The relation between the quantities
Cyn®, Cyn®, and 6T /T contains the small factor (nng)?.
Thus in the limit of long wavelengths the amplitude of the
nonsingular mode of gravitational wave perturbations
could have been comparatively high, of order (6T/ T)(nnR)'z,
without contradicting the observations.

For both modes the integral of T/T over a sphere
vanishes. Both 6T/T itself and its gradient drop to zero
for 6 =0.

Equations (3), (5), (8), (10), and (11) give the exact
relation between 6T/T and the amplitude of the perturba-
tions in the long-wavelength limit. As ought to be the case,
0T/T — 0 as ng— nR. For perturbations growing with
time, the value of 6T/T will be determined by the ampli-
tude of the perturbations at epoch ng; for decaying per-
turbations, at epoch ng. An approximate expression for
6T/ T could have been obtained directly from Eq. (1) by
replacing the integral by the difference in the values of
the expression hyg eeh — 2hyqe®, taken at epochs n g
and ng-

Thus empirical evidence on 6 T/T in conjunction with
the plausible hypothesis of statistically independent per-
turbations leads to the conclusion that on scales exceed-
ing the size of the horizon there exist no significant (with
an amplitude exceeding 6 T/T, in order of magnitude) den-
sity perturbations, rotational perturbations, or gravita-
tional waves for the singular mode. As for gravitational
waves representing the nonsingular mode, as well as per-
turbations in the metric associated with the growing mode
of density perturbations, these could be appreciable with-
out coming into conflict with the observational limits on
6T/T.

DThis statement presuposes that secondary ionization occurred quite late,
with the ionized gas having an optical depth less than unity.

. 8)Greek indices take the values 1, 2, 3.
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The hydrodynamic behavior of primordial black hole (PBH) formation early in the expansion of the
universe is examined, assuming that near the singularity the expansion was quasi-isotropic. The nonlinear,
spherically symmetric problem of the development of initjally strong perturbations relative to a Friedmann
background model is solved numerically. The type of perturbations required for PBHs to form is
ascertained. The role of pressure gradients is evaluated in detail. At the time of its formation a PBH will
have a mass considerably smaller than the mass within the cosmological horizon; hence a catastrophic

accretion process appears unlikely.
PACS numbers: 97.60.Lf, 97.10.Bt, 98.80.—k

1, INTRODUCTION

Zel'dovich and one of us!™® called attention in 1966,
followed by Hawking? in 1971, to the possibility that black
holes might have developed at the very beginning of the
cosmological expansion from matter in its primordial
state. Considerable work has subsequently been done (see,
for example, Carr and Hawking®® and Zel'dovich and Staro-
binskii’) on this problem of primordial black holes (PBHs).

Interest in the PBH question heightened after Hawking®
discovered the principle of quantum evaporation of low-
mass black holes, because PBHs would in fact have a low
mass. Hawking's process is important not only for the
physically early phases in the expansion of the universe,
but also as a possible avenue for detecting PBHs in the
universe today.? 12

Two problems are fundamental for the theory of PBHs:
1) What should the departures from a Friedmann cos-
mological model have been at the start of the expansion in
order for PBHs to have formed? 2) How will surrounding
matter be accreted onto a PBH that has formed?

Both these problems had already been stated and dis-
cussed in the original treatments of the PBH question.!™3
Those and subsequent analyses have established that a
full resolution of the two problems will require numerical
calculations on a2 computer. Along with PBHs, white holes
have also been considered in the literature. Quantum
processes near the singularity and the accretion process
(Refs. 1-3) have been shown to be important for white holes
(Ref. 13), converting them into distinetive black holes.

In this paper we shall describe our method for cal-
culating the hydrodynamics of these phenomena on a com-
puter, adopting the simplest assumption, that the pro-
cesses are spherically symmetric, and we shall give some
of the results.
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2. FORMULATION OF THE PROBLEM

PBHs could not have developed early in the expansion
of the universe (when the equation of state was P = ¢ /3)
if the deviations from a Friedmannmodel were small both
in density and in the metric. I fact, as Lifshits demon-~
strated,! density perturbations 6¢ /& of small amplitude
will grow only to the amplitude of the metric perturba-
tions, which are presumed small. Afterward the condi-
tions for growth of perturbations will beviolated (the lin- -
ear scale of the perturbations will become smaller than
the horizon), and they will be transformed into acoustic
vibrations.

On the other hand, deviations from a Friedmann mod-
el that would lead to the formation of PBHs are certainly
possible. Suppose that near the singular state we consider
a homogeneous semiclosed universels~17 connected by a
narrow throat with a flat homogeneous cosmological model.
As the semiclosed world evolves, a signal from the throat
traveling at the acoustic velocity will be able to reach the
interior regions of the semiclosed world when those re-
gions are already in a state of contraction beneath their
own gravitational radius, so that they necessarily consti-
tute a black hole.

The question now arises: What would the critical de-
viation from the Friedmann model be in order that a black
hole will form, whereas if the deviation is any smaller
no hole will form? This is the problem to be solved in
our present paper. It will be formulated more accurately
below. In addition, we are interested in the hydrodynamic
processes that should accompany the formation of PBHs.

Let us therefore consider strong departures from a
Friedmann model in its initial state. In general there is
a great deal of arbitrariness in the choice of initial con-
ditions near the singularity.!®¥ It is important to recog-
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