THE FOURTH UHURU CATALOG OF X-RAY SOURCES

W. FORMAN, C. JONES,* L. COMINSKY, P. JULIEN, S. MURRAY, G. PETERS, H. TANANBAUM, AND R. GIACCONI Center for Astrophysics, Smithsonian Astrophysical Observatory/Harvard College Observatory

Received 1977 July 1; accepted 1978 June 9

ABSTRACT

Positions and intensities are presented for 339 X-ray sources observed by the Uhuru (SAS A) X-ray satellite observatory. We find good agreement between the sources in this catalog and those in the 3U and 2A catalogs. Optical and radio counterparts are suggested based on positional coincidence. The major classes of identified objects include binary stellar systems, supernova remnants, Seyfert galaxies, clusters of galaxies, and possibly the new class of superclusters of galaxies.

Subject heading: X-rays: sources

I. INTRODUCTION

This paper presents a new and final catalog of the 339 X-ray sources observed with the Uhuru (SAS A) X-ray observatory. The catalog contains positional information in the form of 90% confidence level error boxes, 2–6 keV intensities, possible optical and radio counterparts, and alternate names for sources observed in earlier compilations.

This new catalog does not substantially change our view of the X-ray sky. As indicated by new identifications, Seyfert galaxies represent a substantial fraction of the extragalactic sources as suggested in the *Ariel 5* catalog (Cooke *et al.* 1978). Clusters of galaxies continue to be the single largest class of identified sources. We also suggest that X-ray emission may be associated with superclusters—groups of clusters of galaxies.

II. OBSERVATIONS

The observations employed in producing this catalog were obtained between 1970 December 12 and 1973 March 18. A time line is shown in Figure 1 which marks the main events in the history of the Uhuru satellite. This figure shows graphically the large increase in exposure between the third (Giacconi et al. 1974) and fourth Uhuru catalogs which primarily accounts for the greater number of observed X-ray sources. The third Uhuru catalog contained data from 125 days of observations while the present catalog contains data from 429 days. The ultimate positional precision of the observations in the two catalogs differs because of the degradation of the star sensors between 1972 July and December when the transmitter was operating improperly. The star aspect information which provided positional information to about 1' during satellite night and which was used exclusively to analyze the observations for the third Uhuru catalog was no longer available after 1972 December.

* Junior Fellow, Harvard Society of Fellows.

Therefore, we developed a new aspect system which provided less precise positional information but had the advantage of working equally well during satellite day and night. This resulted in a large increase in sensitivity for an individual day of observations, sometimes by as much as a factor of 10 over what had been available using the star aspect system. While we were

358

FIG. 2.—The regions of the sky scanned to sensitivities of 5–10 counts s^{-1} (*horizontal shading*), 2–5 counts s^{-1} (*vertical*), and less than 2 counts s^{-1} (*diagonal*). Blank regions were not scanned.

unable to further improve the positions of the bestlocated sources in the third *Uhuru* catalog, this added sensitivity has enabled us to detect weaker sources and to improve locations for sources whose positions were not of the highest quality. We show in Figure 2 the actual minimum detectable source intensities over the sky. In the galactic plane and the band defined by Hercules X-1 and Cygnus X-1 our exposure was substantially higher, which explains the concentration of weak sources in these two bands of the sky.

III. ANALYSIS

The Uhuru satellite is a scanning X-ray experiment with a narrow ($1^{\circ} \times 10^{\circ}$ FWFM) and a wide ($10^{\circ} \times$ 10° FWFM) collimator (see Giacconi et al. 1971b for more details). Typically, the scan rate is 0.5 s^{-1} with the spin axis in one position for roughly 1 day. During the interval for which the spin axis is fixed, repeated scans are made of the same $10^{\circ} \times 360^{\circ}$ band of the sky. For this catalog the individual scans were superposed using aspect data from an orthogonally mounted triad of magnetometers and a Sun sensor aboard the spacecraft, supplemented by observations of welllocated X-ray sources (see Forman, Jones, and Tananbaum 1976a for additional information). Figure 3 shows a section of the galactic plane as observed by Uhuru and demonstrates the requirement for superposing the observations to achieve the greatest possible sensitivity. In the upper portion of the figure, Circinus X-1, at an effective counting rate of ~ 20 counts s⁻¹, is just detectable, while in the superposition, possible sources at ~ 1 count s⁻¹ are selected.

The superposed observations are computer scanned for significant excesses above background which are fitted to the triangular collimator response. This fit produces an azimuth and uncertainty which define a line of position (perpendicular to the scan direction) on the sky. These lines of position are the basic building blocks of the catalog. Sources are defined by intersecting and/or overlapping lines of position, and criteria for source existence are discussed in detail in the next section.

The actual source locations are obtained as in the third Uhuru catalog, from the lines of position using their estimated location in one direction and the corresponding standard deviation. Assuming that each determined location is a random variable with a normal distribution, we can calculate, for any point in space near the estimated location, the differential probability that it is the correct location. Each line of position is an independent measurement of the source location, and therefore the product of the one-dimensional probability density distributions gives the joint probability density distribution for the source location. The point with the maximum probability density is then the most likely source location, and by integrating the joint distribution over regions bound by isoprobability density contours a 90% confidence error box can be determined. In this catalog the error boxes are approximated by quadrilaterals on a Cartesian projection of the sky near the source location. In some instances the joint probability density distribution is highly asymmetric because a source is near the edge of the field of view of a detector. For these sources the location of the maximum probability density will not be in the center of the error box.

IV. CRITERIA FOR SOURCE EXISTENCE

We wish to ensure that the sources listed in this catalog meet certain criteria for existence. We have

No. 4, 1978

FIG. 3.—The upper portion of the figure shows a single scan of the galactic plane between Centaurus X-3 and Circinus X-1. The latter is just barely detectable at a rate of 25 counts s⁻¹. The lower portion of the figure shows the same region of the plane using the superposed data which are composed of many scans. Circinus X-1 is easily detectable, as is $4U \ 1258 - 61$. Also seen are $4U \ 1145 - 61$, $4U \ 1344 - 60 = A1342 - 60$, $4U \ 1510 - 59$, and $4U \ 1446 - 55$. The superposed data are computer-scanned for significant peaks and are fitted to the triangular collimator response.

chosen the single requirement that no more than 1% of the sources be spurious to be the guiding principle. Thus we expect about three spurious sources. This principle requires the application of somewhat different criteria in different regions of the sky because of the lack of uniformity in our sky coverage. For example, almost 50% of the available observations are concentrated in two bands of the sky—the galactic plane and a band crossing Hercules X-1 and Cygnus X-1.

The probability that a source composed of n intersecting (or overlapping) lines is due to random coincidence is given by the product of several independent probabilities which include the probability of obtaining a spurious *n*-way intersection, along with the probability that each line composing the candidate source is spurious. Therefore, we have

$$P_{\text{spurious}} = P(n\text{-way}) \times P(\sigma_1) \times P(\sigma_2) \times \cdots \times P(\sigma_n),$$
(1)

where $P(\sigma_i)$ is the probability that a line with significance σ_i is spurious. The probability of an *n*-way coincidence, P(n-way), is a function of the density of lines in the local region. We computed the number of 2, 3, 4,...-way intersections expected for regions of different line densities. We verified this calculation by distributing a number of lines corresponding to a particular density, randomly over a region and counting the number of intersections.

With the expected number of random n-way intersections, one need only count the observed number in a region of interest to find the probability that a given *n*-way intersection is due to random coincidence. This probability is

$$P(n-\text{way}) = \frac{n-\text{way expected}}{n-\text{way observed}}$$
(2)

The second step is to compute the probability that a given line of significance σ is due to random background fluctuations. This was done by simulating and analyzing random sets of superposed data with no X-ray sources—i.e., defined by constant background. Then the number of observed fluctuations with σ between σ_1 and σ_2 , $N(\sigma_1, \sigma_2)$, in the random data and the number of such fluctuations actually observed in the real data, N_{obs} (σ_1 , σ_2), can be used to determine the probability that a line of significance σ drawn from the sample is spurious:

$$P(\sigma_1 \le \sigma < \sigma_2) = \frac{N(\sigma_1, \sigma_2)}{N_{\text{obs}}(\sigma_1, \sigma_2)}$$
 (3)

These probabilities are a function of σ and represent the $P(\sigma_i)$ in equation (1). This simulation step is required because the computer program for detecting sources has a complicated efficiency which depends on a number of variables, and the σ 's of the intensities of the individual lines do not follow a simple normal distribution.

Using the probabilities defined and computed as described above, we find that the sources in the catalog display a distribution in P_{spurious} (as defined in eq. [1]). For most sources the chance that they are

© American Astronomical Society • Provided by the NASA Astrophysics Data System

Гщ
ம
$^{\circ}$
•
•
œ
m
· •
70
Б
៍
7
2
20
5
- 01
_

1	CATALOG
ABLE	Uhuru
Ţ	FOURTH

SOURCE NAME	(9)	4U0000+72 X	4U0005+20 C	4000n9-33	4U0010+39 X	4U0015+02 X	4U0022+63	4U0026-73	4U0026-29
KS PBEVIOUS X_PAY	(5B)			3U0001-31			CEPH XR_1 (1) TYCHO (2) CEP 1 (3) 3U0022+63		
COMMENTS GENERAL REMAR	(5A)		SEYFERT: MKN 335	NGC 10 7	FLARE STAR: BD+43 44 7		SNR: TYCH0=9C10 KA = 0H 22M 28.25 DEC = 63D 51M 545		
INTENSITY AVERAGE MAX.OBS. OR MIN.OBS.	MAXIMUM (4B)	1.65 .4	2,52 ,5	2,15 ,3	2 . 93 . 8	2.45 .4	8.89 .2	2.76 .5	3.12 .9
AREA	DEG (3E)	0.1582	0.3206	4.2079	2.4164	1.7139	0_0022	0.2175	1,0829
CONFIDENCE	DELTA (3D)	23 58 7 +72 18 36 359.53 72.31	0 7 50 +20 9 36 1,960 20,160	0 24 26 -33 54 0 6.11 -33.90	0 7 19 36 36 0 1.83 36.60	0 8 17 • 0 15 0 • 2•07 0•25	0 22 34 +63 50 56 5.643 63.849	0 30 2 -73 13 41 7,510 -73,228	0 34 46 29 10 12 8.69
90 PERCENT	DELTA (3C)	23 56 17 •72 35 24 359.07 72.59	0 4 32 +19 39 0 19,650	23 50 0 -34 30 0 - 357,50	0 5 46 +36 52 12 1 44 36.87	0 7 17 • 0 35 24 • 0.59	0 22 15 •63 50 56 •5.562 63.849	0 22 41 -73 13 55 -73 232	0 19 29 29 26 24 4 87
EGION FOR	DELTA (3B)	0 1 50 +72 54 36 0.46 72.91	0 3 48 +19 57 0 0,950 19,950	23 49 31 -33 55 12 - 357,38 -33,92	0 15 24 +43 1 48 43.03	0 22 41 + 5 22 12 5.37 5.37	0 22 15 +63 54 43 5562 63_912	0 22 41 -72 49 48 5 670 -72 830	0 19 2 29 11 24 4 76
ERROR RI	DELTA (3A)	0 3 31 +72 37 12 0.88 72.62	0 7 7 +20 27 36 1.780 20.460	0 24 26 -33 18 36 -33.31	0 17 5 +42 45 0 42.75	0 22 58 + 5 12 36 5.74 5.21	0 22 34 +63 54 43 5•643 63_912	0 30 2 -72 49 12 -72 820	0 34 12 -28 47 24 -28 55
MAXIMUM DENSITY	в (28)	119.30 10.36	109.43 -41.41	353.33 -79.26	115 . 05 -22.41	106.66 -58.67	120 .08 1.43	305.30 -44.28	11,94 -84,83
LOCATION OF PRUBABILITY	DELTA(1950) (2A)	0 0 0 +7 ² 36 36 0.000 72.610	0 5 48 +20 3 0 1•450 20•050	0 9 12 -33 54 0 -33 64 00 -33,900	0 10 48 +39 36 0 2•700 39•600	0 15 19 + 2 51 36 3.830 2.860	0 22 24 +63 52 48 5•600 63•880	0 26 24 -73 1 12 6.600 -73.020	0 26 53 -29 9 0 -20150
SOURC _E NAME	(1)	4U0000+72	400005+20	40000-33	400010+39	400015+02	400022+63	4U0026-73	400026-29

	(9)	1) 4U0027+59 C X	400028+22	4U0033+58 C	5) 400037+39	5) 400037-10	400041+36	5) 40042+32	5) 400050-01
	(58)	A0026+59 (30	3U0032+24		2A0039+411 { 3U0021+42	2 A 0039-096 (3U0026-09		2A0042+323 (3U0042+32	2A0054-015 (
	(5A)			3614.1 7	IEH	(LUSTER: ABELL 85 (4,1)			CLUSTER: ABELL 119 (3.1) 7 050: PHL 923 7
	(44)							2	
nanuiii	(44)	3,30 .6	3,30 1,1	4.33 .9	2.40 .5	2.90 .3	3,15 ,7	30	3,39 .6
	(3E)	0.4296	0 ,7904	0.2064	1.8242	0,3327	0,7449	0.0735	1.8297
TABL	(3D)	0 27 29 +58 57 36 6.87 58.96	0 26 46 +21 22 48 6•69 21•38	0 33 12 +58 21 36 8.30 58.36	0 32 46 +37 2 24 8•19 37•04	0 35 43 -10 28 48 8•93 -10•48	0 40 0 +35 14 24 10 . 00 35 . 24	0 42 56 +32 51 14 10.735 32.854	- 4 12 36 - 4 12 36 11.11
	(3C)	0 25 12 +59 12 36 6.30 59.21	0 25 29 +21 46 48 6.37 21.78	0 31 34 +58 32 24 7.89 58.54	0 31 48 +37 18 36 7.95 37.31	0 35 7 -10 13 12 8.78 -10.22	0 38 38 +35 25 48 9°66 35°43	0 41 49 +32 34 5 10,455 32,568	0 43 31 - 4 1 12 - 602
	(3B)	0 28 19 +60 27 0 7.08 60.45	0 31 5 +22 45 36 7,•77 22,•76	0 33 7 +59 19 48 8.28 59.33	0 42 5 +43 7 48 10,52 43,13	0 39 17 - 9 45 0 -9.82 -9.75	0 44 14 +38 23 24 11,06 38,39	0 41 11 +32 42 54 10 . 295 32 . 715	0 56 26 + 0 15 0 14.11
	(¥E)	0 30 19 +60 11 24 7.58 60.19	0 32 14 +22 21 36 8.06 22.36	0 34 48 +59 9 36 8.70 59.16	0 43 5 +42 38 24 10,77 42,64	0 39 48 -10 1 12 9.95 -10.02	0 44 48 +38 15 36 11.20 38.26	0 42 20 +33 0 22 10_583 33_006	0 57 41 + 0 1 12 14.42
	(2B)	120.33 -2.79	116.89 -40.28	120 . 95 -3 . 69	120 . 52 -22.67	113.46 -72.51	121,43 -25,75	121 . 30 -29.80	123.88 -64.59
	(ZA)	0 27 48 +59 42 0 6.950 59.700	0 28 53 +22 4 48 7,220 22,080	0 33 12 +58 51 0 8.300 58.850	0 37 5 +39 52 30 9•270 39•875	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 41 55 +36 49 48 10.480 36.830	0 42 0 +32 46 30 10_500 32_775	0 50 31 - 1 59 24 12,630
	. (1)	4U0027+59	4U002B+22	4U0033+58	400037+39	400037-10	40041+36	400042+32	400050-01

TARI F 1-Continued

щ
S
∞
ω
\sim
•
•
S
Ь
õ
ų
<
00
\sim
, o
-

(ZA)	(28)	(3A)	(3B)	(3C)	(JE)	(3E)	(44)	(48)	(5A)	(58)	(9)
m i	02.59 48.65	1 15 2 -68 17 24 18.76 -68.29	1 12 29 -67 59 24 18,12 -67,99	0 14 53 -69 27 36 3.72 -69.46	0 37 17 -69 24 0 9.32 -69.40	1.5610	2,82 ,6				4U0052-68
	123 . 64 -1.67	0 54 56 +61 21 0 13.733 61.350	0 54 18 +61 22 5 13.575 61.368	0 53 31 +60 25 23 13_380 60_423	0 54 13 +60 23 42 13_553 60_395	0.0786	4 . 24 . 3		STAR: Y CAS AT RA = OH 53M 40,355 DEC = 60D 26M 47,335	MX0053+60 (8)	400054+60
	155,30 -83,52	1 7 12 -21 46 48 16,80 -21,78	1 6 34 -21 22 12 16,64 -21,37	1 0 38 -21 57 0 15,16 -21,95	1 1 17 -22 22 48 15,32 -22,38	0 . 6644	2.74 .6		CLUSTER: ABELL 133 (4,0)	2A0102-222 (5) 3U0057-23	400103-21 X
	299,00 -57,50	1 28 0 -59 22 48 22.0 -59.38	1 27 31 -58 54 0 21.88 -58.90	0 43 48 -60 3 0 10-95 -60-05	0 45 0 -60 43 48 11.25 -60.73	3 . 2679	3.04.5			2A0120-591 (5)	400106-59
	125.92 1,03	+63 30 54 +63 30 54 18,862 63,515	1 15 0 +63 30 54 18,749 63,515	1 15 0 +63 26 17 18 . 749 63 . 438	1 15 27 +63 26 17 18,862 63,438	6E00*0	04	> 10	TRANSIENT	3U0115+63	4U0115+63 *
	300.45 -43.58	1 15 31 -73 40 48 18.88 -73.680	1 14 24 -73 41 6 18.60 -73.685	1 15 14 -73 43 12 18,81 -73,720	1 16 29 -73 43 12 19.12 -73.720	0 . 0033	36	× 10	STAR: SANDULEAK 160 AT Ra= 14 15M 44.35 DEC= -73D 42M 53.65 PERIODS:.72 SEC;3.9 DAY	2A0116-737 (5) SMC X-1 3U0115-73	4U0115-73 *
	272 . 88 -79 . 24	1 23 19 -35 12 36 20,83 -35,21	1 19 36 -35 5 24 19,90 -35,09	1 8 31 -37 53 24 17,13 -37,89	1 12 12 -38 0 36 18,05 -38,01	2 . 3457	1.91 .4			2 A 0120 - 353 (5)	400115-36
	153.72 -70,14	1 32 29 - 9 17 38 -9.120 -9.294	1 31 29 - 9 6 7 -22,872 -9,102	1 22 34 -12 6 36 20.640 -12.110	1 23 24 -12 15 58 -12.0848 -12.266	1.0542	1.95 .4				4U0129-09

 $\ensuremath{\textcircled{}^{\odot}}$ American Astronomical Society $\ \bullet$ Provided by the NASA Astrophysics Data System

щ
\sim
S
$^{\circ}$
•
•
m
m
` :
•
•
S
Ь
Q.,
-⊼
in i
~
, m

(1)	(ZA)	(28)	(3A)	(3B)	(3C)	(JD)	(3E)	(44) (4A)	(5A)		(58)	(9)
400134-11	1 34 34 -11 32 24 -23 • 640 -11•540	159.20 -70.87	1 39 36 -10 9 0 24,90 -10,15	1 38 48 -10 0 0 24.70 -10.00	1 29 10 -12 53 24 22,29 -12,89	1 30 43 -13 7 12 22,68 -13,12	1.2748	2,70 .6	SUPERCLUSTER ?			400134-11
400138+48	1 38 30 +48 3 0 24•625 48•050	131.48 -13.74	1 40 43 +48 10 48 +25 . 18 48 . 18	1 36 31 +48 18 0 24,13 48,30	1 36 19 +47 54 36 24,08 47,91	1 40 34 +47 47 24 25,14 47,79	0.2787	3.55 1.0				4U0138+48 X
400142+61	1 42 46 +61 13 48 25.690 61.230	129,42 -0,70	1 43 22 +61 21 40 25,840 61,361	1 43 1 +61 25 55 25,754 61,432	1 42 10 +61 5 53 25_541 61_098	1 42 31 +61 2 6 25,631 61,035	0.0208	4 . 99 .2			3U0143+61	400142+61
4U0148+36	1 48 38 +36 2 24 27,160 36,040	136•27 -25•02	1 51 10 +36 28 48 27•79 36•48	1 49 50 +36 44 24 27.46 36.74	1 46 5 +35 32 24 26,52 35,54	1 47 17 +35 17 24 26.82 35.29	0.5013	2.44 ,.2	CLUSTER: ABELL	262 (1,0)	3U0151+36	400148+36
400223+31	2 23 48 +31 16 30 35,950 31,275	145 . 70 -27 . 12	2 26 50 +31 51 36 36.71 31.86	2 26 0 +32 3 36 36,50 32,06	2 20 43 +30 40 48 35.18 30.68	2 21 36 +30 28 48 35,40 30,48	0.4784	3.11 .7	NUC 9317.5	てん		4U0223+31
400228-13	2 28 31 -13 3 36 37,130 -13,060	186,31 -62,69	2 32 22 -12 9 0 38,09 -12,15	2 30 55 -11 55 48 37.73 -11.93	2 25 0 -14 1 48 36.25 -14.03	2 25 48 -14 8 24 36.45 -14.14	0.8088	5,27 ,9	CLUSTER: ABELL	358 (3,0)		4U0228-13
400241+61	2 41 14 +61 52 48 40,310 61,880	135.82 2.10	2 45 0 +62 36 0 41.25 62.60	2 43 58 +62 49 12 40,99 62,82	2 37 43 +61 15 36 39_43 61_26	2 38 46 +61 1 12 39.69 61.02	0.3607	3•25 •5			3U0258+60	400241+61
400248-85	2 48 24 -85 21 0 42,100	300.29 -31.41	2 55 22 -85 6 0 43.84	2 36 24 -85 5 24 39.10		2 59 48 -85 36 0 44.95	0.1906	2.11 .4				4U0248-85

щ
S
$^{\circ}$
00
m
- î î
•
S
ъ
0
- m
~
5
01
-

(1)	(ZA)	(28)	(3A)	(38)	(3C)	(30)	(3E)	(4A)	(4B)	(5A)	(58)	(9)
4U0253+41	2 53 5 +41 42 36 43.270 41.710	146.49 -15.18	2 54 14 +41 48 0 43 . 56 41 . 80	2 53 58 +41 55 12 43.49 41.92	2 51 58 +41 37 48 42.99 41.63	2 52 14 +41 30 0 43.06 41.50	0 . 0621	4.89 ¢6			MX0255+41 (12) 2A0251+413 (5) 3U0227+43	400253+41
400254+13	2 54 36 +13 15 0 43.650 13.250	163.88 -39.21	2 55 31 +13 28 48 43.880 13.480	+13 16 48 +13 16 48 43.150 13.280	+13 2 53 31 +13 2 24 43•380 13•040	2 56 34 +13 15 0 44,140 13,250	0.2193	3.40 .3		CLUSTER: ABELL 401 (3.2)	2A0255+132 (5) 3U0254+13	400254+13
400302-22	3 2 55 -22 18 0 45,730 -22,300	210 . 95 -59.29	3 8 55 -20 23 2 47,228 -20,384	3 6 35 -20 6 7 46.646 -20.102	2 57 9 -24 12 43 -24.288 -24.212	2 58 59 -24 30 0 -24.746 -24.500	2.6171	2.71 .9				400302-22
400310+46	3 10 12 +46 33 0 47•550 46•550	146.76 -9.45	3 12 36 +46 58 48 48.15 46.98	3 7 46 +46 25 48 46•94 46•43	3 8 19 +46 10 48 47.08 46.18	3 13 5 +46 42 0 48•27 46•70	0.2665	3.71 .7				400310+46 X
400311+53	3 11 50 +53 3 0 47,960 53,050	143.59 -3.76	3 19 30 +54 39 18 49.874 54.655	3 18 44 +54 53 10 49.685 54.886	3 5 47 +51 48 7 46.445 51.802	3 6 32 +51 34 48 46 . 634 51 . 580	0.7872	2.88 .7			300318+55	400311+53
4U0316+41	3 16 35 +41 21 11 49.145 41.353	150.58 -13.23	3 17 0 +41 25 59 49°252 41°433	3 16 3 +41 19 12 49.011 41.320	3 16 8 +41 15 54 49.035 41.265	3 17 6 +41 22 30 49.277 41.375	0,0123	47.4 0.6		CLUGTER: PERSEUS =ABELL 426 (0,2)	PER X1 (6) 2A0316+413(5) 3U0316+41	4U0316+41 *
400321-45	3 21 0 -45 1 30 -45_025	253•51 -55•09	3 23 31 -44 30 0 50.88 -44.50	3 17 50 -44 59 24 49.46 -44.99	3 18 36 -45 32 24 49.65 -45.54	3 24 19 -45 3 0 51.08 -45.05	0.6215	2.16 .6			2A0316-4437 (5) 3U0302-47	4U0321-45 X
4U0322+59	3 22 36 +59 33 0 50,650 59,550	141 . 37 2.53	3 25 25 +59 49 48 51,355 59,830	3 24 22 +60 0 36 51,093 60,010	3 19 29 +59 13 48 49.870 59.230	3 20 39 +59 3 54 50 . 163 59 . 065	0.2144	2,93 ,3				400322+59

.357F
ω
\sim
•
•
•
ь. С
JS.
oJS.
ApJS.
SAPJS.
.8ApJS.
78ApJS.
978ApJS.

(9)	4U0334-30	4U0336+01 *	36 (5) 4U0339 -5 4 52	96(5) 400344+11	09 (5) 4U0352+30 * 30	400357-74	410404+47	4U0406-30 X
(5B)			7 2A0343-5 3U0328-1	2A0335+0	2A0352+3(3U0352+			
(5A)		TKANSIENT	CLUSTER: CA0340-538 (3+2)		STAR: X PER AT RA= 3H 52M 15.25 PEC= 300 54M 015 PER100:13.0 MIN OPTICAL PER10D: 580.7 DAY		5TAR: 48 PER 7	
(48)		× 10			m			
(44)	2,88 .6	100	1.90 .2	1.80 .4	Or	1.76 .3	3.67 .8	1.72 .5
(3E)	0.8713	1.5844	0.3386	9.5460	0,0062	0.1902	0.2020	3.4719
(30)	3 32 38 -31 13 48 53.16 -31.23	- 3 27 0 - 0 15 0 -0.25	3 37 12 -55 17 24 54,30 -55,29	+ 7 28 30 53.225 7.475	3 52 58 +30 56 24 58_240 30_940	4 1 12 -74 34 48 60.30 -74.58	4 6 14 +47 45 36 61.56 47.75	3 58 29 -35 15 0 59,62
(3C)	3 31 10 -30 57 36 52.79 -30.96	3 26 36 - 0 7 48 51.65 -0.13	3 36 43 -54 55 48 54.18 -54.93	3 27 30 + 9 16 30 51.875 9.275	3 51 53 +30 51 36 57.970 30.860	3 52 5 -74 19 12 58.02 -74.32	4 2 22 +47 20 24 60 . 59 47.34	3 56 58 -34 57 36 59,24
(38)	3 36 5 -29 6 36 54.02 -29.11	3 45 0 + 2 24 0 56.25 2.40	3 41 26 -53 44 24 55,36 -53,74	3 57 12 +14 45 0 59,300 14,75	3 51 55 +30 53 24 57 . 980 30 . 890	3 54 0 -74 4 12 -74.07	4 1 43 +47 34 48 60.43 47.58	4 14 36 -26 26 24 63.65
(3A)	3 37 34 -29 21 36 54.39 -29.36	3 46 12 + 2 3 0 56.55 2.05	3 42 0 -54 6 0 55.50 -54.10	+13 6 0 +13 6 0 60.575 13.100	3 52 48 +30 57 36 58,200 30,960	-74 19 12 -74 19 12 60.78 -74.32	4 5 36 +48 0 0 61.40 48.00	4 15 48 -26 41 24 63.95
(28)	227.52 -53.90	184.70 -40.81	266.23 -48.95	176.92 -32.52	163.09 -17.11	288•58 -37•32	153.46 -3.09	229.94 -47.10
(ZA)	3 34 12 -30 12 0 53.550 -30.200	3 36 12 + 1 1 12 54,050 1,020	3 39 24 -54 30 0 54.850 -54.500	3 44 59 +11 9 0 56.244 11.150	3 52 22 +30 54 36 58,090 30,910	3 57 36 -74 19 30 59.400 -74.325	4 4 0 +47 40 30 41.000 47.675	
6	4U0334-30	400336+01	400339-54	4U0344+11	400352+30	400357-74	400404+47	400406-30

3575	
00	• • • •
ST.UZ870	· · · · · · · · · · · · · · · · · · ·

(58		(5A)	(4B) (5A) •5	(4A) (4B) (5A) 2.62 .5	(3E) (4A) (4B) (5A) 0_3345 2_62 _5	(3D) (3E) (4A) (4B) (5A) 4 5 48 0_3345 2_62 _5	(3C) (3D) (3E) (4A) (4B) (5A) 4 4 5 4 5 6 5 6	(3B) (3C) (3D) (3E) (4A) (4B) (5A) 4 9 12 4 4 5 48 03345 262 5	(3A) (3B) (3C) (3D) (3E) (4A) (4B) (5A) 4 10 36 4 9 12 4 19 4 6 8 0.3345 2.62 5	(2B) (3A) (3B) (3C) (3D) (3E) (4A) (4B) (5A) 160.57 4 10 36 4 9 12 4 4 19 4 5 48 0.3345 2.62 5	(2A) (2B) (3A) (3B) (3C) (3D) (3E) (4A) (4B) (5A) 4 7 24 160-57 4 10 36 4 9 12 4 4 19 4 5 48 0-3345 2-62 5
			•2	2.62 .5	0.3345 2.62 .5	4 5 48 0.3345 2.62 5 4.37 31 48 0.3345 2.62 5 61.45 37.53	4 4 19 4 5 48 0.3345 2.62 5 4.7 41 24 37 31 48 0.3345 2.62 5 37.69 37.53	4 9 12 4 4 19 4 5 48 0.3345 2.62 5 +38 19 48 +37 41 24 +37 31 48 0.3345 2.62 5 62.30 31.69 01.45 38.33 37.69 37.53	4 10 36 4 9 12 4 4 19 4 5 48 0.3345 2.62 5 +38 10 12 +38 19 48 +37 41 24 +37 31 48 62.62 53 91.08 91.45 38.17 58.33 37.69 37.53	160.57 + 4 10 36 4 9 12 4 4 19 4 5 48 0.3345 2.62 5 -9.85 +38 10 12 +38 19 48 +37 41 24 +37 31 48 0.3345 2.62 5 62.65 62 5 62 30 61.45 31.46 0.45 38.17 38.33 37.69 37.53	4 7 24 160.57 4 4 02 4 4 19 4 5 48 0.3345 2.62 5 +37 55 30 -9.85 +38 10 12 +31 12 4 31 4 8 4 4 12 4 31 48 4 4 10 12 4 31 48 4 4 12 4 31 48 4 <t< th=""></t<>
LL 478 (6,2) 2A0411+ 3U0405	JSTER: ABEI	CLL	••	3,06 .4 CLL	0.1347 3.06 .4 CLI	4 10 16 0.1347 3.06 .4 CLU 6.568 10.315	4 9 28 4 10 16 0.1347 3.06 .4 CLU •10 28 23 •10 18 54 62.368 62.568 10.473 10.315	4 11 31 4 9 28 4 10 16 0.1347 3.06 4 CLU +10 46 30 10 28 23 +10 18 54 0.1347 3.06 4 CLU 62.880 62.368 62.568 10.775 10.473 10.315	4 12 14 14 11 31 4 9 28 4 10 16 0.1347 3.06 .4 CLU 410 36 54 410 46 30 410 28 23 410 18 54 0.1347 3.06 .4 CLU 62.060 62.968 62.568 62.568 10.473 10.315	182.28 4 12 14 4 11 31 4 9 28 14 10 16 0.1347 3.06 4 CLU -28.12 +10 36 54 +10 46 30 +10 28 23 +10 18 54 6.2.568 62.568 62.568 62.568 10.475 10.473 10.315	4 10 53 182.28 4 12 14 4 11 31 4 9 28 4 10 16 0.1347 3.06 .4 CLI +10 33 0 -28.12 +10 46 30 +10 28 23 +10 18 54 26 4 0.1347 3.06 .4 CLI +10 33 0 -28.12 40 46 30 +10 28 23 +10 18 54 0.1347 3.06 .4 CLI 62.720 63.060 62.880 62.880 62.968 62.968 10.473 10.315 10.315 10.315 10.315
300430			۲.	3.74 .7	0.2646 3.74 .7	4 23 24 0.2646 3.74 .7 +34 39 36 55.85 34.66	4 19 46 4 23 24 0.2646 3.74 .7 +34 25 48 +34 39 36 64.94 65.85 34.43 34.66	4 19 24 4 19 46 4 23 24 0.2646 3.74 .7 +34 45 0 +34 25 48 +34 39 36 64.85 64.94 65.85 34.75 34.43 34.66	4 23 2 4 19 24 4 19 46 4 23 24 0.2646 3.74 .7 +35 0 0 +34 45 0 +34 25 48 +34 39 36 0.2646 3.74 .7 65.76 64.85 64.94 65.85 34.75 34.43 34.66	164-90 4 23 2 4 19 24 4 19 46 4 23 24 0.2646 3.74 .7 -10.12 +35 0 0 +34 45 0 +34 25 48 +34 39 36 0.2646 3.74 .7 65.76 64.94 65.85 34.43 34.43 34.65	4 21 30 164.90 4 23 2 4 19 24 4 19 46 4 23 24 0.2646 3.74 .7 +34 43 30 -10,12 +35 0 0 +34 45 0 +34 25 48 +34 39 36 65.375 64.95 64.95 64.95 64.95 34.43 34.66 34.43 34.46
417-558 (0.0) =PKS0411-56?) 3U0400	USTER: SCO. NGC 1566	5"		3.30 .9 CL	0•2328 3.30 .9 CL	4 23 48 0.2328 3.30 .9 CL -53 30 0 6.2328 3.30 .9 CL 55.95 0	4 21 31 4 23 48 0.2328 3.30 .9 CL -53 25 12 -53 30 0 65.38 65.95 -53.42 -53.50	4 22 58 4 21 3 3 3 3 3 5 -52 48 0 -53 30 0 0 5 3 5 12 -53 30 0 5	4 25 19 4 22 53 24 22 53 24 53 25 12 53 30 0 0 53 25 12 53 30 0 0 53 25 12 53 30 0 0 55 55 25 12 53 30 0 0 55	261.55 4 25 19 4 22 58 4 21 31 4 23 48 0.2328 3.30 .9 (L -43.17 -52 53 24 -52 48 0 -53 25 12 -53 30 0 66.33 65.74 65.38 65.95 -53.88 65.95 -52.80 -52.80 -53.42 -53.50	4 23 24 261.55 4 25 19 4 22 58 4 21 31 4 23 48 0.2328 3.30 .9 CL -53 9 0 -43.17 -52 53 24 -52 48 0 -53 25 12 -53 30 0 0.2328 3.30 .9 CL 65.850 -43.17 -52.89 -53.44 -55.48 -53.42 -53.50 0 -2328 -53.30 0
LL 494 (6,2) ?	.USTER: ABEI	5	2°	3.46 .5 CL	1.8242 3.46 .5 CL	- 4 23 10 1.8242 3.46 .5 Cl - 8 57 0 65.79 -8.95	4 21 36 4 23 10 1.8242 3.46 .5 CL - 8 31 48 - 8 57 0 65.40 65.79 -8.53 -8.95	4 32 0 4 21 36 4 23 10 1.8242 3.46 .5 CI - 6 29 24 - 8 31 48 - 8 57 0 65.40 65.40 65.40 - 6.279 CI -6.49 -8.53 -8.95 -8.95 - 8.95 - 1.8245 - 1.8245 - 1.8245 - 1.8245	4 33 31 4 32 0 4 21 36 4 23 10 1.8242 3.46 .5 CI - 6 52 48 - 6 29 24 - 8 31 48 - 8 57 0 0 68.36 - 65.49 - 65.49 - 8 95 0 68.38 - 6.49 - 8.53 - 8.95 - 8.95 0 - 8.95 CI	202.84 4 33 31 4 32 0 4 21 36 4 23 10 1.8242 3.46 .5 CL -34.60 - 6 52 48 - 6 29 24 - 8 31 48 - 8 57 0 65.79 66.38 68.00 65.40 65.79 -6.49 -8.53 -9.95	- 7 42 0 -34.60 - 65248 - 4331 432 0 42136 42310 1.8242 3.46.5 CL - 7 42 0 -34.60 - 65248 - 62924 - 83148 - 857 0 1.8242 3.46.5 - 7 42 0 -34.80 - 65.49 - 65.40 65.79 - 7.7006.886.498.538.95
430-616 (3,3) 2A0430- 1 3U0426	ISTER: SCO. PKS0429-6	" CFL		2,31 ,3 CLU	0.1082 2.31 .3 CLU	4 30 23 -61 41 53 67-596 -61.6698	4 24 41 4 30 23 0.1082 2.31 .3 CLL -61 32 24 -61 41 53 0.1082 2.31 .3 CLL 66.172 67.596 -61.6540 -61.6698	4 24 52 4 24 41 4 30 23 0.1082 2.31 .3 CLL -61 22 30 -61 32 24 -61 41 53 0.1082 2.31 .3 CLL 66.216 66.172 67.596 -61.375 -61.540 -01.698	4 30 29 4 24 52 4 24 41 4 30 23 0.1082 2.31 .3 CLU -61 33 0 -61 22 30 -61 32 24 -61 41 53 67.996 67.620 66.216 66.172 67.996 -61.550 -61.375 -61.698	272.27 4 30 29 4 24 52 4 24 41 4 30 23 0.1082 2.31 .3 CLU -40.47 -61 33 0 -61 22 30 -61 32 24 -61 41 53 0.1082 2.31 .3 CLU 67.620 66.216 66.172 67.566 -61.550 -61.375 -61.540 -01.698	-4 27 46 272.27 4 30 29 4 24 52 4 24 41 4 30 23 0.1082 2.31 .3 CLU -61 33 0 -40.47 -61 33 0 -61 22 30 -61 32 24 -61 41 53 0.1082 2.31 .3 CLU -61.940 -61.550 -61.375 -61.540 -61.4698 -61.698
			80	3.82 .8	3.2957 3.82 .8	4 20 31 3.2957 3.82 .8 -36 54 0 65.13 -30.90	4 18 48 4 20 31 3.2957 3.82 .8 -36 52 48 -36 54 0 65.13 -36.88 -36.90	4 31 48 4 18 48 4 20 31 3.2957 3.82 .8 -28 51 36 -36 52 48 -36 54 0 61.95 64.0 65.13 -28.86 -36.88 -36.90	4 33 41 4 4 31 48 4 18 48 4 20 31 3.2957 3.82 8 -29 4 48 -28 51 36 -36 52 48 -36 54 0 65.13 68.42 67.95 64.70 65.13 -29.08 -28.86 -36.88 -36.90	231.23 4 33 41 4 31 48 4 18 48 4 20 31 3.2957 3.82 8 -42.26 4 48 -28 51 36 -36 52 48 -36 54 0 68.42 61.95 64.70 65.13 -29.08 -28.86 -36.88 -36.90	-4 29 22 231.23 4 33 41 4 31 48 4 18 48 4 20 31 3.2957 3.82 .8 -31 0 0 -42.26 -29 4 48 -28 51 36 -36 52 48 -36 54 0 67.340 68.42 67.95 64.70 65.13 -29.08 -28.86 -36.88 -36.90
LL 496 (3,1) 2A0431-	USTER: ABEI		· •	2.54 .4 [LI	1.2296 2.54 .4 CLI	4 28 6 1.2296 2.54 .4 CLI -13 40 30 61.025 -13.675	4 26 26 4 28 6 -13 17 24 -13 40 30 66.61 67.025 -13.290 -13.675	4 35 0 4 26 26 4 28 6 1.2296 2.54 .4 -12 13 30 -13 17 24 -13 40 30 66.61 61.0025 -13.290 -13.675	4 36 38 4 35 0 4 26 26 4 28 6 1.2296 2.54 4 CLI -12 36 36 -12 13 30 -13 17 24 -13 40 30 69.16 68.750 66.61 -13.290 -13.675 -12.610 -12.225 -13.290 -13.675	209.13 4 36 38 4 35 0 4 26 26 4 28 6 1.2296 2.54 .4 -36.30 -12 36 36 -12 13 30 -13 17 24 -13 40 30 69.16 68.750 66.61 61.0025 -13.290 -13.675 -13.290 -13.675	4 31 24 209,13 4 36 38 4 35 0 4 26 26 4 28 6 1.2296 2.54 .4 CLI -12 57 0 -36.30 -12 36 36 -12 13 30 -13 17 24 -13 40 30 10.2296 2.54 .4 CLI 67,850 69.16 68.61 67.025 -13.290 -13.670 61.6.61 CLI

н	٩.
ſ)
\sim)
	•
	•
a	2
$\tilde{\alpha}$	5
· · ·	1
	•
	•
	٠
U)
÷	5
ē	ί.
2	4
R	i.
00)
σ	\$
-	ł

								Omma			1
(1)	(ZA)	(2B)	(3A)	(3B)	(3C)	(30)	(3E)	(4A) (4B)	(5A)	(58) (6)	-
400432+05	4 32 24 + 5 36 0 68.100 5.600	190 . 35 -26.81	4 34 31 + 5 47 24 68.63 5.79	4 33 29 • 5 54 0 68.37 5.90	4 30 17 + 5 24 0 67.57 5.40	4 31 24 + 5 18 0 67.85 5.30	0.2156	2.76 .4	SEYFERT: 3C120	* 1043	32+05
400443-09	4 43 12 - 9 30 0 70.800	206.88 -32.20	4 47 0 - 8 58 48 71_75	+ 45 31 - 8 33 36 71.38	4 39 19 -10 1 12 69.83	4 40 50 -10 24 36 70-21	1.1512	1.77 .3	SUPERCLUSTER ?		¢9-09 Х
	-9.500		-8,98	-8.56	-10,02	-10.41				300431-10	
400446+44	4 46 7 +44 57 36 71.530 44.960	160.47 0.24	4 46 53 +45 5 13 71.720 45.087	4 45 25 +44 52 5 71.355 44.868	4 45 29 +44 50 42 71.370 44.845	4 46 56 +45 4 8 71.732 45.069	0 _* 0074	4 . 99 .3	CLUSTER: 3C129	4U0446 3U0446+44	***
400457-35	4 57 24 -35 42 0 -35,700 -35,700	238 . 56 -37 . 29	-33 2 53 -33 3 0 75.72 -33.05	5 1 31 -32 45 36 75,38 -32,76	4 52 0 -38 15 0 73.00 -38.25	4 53 26 -38 31 12 73.36 -38.52	2,0903	2•53 •5	KLEMOLA 9 (COMPACT GROUP OF GALAXIES) 7	r2400	57-35 X
400504-84	5 4 48 -84 22 30 76.200 -84.375	297.18 -29.75	5 17 36 -84 5 42 79,400 -84,095	4 52 10 -84 8 24 73.040 -84.140	4 52 53 -84 38 42 73.220 -84.645	5 18 19 -84 36 11 79.580 -84.603	0,3161	2.00 .5		400504	4-84
400505-21	5 5 0 -21 21 0 76,250 -21,350	222,18 -32,01	5 21 38 -21 47 24 80,41 -21,79	4 44 14 -20 29 24 71.06 -20.49	4 44 19 -20 42 36 71.08 -20.71	5 21 24 -22 1 12 80.35 -22.02	1.9583	3.65 .6	CLUSTER: ABELL 514 (3.1)	40203	15-21
400506-03	5 6 30 - 3 25 30 -3.425 -3.425	203.81 -24.25	5 8 12 - 3 28 12 - 3.47 - 3.47	5 7 38 - 3 9 0 76.91 -3.15	5 5 0 - 3 21 0 -3.35 -3.35	5 5 26 - 3 41 24 -3.69	0.2486	1.92 .5		4U0506 X	90-93 X
400509+01	5 9 36 + 1 57 0 77.400 1.950	199.16 -20.93	5 26 41 + 1 10 48 81.67 1.18	+ 1 33 0 + 1 33 0 81,83 1,55	5 4 43 + 2 18 36 76,18 2,31	5 4 41 + 1 55 12 76,17 1,92	2.1783	2.16 .3		6050N4	10+60

 $\ensuremath{\textcircled{}^{\odot}}$ American Astronomical Society $\ \bullet$ Provided by the NASA Astrophysics Data System

.357F
•
00
\sim
•
рJS
Æ
œ
0
-

	(9)	4U0513-40 *	400515+38	400517+17	400518-26	4U0519+06 X	4U0520-72 *	4U0531+21 *	400531-05
	(58)	MX0513-40 (27) 2A0512-399 (5) 3U0510-44 3U0530-37					LMC X-2 (4) 2A0521-720 (5) 3U0521-72	TAU X-1 (1) CRAB (2) TAU 1 (3) 3U0531+21	2A0532-056 (5) 3U0527-05
	(5A)	GLUBULAR CLUSTER: NGC 1851 X-RAY BURST SUURCE?		3Cl38 ?		CLUSTER: ABELL 539 (2,1)	IN LMC	CRAB NEBULA PULSAR: NP0531 AT Ra= 5H 31M 31S DEC= 21D 58M 555 PERIOD:.033 5EC	URION
	(4B)	ñ					2		
ntinued	(4A)	18.	3.19 .7	3.10 .7	2,31 ,6	2,01 ,5	16	947 21	4.74 .2
3 1-Co	(3E)	0.0491	0.4461	0.9559	0.3831	2.3753	0.0239	0.0002	0.1436
TABLI	(3D)	5 12 13 40 7 44 78.054 40.129	5 10 6 +37 37 30 77.525 37.625	5 11 2 +16 26 24 77.76 16.44	5 20 49 -26 15 22 80.206 -26.256	+ 5 36 38 + 5 57 36 84.16 5.96	5 22 25 -72 4 44 80,603 -72,079	5 31 29 +21 58 23 82.869 21.973	- 5 33 13 - 5 23 24 -5,390
	(3C)	5 12 13 -39 58 1 78.054 -39.967	5 9 43 +37 46 12 77_430 37_770	5 10 5 +16 42 0 77.52 16.70	5 16 27 -26 31 12 79.112 -26.520	5 2 58 + 6 50 24 75.74 6.84	5 18 58 -72 4 44 79.740 -72.079	5 31 26 +21 58 41 82.859 21.978	5 30 25 5 23 24 82,604 -5,390
	(3B)	5 13 48 -39 58 1 78,450 -39,967	5 19 16 +39 12 36 79.815 39.210	5 24 14 +18 37 12 81_060 18_620	5 16 7 -26 9 7 79.030 -26.152	5 2 58 + 7 6 36 75.74 7.11	5 19 13 -71 59 6 -79.803 -71.985	5 31 32 +21 59 28 82,885 21,991	5 30 25 - 5 11 2 -5,184
	(3A)	5 13.48 -40 7 44 78.450 -40.129	5 19 42 +39 0 0 79.925 39.000	5 24 49 +18 31 30 81.203 18.525	5 20 26 -25 52 55 80.110 -25.882	5 36 38 + 6 15 36 84.16 6.26	5 22 22 -71 59 10 80.593 -71.986	5 31 35 +21 59 10 82.895 21.986	- 5 33 13 - 5 11 2 -5,184
	(2B)	244.47 -34.92	168.95 0.49	186.48 -10.95	228.73 -30.63	196.37 -16.40	283.13 -32.73	184.56 -5.79	208.78 -19.54
	(ZA)	5 13 2 -40 3 0 78,260 -40,050	5 15 2 +38 24 0 78.760 38.400	5 17 34 +17 34 12 79 . 390 17 . 570	5 18 34 -26 12 0 -26.200 -26.200	5 19 48 + 6 32 24 79.950 6.540	5 20 42 -72 1 55 80,175 -72,032	5 31 30 +21 58 52 82,877 21,981	- 5 31 50 - 5 18 0 - 5,300 -5,300
	(1)	4U0513-40	400515+38	400517+17	4U0518-26	400519+06	4U0520-72	400531+21	400531-05

-Continue	
4	
TABLE	

.357F
38.
1978ApJS.

	(9)	4U0532-66	4U0538+26	4U0538-64 *	4U0540-69 *	400541+60	400543-31	4U0546-88 X	4U0548+29 X
	(58)	LMC X-4 (4) 2A0532-664 (5) 3U0532-66	A0535+267 (11)	LMC X_3 (4) 2A0539-642 (5) 3U0539-64	LMC X-1 (4) 2A0540-698 (5) 3U0540-69		300545-32		
	(5A)	IN LMC		IN LMC	IN LMC				
	(4B)			e	1.5				
inued	(44)	3 . 92 . 8	2.36 .4	25	50	2.65 .6	3.66 .6	3,55 ,9	4.45 1.0
1-Con	(3E)	6061	0.1495	0_0085	1010 0	0.3690	0_3794	0.1858	3.1461
TABLE	(JE)	5 32 48 •66 59 24 83.20 •66.99	5 36 53 26 7 41 84.220 26.128	5 39 30 •64 10 30 84.875 •64.175	5 41 12 -69 48 7 85,300 -69,802	5 44 55 •60 34 5 86.230 60.568	5 46 31 -31 40 12 86.628 -31.670	5 41 55 •88 33 0 85•48 •88•550	5 30 12 -26 41 24 82.55
	(3C)	5 30 24 -66 57 0 -82.60	5 36 32 +26 17 35 84,135 26,293	5 38 26 -64 10 23 -64.173	5 39 29 -69 48 7 -69.802	5 38 38 +60 34 5 84.660 60.568	5 41 30 -31 57 36 85_375 -31_960	5 6 24 -88 17 17 76.60 -88.288	5 28 43 +26 55 12 4 82.18
	(3B)	5 32 0 86 14 24 83.00 -66.24	5 39 33 +26 41 17 84.888 26.688	5 38 26 -64 6 0 84,608 -64,100	5 39 29 -69 44* 2 84.872 -69.734	5 38 38 +61 3 0 84.660 61.050	5 41 10 -31 37 23 85.293 -31.623	5 51 41 -87 55 48 87.92 -87.930	6 6 0 +31 17 24 91.50
	(3A)	5 34 48 -66 16 12 83.70 -66.27	5 39 55 +26 30 0 84,978 26,500	5 39 30 -64 6 7 84.875 -64.102	5 41 12 -69 44 2 85,300 -69,734	5 44 55 +61 3 0 86.230 61.050	5 46 7 -31 19 59 86.530 -31.333	6 26 24 -88 11 35 96.60 -88.193	6 7 7 +31 3 0 91.78
	(2B)	276 . 60 -32 . 55	181 . 64 -2.13	273.61 -32.05	280,20 -31,50	152 , 03 16 , 08	236.54 -26.97	301 ₆ 07 -27 ₆ 87	180 , 56 1,08
	(2A)	5 32 19 -66 37 12 83.080 -66.620	5 38 12 +26 24 0 84,550 26,400	5 38 58 -64 8 24 84.740 -64.140	5 40 19 -69 46 12 85,080 -69,770	5 41 48 +60 51 0 85.450 60.850	-31 39 48 -31 39 0 85.950 -31.650	5 46 24 -88 13 30 86.600 -88.225	5 48 0 +29 0 0 87,000
	(1)	4U0532-66	4U0538+26	4U0538-64	4U0540-69	4U0541+60	400543-31	4U0546-88	4U0548+29

tinu
Con
Ĩ
Щ
ÅBI

 $\ensuremath{\textcircled{}^{\odot}}$ American Astronomical Society $\ \bullet$ Provided by the NASA Astrophysics Data System

Гщ
iO
m
~ /
•
•
00
∞
S
Ь
Ó.
7
14
ω
<u> </u>
0
-

(9)	4U0553-48 X	400557-38	(28) 400558+46 6 (5)	400559-57	40008-49	4U0614+09	400614+15	400617+23
(58)			MX0600+46 2A0551+46(306614+0		CCTOCYONE
(5A)			SEYFERT: MCG 8-11-11			STAR: RA = 6H 14M 21.35 DEC = 9D 08M 32S		SNR: IC443=3C157 ?
(4B)						ς		
 (44)	3.00 .8	2.43 .3	2.86 .4	3 . 03 .8	3.08 .9	120	3.41 .7	3.44 .2
(3E)	0,3119	1.2994	0.7155	0.3156	0_5339	0.0018	1.9277	0.3190
(3D)	5 53 14 -49 5 24 88.31 -49.09	5 56 52 -39 34 48 89.215 -39.580	6 6 31 +45 53 24 91_630 45_890	6 2 58 -57 21 29 90.740 -57.358	6 8 46 -49 49 48 92 190 -49 830	6 14 19 • 9 7 52 93.580 9.131	6 26 55 +16 45 0 96.73 16.75	6 18 57 •23 5 46 94.736 23.096
(3C)	5 51 24 -48 49 12 87.85 -48.82	5 55 11 -39 34 48 88 795 -39 580	5 41 37 +46 48 0 85_405 46_800	5 56 22 57 21 29 89_090	6 6 13 49 33 18 91 553	6 14 17 + 9 8 38 93.572	6 2 58 +13 30 0 90.74 13.50	6 15 11 6 15 11 93.796 23.096
(3B)	5 54 29 -48 15 0 88.62 -48.25	5 58 36 -34 49 12 89 650 -34 820	5 42 10 +46 55 30 85,540 46,925	5 56 22 -57 0 18 -57,005	6 8 9 -48 27 54 92 038 -48 465	6 14 43 + 9 12 11 93.678 9.203	6 2 19 +13 44 24 90 • 58 13 • 74	6 16 23 +23 27 14 94.096 23.454
(3A)	5 56 26 -48 27 0 89.11 -48.45	5 59 38 -34 57 36 89.910 -34.960	6 7 11 +46 3 18 91.795 46.055	-57 0 18 -57 0 18 -57,005	6 10 38 -48 45 11 92.660 -48.753	6 14 44 + 9 11 24 93.685 9.190	6 26 14 +17 0 0 96.56 17.0	6 20 23 +23 27 14 95.096 23.454
(2B)	255 . 82 -29.03	244,31 -26,18	166.42 11.38	265.61 -29.29	256.85 -26.77	200.88 -3.33	195_53 -0_34	188_84 4_05
(ZA)	5 53 53 -48 40 30 88,470 -48,675	5 57 0 -38 6 0 -38,100 -38,100	5 58 0 +46 18 0 89,500 46,300	5 59 48 -57 10 30 -57,175 -57,175	6 8 24 -49 9 0 92.100 -49.150	6 14 30 + 9 9 54 93627 9.165	6 14 48 +15 18 0 93.700 15.300	6 17 41 +23 15 36 94•420 23•260
(1)	400553-48	400557-38	4U0558+46	400559-57	400608-49	4U0614+09	4U0614+15	400617+23

щ
S
m
•
00
m
•
S
Ь
0
- m
~
17
0
_

						IUDI		Onumen				
(1)	(SA)	(28)	(3A)	(38)	(3C)	(JD)	(3E)	(44)	(48)	(5A)	(58)	(9)
400621+11	6 21 38 +11 46 48 95.410 11.780	199.41 -0.55	6 36 29 +13 55 41 99.12 13.928	6 5 2 • 9 52 5 91.26 9.868	6 6 58 + 9 36 58 91.74 9.616	6 38 7 •13 42 43 99•53 13•712	3 . 5559	2,07 .7				4U0621+11 X
400627+67	6 27 14 +67 34 12 96.810 67.570	147.40 23.16	6 59 41 +66 43 41 104.92 66.728	5 56 29 +68 49 55 89.12 68.832	+ 5 54 53 +68 24 58 88,72 68,416	6 57 55 +66 17 17 104.48 66.288	2.8858	2,63 .7		SUPERCLUSTER ?		4U0627+67 X
400627-38	6 27 18 -38 6 0 96.825 -38.100	246°25 -20.49	6 28 5 -37 42 0 -37.02 -37.70	6 26 36 -37 42 0 96.65 -37.70	6 26 36 	6 28 5 -38 29 24 97.02 -38.49	0.2300	3.61 .7				40627-38
400627-54	6 27 46 -54 1 30 96_940 -54_025	262.85 -24.88	6 30 10 -53 54 0 97 54 -53 90	6 29 17 -53 42 36 97.32 -53.71	6 25 14 -54 9 36 96.31 -54.16	6 26 10 -54 21 0 96.54 -54.35	0.1716	3,30 ,2		CLUSTER: SC0627-544 (3.3) = PKS0625-54	2A0626-541 (5) 3U0624-55	4U0627-54
400628-28	6 28 48 -28 24 0 97,200 -28,400	236.81 -16.72	6 39 24 -25 33 0 99.85 -25.55	6 38 12 -25 19 12 99.55 -25.32	6 23 12 -29 35 24 95.80 -29.59	6 24 48 -30 0 0 96.20 -30.00	2,3964	4.56 l.4		P5R: 0628-28 ?		4U0628-28 X
400630402	 6 30 0 2 24 0 27.500 2.400 	208,68 -3,11	6 39 46 + 3 36 0 99.94 3.600	6 39 12 • 3 48 0 99.80 3.800	6 19 29 + 1 5 24 94.87 1.090	+ 6 20 2 + 0 53 24 95,01 0,890	1.3618	5.92 l.5				4U0630+02 X
400635-03	6 35 0 - 3 19 30 -98.750 -3.325	214.35 -4.63	- 2 14 19 - 2 14 24 100.33 -2.24	- 5 18 58 94.74 -5.1	- 5 32 24 95.0 -5.54	- 2 39 0 100.63 -2.65	3.1755	4.22 .5				400635-03
4U0638+74	6 38 24 +74 12 0 99.600	140 . 55 25 . 57	7 4 34 +74 9 0 106.14 74.15	5 51 50 +76 0 36 87.96 76.01	5 48 0 +74 54 0 87_00	6 52 34 +73 7 48 103.14 73.13	5.9561	2,31 ,3		SEYFERT: MKN 6 ? CLUSTER: ABELL 55A (5,2) ?		400638+74

(1) (3B) (3C) (1) (3B) (3C) (3C) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	2 W + 4 M
•22 •133 •133 •133 •28 12 •21	99,73 99,97 106,22 -5,220 -5,376 -2,1133 26 7 11 50 36 -17 16 8 17 36 -17 16 9 16 12 107,96 105,82 106,21 106,21 12
•47	-16.16 -17.28 -17.47
•68	29 -7 8 38 -7 6 17 7 8 0
•05	12 -48 45 0 -49 20 24 -49 48 0
•75	107.16 -48.75 -49.34 -49.75
12 31	10 7 10 12 7 11 31 7 12 31
37 12	12 -37 22 12 -40 6 0 -39 37 12
•13	107.55 107.68 108.13
•62	-37.37 -40.10 -39.62
16 29	46 7 19 17 7 13 55 7 16 29
28 48	48 -53 36 0 -55 19 12 -55 28 48
12	109.82 108.48 109.12
48	-55.32 -55.48
36 58	36 7 4 10 7 0 0 7 36 58
39 58	0 457 24 0 455 57 0 454 39 0
24	106.04 105.00 114.24
65	57.40 55.95 54.65
25 45	10 7 30 46 7 25 22 7 25 45
18 0	54 -25 21 47 -26 6 54 -26 18 0
•438	112.693 111.340 111.438
•300	5 -25.363 -26.115 -26.300
00 00 00 00	17 7 26 41 7 30 31 7 32 0 48 -34 31 48 -42 43 48 -42 42 0 111.67 112.63 113.00

.357F
00
∞
Ω.
ъ
Ó.
7
14
w
<u></u>
0
_

	(9)	4U0733-18 X	400737-10	4U0739-19	4U0742-28	400750-49	400813-38	4U0814=56 X	4U0821-42
	(58)				3U0757-26	3U0750-49		A0813-57 (13)	VEL XR-2 (1) ? PUP A (2) 3U0821-42
	(5A)			PKS0745-19 7					SNR: PUP A AT Ra = 8H 21M 185 DEC = -42D 52M 00S
	(4B)								
tinued	(4A)	2.17 .7	3.06 .6	3.84 .5	3.37 .7	5 • 38 1•2	2.80 .5	2.76 .8	7.5 .6
E 1-Con	(3E)	1.0996	1.3829	0.9524	1.3373	0.6277	0.1586	0.2612	0°0109
TABLI	(3D)	7 26 24 19 42 54 11.60 19.715	7 31 41 11 54 0 12,92 11,90	7 28 31 21 28 12 12.13 21.47	7 35 14 29 43 48 13.81 29.73	7 56 57 48 39 36 19.238 48.660	8 14 14 38 49 12 23.56 38.82	8 16 24 56 46 48 24.10 56.78	8 21 28 42 50 17 25 . 366 42 . 838
	(3C)	7 25 50 19 34 23 - 11.46 1 19.573 -	7 31 0 11 45 0 12.75 1 11.75	7 28 2 21 21 36 - 12.01 1 21.36 -	7 34 19 29 34 12 - 13,58 1 29,57 -	7 44 43 50 21 54 - 16.178 1 50.365 -	8 12 41 38 49 12 23.17 38.82	8 12 53 57 9 0 - 23.22 1 57.15 -	8 21 14 42 46 16 25,307 1 42,771 -
	(3B)	7 40 5 117 25 41 15,02 1 17,428 -	7 42 38 9 33 36 - 15.66 -	7 43 26 19 4 48 15.86 19.08	7 50 26 27 30 0	7 43 49 50 11 6 - 15,953 1 50,185 -	8 12 41 38 18 0 23.17 1 38.30	8 12 7 56 42 0 23.03 1	8 21 42 42 39 18 25,423 1 42,655
	(3A)	7 41 10 -17 41 24 115.29 -17.690	7 43 55 -10 1 12 115,98 -10,02	7 44 29 -19 16 12 116-12 -19-27	7 51 43 -27 49 12 117,93 -27,82	7 56 8 -48 27 0 119.035 1 -48.450	8 14 14 -38 18 0 123.56 1 -38.30	8 15 34 -56 18 36 123.89 123.81	8 21 56 42 43 8 125 485 1 -42 719
	(28)	234 . 54 0.86	228•21 5•52	236.33 1.38	244.35 -2.24	263_21 -11.32	256.10 -2.11	271 . 52 -12.01	260•44 -3•21
	(ZA)	7 33 22 -18 36 0 113,340 -18,600	7 37 19 -10 48 36 114,330 -10,810	7 39 0 -19 54 0 114.750 -19.900	7 42 55 -28 39 36 115 ₆ 730 -28,660	7 50 30 -49 24 0 117.625 -49.400	8 13 24 -38 33 0 123,350 -38,550	8 14 12 -56 45 0 123_550 -56_750	8 21 35 -42 44 42 125 ₆ 395 -42,745
	(1)	400733-18	400737-10	4U0739-19	4U0742 - 28	400750-49	4U0813-38	400814-56	400821-42

÷. Ś TARIF 1-

373

 \circledcirc American Astronomical Society $\,\bullet\,$ Provided by the NASA Astrophysics Data System

(2B) (3A) (3B) (3C) 263.58 834 2 83 12 262.58 -48 34 2 8 14 263.58 83 2 8 3 14 263.58 -48 34 2 8 3 14 263.58 -48 34 2 31 8 3 14 261.93 -28.51 128.51 -45.19 -455.24 -45.24 -45.24 261.93 -8 36 57 8 36 50 8 35 31 261.93 -42 30 43 -42 30 42 28 31 261.93 -42 30 43 -42 30 42 31 - 261.93 -42 30 43 -42 30 42 28 31 -	(3A) (3B) (3C) (3C) (3C) (3C) (3C) (3C) (3C) (3C	(3B) (3C) (3B) (3C) (45 11 24 -45 14 24 -45 13 128-14 24 -45.19 -45.24 -45.29 -42 28 35 31 -42 28 59 -42 42 18 129.208 59 -42 48 18	(3C) (3C) (3C) 128.31 128.31 -45.24 -45.24 -45.24 -128.878 1		(3D) (3D) 48 34 41 128.67 -44.90 8 35 39 -42 44 6 128.911	(3E) 0_0520 0_0521	(4A) (. 9.1 1.0 47 > 1(64 0 (8)	(5A) VELA X PULSAR: PSR0833-45 AT RA= 8H 33M 395 DEC= -45D 0M 195 TRANSIENT	(5B) VEL XR-1 (1) 7 VEL XR-2 (1) 7 VELA X (2) 3U0833-45 MX0836-42 (28)	(6) 400833-45 * 400836-42
-42.61: 8 42 24 47 48 0 130.600 -47.800	266.69	-42.512 -42.512 -45 27 36 134.37 -45.46	-42.483 -45.483 -45.17 24 134.13 -45.29	-42.705 8 36 7 -48 31 48 129.03 -48.53	-42.735 -42.735 -48.48 129.40 -48.80	1.4327	2.95 .8			A0835-48 (13)	4U0842-47 X
8 42 58 -34 55 12 130.740 -34.920	256.68 4.81	8 39 43 -32 43 12 129-93 -32-72	8 39 0 -32 57 0 129.75 -32.95	8 45 38 -37 6 0 131.41 -37.10	8 47 31 -36 54 0 131.88 -36.90	1.4113	2.57 .5				4U0842-3
8 45 0 29 40 30 131,250 -29,675	252.81 8.40	8 50 38 -32 27 0 132.658 -32.450	8 43 10 -28 17 42 130.790 -28.295	8 42 0 -28 23 6 130.502 -28.385	8 49 48 -32 36 0 132.450 -32.600	1,0952	3.14 .6				4U0845-2
8 54 12 44 30 0 133 550 -44 500	265.45	8 58 50 -43 48 36 134-710 -43-810	8 57 58 -43 42 18 134.490 -43.705	8 49 35 -45 11 46 132.395 -45.196	8 50 24 -45 18 47 132.600 -45.313	0.3935	3.96 .6			A0854-46 (13)	4U0854-4
9 0 15 40 21 36 135,064 -40,360	263 . 07 5 263.07 5 3.93	9 0 20 -40 20 46 135.082 -40.346	9 0 10 -40 20 46 135.043 -40.346	9 0 10 -40 22 34 135.043 -40.376	9 0 20 -40 22 34 135.082 -40.376	6000°0	250 > 1	0	STAR: HD77581 AT Ra= 94 0M 13.25 DEC= _40D 21M 25.25 PERIODS: 283 SEC18.96 DAY	GX263+3 (2) VEL XR-1 (1) ? VEL 1 (3) 3U0900-40	* - 0060017
9 0 24 9 24 0 135.100	238.27	9 12 36 - 9 12 36 136.32 -9.210	8 55 31 - 9 12 36 133.88 -9.210	8 55 31 - 9 34 30 133.88 -9.575	9 5 17 - 9 34 30 136.32 -9.575	0.8784	5 . 18 .5		CLUSTER: ABELL 754 (3,2)	2A0906-095 (5) 3D0901-09	0-006004

TADIC

н
S
\sim
· .
~
ω
\sim
•
•
-
22
Q
R.
0
~
5
01
-

(1)	(ZA)	(2B)	(9A)	(3B)	(3C)	(JE)	(3E)	(4A)	(4H)	(5A)	(5B)	(9)
400908-66	9 8 24 -66 55 30 137,100 -66,925	283.73 -12.98	9 12 34 -66 10 12 138.14 -66.17	9 10 53 -65 45 36 137.72 -65.76	9 4 46 -67 34 12 136.19 -67.57	9 7 29 -67 39 0 136.87 -67.65	0.4854	12.0 1.0				4003n8-66
400913-46	9 13 12 -46 9 0 138,300 -46,150	268.92 1.72	9 17 14 -45 6 0 139.31 -45.10	8 59 10 -48 36 36 134.79 -48.61	9 0 26 -48 55 48 135.11 -48.93	9 18 43 -45 24 0 139.68 -45.40	1.7902	3.96 1.1				400913-46
400919-54	9 19 6 -54 57 0 139,775 -54,950	275 . 84 -3 . 79	9 19 42 -54 54 0 139,925 -54,900	9 19 24 -54 51 11 139.850 -54.853	9 18 42 -55 0 25 139.675 -55.007	9 18 48 -55 3 29 139.700 -55.058	0•0101	5.44 .3			310918-55	400919-54
400923-31	9 23 20 -31 29 6 140.835 -31.485	259.74 13.41	9 24 1 -31 31 55 141,005 -31,532	9 23 14 -31 18 7 140.807 -31.302	9 22 37 -31 25 37 140.655 -31.427	9 23 27 -31 39 43 140.861 -31.662	0.0513	4.84 .2			2A0922-317(5)	400923-31
400937-12	9 37 55 -12 51 0 144-478 -12.850	247 . 65 28 . 65	9 23 12 - 9 0 36 140.80 -9.01	9 21 55 - 9 20 24 140.48 -9.34	9 52 36 -16 41 24 148.15 -16.69	9 53 55 -16 21 36 148,48 -16,36	4.7636	8 • 6 • 6			2A0943-140 (5)	400937-12
400945-30	9 45 54 -30 40 30 146.475 -30.675	262.79 17.33	9 46 51 -30 45 0 146.713 -30.750	9 45 42 -30 25 30 146.425 -30.425	9 45 0 -30 34 30 146.250 -30.575	9 46 12 -30 54 47 146.550 -30.913	0_0678	3 . 39 . 3			2A0946-310(5) 3U0946-30	400945-30
400954+70	9 54 31 +70 12 0 148,630 70,200	140 . 92 40 . 59	10 9 22 +70 51 36 152 . 34 70 . 86	10 3 34 +71 22 12 150,89 71,37	9 40 34 +69 31 12 145.14 69.52	9 42 2 +69 6 36 145.51 69.11	1•5031	2.63 .4		M8.2	2A0954+700 (5) 3U0943+71	400954+70
400955-28	9 55 31 -28 24 36 148.880 -28.410	262.88 20.41	10 0 38 -30 11 53 150,16 -30,198	9 51 32 -26 24 11 147.885 -26.403	9 50 42 -26 35 24 147.675 -26.590	9 59 14 -30 26 42 149.810 -30.445	1,3568	4.83 1.1				4U0955-28 X

	(9)	4U1015-25 X	4U1022-40	401033-26	4U1036-56	401037-60	4U1041-21 X	4U1057-21	401110-58
	(58)			2A1033-270 (5; 3U1044-30	A1034-56 (13) 3U1022-55	A1044-59 (13)		2A1058-226 (5)	
	(5A)	CLUSTER: ABELL 955 (6,1) 7 ABELL 966 (6,1) 7	PKS1002-21 ?	CLUSTER: ABELL 1060 (0,1)		7 CARINAE Ra = 10H 43M 6.895 DEC = -59D 25M 16.225		CLUSTER: ABELL 1146(5,4)?	
	(4P)								
ntinued	(4A)	3.54 .7	4.61 1.1	1.99 .4	4.36 .5	2.66 .5	3.28 .9	2.91 .5	3.63 .7
E 1-Co	(3E)	2.4047	0.3727	0,9212	u_0339	0.6555	1,1399	0.9054	0.1410
TABL	(3D)	10 23 39 -29 12 36 155,913 -29,210	10 22 55 -41 32 24 155.73 -41.54	10 35 13 -27 54 54 158.803 -27.915	10 36 42 -56 40 12 159.176 -56.670	10 31 0 -62 30 0 157.75 -62.50	10 44 6 -22 57 36 161.025 -22.960	11 0 19 -23 10 48 165.08 -23.18	11 11 36 -58 10 48 167.90 -58.18
	(3C)	10 9 30 -23 31 30 -23.525 -23.525	10 21 10 -41 16 48 155.29 -41.28	10 26 30 -24 21 18 156.624 -24.355	10 35 4 -56 32 35 158,768 -56,543	10 30 0 -62 13 48 157_50 -62,23	10 37 40 -20 57 7 159.415 -20.952	10 52 58 -20 36 0 163 24 -20.60	11 8 48 -58 10 48 167,20 -58,18
	(3B)	10 10 18 -23 0 0 152,575 -23,000	10 21 10 40 9 0 155,29	10 27 26 -24 13 12 156,860 -24,220	10 35 27 -56 25 12 158.864 -56.420	10 42 58 -59 16 12 160.74 -59.27	10 39 10 -20 39 11 159.793 -20.653	10 53 48 -20 24 0 163.45 -20.40	11 8 48 -57 48 0 167-20
	(3A)	10 24 20 -28 49 12 156,085 -28,820	10 22 55 -40 25 48 155.73 -40.43	10 35 52 -27 45 18 158,966 -27,755	10 37 4 -56 33 0 159.268 -56.550	10 43 24 -59 31 12 160.85 -59.52	10 45 36 -22 40 30 161 400 -22 675	11 1 24 -23 0 0 165,35 -23,00	11 11 36 -57 48 0 167,90
	(28)	264.49 25.50	275•24 13•72	269.12 26.70	285.42 1.46	287 . 63 - 2,29	267,73 31,96	271 . 37 33 . 86	290.20 2.13
	(ZA)	10 15 6 -25 24 0 153,775 -25,400	10 22 2 -40 51 0 155,510 -40,850	10 33 17 -26 51 0 158,320 -26,850	10 36 10 -56 33 0 159,040 -56,550	10 37 0 -60 54 0 159,250 -60,900	10 41 36 -21 48 0 160 400 -21 800	10 57 7 -21 48 0 164,280 -21,800	11 10 12 -58 0 0 167-550 -58.000
	(1)	401015-25	4U1022-40	401033-26	4U1036-56	401037-60	4U1041_21	4U1057_21	401110-58

ntin	l
<u> </u>	
BLE 1	

$\ensuremath{\textcircled{}^{\odot}}$ American Astronomical Society $\ \bullet$ Provided by the NASA Astrophysics Data System

.357F
•
00
$^{\circ}$
•
•
•
S
Ь
Ω.
œ
78
978.

	(9)	1.2) 4U1118-60 *	401119-77	4U1120 - 43 X	4U1130-14 X	(5) 4U1136-37	4U1137-65	(5) 4U1143+19	4U1144+84
	(58)	CEN XR-3 (CEN X-3 (7 CEN 3 (3) 3U1118-60				2A1135-373	3U1134-61	2A1141+199 3U1144+19	
	(5A)	STAR: KRZEMINSKI AT HA = 11H 19M 03S DEC = -60D 20M 54S PEHIODS: 4.8 SEC;2.09 DAY			CLUSTER: ABELL 1285 (5,1) ? = PKSI127-14	SEYFERT: NGC 3783		CLUSTER: ABELL 1367 (1.2)= 3C264 = NGC 3862	
	(48)	* 10							
ontinued	(4A)	200	2.40 .4	1.74 .4	2.74 .6	2.72 5	9•59 •5	3.01 .2	3.44 .6
<u>,E 1—C(</u>	(3E)	0*0001	0.1967	0.6365	2.2475	0.2464	0160_0	0.1928	2.0182
TABI	(3D)	11 19 3 60 19 41 69.764 60.328	11 23 17 78 4 12 70.82 78.070	11 26 7 43 33 36 71.53 43.56	11 38 19 17 34 12 74.58 17.57	11 37 31 37 45 0 74 . 38 37 . 75	11 38 18 65 12 47 74,575 65,213	11 44 29 19 33 0 76.120 19.550	11 37 52 80 7 12 74.465 80.12
	(3C)	11 18 58 -60 20 35 169.740 1 -60.343	11 16 0 -78 4 12 169.00 -78.070	11 14 12 -43 3 36 - 168.55 1 -43.06	11 22 43 -12 18 36 170.68 -12.31	11 35 12 -37 16 48 173.80 -37.28	11 36 19 -65 9 0 - 174.080 1 -65.150 -	11 41 58 +19 50 17 175,493 1 19,838	11 30 0 +80 7 12 + 172,500 1 80,12
	(38)	11 18 47 -60 18 32 169-697 -60-309	11 16 0 -77 33 29 169.00 -77.558	11 14 48 -42 48 36 168,70 -42,81	11 23 41 -12 0 36 170,92 -12,01	11 36 22 -36 58 48 174,09 -36,98	11 36 25 -65 0 0 174.103 -65.000	11 42 21 +20 9 0 175 - 588 20 - 150	11 45 31 +86 16 48 176.378 86.28
	(3A)	11 18 53 -60 17 35 169.722 -60.293	11 23 17 -77 33 29 170.82 -77.558	11 27 0 -43 17 24 171.75 -43.29	11 39 14 -17 18 36 174.81 -17.31	11 38 36 -37 24 0 174.65 -37.40	11 38 23 -65 4 12 174.595 -65.070	11 44 54 +19 46 59 176•225 19•783	12 5 17 +86 16 48 181.320 86.28
	(28)	292.07 0.36	298.20 -16.04	286•37 16•56	276.18 43.85	287,49 23,07	295°54 -3°54	236,38 73,20	125.00 33.15
	(ZA)	11 18 55 -60 19 5 169.730 -60.318	11 19 36 -77 48 0 169,900 -77,800	11 20 36 -43 10 30 170.150 -43.175	11 30 24 -14 37 30 172,600 -14,625	11 36 54 -37 21 0 174-225 -37.350	11 37 18 -65 6 0 174.325 -65.100	11 43 30 +19 48 0 175,875 19,800	11 44 0 +84 0 0 176,000 84,000
	(1)	4U1118-60	401119-77	4U1120-43	4U1130-14	4U1136-37	4U1137-65	4U1143+19	4U1144+84

S
$^{\circ}$
00
m
· :
•
S
Ь
0
Ā
00
~
÷
01

(1)	(ZA)	(28)	(3A)	(38)	(3C)	(3D)	(3E)	(44)	(48)	(5A)	(58)	(9)
4U1145-61	11 45 7 -61 56 42 -61,945	295.56 -0.27	11 45 30 -61 47 49 176.375 -61.797	11 45 18 -61 46 30 176.323 -61.775	11 44 44 -62 6 0 176.183 -62.100	11 44 57 -62 7 8 176.237 -62.119	0_0094	72	10	STAR: HD102567 7	3U1145-61	4U1145-61 *
4U1147-12	11 47 26 -12 24 36 176.860 -12.410	280.45 47.48	11 54 46 -14 26 24 178-69 -14-44	11 41 14 -10 5 24 175.31 -10.09	11 40 22 -10 18 0 175.09 -10.30	11 53 24 -14 47 24 178.35 -14.79	2.1110	2.42	ŝ	CLUSTER: ABELL 1391 (6.2) ? PkS1146-11 ?		4U1147-12 X
4U1153-11	11 53 36 -11 33 0 178,400 -11,550	282.14 48.80	11 55 36 -11 39 0 178.90 -11.65	11 51 53 -11 9 0 177.97 -11.15	11 51 14 -11 24 0 177.81 -11.40	11 55 0 -11 52 48 178.75 48 -11.88	0.2943	2.12	ň			4U1153-11
4U1153-40	11 53 54 -40 12 0 178.475 -40.200	291.75 21.20	11 56 28 -40 9 29 179.116 -40.158	11 51 46 -39 58 48 177,943 -39,980	11 51 42 -40 15 54 177,925 -40,265	11 56 11 -40 26 35 179.045 -40.443	0.2555	3.50	æ			4 U1153-4 0 C
4U1203-06	12 3 41 - 6 7 12 -180,920 -6,120	283.22 54.73	12 8 24 - 7 27 0 182,10 -7,45	11 59 43 - 4 37 48 179.93 -4.63	11 59 0 - 4 45 0 179.75 -4.75	12 7 38 - 7 37 48 181.91 -7.63	0.8465	2.21	4	SUPERCLUSTER 7		4U12N3=06
4U1206+39	12 6 48 +39 46 30 181.700 39.775	155•57 74 • 85	12 8 41 +39 50 6 182,170 39,835	12 4 47 +39 50 6 181.195 39.835	12 5 12 +39 42 29 181,300 39,708	12 9 5 +39 42 29 182•270 39•708	0*00*0	4.30	4	SEYFERT: NGC 4151 2	2A1207+397 (5) 3U1207+39	4U1206+39
4U1209-45	12 9 36 -45 12 0 182,400 -45,200	295.76 16.85	12 10 36 -44 57 36 182_650 -44_960	12 8 32 -44 45 36 182,135 -44,760	12 8 32 -45 24 54 182.135 -45.415	12 10 36 -45 40 12 182.650 -45.670	0.2477	2.71	0			4U1209-45
401210-64	12 10 22 -64 38 24 182 590 -64 640	298.88 -2.35	12 10 50 -64 33 0 182.71 -64.55	12 9 53 -64 33 0 182.47 -64.55	12 9 53 	12 10 50 -64 44 24 182.71 -64.74	0.0195	5.21	e .		3U1210-64	4U1210-64

	(9)	4U1221-08	4U1223-62 *	4Ù1226+02	4U1228+12 *	4U1232407 X	4U1240-05	4U1246-58	4U1246-41
	(58)	3U1237-07	GX301-2 (9) 3U1223 - 62	2A1225+022 (5) 3U1224+02	2A1228+125 (5) 3U1228+12	3U1231+07		A1246-58 (13)	2A1246-410 (5) 3U1247-41
	(54)		STAR: WRAY 977 AT Ra = 12H 23M 49.35 DEC = -62D 29M 365 DFTICAL PERIOD: 20.55 DAY PERIOD: 11.6 MIN	050: 3C273	CLUSTER: VIRGO EM87=VIR A	IC 3576 7	CLUSTERS: ABELL 1588 (5.0) 7 ABELL 1635 (5.1) 7 3C275 7		CLUSTER: CENTAURUS = NGC 4696 = PKS1245-41
	(4B)		ŝ						
ontinued	(4 A)	3.36 .5	40	2.69 .2	21.7 .3	3 . 09 .8	2.03 .6	5.11 .4	4.76 °3
,Е 1—С	(3E)	0.2427	0_0032	0.0571	0.0298	0.5272	6.2847	0.0465	0.0149
TABI	(3D)	12 21 56 8 29 6 85 485 -8.485	12 24 1 -62 38 28 186.004 -62.641	12 26 36 • 2 19 55 186.650 2.332	12 29 22 •12 36 0 187•342 12•600	12 35 7 • 6 37 48 188.780 6.630	12 50 12 - 9 34 30 192.550 -9.575	12 47 7 -58 51 54 191.780 -58.865	12 46 21 -41 7 8 191.587 -41.119
	(3C)	12 19 54 - 8 5 6 1 -8.085	12 23 47 62 34 16 185 947	12 25 17 2 30 22 186.320 2.506	12 28 0 +12 40 16 186.998 12.671	12 29 49 • 7 15 47 • 7 15 47 • 7.263	12 27 55 - 1 58 30 186.980 -1.975	12 45 14 -58 51 54 191_308 -58_865	12 45 48 -41 1 30 191.450 -41.025
	(3B)	12 20 49 7 47 24 185.205 -7.790	12 23 54 62 28 59 185 974 -62 483	12 25 33 + 2 38 46 186.386 2.646	12 28 5 •12 45 22 187_019 12•756	12 30 28 • 7 34 48 187.615 7.580	12 28 55 1 47 17 187,230 -1,788	12 45 14 -58 40 30 191.308 -58.675	12 46 5 -40 56 53 -40 948
	(3A)	12 22 52 - 8 10 59 185.718 -8.183	12 24 7 -62 33 4 186.031 -62.551	12 26 52 + 2 28 5 186.716 2.468	12 29 28 +12 40 59 187,365 12,683	12 35 44 + 6 58 12 188.933 6.970	12 54 24 - 9 15 47 193.600 -9.263	12 47 7 -58 40 30 191.780 -58.675	12 46 44 -41 2 13 191.685 -41.037
	(28)	291.38 53.83	300.12 -0.10	289.61 64.48	284°18 74•53	291.61 69.34	299.06 56.88	302,63 3,82	302.44 21.56
	(ZA)	12 21 24 - 8 9 0 185.350 -8.150	12 23 58 -62 33 36 185,990 -62,560	12 26 5 + 2 28 48 186.520 2.480	12 28 46 +12 40 12 187,190 12,670	12 32 54 + 7 6 0 188,225 7,100	12 40 22 - 5 39 0 190,090 -5,650	12 46 10 -58 46 30 191.540 -58.775	12 46 13 -41 2 6 191.555 -41.035
	(1)	401221-08	4U1223 - 62	4U1226+02	4U1228+12	4U1232+07	4U1240-05	4U1246-58	401246-41

.357F
38.
1978ApJS.

							11100 1	1404				
(1)	(2A)	(28)	(34)	(38)	(3C)	(3D)	(3F)	(4A)	(4B)	(5A)	(58)	(9)
4U1249-28	12 49 36 -28 54 0 192 400 -28,900	303.16 33.70	12 51 23 -28 51 54 192.844 -28.865	12 47 54 -28 46 23 191-976 -28.773	12 47 37 -28 55 30 191.903 -28.925	12 51 8 -29 1 41 192.784 -29.028	0.1263	4.55 .3		CLUSTER: SC1251-288 (3,0) = pKS1252-289	2A1251-290 (5) 3U1252-28	4U1249-28
4U1253-00	12 53 54 - 0 16 30 193.475 275	305_64 62_30	12 55 42 - 0 31 5 193.925 518	12 52 53 • 0 10 30 193.220 • 175	12 52 10 - 0 1 48 193.040 030	12 54 55 - 0 42 54 193.730 715	0.2694	3.56 .6				4U1253-00
4U1254-69	12 54 22 -69 1 12 193_590 -69_020	303.48 -6.43	12 54 17 -69 0 0 193.570 -69.000	12 54 5 -69 1 12 193.520 -69.020	12 54 26 -69 2 24 193_610 -69_040	12 54 38 -69 1 12 193.660 -69.070	0*0010	23.2 .5			3U1.254-69	4U1254-69
4U1257+28	12 57 29 +28 11 24 194,370 28,190	56.33 87.97	12 57 55 +28 11 24 194,480 28,190	12 57 2 +28 14 24 194_260 28_240	12 56 55 +28 11 24 194,230 28,190	12 57 48 +28 8 24 194,450 28,140	0.110	14.8 •3		CLUSTER: COMA = ABELL 1656 (1.2)	2A1257+283 (5) 3U1257+28	4U1257+28 *
4U1258-61	12 58 17 -61 22 12 194.572 -61.370	304.11 1.21	12 58 27 -61 23 42 194.613 -61.395	12 58 13 -61 16 59 194.556 -61.283	12 58 8 -61 20 38 194.532 -61.344	12 58 21 -61 27 7 194.587 -61.452	0_0029	55	10	PFR10D: 272,2 SEC	GX304-1 (9.10) 3U1258-61	4U1258-61 *
4U1300-48	13 0 42 -48 52 30 195.175 -48.875	304,98 13,68	13 3 5 -48 46 5 195.770 -48.768	12 58 42 -48 34 5 194.675 -48.568	12 58 23 -48 58 5 194.595 -48.968	13 2 43 -49 10 5 195.680 -49.168	0.2979	2.30 .6				4U1300-4A X
4U1302-77	13 2 0 -77 30 0 -77.500 -77.500	303.73 -14.92	13 45 41 -80 16 30 206.42 -80.275	12 24 14 -74 31 48 186.06 -74.53	12 12 53 -74 52 48 183.22 -74.88	13 29 31 -80 50 42 202.38 -80.845	6.0493	3.52 .6				4U1302-77
4U1308+86	13 8 48 +86 28 48 197,200 86,480	122 . 65 30 . 91	13 23 22 +86 40 48 200.84 86.68	12 57 36 +86 40 48 194 . 40 86.68	12 53 36 +86 19 12 193_40 86_32	13 19 50 +86 19 12 199,96 86,32	0.1425	1.85 .4				4U1308+86

Гщ
io
m
•
•
00
∞
•
Ω.
ъ
0.
7
~
00
-
σ
-

							Omman				
(28)		(3A)	(3B)	(3C)	(JE)	(3E)	(44)	(4B)	(5A)	(58)	(9)
116.99 13 57.58 204	13 +59 204 59	39 55 54 0 98 90	13 35 31 +61 0 36 203.88 61.01	12 53 2 +59 19 48 193.26 59.33	12 57 36 +58 18 36 194.40 58.31	6.6058	2.61 .3		CLUSTER: ABELL 1747 (4.1) ?		4U1314+59
305.78 13 -2.14 -65 -65 -65	13 -65 -65 -65	16 36 11 6 •150 •185	13 13 39 -63 49 48 198.413 -63.830	13 13 19 -64 0 0 198_330 -64_000	13 16 15 -65 23 17 199.063 -65.388	0.1089	9°63 8	.			4U1314-64
322.45 68.29 + 20	50 1	3 23 50 5 27 47 0.958 5.463	13 13 9 + 8 16 30 198.275 8.275	13 12 10 + 8 2 6 198_040 8_035	13 22 6 + 5 11 6 200.523 5.185	1.6224	2.56 .6				4U1317+06 X
309.48 1 19.42 -4	-404	3 22 48 2 46 48 0.698 2.780	13 22 5 -42 40 12 200,520 -42,670	13 21 53 -42 44 56 200.472 -42.749	13 22 36 -42 51 14 200.652 -42.854	0_013R	8 • 40 • 4		NGC 5128 = CEN A	2A1322-427 (5) 3U1322-42	4U1322=42 *
307 ₆ 05 1. 0 ₆ 31 -66	1 9 9 1	3 24 15 2 7 1 1.064 2.117	13 23 29 -61 49 19 200.870 -61.822	13 22 56 -61 54 43 200.732 -61.912	13 23 40 -62 12 32 200.918 -62.209	0.0278	4.22 .3			301320-61	4U1323-62
312.08 13 30.63 -35 204.63 -35 -35	3.00	3 37 26 5 0 0 5.00	13 15 22 -27 18 0 198.84 -27.30	13 13 13 12 -27 40 48 198.30 -27.68	13 36 24 -35 19 48 204.10 -35.33	4.3610	3.58 .8	_	CLUSTER: SC 1329-314 (4,0) = PKS1327-311	MXI329—31 (28) 2A1326—311 (5)	4U1325-31
334.32 1 72.19 +1	1161	3 18 43 4 48 0 9.68 4.80	13 17 24 +14 33 36 199.35 14.56	13 34 22 + 9 2 24 203.59 9.04	13 35 14 + 9 10 48 203.81 9.18	2.2667	2,20 ,5		CLUSTER: ABELL 1735 (6,1) ?		4U1326+11
309.65 309.65 20.94 20.94	- 90 9 1 0 1	3 45 42 1 16 48 5.425 1.280	13 43 50 -60 30 0 205-960 -60-500	13 42 53 -60 39 0 205.720 -60.650	13 44 46 -61 26 6 206.190 -61.435	0.1248	4.00 5			Al343-60 (l3)	4U1344-60

	(9)	4U1345-32	4U1348+25	4U1404+14 X	401410-03	401414+25	4U1416-62	4U1425-61	4U1436-56
	(58)	MX1347—32 (28) 2A1344—325 (5)	2A1346+266 (5) 3U1349+24		2A1410-029 (5) 3U1410-03	2A1415+255 (5)		MX1418-61 (28)7	
	(5A)	CLUSTER: SC1345-301 (0,2) = pKS1344-302	CLUSTER: ABELL 1795 (4.2)	CLUSTER: ABELL 1852 (5,1) 7 ABELL 1849 (5,0) 7 ABELL 1860 (5,1) 7 ABELL 1860 (5,1) 7	NGC 5506+5507 7	SEYFERT: NGC 5548			
	(4B)						1		
ntinued	(44)	5 . 31 . 8	4.12 .5	2.49 .5	з . 00 а	3.41 .4	7.59 .5	2.41 .5	3,80 .6
E 1-C0	(3E)	0.1004	3.7144	1.3061	0.1366	2.4755	0.0255	0.6139	0.7776
IABL	(3D)	13 45 56 32 55 30 06.483 32.925	13 52 38 24 33 36 08.16 24.56	14 10 45 12 19 59 122,688 12,333	14 12 12 3 7 48 13.05 -3.13	14 18 42 23 15 0 14.675 23.250	14 16 40 -62 27 36 214_168 -62_460	14 30 21 •61 59 53 217•586 •61•998	14 42 45 58 36 7 220,688
	(3C)	13 44 32 32 37 5 206 135 32 618	13 40 10 +26 12 0 + 205_04 2 26_20	13 57 22 16 40 59 4 209.343 2 16.683	14 11 24 3 16 48 212.85 -3.28	14 9 0 +26 46 30 + 26 775 2	14 15 32 -62 10 12 213_883 213_883 -62_170	14 17 58 -60 40 30 214-490 -60-675	14 29 33 54 48 36 217.388 54.810
	(3B)	13 45 13 -32 25 23 206.305 -32.423	13 42 24 +27 14 24 205.60 27.24	13 58 14 +16 55 48 209.560 16.930	14 9 29 - 3 0 0 -3.00	14 10 24 +27 22 30 212•600 27•375	14 15 55 -62 4 23 213_978 -62_073	14 19 53 -60 28 12 214.970 -60.470	14 30 34 -54 36 0 217.640
	(3A)	13 46 37 -32 44 17 206.653 -32.738	13 54 38 +25 38 24 208.66 25.64	14 11 19 +12 25 23 212.830 12.423	14 10 24 - 2 49 48 212.60 -2.83	14 20 12 +23 51 0 215.050 23.850	14 17 3 -62 22 5 214.263 -62.368	14 32 18 -61 47 35 218.075 -61.793	14 43 27 -58 26 46 -58.446 -58.446
	(SB)	316.53 28.44	29.44 76.72	0.69 68.28	339.17 53.70	31 . 94 70 . 84	312.96 -1.37	314,30 -0,74	317.43 2.95
	(ZA)	13 45 36 -32 40 30 206.400 -32.675	13 48 0 +25 48 0 207,000 25,800	14 4 26 +14 35 24 211.110 14.590	14 10 55 - 3 3 36 - 212,730 -3,060	14 14 12 +25 25 30 213-550 25-425	14 16 18 -62 16 30 214.075 -62.275	14 25 2 -61 13 30 216.260 -61.225	14 36 34 -56 36 36 219.140 -56.610
	(1)	4U1345-32	4U1348+25	4U1404+14	4U1410-03	4U1414+25	4U1416-62	4U1425-61	4U1436-56

Ē

프
ம
$^{\circ}$
•
•
œ
m
· •
-
22
0
Å
0
~
ò
-

(1)	(2A)	(28)	(3A)	(38)	(3C)	(JD)	(3E)	(44)	(48)	(5A)	(58)	(9)
4U1438-18	14 38 24 -18 30 0 219,600 -18,500	336.06 37.00	14 42 58 -19 0 36 220.74 -19.01	14 35 14 -17 45 36 218.81 -17.76	14 34 10 -18 1 48 218,54 -18,03	14 41 53 -19 15 0 220.47 -19.25	0.7825	3.50 .8	~			4U1438-18 ×
4U1444+43	14 44 36 +43 4 30 221 ₆ 15 43 ₆ 075	74°47 61.89	14 55 6 +43 23 17 223.775 43.388	14 30 12 +42 56 17 217•55 42•938	14 32 36 +42 44 17 218.15 42.738	14 57 30 +43 7 30 224,375 43,125	1.2349	3,21 ,3	~		3U1443+43	4U144443
4U1446-55	14 46 48 -55 24 0 221.700 -55.400	319.24 3.45	14 40 55 -53 37 12 220,23 -53,62	14 40 0 -53 51 0 220.00 -53.85	14 54 10 -57 30 0 223.54 -57.50	14 55 7 -57 15 36 223•78 -57•26	0.9542	2.48 .5				4U1446-55
4U1450-80	14 50 36 -80 33 0 222,650 -80,550	308,05 -19,16	15 4 24 -80 46 12 226.10 -80.77	14 40 36 -80 6 36 220.15 -80.11	14 36 46 -80 20 24 219.19 -80.34	15 0 53 -81 0 36 225,22 -81,01	0,3315	2,37. 5				4U1450-80
4U1455+19	14 55 2 +19 6 0 223,760 19,100	23.77 59.98	14 58 9 +18 16 30 224.536 18.275	14 46 41 +22 9 18 221.672 22.155	14 46 22 +22 3 36 221•592 22•060	14 57 7 +18 4 48 224•28 18•080	1.0004	3•29 •5		CLUSTER: ABELL 1991 (3.1)		4U1455+19
4U1455-27	14 55 24 -27 22 12 223.850 -27.370	334°60 27°38	15 4 53 -28 23 24 226.22 -28.39	14 49 12 -24 59 24 222.30 -24.99	14 46 24 -26 6 0 221.60 -26.10	15 1 5 -30 0 0 225,27 -30,00	7.2503	3.71 .6				4U1455-27
4U1456+22	14 56 41 +22 35 24 -224,170 22,590	30, 70 60, 75	15 1 55 +20 55 12 225,480 20,920	14 52 29 +24 31 12 223.120 24.520	14 51 0 +24 12 18 222.750 24.205	15 1 22 +20 42 36 225,340 20,710	1.4281	2•98 •5	10	SUPERCLUSTER ?		4U1456+22
401458-41	14 58 0 -41 30 0 224,500 -41,500	327,43 14,92	14 59 56 -41 39 54 224,984 -41.665	14 57 44 -41 8 24 224,432 -41,140	14 56 8 -41 18 54 224.032 -41.315	14 58 14 -41 51 54 224.560 -41.865	0.2417	2.41 .5	10	SNR: PKS 1459-41 7	MX1457-41 (31) 3U1439-39	4U1458-41

щ
S
m
m
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
•
•
•
S
ъ
0
- 27
- m
~
ŝ

(1)	(ZA)	(2B)	(34)	(38)	(3C)	(3D)	(3E)	(44)	(87)	(5A)	(58)	(9)
4U1505+57	15 5 54 +57 18 0 226.475 57.300	93.70 51.61	15 8 43 +57 31 23 227,178 57,523	15 3 7 +57 31 23 225,780 57,523	15 3 7 +57 5 17 225,780 57,088	15 8 43 +57 5 17 227,178 57,088	0.3284	3.47 I.(	0	SNR: 1954C ?		4U1505+57 X
4U1510-59	15 10 7 -59 0 0 227,530 -59,000	320.31 -1.21	15 10 46 -58 58 48 227•690 -58•980	15 9 36 -58 55 48 227,400 -58,930	15 9 34 -59 1 48 227,390 -59,030	15 10 36 -59 4 12 227,650 -59,070	0.0140	° E0 ° 9	÷	SNR: MSH 15-52 ?	3U1510-59	4U1510-59
4U1515+23	15 15 0 +23 6 0 228•750 23•100	33 <b>.</b> 84 56 <b>.</b> 83	15 19 17 +21 43 12 229.820 21.720	15 6 46 +26 33 54 226.690 26.565	15 6 12 +26 20 24 226.550 26.340	15 18 22 +21 28 23 229•590 21•473	l _ 4869	3.07				4U1515+23
4U1516-56	15 16 48 -56 59 56 -229,202 -56,999	322.11 0.03	15 16 54 -57 0 14 229,224 -57,004	15 16 45 -56 58 55 229,187 -56,982	15 16 43 	15 16 52 -57 0 58 229,217 -57,016	0_0003	720	× 10	51AR: CIR X-1 AT RA = 15H 16M 48,535 DEC = -56D 59M 11,85 PERIOD: 16,59 DAYS	LUP XR-1(1.2)? CIR X-1(14) NOR 2 (3) ? 3UI516-56	4U1516-56 *
4U1521+28	15 21 17 +28 31 12 230_320 28_520	44.03 56.50	15 26 55 +26 27 0 231.73 26.45	15 17 10 +30 49 12 229.29 30.82	15 15 2 +30 30 36 228.76 30.51	15 26 0 +26 18 36 231,50 26,31	1.9286	2.01 .2	N	CLUSTER: ABELL 2065 (3.2)	2A1518+274 (5)	401521+28
4U1530-44	15 30 46 -44 23 24 232.690 -44.390	331_01 9_26	15 39 13 -44 57 0 234.805 -44.950	15 23 16 -43 39 11 230.815 -43.653	15 22 29 -43 54 0 230.620 -43.900	15 38 8 -45 2 42 234,535 -45,045	0.6809	4•06 •				4U1530-44
4U1535-29	15 35 53 -29 13 12 -233,97 -29,22	341 <b>.</b> 39 20 <b>.</b> 71	15 59 12 -30 34 48 239.80 -30.58	15 13 31 -27 47 24 228,38 -27,79	15 12 38 -27 51 36 228.16 -27.86	15 58 10 -30 39 0 239.54 -30.65	1.2620	200	× 10	X-RAY BURST SOURCE?		4U1535-29 *
4U1538-52	15 38 14 -52 10 48 -534,560 -52,180	327.40 2.24	15 38 46 -52 10 48 234.690 -52.180	15 37 55 -52 7 48 234,480 -52,130	15 37 41 -52 11 24 234.420 -52.190	15 38 34 -52 14 24 234.640 -52.240	0*0096	18	2		NOR XR-2 (1) 7 NOR 2 (3) 7 3U1538-52	4U1538-52

357F
•
•
œ
$\sim$
•
70
Ĕ.
. 2
ц
R
00
-
5

(1)	(ZA)	(28)	(YE)	(38)	(3C)	(3D)	(3E)	(44)	(4B)	(5A)	(58)	(9)
4U1543-62	15 43 0 -62 24 36 235,750 -62,410	321.71 -6.29	15 43 31 -62 24 0 235.88 -62.40	15 42 43 -62 24 0 235,68 -62,40	15 42 26 -62 25 48 235.61 -62.43	15 43 17 -62 25 48 235,82 -62,43	0,0028	1.1 1.61			3U1543-62	4U1543-62
4U1543-47	15 43 50 -47 33 36 -235,960 -47,560	330,93 5,36	15 43 55 -47 34 48 235,980 -47,580	15 43 41 -47 31 48 235,920 -47,530	15 43 48 -47 32 24 235,950 -47,540	15 44 2 -47 35 24 236.010 -47.590	0_0006	2000	* 100	TRANSIENT	3U1543 <del>-</del> 47	4U1543-47 *
4U1556+27	15 56 34 +27 14 6 239.140 27.235	44 • 04 48 • 60	15 57 14 +27 10 26 239.310 27.174	15 56 6 +27 29 20 239.027 27.489	15 55 56 +27 17 53 238.982 27.298	15 57 2 +26 58 44 239.259 26.979	0.0616	3.32 .3		CLUSTER: ABELL 2142 (4.2)	2A1556+274 (5) 3U1555+27	4U1556+27
4U1556-60	15 56 54 -60 37 48 239.227 -60.630	324.13 -5.97	15 57 38 -60 36 0 239.407 -60.600	15 56 12 -60 36 0 239,052 -60,600	15 56 12 -60 39 36 239,052 -60,660	15 57 38 -60 39 36 239,407 -60,660	0.0104	20	2		301556-60	4U1556-60
4U1601+15	16 1 6 +15 58 30 240.275 15.975	28.87 44.23	16 2 46 +15 52 59 240.691 15.883	16 0 6 +16 18 11 240.023 16.303	15 59 30 +16 3 18 239.874 16.055	16 2 10 +15 38 24 240.540 15.640	0.2176	3 <b>.</b> 02 .6		CLUSTER: ABELL 2147 (1.1)	2A1600+164 (5) 3U1551+15	4U16A1+15
4U1608-52	16 8 46 -52 18 0 242,190 -52,300	330_91 =0.84	16 9 46 -52 27 32 242.440 -52.459	16 7 45 -52 5 24 241-938 -52.090	16 7 39 -52 7 16 241.912 -52.121	16 9 40 -52 29 24 242.417 -52.490	0,0151	40	10	XRAY BURST SOURCE	MX1608-52 (29)	4U16A8-52 *
401614-27	16 14 36 -27 47 24 243_650 -27_790	348 <b>.</b> 99 15 <b>.</b> 99	16 18 53 -27 57 29 244.720 -27.958	16 12 26 -27 27 47 243.110 -27.463	16 10 26 -27 37 5 242.610 -27.618	16 16 53 -28 6 29 244.220 -28.108	0.4350	3°35 °¢				4U1614-27 X
401617-15	16 17 7 -15 32 13 244.278 -15.537	359 <b>.</b> 09 23 <b>.</b> 77	16 17 4 -15 30 47 244.266 -15.513	16 16 55 -15 31 48 244.231 -15.530	16 17 7 -15 33 36 244.280 -15.560	16 17 18 -15 32 35 244.325 -15.543	0*0020	17000	2•5	STAR: V 818 Ra* 16H 17M 04.35 DEC* -15D 31M 135 OPTICAL PERIOD: ~787 DAY	\$C0 X-1 (1.2) \$C0 1 (3) 2Å1616-155 (5) 3U1617-15	4U1617-15 *

357F
:
m.
8ApJ:
197

	(9)	4U1621-23 X	4U1624-49	4U1625-33	4U1626-67 *	4U1627-09 C	4U1627+39	4U1628+28 X	4U1630-47 *
	(58)		NOR XR-1(1,2)7 Nor 1 (3) 7 Jul624-49		2A1627-673 (5) 3U1626-67		2A1626+396 (5) 3U1639+40	3U1645+21	NOR XR-1(1,2)7 NOR 1 (3) 7 3U1630-47
	(5A)				PERIOD: 7.68 SEC		CLUSTER: ABELL 2199 (1,2)	CLUSTER: ABELL 2200 (5,0) 7 050: PKS 1634+26 7 3C341 7	RECURRENT TRANSLENT
	(4B)		N		N				* 20
ntinued	(44)	2.80 .7	50	3,36 .4	18	2.48 .7	3 <b>.</b> 84 .4	3,27 .7	220
E 1-C	(3E)	0.4520	0,0019	2.4851	0_0084	0.2964	0•0992	2.6276	0*0010
TABI	(3D)	16 24 20 23 46 5 246,085 23,768	16 24 34 49 6 0 446.140	16 35 24 34 55 12 48.85 34.92	16 26 44 67 25 41 146.685 67.428	16 28 8 - 9 38 35 -47.035 -9.643	16 28 29 -39 25 48 :47.120 39.430	16 31 46 25 45 18 47,940 25,755	16 30 20 47 16 52 47 585 47 281
	(3C)	16 17 28 -23 23 17 244_365 -23_388	16 24 29 -49 7 48 246.120 2 -49.130	16 13 46 -31 58 12 243_44 -31_97	16 25 30 -67 22 30 -67-373 -67-373	16 25 19 - 9 7 48 - 246.328 - 9.130	16 26 55 +39 25 48 + 246.730 2 39.430	16 23 23 •31 23 42 •45_844 31,395	16 30 20 47 18 7 247 585 7 47 302
	(38)	16 18 18 -23 8 35 -44.575 -23.143	16 24 7 -49 4 48 246_030 249_080	16 15 19 -31 36 36 -43_83 -31_61	16 26 3 -67 19 37 246.514 -67.327	16 26 7 8 51 0. 246.528 2 -8.850	16 26 55 +39 45 36 -246,730 39,760	16 23 55 +31 37 12 +45,980 31,620	16 30 1 -47 15 50 247.505
	(3A)	16 25 8 -23 31 48 246,285 -23,530	16 24 7 -49 3 36 246_030	16 36 43 34 34 12 249.18 34.57	16 27 17 -67 22 59 246.820 -67.383	16 28 55 9 21 11 247.228 -9.353	16 28 29 +39 45 36 - 247_120 39_760	16 34 44 •25 54 18 248•684 25•905	16 30 2 47 14 53 247 510 47 248
	(38)	353.37 17.85	334.92 -0.27	346.55 10.48	321.71 -13.05	6.19 25.79	62.86 43.52	48.10 42.00	336.90 0.28
	(ZA)	16 21 12 -23 27 0 245,300 -23,450	16 24 19 -49 5 24 246.080 -49.090	16 25 36 -33 18 0 246,400 -33,300	16 26 24 -67 22 37 246,600 -67,377	16 27 0 - 9 13 30 246.750 -9.225	16 27 48 +39 36 0 246,950 39,600	16 28 26 +28 40 12 247,110 28,670	16 30 11 -47 16 23 247.544 -47.273
	(1)	4U1621-23	4U1624-49	4U1625-33	401626-67	4U1627-09	4U1627+39	4U162B+2B	4U1630-47

.357F
•
$\infty$
$^{\circ}$
•
•
•
S
Ь
Ω.
~
~4
82
787
9782

								UIHHHHHU H				2.0
(1)	(2A)	(38)	(34)	(38)	(3C)	(JE)	(3E)	(4A)	(48)	(5A)	(58)	(9)
4U1631-64	16 31 30 -64 19 48 247.875 -64.330	324.39 -11.40	16 33 0 -64 15 11. 248°248 -64°253	16 30 1 -64 15 11 247-503 -64.253	16 30 1 -64 24 22 247.503 -64.406	16 33 0 -64 24 22 248.248 -64.406	0 <b>°</b> 0494	4.89 5			2A1631-644 (5) 3U1632-64	4U1631-64
401636405	16 36 24 + 5 12 0 249,100 5,200	21.47 31.68	16 48 42 + 4 23 24 252.175 4.390	16 29 48 + 5 57 0 247•450 5•950	16 28 54 + 5 36 36 247.225 5.610	16 46 18 + 4 11 24 251.575 4.190	1.8335	3.61 .6		CLUSTER: ABELL 2204 (5.3)	2A1630+057 (5) 3U1623+05	4U1636+05
4U1636-53	16 36 54 -53 39 4 249,226 -53,651	332,91 -4,81	16 36 54 -53 38 28 249,225 -53,641	16 36 44 -53 38 38 249.183 -53.644	16 36 54 -53 39 47 249.225 -53.663	16 37 4 -53 39 32 249.268 -53.659	0°000	250	2	X-RAY BURST SOURCE	MXB1637-53(25) 3U1636-53	4U1636-53 *
4U1642-45	16 42 6 -45 31 30 -45 526 -45 525	339,58 -0,08	16 42 4 -45 30 32 250.515 -45.509	16 41 56 -45 30 54 250.485 -45.515	16 42 9 -45 32 31 250.536 -45.542	16 42 17 -45 32 13 250.570 -45.537	0°008	450	e.		GX340+0 (16) ARA 1 (3) ? L3,GX340-2(1)? 3U1642-45	4U1642-45
4U1644+69	16 44 36 +69 55 30 251.150 69.925	101,66 36,13	16 48 22 +69 58 48 252.09 69.980	16 47 5 +70 17 53 251.77 70.298	16 40 38 +69 53 6 250₀16 69₀885	16 41 55 +69 34 30 250•48 69•575	0.2183	3,29 ,9				4U1644+69
4U1651+39	16 51 41 +39 55 30 252,920 39,925	63•70 38•97	16 54 0 +39 51 54 253,50 39,865	16 50 7 +40 8 42 252.53 40.145	16 49 36 +39 57 18 252_40 39_955	16 53 22 +39 40 30 253.34 39.675	0.1704	2,29 ,3		BL LAC: MKN 501		4U1651+39 *
401651-06	16 51 48 - 6 31 30 - 252,950 -6,525	12.46 22.29	16 54 0 - 6 18 36 253_500 -6.310	16 49 27 - 6 18 36 252,363 -6,310	16 49 27 - 6 42 54 252.363 -6.715	16 54 0 - 6 42 54 253.500 -6.715	0.4575	4.47 1.3				4U1651-06 C X
4U1652+63	16 52 48 +63 33 0 253,550	93.75 37.16	16 54 26 +63 42 0 253.610 63 700	16 51 6 +63 42 0 252.775 43.700	16 51 6 +63 24 0 252.775	16 54 26 +63 24 0 253.610 63.400	0,1116	1 <b>.</b> 94 <b>.</b> 3				4U1652+63

ц	н.
	-
كا	)
ć	2
	÷
	•
α	2
$\tilde{\alpha}$	Ś
Υ.	1
	•
	•
	٠
υ	2
E	5
c	ς.
· •	э.
2	4
4 N N	4
7 8 7	
1 N N V	
ν d α L α	
107874	400 - 1 -

(9)	4U1656+35 *	4U1658-48	4U1659-76 C	4U1700+24	4U1700-37 *	4U1702-42	4U1702-36	4U1 703+26
(58)	2A1655+353 (5) HER X-1 3U1653+35	GX339-4 (17) 3U1658-48	3U1544-75	2A1704+241 (5)	3U1700 <b>-</b> 37	ARA XR.1 (1) 7 GX-14.1 (2) 7 3U1702-42	GX349+2 (33) SCO XR-2+L6+ GX-10.7 (1+2) SCO 2 (3) 3U1702-36	
(5A)	51AR: H2 HER AT RA = 16H 56M 025 DEC = 35D 25M 035 PERIODS:1,25EC;1,7DAY;34,8DAY				STAR: HD153919 AT Ra = 17H 00M 32.75 DEC = -37D 46M 275 PERIOD: 3.41 DAY			
(48)	10	e,			× 10	m	2	
(44)	001	350	2,33 .4	3 <b>.</b> 34 .4	100	30	750	2.25 .4
(3E)	0.0026	0.0014	0.2453	0.2019	0*0050	0*0160	£000°0	1.9042
(JD)	16 56 19 35 23 10 54,081 35,386	16 59 10 48 44 17 54.790 48.738	17 2 48 76 48 0 55,700 76,800	17 2 18 24 16 59 55 <b>•</b> 575 24 <b>•</b> 283	17 0 55 37 48 11 55,231 37,803	17 2 41 43 3 0 55,670 43,050	17 2 24 36 22 34 55,600 36,376	17 13 31 25 24 36 58 <b>.</b> 380 25 <b>.</b> 410
(3C)	16 55 57 35 23 10 • 533 989 2 35 386	16 58 46 48 44 17 54.690 2 54.690 2	16 54 29 -76 48 0 253.620 2 -76.800	16 58 22 24 25 30 + 24 593 2 24 425	17 0 25 -37 48 11 -37 803	17 1 46 43 0 36 555,440 43,010	17 2 17 -36 21 47 255,572 2 -36,363 -	16 44 34 26 56 24 4 251.140 26.940
(3B)	16 55 57 +35 25 16 253_989 35_421	16 58 46 -48 43 1. 254.690 -48.717	16 55 34 -76 18 0 -253.890 -76.300	16 58 31 •24 38 24 254 628 24 640	17 0 13 -37 45 22 255.053 -37.756	17 1 58 -42 55 48 255.490	17 2 18 -36 21 18 255,576	16 46 29 •27 5 24 251•620 27•090
(94)	16 56 19 +35 25 16 254.081 35.421	16 59 10 -48 43 1 254.790 -48.717	17 4 7 -76 18 0 256.030 -76.300	17 2 26 +24 30 36 255•610 24•510	17 0 42 -37 45 0 -37,750	17 2 55 42 57 36 255,730	17 2 26 -36 22 5 -36,368	17 13 31 +25 47 6 258,380 25,785
(28)	58.14 37 <b>.</b> 50	338,93 -4,32	315.75 -20.64	45°30 34°03	347.76 2.17	343.84 -1.27	349.09 2.75	47°44 33°80
(ZA)	16 56 9 +35 24 14 254,036 35,404	16 58 58 -48 43 37 -254,740 -48,727	16 59 24 -76 33 0 -254,850 -76,550	17 0 18 +24 28 30 255,075 24,475	17 0 34 -37 46 37 255,142 -37,777	17 2 19 -42 58 48 255,580 -42,980	17 2 21 -36 21 54 -255,587 -36,365	17 3 36 +26 6 0 255,900 26,100
(1)	4U1656+35	4U1658-48	4U1659-76	4U1700+24	4U1700-37	4U1702-42	4U1702-36	4U1703+26

388

 $\ensuremath{\textcircled{}^{\odot}}$  American Astronomical Society  $\ \bullet$  Provided by the NASA Astrophysics Data System

						IABI		onunuea				
	(ZA)	(28)	(34)	(38)	(3C)	(JE)	(3E)	(44)	(4B)	(5A)	(58)	(9)
0	17 4 18 	354.11 6.02	16 57 6 -29 13 12 254.275 -29.22	16 56 19 -29 21 36 254.080 -29.36	17 12 17 -31 39 36 258.070 -31.66	17 12 55 _31 33 36 _31_33 36 _31_356 _31_56	0.7635	3,14 .4			MX1716-31(28)7 MXB1659-297(15)	401704-30
:	17 5 24 =44 3 0 256,349 -44,050	343 <b>.</b> 32 -2,36	17 5 17 -44 1 48 256.319 -44.030	17 5 15 -44 2 24 256.313 -44.040	17 5 30 -44 4 12 256.373 -44.070	17 5 31 -44 3 0 256.380 -44.050	0_0008	280	'n		3U1705-44	4U1705-44
32	17 5 41 -32 13 12 -326.420 -32.220	352 <b>.</b> 82 4 <b>.</b> 70	17 6 39 -32 19 30 256.663 -32.325	17 4 48 -32 3 43 256,202 -32,062	17 4 42 -32 6 36 256.173 -32.110	17 6 32 -32 22 30 256.633 -32.375	0,0257	25	ۍ		L8 (1) ? 3U1704-32	4U1705-32
78	17 7 24 +78 40 30 256.850 78.675	110 <b>.</b> 96 31 <b>.</b> 74	17 9 4 +78 47 6 257.265 78.785	17 5 29 +78 47 6 256,370 78,785	17 5 29 +78 39 36 256.370 78.660	17 9 4 +78 39 36 257,265 78,660	0.0219	3•59 - •4		CLUSTER: ABELL 2256 (3.2)	2A1705+786 (5) 3U1706+78	4U1707+78
<b>0</b> 4	17 8 22 -40 46 12 257,090 -40,770	346•28 -0•84	17 8 46 -40 46 59 257.193 -40.783	17 7 58 -40 42 36 256,992 -40,710	17 7 54 -40 45 11 256.977 -40.753	17 8 44 -40 49 30 257.182 -40.825	0.0072	14.9 .6			MX1709-40 (28)	4U1708-40
23	17 8 59 -23 17 42 -257,245 -23,295	0•53 9•36	17 9 16 -23 18 47 257,317 -23,313	17 8 46 -23 14 28 257.192 -23.241	17 8 41 -23 16 44 257.171 -23.279	17 9 11 -23 20 49 257,297 -23,347	0-0055	90	e		ОРН ХК-2 (1) ОРН 2 (3) ЭИТ709-23	4U1708-23
39	17 15 7 -39 19 12 258.780 -39.320	348.21 -1.03	17 16 4 -39 18 47 259,015 -39,313	17 14 31 -39 9 32 258,630 -39,159	17 14 11 -39 19 5 258,546 -39,318	17 15 44 -39 28 44 258,934 -39,479	0.0586	12.8 1.7		(SC0 XR-2 (SC0 XR-5) (SC0 2, SC	•L6•GX-10∝7)(1)? 0 (1) 7 CO 5) (3) 7 3U1714-39	4U1715-39
02	17 15 24 + 2 48 0 258,850	24.37 22.00	17 16 36 + 2 52 23 259,150 2,873	17 14 20 + 2 58 41 258,585 2,978	17 14 10 + 2 43 30 258.540 2.725	17 16 25 + 2 36 47 259.103 2.613	0.1495	3,15 ,6				4U1715+02

ζ TADIC

389

# $\circledcirc$ American Astronomical Society $\,\bullet\,$ Provided by the NASA Astrophysics Data System

щ
S
$^{\circ}$
m
m
` <b>:</b>
•
•
S
Б
õ
7
F4
$\infty$
<u> </u>
σ
_

(9)	401716-01	4U1 720+34	4U1722+11	4U1722-30 *	4U1728-33 *	4U1728-24 *	4U1728-16 *	4U1730-22 *
(5B)		3UI 706+32			GX354+0 (18) M4.GX354-5 (1) GX-5.6 (1.2) MXB1728-34(21) 3U1727-33	GX1+4 (10,19) SGR 6 (3) 7 GX2+5 (20) 3U1728-24	GX9+9 (32+2 ⁾ OPH 3 (3) 3U1728-16	
(5A)	3C353 ?	CLUSTER: ABELL 2261 (6.2) ? ABELL 2266 (6.2) ?		X-RAY BURST SOURCE ?	X-RAY BURST SOURCE	PERIOD: 122 SEC		TRANSIENT
(4 ⁴ )					ŝ	~	1•5	× 10
(44)	2,62 .3	2 <b>.</b> 01 .5	3.00 .3	6 <b>.</b> 87 .4	150	09	260	120
(3E)	.0,3367	2.8810	0.0576	0.0115	0_0018	0.0028	0.0005	0.0026
(JD)	17 33 31 1 - 1 44 24 263.38 -1.74	17 23 28 •30 54 0 260•868 30•900	17 23 28 +11 49 12 260.868 11.820	17 23 14 -30 35 13 260.809 -30.587	17 28 20 -33 49 37 262.082 -33.827	17 29 0 -24 43 59 262.248 -24.733	17 28 56 -16 57 7 262.234 -16.952	17 31 0 -22 1 48
(3C)	16 59 46 254.94 -2.80	17 14 32 +38 54 0 258_633 2 38_900	17 22 4 +11 54 18 260_518 11,905	17 22 23 -30 31 26 - 260 595 2	17 28 1 -33 48 32 - 262 006 2 -33 809	17 28 38 -24 43 59 262.158 -24.733	17 28 52 16 57 36 262.216	17 30 43 -21 59 38
(3B)	16 59 46 1 31 12 254.94 -1.52	17 15 54 •39 16 48 •258•975 39•280	17 22 13 +12 3 54 4 260_555 12_065	17 22 28 -30 27 50 -30,464	17 28 3 -33 46 55 -23 013 -33 782	17 28 41 -24 41 53 262.172 -24.698	17 28 44 -16 56 38 262.185 -16.944	17 30 52 -21 58 26
(3A)	17 33 31 - 0 33 36 263.38 -0.56	17 24 49 +31 15 43 261.203 31.262	17 23 37 +11 58 41 260.905 11.978	17 23 18 -30 31 59. 260.826	17 28 21 -33 48 4 . 262.088 5	17 29 1 -24 41 53 -24.698	17 28 48 -16 56 10. 262.202 -16.936	17 31 9 -22 0 40
(28)	20 <b>.</b> 37 19 <b>.</b> 55	58 <b>.</b> 35 32 <b>.</b> 51	34.16 24.48	356.33	354•24 -0•07	1.91 4.82	8 6 4 0 4 0 6 ft	4.47 5.89
(2A)	17 16 38 - 1 39 36 259.160 -1.660	17 20 12 +34 36 0 260,050 34,600	17 22 48 +11 57 0 260,700 11,950	17 22 50 -30 31 30 260,710 -30,525	17 28 11 -33 48 22 262.047 -33.806	17 28 50 -24 43 1 262,207 -24,717	17 28 50 -16 56 53 262,208 -16,948	17 30 56 -22 0 7 262_732
6	4U1716-01	4U1720+34	4U1722+11	4U1722-30	4U1728-33	4U1728-24	4U1728-16	401730-22

-
S
ω
œ
$^{\circ}$
•
•
0
Js.
JS.
pJS.
ApJS.
8ApJS.
78ApJS.
78ApJS.
978ApJS.

(58) (6)	4U1735-44 3U1735-44	4U1735-28 * 3U1735-28		56R 1 (3) ? 4U1743-29 L13.M1 (1) ? A1742-294 (30) * 3U1743-29	56R 1 (3) 7 4U1743-29 L13.M1 (1) 7 A1742-294 (30) * 3U1743-29 . 6440 MX1746-20 (28) 4U1743-19	SGR 1 (3) 7 4U1743-29 L13,M1 (1) 7 * A1742-294 (30) * 3U1743-29 3U1746-20 (28) 4U1743-19 6440 MX1746-20 (28) 4U1744-26 SGR XR-1 (1) SGR	SGR 1 (3) 7 4U1743-29 L13,M1 (1) 7 * A1742-294 (30) * 3U1743-29 0440 MX1746-20 (28) 4U1743-19 6440 MX1746-20 (28) 4U1744-26 548 RR-1 (1) 543+1 (522-114 4U1744-26 568 R 6 (3) 9U1744-26 9U1744-26 3U1746-26	SGR 1 (3) 7 4U1743-29 L13,M1 (1) 7 * A1742-294 (30) * 3U1743-29 BU1746-20 (28) 4U1743-19 GX3+1,GX+2,L14 4U1744-26 GX3+1,GX+2,L14 4U1744-26 SGR XR-1 (1) (2) SGR XR-1 (1) (2) SGR XR-1 (1) (2) BU1744-26 (3) BU1744-26 (3) BU1746-20 (28) 4U1745+39 HU1745+29 AU1746-43 (1) 4U1745+39
(B) (5A)	7.	TRANSIENT		6CX	GCX GLOBULAR CLUSTER: NGC 6440 TRANSIENT	GCX GLOBULAR CLUSTER: NGC 6440 TRANSIENT	GCX GLOBULAR CLUSTER: NGC 644C TRANSIENT	GCX GLOBULAR CLUSTER: NGC 644C TRANSIENT
(4A) (4B	210 1.7	565 > 10	40. 5.		150. 15	150 <b>•</b> 15 600 3	150 <b>.</b> 15 600 3 2.45 .5	150 <b>•</b> 15 600 3 2•45 •5 3•77 •9
(3E)	0.0017	0.0396	1160.0		0.2338	0.0005	0.2338	0.2338 0.0005 1.3209 1.6673
(3D)	17 35 39 -44 25 26 263_912 -44_424	17 36 0 -28 27 0 264.00 -28.45	17 43 36 -29 18 0	265.90 -29.30	265.90 -29.30 17 47 53 -20 41 42 266.970 -20.695	265,90 -29,30 -29,41 42 266,970 -20,695 -20,695 -20,695 -26,33 58 -26,179 -26,179	265,90 -29,30 -29,30 -20,41 42 266,970 -20,695 -20,695 -26,517 -26,515 -26,515 -30,425 30,425 -26,575 -30,425 -26,575 -30,425 -26,575 -30,425 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -26,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575 -27,575	265,90 -29,30 -20,41 42 -20,695 -20,695 -20,695 -20,695 -20,695 -20,695 -20,695 -20,695 -20,596 -20,596 -20,596 -20,596 -20,596 -20,596 -20,596 -20,596 -20,596 -20,596 -20,596 -20,596 -20,596 -20,596 -20,596 -20,596 -20,596 -20,596 -20,596 -20,596 -20,596 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20,597 -20
(3C)	17 35 9 -44 26 10 263.789 -44.436	17 35 12 -28 36 0 263.80 -28.60	17 42 24 -29 6 0 265 60	-29.10	-29.10 17 39 43 -19 21 54 -19 365	-29.10 -29.10 -19 21 54 -19.28 -19.365 -19.355 -26.135 46 -26.32 46	-29.00 -29.10 -17 39 43 -19.365 -19.365 -19.365 -26.135 -26.546 -26.546 -17 43 1 +41 13 30 265.753 41.225	-29.00 -29.10 -17 39 43 -19.355 -19.355 -19.355 -26.135 -26.135 -26.135 -26.135 -26.135 -26.135 -26.135 -26.135 -26.135 -26.135 -26.2546 -17 43 -17 43 -17 43 -26.2546 -26.289 -30.435 -26.289 -26.289 -26.289 -26.289 -26.289 -26.289 -26.289 -26.289 -26.289 -26.289 -26.285 -26.285 -26.285 -26.285 -26.285 -26.285 -26.285 -26.285 -26.285 -26.285 -26.285 -26.285 -26.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285 -27.285
(3B)	17 35 5 -44 25 5 263,769 -44,418	17 34 48 -28 27 0 263.70 -28.45	17 43 12 -29 0 0	-29.00	-29.00 -29.00 17 39 57 -19 16 48 264.988 -19.280	-29,00 -29,00 -19,16,48 -264,988 -19,280 -19,280 -19,280 -19,280 -19,280 -264,335 -266,135	-29,00 -29,00 -19,16,48 -19,280 -19,280 -19,280 -26,139 -26,139 -26,535 -26,535 -26,253 -26,253 -26,253 -26,253 -26,253 -17,45 -17,45 -17,45 -17,45 -17,45 -17,45 -17,45 -17,45 -17,45 -17,45 -17,45 -17,45 -26,653 -26,653 -26,553 -26,653 -25,555 -26,553 -26,553 -26,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -25,555 -2	-29,000 -29,000 -19,16,48 -19,280 -19,280 -266,139 -26,535 -26,139 -41,13 44,13 44,13 44,1225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,235 41,2355 41,2355 41,2355 41,2355 41,2355 41,2355 41,2355 41,2355 41,2355 41,2355 41,
(¥E)	17 35 36 -44 24 25 263.899 -44.407	17 35 36 -28 18 0 263.90 -28.30	17 45 12 -29 6 0	-29.10	-29.10 -29.10 -20.37 -20.618 -20.618	-29.10 -29.10 -20.37 -20.35 -20.035 -20.018 -26.0183 -26.183 -26.183	-29.10 -29.10 -29.10 -20.31 -20.618 -20.618 -26.6183 -26.556 -26.556 -26.556 -37.7 -37 -37 -17 -37 -26.750 -26.750 -26.750 -26.750 -26.750 -26.750 -26.750 -2750 -26.750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -2750 -27500 -2750 -2750 -2750 -2750 -2750 -27500 -2750 -2750 -27500 -2	-29.10 -29.10 -29.10 -29.10 -20.618 -20.618 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -26.183 -2
(2B)	346 <b>.</b> 06 -7 <b>.</b> 00	359.57 1.56	359.95 -0.33		7.79 4.38	7.79 4.38 2.27 0.83	7.79 4.38 2.827 0.83 2.827 0.83 2.8.65 2.8.65 2.8.65	7.79 4.338 4.65 2.4.65 28.61 2.4.65 25.86 25.86 25.86
(ZA)	17 35 22 -44 25 16 263.840 -44.421	17 35 24 -28 27 0 263.850 -28.450	17 43 36 -29 7 48 265-900	-29.130	-29,130 -29,130 -19,59 -19,990 -19,990	-29.130 -29.59 25 -19 59 26 -19,990 -19,990 -19,990 -19,990 -26.159 -26.159	-29.130 -29.130 -19 43 55 -19 59 24 265.980 -19.990 -19.990 -19.990 -26.159 -26.159 -26.159 -39 -39,000 -39,000	-29.130 -29.5980 -19.5924 265.980 -19.990 -19.990 -19.990 -19.990 -26.159 -26.159 -26.159 -26.159 -26.159 -26.159 -26.510 39.000 39.000 266.400 266.400 266.400
(1)	4U1735-44	4U1735-28	4U1743-29		4U1743-19	4U1743-19 4U1744-26	4U1743-19 4U1744-26 4U1745+39	4U1743-19 4U1744-26 4U1745+39 4U1745+29

.357F
38.
1978ApJS.

(1)	(ZA)	(28)	( 3 <b>A</b> )	(3B)	(3C)	(JC)	(3E)	(4A)	(4P)	(5A)	(58)	(9)
4U1755-33	17 55 34 -33 48 0 -268,890 -33,800	357 <b>.</b> 24 -4.91	17 55 19 -33 43 48 268.830 -33.730	17 54 58 -33 46 12 268,740 -33,770	17 55 48 -33 52 12 -33,870	17 56 10 -33 49 48 269.040 -33.830	0.0145	09	2		6X_2,5 (1,2) SCO XR-6 (1) 3U1755-33	4U1755-33
4U1758-25	17 58 7 -25 4 48 269,530 -25,080	5•08 -1•03	17 58 7 -25 4 12 269.530 -25.070	17 58 0 -25 4 48 269.500 -25.080	17 58 7 -25 6 0 269,530 -25,100	17 58 14 -25 5 24 269,560 -25,090	0,0008	1150	2		GX5-1,6X+5.2, SGR XR-3 (1) GX5-1 (32,10) SGR 5 (3) 3U1758-25	4U1758-25
401758-20	17 58 34 -20 32 13 269,643 -20,537	9.07 1.15	17 58 34 -20 31 37 269.640 -20.527	17 58 30 -20 32 6 -20,535	17 58 35 -20 32 49 269.646 -20.547	17 58 39 -20 32 20 269.664 -20.539	0,0004	009	e.		GX9+1,GX+9,1, L13,L19,M3 (1) 5GR 3 (3) GX9+1 (32) 3U1758-20	4U1758-20
4U1759-66	17 59 0 -66 27 0 269.750 -66.450	327 <b>.</b> 56 -20,19	18 1 12 -66 12 0 270.300 -66.200	17 53 30 -66 27 36 268.375 -66.460	17 58 0 -66 44 42 269,500 -66,745	18 5 18 -66 29 6 271.325 -66.485	0.3247	2.15 .5				4U1759-66 X
4U1803-60	18 3 26 -60 33 36 270.860 -60.560	333 <b>.</b> 50 -18.34	18 34 36 -60 1 12 278.65 -60.02	18 30 48 -59 21 0 277.70 -59.35	17 34 12 -60 55 48 263.55 -60.93	17 34 12 -61 56 24 263.55 -61.94	6.6050	2.43 .3				4U18n3-60
4U1807-10	18 7 55 -10 52 48 -10,68	18.60 3.93	18 28 5 - 9 40 12 277.02 -9.67	18 28 5 - 9 8 24 277,02 -9,14	17 47 46 -12 4 48 266.94 -12.08	17 47 46 -12 37 12 266.94 -12.62	5.2676	10	e	TRANSIENT		4U1807-10 *
401811-17	18 11 42 -17 11 6 272,927 -17,185	13•52 0•08	18 11 42 -17 10 26 272.925 -17.174	18 11 36 -17 10 52 272.902 -17.181	18 11 43 -17 11 38 272.928 -17.194	18 11 48 -17 11 17 272.952 -17.188	0,0005	400	e		GX+13.5.L20. 5GR XR-2 (1) GX13+1 (32) 5GR 2 (3) 3U1811-17	401811-17
401811+37	18 11 48 +37 54 0 272,950 37,900	65.00 23.32	18 11 33 +41 21 0 272,8888 41,35	18 9 53 +41 21 0 272.470 41.35	18 12 1 +34 27 0 273.003 34.45	18 13 37 +34 27 0 273.405 34.45	2.2208	3.06 .6				4U1811+37

357F
•
•
$\sim$
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(.)
•
•
•
78ApJS
0

		11										
(2A) (2B) (3A) (3B) (3C)	(2B) (3A) (3B) (3C)	(3A) (3B) (3C)	(3B) (3C)	(3C)	-	(3D)	(3E)	(44)	(48)	(5A)	(58)	(9)
18 12 26 18 13 25 18 11 29 18 11 19 -12 7 48 2.36 -11 14 12 1 1 273.310 2.73.355 2.73.355 272.829 272.829 -12.130 -12.235 -11.979 -12.017	18.03 18 13 25 18 11 29 18 11 19 2.36 -12 14 6 -11 58 44 -12 1 1 2.335 272.872 272.829 -12.017 -12.235 -11.979 -12.017	18 13 25 18 11 29 18 11 19 -12 14 6 -11 58 44 -12 1 1 273.355 272.872 272.829 -12.235 -11.979 -12.017	18 11 29 18 11 19 -11 58 44 -12 1 1 272.872 272.829 -11.979 -12.017	18 11 19 -12 1 1 272.829 -12.017	1	18 13 20 -12 16 30 273,335 -12,275	0.0268	20	2		SER XR−2 (1) ? 3∪1812-12	4U1812-1
18 13 17 18 13 7 18 13 7 -14 3 36 -14 3 36 -14 2 24 -14 3 36 273,290 13,290 273,222 273,228 273,226 273,226 -14,066 -14,066 -14,050 -14,050 -14,066 -14,066 -14,066	16.42 18 13 17 18 13 7 18 13 7 1.28 -14 3 36 -14 2 24 -14 3 36 273.28 273.28 273.26 -14.06 -14.06 -14.06	18 13 17 18 13 7 -14 3 -14 2 24 -14 3 273.32 273.28 273.28 273.26 -14.06 -14.06 -14.06	18 13 7 18 13 2 -14 2 24 -14 3 36 273.28 273.26 -14.04 -14.06	18 13 2 -14 3 36 -14,06	01.0	18 13 14 -14 4 12 273.31 -14.07	6000 °0	950	4	PERIOD: 31.9 MIN	GX17+2,GX+16.7 (32) L21,5ER XR-2(1)? 5ER 2 (3) 3U1813-14	4U1813-14 *
18 13 17,96 18 14 18 12 36 18 12 +50 0 2 26,17 +49 59 17 +50 712 +49 59 273,255 273,4573 273,4130 273,4130 273,4133 50,0100 49,988 50,0120 49,988 49,988 50,0120 49,988 50,0120 49,988 50,0120 49,988 50,0120 50,0120 50,0120 50,01	77.96 18 14 18 18 12 36 18 12 26.17 449 59 17 450 7 12 449 59 26.17 273.573 273.150 273.113 49.988 50.120 49.988	18 14 18 12 36 18 12 +49 59 17 +50 7 12 449 59 273.573 273.150 273.113 49.988 50.120 49.988	18 12 36 18 12 +50 7 12 +49 59 273,150 273,113 50,120 49,988	18 12 +49 59 273.113 49.988	27	18 14 9 +49 51 47 273 . 536 49 . 863	0-0380	5 . 33 . 3		STAR: AM HER AT RA = 18H 14M 59S DEC = 49D 50M 55S PERIOD: 186 MIN	2A1815+500 (5) 3U1809+50	+U1813+50 +
18 17 34 24.13 18 28 31 18 7 38 - 5 4 0 4.21 - 7 15 18 4 4 33 - 5 4 0 4.21 - 7 15 18 - 4 33 - 5 4 0 4.21 - 7 15 18 - 4 33 - 274.900 277.810 277.415 - 4.565 -4.556 - - - 7.255 - - 4.565	24,13 18 28 31 18 7 38 18 6 4,21 -7 15 18 -4 24 54 -4 33 277,130 271,910 271,910 271,980 -7,255 -4,415 -4,565	18 28 31 18 7 38 18 6 - 7 15 18 - 4 24 54 - 4 33 277,130 271,910 271,580 -7,255 -4,415 -4,565	18 7 38 18 6 - 4 24 54 - 4 33 271.910 271.580 -4.415 -4.565	18 6 - 4 33 271.580 -4.565	24	18 27 48 - 7 21 0 276,950 -7,350	1.3574	2.967			A1829-06 (22)7	4U1817-0
18 20 26 26 18 20 20 18 20 20 18 20 20 23 55 -30 23 55 -30 23 55 -30 23 55 -30 23 55 -30 23 55 20 23 55 20 23 55 20 23 55 204 21 21 21 21 21 20 33 55 20 33 55 20 33 55 20 33 55 20 33 55 20 33 55 20 33 55 20 33 55 20 33 55 20 33 55 20 33 55 20 30 33 30 33 30 33 30 33 30 33 30 30 30 30 30 30 30 30 30 30 30 30 <	2.78 18 20 31 18 20 20 18 20 2 -7.91 -30 22 52 -30 23 5 275.129 275.084 275.084 -300.398 -30.381 -30.381 -30.398	18 20 31 18 20 20 18 20 2 -30 22 52 -30 22 52 -30 23 5 275,129 275,084 275,084 -30,381 -30,381 -30,398	18 20 20 18 20 2 -30 22 52 -30 23 5 275,084 275,084 -30,381 -30,398	18 20 2 -30 23 5 275,084 -30,398	0 m	18 20 31 -30 23 53 275,129 -30,398	0.0007	320	ñ	GLOBULAR CLUSTER: NGC6624 X_RAY BURST SOURCE	5GR XR-4 (1) 5GR 4 (3) 3U1820-30	4U1820-3 *
18 22 14 356.79 18 21 55 18 21 14 18 22 3 -37 11 24 -11.29 -37 7 48 -37 10 48 -37 15 275.560 275.680 275.610 275.650 -37.130 -37.250 -37.250	356.79 18 21 55 18 21 14 18 22 3 -11.29 -37 7 48 -37 10 48 -37 15 275.480 275.450 -37.25.00 -37.250 -37.130 -37.180 -37.250	18 21 55 18 21 14 18 22 3 -37 7 48 -37 10 48 -37 15 275,480 275,310 275,650 -37,130 -37,180 -37,250	18 21 14 18 22 3 -37 10 48 -37 15 275,310 275,650 -37,250	18 22 3 -37 15 275.650 -37.250	40	18 23 17 -37 12 0 275,820 -37,200	0.0230	25	4		5GR 7 (3) 5CO XR-6 (1) 7 2A1822-371 (5) 3U1822-37	4U1822-3
18 23 6 29.95 18 23 25 18 22 47 18 22 4 - 0 4 12 5.71 - 0 6 22 - 0 1 8 - 0 1 4 275.855 275.695 275.695 275.698 -0.010 0700 -0.019 -0.019	29.95 18 23 25 18 22 47 18 22 4 5.71 -0 6 22 -0 1 8 -0 1 4 5.71 275.855 275.695 275.688 -0.106 -0.019 -0.030	18 23 25 18 22 47 18 22 4 -0 6 22 -0 1 8 -0 1 4 275.855 275.695 275.688 -0.106 -0.019 -0.030	18 22 47 18 22 4 - 0 1 8 - 0 1 4 275,695 275,688 -0,019 -0,030	18 22 4 - 0 1 4 275_688 -0_030	νø	18 23 24 - 0 7 1 275,848 -0,117	0,0024	55	2		A1822+00 (22) 3U1822-00	4U1823-00
18 25 7 61.93 18 31 14 18 20 13 18 19 +33 56 24 19.48 +33 8 24,+35 7 26,+34 43 17 27 27 26,04 27,4,072 33,4,40 33,4,40 33,4,40 33,4,40 33,4,40 33,4,40 33,4,40 33,4,40 33,4,40 33,4,40 33,4,40 33,4,40 33,4,40 34,720	61.93 18 31 14 18 20 13 18 19 19.48 +33 8 24 +35 7 26 +34 43 1 275.056 274.752 33.140 35.124	18 31 14 18 20 13 18 19 +33 8 24 +35 7 26 +34 43 1 277.808 275.056 274.752 33.140 35.124 34.720	18 20 13 18 19 +35 7 26 +34 43 1 275_056 274_752 35_124 34_720	18 19 +34 43 1 274.752 34.720	ON	18 30 6 +32 45 14 277 . 526 32 . 754	1.3845	4.13 1.0				4U1825+3 L

Гщ	
S	
$^{\circ}$	
•	
•	
œ	
$^{\circ}$	
· •	
ζΩ	
ĥ	
õ.	
7	
2	
~	
5	
2	

(ZA)	(38)	(94)	(3B)	(3C)	(3D)	(3E)	(44)	(48)	(5A)	(58)	(9)
 18 30 7 +34 30 0 277,530 34,500	62 . 87 18 . 72	18 33 48 +34 0 0 278,451 34,000	18 27 30 +35 11 2 276.876 35.184	18 26 20 +35 0 14 276.582 35.004	18 32 40 +33 49 48 278.166 33.830	0,5089	3,29	7			4U1830+34 C
18 31 47 -23 12 18 277,945 -23,205	10.40 -6.90	18 32 13 -23 9 14 278,053 -23,154	18 31 21 -23 9 29 277.837 -23.158	18 31 21 -23 15 25 277.839 -23.257	18 32 13 -23 15 11 278.055 -23.253	0,0197	• 00 • 9	4		3U1832-23	4U1 8 31-23
 18 32 30 - 5 9 0 -5,125 -5,150	26.53 1.28	18 33 47 - 5 7 12 278,445 -5,120	18 31 29 - 5 0 0 277.870 -5.000	18 31 25 - 5 12 11 277.853 -5.203	18 33 44 - 5 19 30 278,435 -5,325	0.1192	3.34	٩		3U1632-05	4U1832-05
18 35 48 -11 24 0 278,950 -11,40	21.37 -2.34	18 39 42 -11 9 0 279.925 -11.150	18 31 54 -11 9 0 277.975 -11.150	18 31 54 -11 37 30 277.975 -11.625	18 39 42 -11 37 30 279 . 925 -11.625	0.9078	4 45	ع		A1829-10 (22)	4U1835-11
 18 37 32 + 4 59 13 279.382 4.987	36.12 4.83	18 37 38 + 4 58 48 279.410 4.980	18 37 27 + 5 0 4 279.363 5.001	18 37 26 + 4 59 42 279.360 4.995	18 37 37 + 4 58 19 279 . 406 4 . 972	0_0004	280	2	X-RAY BURST SOURCE	GX+36.3 (1) 7 SER XR-1 (1,2) SER 1 (3) MXBL837+05(23) 3UL837+04	4U1837+04 *
 18 47 36 +78 54 0 281,900 78,900	110 . 53 26 .9 1	18 52 42 +80 10 12 283.175 80.170	18 49 58 +81 34 12 282,490 81,570	18 42 50 +77 54 36 280.710 77.910	18 45 37 +76 39 0 281.405 76.650	0.9211	2.79	5	SEVFERT: 3C390.3	3U1825+81	4U1847+78
 10 49 12 -31 12 0 282,300 -31,200	-13.83	18 52 38 -30 58 30 283.16 -30.975	18 45 14 -31 13 30 281,310 -31,225	18 45 42 -31 27 11 281.425 -31.453	18 53 2 -31 11 24 283.26 -31.190	0.3725	3 . 88	4			4U1849-31
 18 50 14 - 3 27 18 282.560	30.07 -1.86	18 33 53 - 1 46 48 278.47	18 34 5 - 1 19 48 278.52	19 6 46 - 5 22 48 286.69	19 6 14 - 5 37 48 286.56	3.1781	5.49	1			401850-03

Гщ	
ഹ	
m	
-	
œ	
$^{\circ}$	
01	
ъ	
0	
7	ĺ
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
-w	
<u> </u>	
σ	

(28)		(3A) .	(3B)	(3C)	(JD)	(3E)	(44)	(48)	(5A)	(58)	(9)
25.41 -4.26		18 58 29 - 9 38 6 284.62 -9.635	18 42 43 - 7 39 54 280.68 -7.665	18 42 12 - 7 43 30 280.55 -7.725	18 57 36 - 9 43 30 284.40 -9.725	0.6304	8 <b>.</b> 88 .9		GLOBULAR CLUSTER: NGC6712	A1850-08 (22)	4U1850-08 *
67 <b>.</b> 07 15 <b>.</b> 41		18 54 14 +41 13 26 283.559 41.224	18 52 37 +41 13 26 283,156 41,224	18 51 12 +33 55 41 282.798 33.928	18 52 56 +33 55 41 283,234 33,928	2 <b>.</b> 4189	1.77 .4				4U1852+37
11.93 -11.72		19 4 0 -23 4 30 -23.000 -23.075	18 34 53 -24 48 36 278.720 -24.810	18 38 10 -25 2 24 279.540 -25.040	19 4 38 -23 33 18 286.160 -23.555	2.9092	3.22 1.1				4U1853-23 X
35_02 -1,32		19 16 24 - 1 9 0 289.100 -1.15	18 39 34 + 3 45 36 279.890 3.76	18 38 22 + 3 31 48 279.590 3.53	19 15 12 - 1 22 12 288.800 -1.37	3.5191	4.05 I.I		X_RAY BURST SOURCE	A1905+00 (22) MXB1906+00(23)	4U1857+01 *
100,74	1	18 52 48 +73 54 0 283,200 73,900	18 46 48 +73 45 0 281.700 73.750	19 5 28 +65 52 30 286.365 65.875	19 9 0 +66 16 48 287,250 66,280	3.3713	2.09 .4	``	CLUSTER: ABELL 2312 (4,1)? ABELL 2315 (4,1)?	2A1854+683 (5) 3U1904+67 3U1843+67	4U1859+69
37.21 -1.39	1	19 3 49 + 2 51 47 285,955 2863	18 59 31 + 3 25 30 284.878 3.425	18 59 23 + 3 21 36 284.846 3.360	19 3 41 + 2 48 0 285,921 2,800	0,0872	69 -1	× 10	TRANSIENT	£0+1061N£	* *0+1061n+
67°64 0°45		19 9 24 + 9 29 24 287,350 9,490	19 5 18 +10 2 2 286.323 10.034	19 5 9 + 9 58 12 286.288 9.970	19 9 16 + 9 25 59 287,318 9,433	0.0792	20	5		A1907+09 (22) JU1906+09	4U1907+09
35.6	20	19 7 50 + 0 32 24 286,960 -540	19 7 50 + 0 31 48 286,960 •530	19 8 22 • 0 29 24 287,090	19 8 29 + 0 30 0 287,120	0_0020	200	* 20	RECURRENT TRANSIENT	AGL XR-1 (1) AGL 1 (3) 3U1908+00	+U1908+00 +

Гщ
in
ő
(.)
•
•
00
$\infty$
· :
•
•
S
Ь
ō.
7
14
ω
<u> </u>
σ
-

(1)	(ZA)	(28)	(34)	(3B)	(3C)	(3D)	(3E)	(44)	(48)	(5A)	(58)	(9)
U1908+05	19 8 12 + 5 7 30 287.050 5.125	39.76 -1.88	19 11 3 + 4 51 18 287.763 4.855	19 5 43 + 5 30 47 286.430 5.513	19 5 30 + 5 24 0 286.375 5.400	19 10 47 + 4 43 30 287 <b>.</b> 695 4 <b>.</b> 725	0.2013	3.66 .4			A1909+04 (22)	4U1908+05
U1909+07	19 9 12 + 7 37 30 287,300 7,625	42.09 -0.94	19 10 55 + 7 27 36 287,730 7,460	19 7 50 + 7 53 42 286.960 7.895	19 7 31 + 7 46 12 286.880 7.770	19 10 35 + 7 19 48 287.645 7.330	0.1328	4.61 .5			A1908+07 (22) 3U1912+07	£0+6061N4
01915-05	19 15 18 - 5 12 0 - 288,825 -5,200	31,38 -8,22	19 16 53 - 5 20 6 289.220 -5.335	19 13 54 - 4 55 12 288.475 -4.920	19 13 38 - 5 3 54 288.410 -5.065	19 16 38 - 5 26 42 289.160 -5.445	0.1196	20	~		A1916-05 (22) 3U1915-05	401915-05
01916-79	19 16 0 -79 18 0 -289,000 -79,300	315.07 -28.14	20 19 26 -76 27 36 304.86 -76.46	17 46 7 -80 18 36 266.53 -80.31	17 50 19 -80 52 12 267.58 -80.87	20 26 34 -76 46 48 306.64 -76.78	4.5808	2,50 . 2			3U1849-77	4U1916-79
1918+15	19 18 48 +15 0 0 289,700 15,000	49.70 0.45	19 21 14 +15 10 48 290,310 15,180	19 19 34 +15 35 24 289.890 15.590	19 16 18 +14 44 24 289.075 14.740	19 17 54 +14 21 0 289.475 14.350	0.6515	50	× 10	TRANSJENT	A1918+14 (22)	4U1918+15 *
101919+44	19 19 25 +44 4 12 289.855 44.070	75.88 13.63	19 20 1 +43 59 28 290,006 43,991	19 19 26 +44 14 20 289.859 44.239	19 18 51 +44 8 56 289.711 44.149	19 19 25 +43 54 14 289.855 43.904	0_0357	3 <b>.</b> 90 <b>.</b> 3		CLUSTER: ABELL 2319 (3.1)	2A1919+438 (5) 3U1921+43	4U1919+44
+U1920+34	19 20 12 +34 3 0 290_050 34_050	66.77 9.08	19 21 28 +33 55 12 290,365 33,920	19 19 47 +34 22 48 289,946 34,380	19 18 52 +34 9 54 289.715 34.165	19 20 33 +33 42 47 290 <b>.</b> 138 33 <b>.</b> 713	0.1601	3.50 .7				4U1920+34 X
1924-59	19 24 35 -59 26 20 -51,146 -50 430	337 <b>.6</b> 0 -27 <b>.78</b>	19 48 18 -59 4 30 297,075	19 43 55 -57 58 48 295,980 -57,980	19 2 24 -59 18 0 285,600	19 3 43 -61 24 0 285,930 -61,400	9.5113	1.93 .4			2Å1914-589 (5)	4U1924-59

[III
<u> </u>
ഗ
$\sim$
•
•
œ
$\infty$
1.1
•
•
S
ЗS
JS
рJS
ApJS
3ApJS
8ApJS
78ApJS
978ApJS

(2A)	(28)	(94)	(38)	(3C)	(30)	(3E)	(44)	(4B)	(5A)	(58)	(9)
	69.93 7.63	19 34 22 +36 54 36 293.59 36.91	19 32 55 +36 54 36 293.23 36.91	19 32 55 +35 26 24 293.23 35.44	19 34 22 +35 26 24 293•59 35•44	0.4271	2.26	4			4U1933+36
l	71.12 6.03	19 45 18 +38 3 36 296.325 38.060	19 44 14 +38 16 48 296.060 38.280	19 40 48 +33 30 0 295.200 33.500	19 41 36 +33 21 0 295,400 33,350	1.0238	3 <b>.</b> 02 <b>.</b>	2			4U1943+36
	68.42 1.87	19 54 23 +31 55 8 298.596 31.919	19 53 43 +32 1 19 298,430 32,022	19 53 40 +31 59 53 298.415 31.998	19 54 19 +31 53 49 298.581 31.897	0.0045	63	ŝ		3U1953+31	4U1954+31
<b>4000</b>	326.83 -31.39	19 58 7 -68 34 30 299.530 -68.575	19 52 48 -68 34 30 298.200 -68.575	19 52 48 -69 11 24 298.200 -69.190	19 58 7 -69 11 24 299 <b>.</b> 530 -69 <b>.</b> 190	0.2947	3.07 .	4	CLUSTER: CA1955-692 ? (5.2) = PKS1955-692 CA2013-710 ? (0.0)	3U1959-69	4U1955-68
22 36 50 50	71,32 3,08	19 56 30 +35 3 58 299.124 35.066	19 56 19 +35 5 10 299.078 35.086	19 56 15 +35 3 14 299,064 35,054	19 56 26 +35 2 2 299.109 35.034	0.0014	1175	2	STAR: HDE226868 AT Ra≖ 19M 56M 28.8435 DEC≖ 35D 03M 54.515	CYG X-1 (1,2) CYG 1 (3) 3U1956+35	4U1956+35 *
2001	51,34 -9,38	19 57 53 +11 32 2 299-470 11.534	19 56 58 +11 42 22 299.243 11.706	19 56 42 +11 37 12 299.175 11.620	19 57 36 +11 26 24 299.402 11.440	0•0317	17.4 0.	6		301956+11	4U1957+11
1400	76.10 5.80	19 58 39 +40 25 26 299•664 40•424	19 56 21 +40 45 0 299.088 40.750	19 56 2 +40 38 53 299.008 40.648	19 58 17 +40 18 58 299.572 40.316	0.0670	4°03	4	CLUSTER: CYG A = 3C405	3U1957+40	4U1957+40 *
4000	95,88 16,36	20 5 50 +62 0 0 301_460 62_000	19 57 58 +63 35 6 299.490 63.585	19 56 41 +63 11 24 299.170 63.190	20 4 35 +61 36 36 301.145 61.610	0.5874	2.56	ις.		301956165	4U2001+62

397

а

357F
•
•
œ
$^{\circ}$
· •
JS
Ap
8
r
σ
_

(58) (6)	4U2003+64	4U2019+39	4U2028+42	CYG X-3 (1,2) 4U2030440 CYG 3 (3) AY 3U2030440	CYG X-3 (1,2) 4U2030440 CYG 3 (3) 4U2030440 AY 3U2030440 4U2046431 X	CYG X-3 (1.2) 4U2030440 CYG 3 (3) 4U2030440 AY 3U2030440 4U2046431 X	CYG X-3 (1,2) 4U2030+40 CYG 3 (3) 4U2030+40 4U2046+31 X 4U2048+44 4U2056+49
(5A)				 PERIODS: 4.8 HR516.8 DA	PERIODS: 4.8 HRI16.8 DA SNR: CYGNUS LOOP 7	PERIODS: 4.8 HRIL6.8 DA SNR: CYGNUS LOOP ?	PERIODS: 4.8 HR;16.8 DA SNR: CYGNUS LOOP ?
(48)	4.		4	8	~ 4	~ 4. v.	~ 4 S V
(44)	2.64	3.45	3.84	385	385 1.69	385 1.69 3.57	385 3.57 3.39
(3E)	0.2158	0.0972	0.3638	8000 0	0.0008	0.0008	0.0008 2.4640 0.1223 0.0336
(3D)	20 5 36 +63 45 43 301.400 63.762	20 20 2 +39 11 24 305,010 39,190	20 33 35 +41 57 36 308,395 41,960	20 30 40 +40 46 34 307.666 40.776	20 30 40 +40 34 307.666 40.776 20 41 26 +27 42 0 310.358 27.700	20 30 40 +40 46 34 307-66 34 40.776 20 41 26 310,958 310,958 27,958 312,396 84,105	20 30 40 +40 46 34 307.666 34 40.776 20.41 26 310.358 310.358 310.358 310.358 310.358 310.49 34 27.700 5 44.105 314.170 44.103 44.103
(3C)	20 0 38 +64 45 14 300.160 64.754	20 17 34 +39 42 0 304.390 39.700	20 23 31 +43 33 7 305.880 43.552	20 30 35 +40 45 50 307.645 40.764	20 30 35 +40 45 50 307.645 40.764 20 39 22 +27 54 36 309.840 27.910	20 30 35 +40 45 50 307.445 6 40.764 20 39 22 3027 54 36 302840 302840 27.910 27.910 27.910 311.776 44.418	20 30 35 440 45 50 307.645 40.764 40.764 20 39 22 27.910 27.910 27.910 44.418 44.418 44.418 44.418 44.43 55 5 313.770 49.395
(38)	20 1 37 +64 57 0 300,405 64,950	20 18 2 +39 45 54 304.510 39.765	20 24 2 +43 40 34 306.010 43.676	20 30 27 20 30 27 440 47 38 307.613 40.794	20 30 27 +20 30 27 307.613 40.794 +0.794 +35 6 54 313.200 313.200	20 30 27 +40 47 38 307.613 40.794 40.794 20 52 48 313.200 313.200 313.200 311.894 44.638	20 30 27 440 47 38 307.613 40.794 40.794 48 20 52 48 313.205 44 313.205 34 313.415 88 44.638 47 313.843 47 313.843 48 44.638 47 44.638 47 44.638 47 313.843 47 44.638 47 44.638 47 44.638 47 44.638 47 44.649 47 46.649 47 46.649 47 47.649 47 47.649 47 47.649 47 47.649 47 47.649 47 47.649 47 47.649 47 47.649 48 47.649 47 47.649
(3A)	20 6 36 +63 58 41 301.650 63.978	20 20 50 +39 15 36 305,210 39,260	20 34 2 +42 4 34 308 <b>.</b> 510 42 <b>.</b> 076	20 30 33 440 48 22 307.636 40.806	20 30 33 +40 38 33 307.636 22 40.806 40.806 313.373 35.115	20 30 33 307.6636 40.6666 40.6666 40.6666 54 313.373 313.373 313.373 312.500 44.3300	20 30 33 307.6636 40.6806 40.6806 20 53 30 215 33 33.115 33.115 33.115 312.500 44.330 44.330 44.330 44.250 44.250
(28)	97.63 16.98	77.50	81+28 2+18	79.84 0.71	79.84 0.71 74.81 -7.31	79.84 0.71 -7.81 -7.81 -7.31 86.71 86.71	79.84 0.71 6.71 74.81 74.81 74.81 74.81 74.81 6.32 89.30 89.30 89.30
(ZA)	20 3 36 +64 22 12 300,900 64,370	20 19 0 +39 30 0 304.750 39,500	20 28 48 +42 49 12 307,200 42,820	20 30 33 +40 47 6 307.639 40.785	20 30 33 +40 47 35 307.639 40.785 40.785 40.785 31.690 31.900	20 30 33 +40 47 6 307,639 307,639 40,763 40,7639 31,639 311,690 311,690 311,690 311,690 312,150 44,375	20 30 33 +0.47 639 30.6639 40.7639 40.7639 311,690 311,690 311,690 311,690 311,690 312,150 44,375 44,375 44,375 44,375 44,375 44,375 44,375 44,375 44,375
(1)	4U2003+64	4U2019+39	4U2028+42	4U2030+40	4U2030440 4U2046431	4U2030+40 4U2046+31 4U2048+44	4U2030+40 4U2046+31 4U2048+44 4U2048+44

	(9)	4U2104+31 X	4U2120+32	4U2126-60	4U2129+47	4U2129+12	4U2134+55 X	4U2135+57	4U2142+38 *
	(58)			2A2155-609 (5) MX2140-60 (28)	3U2129+47	2A2127+120 (5) 3U2131+11		CEP X-4 ?	CYG X-2 (1,2) CYG 2 (3) 2A2142+381 (5) 3U2142+38
	(5A)					GLOBULAR CLUSTER: NGC7078 =M15			STAR: CVG X=2 AT Ra= 21H 42M 36.91S DEC= 38D 05M 27.95 PERIOD: 11.17 DAV
	(4B)				2				2
ontinued	(4A)	2,08 .4	3,05 .7	1.81 .5	20	4.42 .3	2,63 ,5	2•83 •6	550
E 1-C	(3E)	2.6040	2.8238	3 <b>.</b> 9342	0.0072	0.1896	0.1976	0.4220	0.0003
TABL	(3D)	20 58 0 27 39 36 114.500 27.660	21 15 0 -28 57 47 118,750 28,963	22 9 14 2 -61 28 30 132_31 -61_475	21 29 55 47 1 12 122.479 47.020	21 31 10 12 5 2 122.790 12.084	21 36 1 55 22 5 124,005 55,368	21 38 38 56 24 0 124 66 56 40	21 42 39 -38 4 55 -25.662 38.082
	(3C)	20 57 -6 -28 - 4 -48 - 314-275 3 -28-080	21 13 12 29 1 8 + 318,300 3 29,019	20 42 36 -61 28 30 310-65 -61-475	21 29 10 47 9 25 4 822.291 3 47.157	21 28 46 11 51 14 + 322.192 11.854	21 32 20 +55 50 17 + 823_085 55_838	21 31 22 •57 44 24 + 822_84 3	21 42 30 +38 4 55 + 325,624 3 38,082
	(3B)	21 10 58 +35 45 36 317,740 35,760	21 25 36 +35 20 38 321.400 35.344	20 45 36 -59 10 30 311.40 -59.175	21 29 17 +47 11 42 322.321 47.195	21 28 21 +12 8 28 322,089 12,141	21 33 10 +56 6 47 323.290 56.113	21 32 43 +57 55 48 323,18 57,93	21 42 33 +38 5 35 325,636 38,093
	(3A)	21 11 48 •35 22 12 317•950 35•370	21 27 37 +35 10 30 321.906 35.175	22 8 24 -59 10 30 332.10 -59.175	21 30 1 +47 3 11 322.5506 47.053	21 30 48 +12 21 58 322,700 12,366	21 36 50 +55 38 53 324.210 55.648	21 39 55 •56 34 48 324.98 56.58	21 42 41 +38 5 35 325,669 38,093
	(28)	76.89 -10.38	79.76 -12.50	334•41 •42•74	91 <b>.</b> 60 -3.01	65•53 -27•63	98.00 2.86	99•04 3•81	87,32 -11,32
	(ZA)	21 4 0 +31 30 0 316,000 31,500	21 20 22 +32 7 48 320,090 32,130	21 26 28 -60 19 30 321.615 -60.325	21 29 36 +47 6 18 322,400 47,105	21 29 46 +12 6 0 322,440 12,100	21 34 36 +55 45 0 323.650 55.750	21 35 42 +57 9 0 323_925 57,150	21 42 36 +38 5 13 325 648 38 087
	(1)	4U2104+31	4U2120+32	4U2126-60	4U2129+47	4U2129+12	4U2134+55	4U2135+57	4U2142+38

							-					-
(1)	(ZA)	(2B)	(3A)	(3B)	(3C)	(JD)	(3E)	(4A)	(48)	(5A)	(58)	(9)
4U2206+54	22 6 18 +54 24 0 331,575 54,400	100,70 -1,02	22 7 36 +54 14 17 331.898 54.238	22 5 40 +54 41 53 331.418 54.698	22 5 10 +54 34 48 331,290 54,580	22 7 1 +54 6 29 331,753 54,108	0.0711	2.93	m	×	A2204+54 (24) 3U2208+54	4U2206+54
4U2209+26	22 9 12 +26 6 0 332,300 26,100	83.81 -24.13	22 14 0 +27 42 36 333.500 27.710	22 12 55 +27 54 0 333.230 27.900	22 2 45 +23 36 36 330,688 23,610	22 3 12 +23 30 0 330,800 23,500	1.0787	2.47	4			4U2209+26
4U2213+23	22 13 54 +23 54 0 333,475 23,900	83,22 -26,51	22 22 43 +27 16 12 335.680 27.270	22 21 46 +27 30 0 335•440 27•500	22 8 16 +21 58 12 332.065 21.970	22 9 44 +21 40 48 332,433 21,680	2.3201	2.19	2			4U2213+23 X
4U2224-78	22 24 48 -78 15 0 -78,200 -78,250	311 <b>.</b> 59 -36.64	22 35 24 -77 25 48 338.85 -77.43	22 30 55 -76 55 48 337.73 -76.93	22 13 5 -79 14 24 333.27 -79.24	22 17 36 -79 41 24 334.40 -79.69	0.9453	3.90 1.	1			4U2224-78
4U2238+60	22 38 54 +60 43 30 339.725 60.725	107.75 2.03	22 41 21 +60 17 24 340 _• 338 60 _• 290	22 37 10 +61 22 59 339.290 61.383	22 36 24 +61 11 6 339.100 61.185	22 40 32 +60 5 6 340.135 60.085	0.2079	2,81	4		3U2233+59	4U2238+60
4U2240+26	22 40 24 +26 42 0 340.100 26.700	90 <b>.</b> 53 -27.69	22 44 55 +28 4 48 341.230 28.080	22 44 23 +28 32 24 341.095 28.540	22 30 46 +23 29 2 337.690 23.484	22 31 0 +22 56 24 337,750 22,940	1.9927	2.95	2			4U2240+26 X
4U2252+18	22 52 34 +18 9 0 343,140 18,150	87,94 -36,42	22 58 11 +19 49 12 344.545 19.820	22 56 59 +20 3 0 344.245 20.050	22 47 1 +16 24 0 341.755 16.400	22 48 8 +16 18 36 342,033 16,310	1,3627	2.49	2			4U2252+18
4U2259+16	22 59 7 +16 6 0 344.780 16.100	88°24 -38°99	23 3 49 +17 34 48 345_955 17_580	23 3 10 +17 45 0 345•790 17•750	22 54 6 +14 40 48 343_525 14_680	22 55 24 +14 24 0 343.848 14.400	1.2057	2.95	Q	supercluster ?		4U2259+16 X

400

μ	-
Ľ	)
ć	)
	•
	٠
α	)
ć	)
	٠
	٠
	٠
Ľ.	2
6	ζ.
7	4
E A	4
α	)
L	-
σ	)

						TABI	LE 1-C	ontinued				
-	(2A)	(2B)	(94)	(38)	(3C)	(3D)	(3E)	(44)	(4B)	(5A)	(58)	(9)
80*00	23 0 43 + 8 46 34 345°178 8°776	83 <b>.</b> 23 -45.32	23 10 21 + 9 55 30 347,588 9,925	23 8 28 +10 32 24 347,115 10,540	22 51 54 + 7 27 0 342.975 7.450	22 52 8 + 7 11 17 343_035 7_188	2.6426	2.69 .5		SEYFERT: NGC 7469	2A2259+085 (5)	4U2300+08
05-07	23 5 10 - 7 18 54 - 346,293 -7,315	67.41 -58.25	23 19 55 - 5 58 12 349.98 -5.97	23 13 0 - 4 0 0 348.25 -4.00	22 50 58 - 8 43 48 342.74 -8.73	22 56 48 -10 33 36 344.20 -10.56	17.9500	2 <b>.</b> 31 .6			2Å2302-088 (5)	4N23n5-07
15+15	23 15 26 +15 19 12 348,860 15,320	92 <b>.</b> 19 -41.63	23 21 34 +17 4 12 350,390 17,070	23 20 7 +17 15 0 350,030 17,250	23 9 52 +13 30 36 347,465 13,510	23 10 10 +13 25 48 347 <b>.</b> 540 13 <b>.</b> 430	1.1064	4.41 .4		CLUSTER: ABELL 2589 (3,0)	2A2322+166 (5)	4U2315+15
16+61	23 16 36 +61 48 0 349,150 61,800	112 <b>.</b> 31 1 <b>.</b> 13	23 18 5 +62 19 12 349_520 62_320	23 14 13 +61 42 58 348,555 61,716	23 15 12 +61 19 12 348,800 61,320	23 19 6 +61 55 5 349•775 6	0.2537	2.40 . 5				4U2316+61
21+58	23 21 13 +58 33 29 350,303 58,558	111.75 -2.12	23 21 13 +58 34 26 350,305 58,574	23 21 6 +58 33 0 350,276 58,550	23 21 13 +58 32 35 350 <b>.</b> 303 58 <b>.</b> 543	23 21 20 +58 33 58 350,332 58,566	0_0004	53.4 1.		SNN: CAS A=3C461 KA = 23H 21M 10.85 DEC = 58D 32M 49.25	CAS A (1,2,3) 3U2321+58	4U2321+58
35+42	23 35 54 +42 43 30 353 975 42 725	108,99 -17,88	23 37 16 +42 47 24 354.315 42.790	23 36 8 +43 4 30 354,035 43,075	23 34 29 +42 38 42 353 <b>.</b> 620 42 <b>.</b> 645	23 35 35 +42 22 30 353 <b>.</b> 895 42 <b>.</b> 375	0.1713	1.97 .5				4U2335+42
44+08	23 44 5 + 8 39 0 356,020 8,650	97.15 -50.67	23 50 29 +10 20 24 357_62 10_34	23 48 48 +10 42 0 357,20 10,70	23 38 10 + 6 51 0 354.54	23 38 50 + 6 43 12 354.71 6.72	1.7593	3.03 .7		CLUSTER: ABELL 2657 (3.1)		4U2344+08
44-27	23 44 6 -27 0 0 356,025 -27,000	30 <b>.</b> 85 -75 <b>.</b> 57	23 46 20 -26 47 24 356.585 -26.790	23 45 32 -26 32 6 356,385 -26,535	23 41 54 -27 13 12 355.473 -27.220	23 42 38 -27 28 12 355.660 -27.470	0.3243	1.80 .4		CLUSTER: KLEMOLA 44	2A2344-285 (5)	4U2344-27

ntint
$1-C_{0}$
TABLE

1978ApJS...38..357F

	(58) (6)	1,0) 4U2345+27 3U2346+26	+0) ? 4U2351+06	4U2358+21
	(5A)	CLUSTER: ABELL 2666 ()	SEYFERT: MKN 541 7 CLUSTER: ABELL 2665 (4	
	(48)			
ntinued	(44)	2.44 .4	3.69 .5	1.92 .4
E 1-Co	(3E)	0=4430	2.2104	0.2520
TABL	(3D)	23 47 48 +27 21 0 356.950 27.350	23 45 12 + 4 24 0 356.30 4.40	0 0 32 •21 3 54 0•135 21•065
	(3C)	23 44 2 +26 51 0 356.010 26.850	23 44 0 + 4 37 12 356.00 4.62	23 57 26 •20 46 48 359.360 20.780
	(38)	23 43 10 +27 16 12 355.790 27.270	23 57 17 + 9 9 36 359.32 9.16	23 56 58 •21 5 24 359_240 21_000
	(3A)	23 46 58 •27 45 36 356 740 27 760	23 58 34 + 8 52 48 359 64 8 88	0 0 6 +21 21 54 0.025 51
	(28)	106.08 -33.21	98 <b>.</b> 67 -53 <b>.</b> 09	107 <b>.</b> 62 -40.02
	(ZA)	23 45 24 +27 18 0 356.350 27.300	23 51 17 + 6 46 12 357 <b>.</b> 820 6 <b>.</b> 770	23 58 42 +21 4 30 359.675 21.075
	(1)	4U2345+27	4U2351+06	4U2358+21

spurious is less than 0.01. However, the tail of the distribution extends to probabilities of  $\sim 0.10$ . To assist users we have marked those sources whose probabilities exceed 0.01 with the symbol X in column (6) of Table 1.

A number of our sources are defined by many overlapping collinear lines of position which themselves produce a long, narrow error box. In such cases, single crossing lines were used to reduce the positional uncertainty only when the probability that the crossing line was spurious was less than 10%. We wish to emphasize that while the probability

We wish to emphasize that while the probability that a source is spurious may be arbitrarily small, the probability that a particular line is spurious could be substantial. This can result in error boxes which are too small or mislocated when single crossing lines have been used.

### V. THE CATALOG

The catalog is given in Table 1, which is divided into six columns. Column (1) gives the source name derived from the right ascension and declination (in 1950 coordinates). Column (2) contains the position of the maximum probability density in right ascension and declination (col. [2Å]) and in galactic coordinates (col. [2B]). The corners of the 90% confidence level error box in right ascension and declination are given in columns (3A)-(3D). The area of the error box (in square degrees) is given in column (3E). Column (4) contains the available information on the 2-6 keV intensity. The average intensity (counts  $s^{-1}$ ) of the lines of position used in the position determination and its associated uncertainty is given in column (4A) when the source is constant in intensity within the statistics of our measurements. When a source is observed to be variable, column (4A) contains the maximum intensity and column (4B) gives the ratio of the maximum and minimum observed values. The conversion from 2-6 keV counts s⁻¹ to 2-6 keV flux is given by

 $1.7 \times 10^{-11} \text{ ergs cm}^{-2} \text{ s}^{-1} = 1$  Uhuru count s⁻¹.

To compute 2-10 keV flux we find

$$2.4 \times 10^{-11} \text{ ergs cm}^{-2} \text{ s}^{-1} = 1 \text{ Uhuru count s}^{-1}$$
.

These values are computed for a Crab-like spectrum but vary by only 10-20% for all but the most extreme source spectra. Previously published values of these conversion factors have been somewhat lower, but those above represent our final best calibrations. The intensities reported in this section of the catalog are derived only from the positive source detections. We do not include those days for which the source was not observed in our calculation of the average intensities. Therefore, these values can substantially overestimate the true average intensities (see below for PST intensities). This discrepancy is greatest for weak sources.

Column (5A) gives the available information on possible source identifications. Identifications and

TABLE 2 CATALOGS OF INTERESTING OBJECTS

Type of Object	Reference
Seyfert Galaxies Radio Pulsars Clusters of Galaxies Supernova Remnants	Weedman 1977, Adams 1977 Terzian 1973 Abell 1958, Klemola 1969 Moore 1977, Downes 1971
Radio Sources	Arp 1966 Milne 1970, Bennett 1962, Finlay and Jones 1973,
Bright Galaxies	Kraus 1966 de Vaucouleurs and de Vaucouleurs 1964
Quasars	de Veny et al. 1972

possible identifications based upon positional coincidence were made by scanning the catalogs listed in Table 2. We have included suggested identifications taken from published papers or IAU circulars. We have also included periods of binary and pulsating sources. All periods are from X-ray measurements unless otherwise noted. Column (5B) contains previously used names for the sources with references corresponding to those of Table 3.

Finally, column (6) repeats the source name and contains the following additional information: (1) C denotes that the source is possibly confused and was

TABLE 3

Previously	Used	Source	NAMES
------------	------	--------	-------

Number	Reference
Number           1	ReferenceOda and Matsuoka 1970Kellogg 1970Seward 1970Leong et al. 1971Cooke et al. 1971Giacconi et al. 1971Giacconi et al. 1971Jernigan 1976Lewin et al. 1971aJernigan 1976Seward et al. 1973Eyles et al. 1975Markert 1973Seward et al. 1976Schreier et al. 1971Lewin et al. 1976Bradt et al. 1971Lewin et al. 1971Lewin et al. 1971Lewin et al. 1973Kellogg et al. 1971Lewin 1976Seward et al. 1973Lewin 1976Seward et al. 1976Markert et al. 1976Markert et al. 1976Li and Lewin 1976Villa et al. 1976Markert et al. 1975Li 1976Carpenter et al. 1977Warkert et al. 1977Viriber
31 32 33	Winkler and Laird 1976 Bradt <i>et al.</i> 1968 Mayer <i>et al.</i> 1970

1978ApJS...38..357F

TABLE 4

COMMENTS AND REFERENCES

4U Name	Comments and References
411 0026 - 73	This source most likely results from the confusion of SMC X-2 and SMC X-3 Li Jernigan and Clark 1977
4U 0115 + 63	Transient, Forman, Jones, and Tananbaum 1976a.
4U 0115 – 73	Pulsating, eclipsing binary. Leong et al. 1971; Schreier et al. 1972a; Liller 1973; Lucke et al. 1976.
4U 0316+41	Extended and point source (NGC 1275). Forman et al. 1972; Fabian et al. 1974.
$4 \cup 0336 + 01 \dots$	One week duration high latitude transient
40 0339 - 34	in 2A catalog (Cooke et al. 1978).
4U 0352 + 30	Pulsating X-ray source identified with X Per. White et al. 1976b; Hutchings et al. 1974.
4U 0410 + 10	Determination of distance of A478 corresponds to distance class 4. Bahcall and Sargent 1977.
$4U 0423 - 53 \dots$	Optical identification suggested by Penston and Sparke 1975 and Lugger 1978. Classified by Lugger 1978.
$4U 0427 - 61 \dots $	Optical identification suggested by vital 1973 and Lugger 1976. Classified by Lugger 1976.
4U 0513 – 40	Possible X-ray burster. Forman and Jones 1976.
4U 0531 + 21	X-ray pulsar in supernova remnant. Remnant is observed as an extended X-ray source. Bowyer et al. 1964;
411.0520 72	Fritz et al. 1969.
4U 0520 - 72	SAS 3 RMC position Delvalle 1976.
4U 0538 - 64	SAS 3 RMC position. Delvaille 1976.
4U 0540-69	SAS 3 RMC position. Delvaille 1976.
4U 0614+09	Optical counterpart from Davidsen et al. 1974; Murdin et al. 1974.
$4 \cup 0627 - 54$	Optical identification suggested by Vidal 1975a and Lugger 1978. Classified by Lugger 1978.
40 0833-45	1973
4U 0836-42	Transient, Cominsky et al. 1978.
4U 0900 – 40	Pulsating, eclipsing binary X-ray source. Ulmer et al. 1972; Hiltner et al. 1972; Brucato and Kristian 1972;
411 1027 (0	Forman et al. 1973; McClintock et al. 1976.
40 1037-60	et al. 1976b.
4U 1118 – 60	Pulsating, eclipsing binary X-ray source. Irregular high and low states. Giacconi et al. 1971a; Schreier et al. 1972b; Krzeminski 1974.
4U 1145 – 61	Optical counterpart suggested by Maraschi <i>et al.</i> 1976.
40 1225 02	et al. 1976a.
4U 1228 + 12	Extended source centered on M87. Kellogg et al. 1973.
4U 1249 – 28	Optical identification suggested by Vidal 1975b and Lugger 1978. Classified by Lugger 1978.
$4U 1257 + 28 \dots$	Extended source. Forman et al. 1972.
4U 1238 – 61 4U 1322 – 42	Variable X-ray source observed up to $3 \times 10^{11}$ eV. Associated with Cen A. Davison <i>et al.</i> 1975; Grindlay
	et al. 1975a.
$4U 1325 - 31 \dots$	Identification and classification by Lugger 1978.
4U 1516 - 56	Binary X-ray source exhibiting short-time-scale intensity fluctuations. Jones et al. 1974: Kaluzienski
	et al. 1976; Toor 1977.
4U 1535 – 29	Single event with duration $\lesssim 25$ minutes.
4U 1543 – 47	Transient. Matilksy et al. 1972.
4U 1608 - 52	Norma burst source, Bellan et al. 1976; Tananoaun et al. 1976.
4U 1626 – 67	Pulsating X-ray source. Market <i>et al.</i> 1907.
4U 1630-47	Four outbursts at 600 day intervals. Jones et al. 1976.
4U 1636 - 53	X-ray burster. Swank et al. 1976a.
4U 1651 + 39	Radio-emitting BL Lacertae object. Colla et al. 1972.
40 1030 + 33	Puisaing, eclipsing binary with regular right and low states. Tananoaun et al. 19720, Glaccon et al.
4U 1700 – 37	Eclipsing binary. Jones et al. 1973.
4U 1722 – 30	Single event, ~100 s. Swank et al. 1977.
4U 1728 – 33	X-ray burster. Hoffman et al. 1976.
4U 1/28 - 24	X-ray pulsations. Lewin et al. 19/16.
4U 1720 - 22	Transfert Cominsky et al. 1978
4U 1735 – 28	Transient, Kellogg et al. 1971.
4U 1743 – 29	Extended source. Kellogg et al. 1971.
4U 1743 – 19	Transient. Forman, Jones, and Tananbaum 1976b.
$4U 1807 - 10 \dots$	Transient seen on last day of processed Unuru data.
4U 1813 - 14	A-ray puisations, while et al. 1970a. SAS 5 Kine postion. Dossey 1975. Eclinging binary X-ray Source Cowley et al. 1976; Hearn and Richardson 1977.
4U 1820 – 30	X-ray burster, Grindlay et al. 1976.
4U 1837 + 04	X-ray burster. Swank et al. 1976b. SAS 3 RMC position. Doxsey 1975.
4U 1857 + 01	X-ray burster. Li and Lewin 1976.
4U 1850 - 08	X-ray flare. Cominsky <i>et al.</i> 1977.
$4U 1901 + 03 \dots $	ransient. Forman, Jones, and Fanandaum 1970a. Recurrent outbursts Kaluzienski <i>et al.</i> 1977, SAS 3 RMC position. Doxsey 1975.
4U 1918 + 15	Transient, Comisky <i>et al.</i> 1978.
4U 1955 – 68	Optical identification suggested by Melnick and Quintana 1975 and Lugger 1978. Classified by Lugger 1978.
4U 1956 + 35	Black-hole candidate in binary system. Exhibits low and high states correlated with changing spectrum. Tananbaum <i>et al.</i> 1972 <i>a</i> ; Hjellming and Wade 1971; Webster and Murdin 1972; Bolton 1972; Rothschild <i>et al.</i> 1974.
4U 1957 + 40	Possible extended source. Brinkman et al. 1977.
4U 2030+40	Correlated X-ray and IR modulation. Exhibits intense radio and X-ray flares. Parsignault et al. 1972;
4U 2142+38	Becklin et al. 1973; Gregory et al. 1972; Holt et al. 1976b. Optically identified, reported 11.2 day X-ray period. Giacconi et al. 1967, Tananbaum et al. 1971; Holt
4U 2358 + 21	et al. 19/6a. Flare with duration less than 1000 seconds and positional uncertainty of 6 sq. degrees. Contains this source as well as the well-known flare star EQ Peg.

not a unique choice based upon the available lines of position. (2) An asterisk indicates that additional comments can be found in Table 4 along with references for column (5A). (3) X has been used to denote sources which have probabilities of being spurious in excess of 0.01.

The extensive analyses and observations that have taken place in X-ray astronomy make it impossible to give complete references for each source. We have concentrated on the referencing of periodicities, fundamental properties, and identifications. We have generally referenced the discovery papers.

## **VI. AVERAGE INTENSITIES**

We have computed average intensities using the Point Summation Technique (PST) for all sources with intensities of less than 10 counts  $s^{-1}$  as given in Table 1. We have included this section to facilitate the comparison of *Uhuru* observations with more recent observations made with other satellites. The importance of these average intensities derives partially from the growing list of compact extragalactic X-ray sources which are observed to be variable.

PST intensities are computed using all scans over a particular source position for which the source was less than 2°5 from the center of the collimator, rather than the more limited set used in Table 1 for which lines of position were detected. This provides a more reasonable estimate of the average source intensity. Table 5 contains the source name, the PST intensity and its error, the collimator(s) used for the intensity determination, and occasionally a comment. When a source is variable we have replaced the intensity with the maximum observed intensity, and the error with the ratio of the maximum to minimum observed intensity. The background is computed from data to either side of the source where no cataloged sources are observed. The program subtracts the background from the data at the source position and corrects the observed flux to the intensity based on the position of the source in the collimator. These intensities are then added together to yield the PST intensity.

This technique has several limitations. First, for large boxes, especially those which are long and narrow, the intensity (and hence the source significance computed from  $I/\sigma_I$ ) can be significantly in error. For example, if the source were actually at an edge of a long box, the source could be very near the edge of the field of view where the signal-to-noise ratio approaches zero. Also, while regions containing known sources are excluded from the background, the lack of completeness of the catalog at the weakest intensity levels permits the presence of weak uncataloged sources in the background. This problem is of less importance in the program which detects lines of position since all significant excesses are eliminated from the background. This difference results in less significant detections with the PST than with our lines of position.

The positions used to compute the PST were the locations of maximum probability density of Table 1,

with a few exceptions as noted in Table 5. Thus sources whose true positions are substantially offset from these most probable positions could have significantly larger intensities.

Thirteen of the 261 sources with I < 10 counts lie in dense source regions, and therefore we were unable to obtain sufficient background data for the PST computation. Of the remaining 248 sources, 202 have  $I/\sigma_I > 3.0$ . Assuming our data are normally distributed, we would expect 0.33 fluctuations with  $I/\sigma_I > 3.0$ . Therefore, we conclude that the 202 sources with  $I/\sigma_I > 3.0$  are real. The remaining sample contains 46 sources, of which 25 have  $I/\sigma_I > 2.0$ . In this group we expect 1.05 spurious sources. Therefore, all but a few of these also are confirmed by the PST. The remaining 21 sources with  $2.0 > I/\sigma_I > 1.0$ . These last eight sources (four are within  $20^\circ$  of the galactic plane) either are variable, are spurious, or suffer from the difficulties described above, which can reduce  $I/\sigma_I$ .

We can use the analysis of Tananbaum et al. (1978) to verify the normal behavior of  $I/\sigma_I$  computed randomly over the sky. Tananbaum et al. (1978) analyzed 88 Seyfert galaxies using the point summation technique. Fifteen had already been reported as sources, which left 73 possible sources. In this sample of 73 PST computations, three candidates were found with  $I/\sigma_I$  of 3.09, 2.69, and 2.62. The remaining 70 Seyferts had  $I/\sigma_I < 2.5$ , and the intensities were distributed normally about zero. The three Seyferts with  $I/\sigma_I > 2.5$  are very likely real X-ray sources. The bulk of the sources exhibited no detectable emission. The important point is that the PST behaves as expected and can be used to provide independent confirmation of existence for our sources with  $I/\sigma_{I} > 2.0.$ 

#### VII. COMPARISON WITH OTHER CATALOGS

The third Uhuru catalog contained 161 sources. The statistical criteria of that catalog were similar to those of the present work. The 1% false criterion should have yielded about two spurious sources. The 12 sources we do not observe in the present catalog are listed in Table 6. The reasons for the excess above the two expected spurious sources is not due to a lack of understanding or an inappropriate application of the statistics. Rather, we have found instances of non-random background events which contaminated the superposed data used in the 3U catalog. A major portion of the effort for this present catalog was to eliminate such events from the data base.

The recent Ariel 5 catalog (Cooke et al. 1978) covering high galactic latitudes ( $|b| > 10^{\circ}$ ) contains 107 sources, of which 52 are 3U sources characterized as confirmed or improved. Comparing the Ariel 5 catalog with the present fourth Uhuru catalog, we find no substantial disagreement. We observe 73 of the 107 sources contained in the 2A catalog. The 34 sources we do not observe are listed in Table 7. These are predominantly located in regions of low exposure, and we would not expect to detect them. Two of these

TABLE 5261 Sources

Name	Intensity	· Error	Collimator	Comments	Name	Intensity	Error	Collimator	Comments
0000 + 72	1.39	0.4	1		0608-49	1.21	0.35	1	
0005 + 20	1.38	0.4	1		0614 + 15	. 5.5	≳4	1	V
0009 - 33	2.37	0.3	2	A+ D A - 17	0617+23	1.23	0.4	1	
0010+39	1.07	0.52	1	Decl. = 37.0	0.021 + 11 0.627 + 67	0.84	0.2	1	
0015+02	0.64	0.17	1	2000 0000	0627-38	4.7	≳6	î	v
0022+63	7.27	0.7	1		0627-54	2.63	0.27	B	On cluster position
0026 - 73	2.44	0.3	1		0628 - 28	. 2.76	0.85	1	
0026 - 29	0.98	0.4	в		0630+02	. 1.5	0.5	1	
0027 + 39 0028 + 22	1.05	0.50	 B		0033-03	14	0.5	D R	
0033 + 58	1.30	0.33	ĩ		0656-03.	0.84	0.3	1	
0037+39	0.89	0.3	1		0708-16	0.77	0.4	B	
0037 - 10	2.70	0.24	В	On cluster position	0708-49	2.19	0.5	1	
0041 + 36	5.2	≈3	1	V On alteration in a station	0711 - 38	. 0.74	0.17	1	*7
0050 - 01	0.04	0.14	В 1	On cluster position	0/18 - 54	. 4.2	≈4	1	V On alustar position
0052 - 00	4.20	0.3	1		$0720 \pm 35$	. 2.17	0.31	1	
0103 - 21	1.31	0.36	Ê	On cluster position	0729-37	0.46	0.18	1	
0106-59	2.10	0.5	2	•	0733-18	0.67	0.4	ī	
0115 - 36	1.38	0.3	2		0737 - 10	. 2.26	0.5	В	
0129 - 09	1.31	0.3	1		0739 - 19	. 1.64	0.3	1	
0134 - 11 $0138 \pm 48$	0.60	0.9	2		0/42 - 28	. 0.82	0.3	1	
0130 + 40 0142 + 61	4.24	0.2	1		0730 - 49	0.8	0.0	1	
0148 + 36	2.14	0.25	B	On cluster position	0814-56.	1.44	0.4	1	
0223+31	0.76	0.3	1		0821-42	4.63	0.3	î	
0228-13	2.02	0.59	1		0833-45	7.93	0.3	1	
0241 + 61	1.19	0.3	1		0842 - 47	. 2.62	0.7	1	*7
0248 - 85	3.44	0.3	1		0842 - 34	. 3.3	ຂາ	1	V V
0253 + 41 0254 + 13	4 47	0.3	2	On cluster position	0854 - 44	. 3.0 C	≈2	1	v
0302 - 22	1.05	0.3	$\tilde{2}$	on cluster position	0900-09.	4.16	0.48	В.	On cluster position
0310+46	1.83	0.5	1		0913-46	0.66	0.26	ī	At R.A. = $136.8$ ,
0311 + 53	1.43	0.4	1						Decl. $= -47.15$
0321 - 45	1.82	0.5	B		0919 - 54	. 5.48	0.3	1	
0322 + 59	0.88	0.5			0923 - 31	. 2.66	0.19		
0339 - 54	1.68	0.24	1		0937 - 12 0945 - 30	1 73	0.5	<u>Б</u>	
0344 + 11	2.04	0.6	2		0954 + 70.	2.39	0.4	B	
0357-74	1.21	0.4	2		0955-28	. 0.47	0.26	1	Nearby candidate
0404 + 47	0.85	0.3	1					_	sources
0406 - 30	0.62	0.2	1		1015 - 25	. 5.3	3	B	V
0407 + 37	2.67	0.3	B	On cluster position	1022 - 40 1033 - 26	. 7.0	~ 0 20	1 1	V On cluster position
0421 + 34	1.63	0.4	ĩ	on cluster position	1035 - 56.	. 14.5	>7	B	V
0423-53	1.79	0.5	1		1037 - 60	. 2.26	~ 0.3	ī	On $\eta$ Carinae
0427-07	2.02	0.5	1		1041-21	. 7.1	≳4	1	V
$0427 - 61 \dots$	2.03	0.17	B	On cluster position	1057 - 21	. 0.87	0.2	1	
0429 - 31	2 30	0.3	В	On cluster position	1110-58	. 1.09	0.36	1	
0432 + 05	2.00	0.3	1	On cluster position	1119 - 77	0.74	0.5	B	
0443-09	1.64	0.3	B		1130-14.	. 1.21	0.3	ĩ	
0446+44	5.03	0.23	В	3C 129	1136-37	. 1.97	0.4	1	
0457-35	0.24	0.1	1		1137-65	. <u>C</u>		· <u>·</u> ·	
0504 - 84	0.7	0.3	1		1143 + 19	2.53	0.19	B	On cluster position
0505 - 21	1 /	0.2	B		1144 + 84	. 2.20	0.6		
0500 + 01	1.79	0.3	1		1147 - 12 1153 - 11	1.1	0.2	B	
0515+38	0.74	0.27	ī		1153-40	1.55	0.5	ĩ	
0517+17	0.70	0.27	1		1203-06	. 1.19	0.3	ī	
0518-26	1.55	0.4	B	<b>0</b> 1 · · · ·	1206+39	. 3.33	0.5	1	
0519 + 06	. 0.62	0.20	B 1	On cluster position	1209 - 45	. 0.91	0.3	1	
0531 - 05	. 5.12 1.57	0.0	1		1210-04 1221-08	. 4.50	0.5	l D	
0538 + 26	9.5	≥10	1	v	1226+02	. 1.91	0.2	<u>Б</u> 1	
0541 + 60	0.92	0.3	<b>B</b>		1232 + 07	0.90	0.3	1	
0543-31	1.12	0.4	В		1240-05	. 0.6	0.2	1	
0546-88	1.65	0.6	1		1246-58	. 2.20	0.6	1	0.1.
0548 + 29	2.64	0.6	1		1246-41	. 5.12	0.20	B	On cluster position
0555 - 48	0.84	0.4	1		1249 - 28 1253 - 00	. 3.37 0.75	0.5	1	
0558 + 46	1.99	0.4	1		1300-48	. 1.7	0.3	1	
0559 - 57	0.4	0.4	ī		1302-77	1.06	0.3	Â	

## FOURTH UHURU CATALOG

TABLE 5—Continued

Name	Intensity	Error	Collimator	Comments	Name	Intensity	Error	Collimator	Comments
1308+86	. 0.66	0.2	1		1811+37	. 0.50	0.16	1	······
1314+59	. 3.55	0.4	В		1813 + 50	. 2.27	0.4	1	
1314 - 64	. C	• • •	• • •		1817-05	. 0.87	0.3	1	
1317 + 06	. 0.70	0.27	1		1825 + 33	. C	• • •	•••	
1322 - 42	. 7.6	0.4	1		1830+34	. C		• • •	
1323 - 62	. 3.6	1.1	1		1831 - 23	. 6.51	0.6	1	
1325 - 31	. 2.09	0.6	1		1832 - 05	. 3.43	0.6	1	
1326 + 11	. 0.99	0.3	В		1835 - 11	. 2.5	0.4	1	
1344 - 60	. 2.26	0.2	1		1847 + 78	. 1.33	0.3	1	
1345 - 32	. 3.33	1.0	I		1849 - 31	. 2.74	0.5	l	
$1348 \pm 25$	. 3.65	0.45	В 1	On cluster position	1850 - 03	. 10.0	≈4	1	V
$1404 \pm 14$	. 0.92	0.2	1		1830 - 08	. 7.1	0.7	I D	
1410 - 05	. 3.00	0.30	1		$1032 \pm 37$	. 0.37	0.15	<u>Б</u> 1	
1414 + 25.1 1416 - 62	· 2.30	0.7	2		1853 - 23 $1857 \pm 01$	. 2.07 C	1.1	1	
1425 - 61	1 69	04	1		$1859 \pm 69$	2 08	0.3	• • •	
1426 - 56	0.61	0.7	1		1000 + 05.1	3 64	0.5	1	
1438 - 18	0.65	0.3	1		$1909 \pm 07$	. 5.04 C	0.4	1	
1444 + 43.	1.7	0.3	2		1916-79	2.93	02	2	
1446 - 55.	2.11	0.4	ĩ		1919 + 44	4.59	0.23	ñ	On cluster position
1450-80.	1.26	0.4	ī		1920 + 34	1.01	0.3	ĩ	on cluster position
1455+19	. 0.78	0.2	1		1924-59	. 1.45	0.3	<b>B</b>	
1455-27	. 3.78	1.0	2		1933 + 36	0.92	0.3	ī	
1456 + 22	. 1.0	0.2	1		1943 + 36	. 2.15	0.3	1	
1458-41	. 1.5	0.5	1		1955-68	. 2.10	0.4	В	
1505 + 57	. 1.0	0.6	1		1957+40	. 2.64	0.3	1	
1510-59	. 6.3	1.1	1		2001 + 62	. 1.45	0.4	2	
1515 + 23	. 0.69	0.2	В		2003 + 64	. 2.39	0.4	1	
1521 + 28	. 1.07	0.11	В	On cluster position	2019 + 39	. 3.14	0.4	1	
1530 - 44	. 2.97	0.6	1	~	2028 + 42	. 3.00	0.3	1	
1556 + 27	. 3.62	0.19	2	On cluster position	2046 + 31	. 0.49	0.17	1	
1601 + 15	. 1.84	0.18	В	On cluster position	2048 + 44	. 0.66	0.2	1	
1614 - 27	. 1.37	0.4	I		2056 + 49	2.98	0.2	1	
1621 - 23	. 1.20	0.4	l		2058 + 32	. 1.30	0.3	1	
1023 - 33	. 1.98	0.5	1		2104 + 31	. 0.72	0.2	1	
$1627 \pm 30$	. 1.09	0.4	1	On alustan position	$2120 \pm 32$	. 0.0	0.2	I	
$1027 \pm 39$	. 2.90	0.30	1	On cluster position	2120 - 00	. 2.30	0.4	В 1	
$1620 \pm 20.1$ 1631 - 64	. 0.71	0.2	1		$2129 \pm 12$ $2134 \pm 55$	2 21	0.7	1	
$1636 \pm 05$	1 20	0.7	R		2134 + 55 2135 + 57	. <u>2.2</u> 1	0.5	1	
1644 + 69	0.79	0.23	1		2206 + 54	. 0.94	0.2	1	
1651 + 39.	. 1.62	0.3	Î		2209 + 26	0.76	0.2	i	
1651 - 06	. 1.32	0.6	ī		2213 + 23	0.33	0.2	î	
1652 + 63	. 0.74	0.2	ī		2224 - 78	1.68	0.4	$\hat{2}$	
1659-76	. 1.63	0.3	В		2238 + 60	. C			
1700 + 24	. 4.2	≳2	1	v	2240 + 26	. 1.79	0.5	1	
1703 + 26	. 1.19	0.27	В		2252 + 18	. 0.44	0.2	1	
1704 - 30	. C	• • •			2259 + 16	. 0.78	0.2	В	
1707 + 78	. 2.38	0.16	B	On cluster position	2300 + 08	. 2.22	0.5	2	
1715 + 02	. 0.8	0.3	1		2305 - 07	. 2.0	0.6	B	
1/16 - 01	. 1.8	0.3	B		2315 + 15	. 1.89	0.20	2	On cluster position
1720 + 34	. 0.3	0.1	1		2316 + 61	C C		• • •	
1/22 + 11	. 1.6/	0.2	1		2333 + 42	. 0.84	0.2	1	<b>0</b> 1 <i>i</i> · · ·
1722 - 30	. 4.48	0.0	1		$2344 \pm 08$	. 2.04	0.69	2	On cluster position
1743 + 39 1745 _ L 70	. 0./	0.2	1		2344 - 21	. 1.83 2.24	0.4	В	On alwatan
1743 + 29 1750 <u>- 66</u>	1 05	0.5	1		$2343 \pm 21$	. 2.30	0.27	2 D	On cluster position
1803 - 60	1 4	0.4	I D		$2331 \pm 00$	1.15	0.2	В 1	

----

Notes.—Collimator  $1 = \frac{1}{2}^{\circ} \times 5^{\circ}$  FWHM; Collimator  $2 = 5^{\circ} \times 5^{\circ}$  FWHM. B = data from both collimators used. V = source variable.

TABLE 6

Sources from the Third Uhuru Catalog Not Observed in the Fourth Uhuru Catalog

sources are transient. Thus there is no compelling evidence for widespread variability among the highlatitude sources.

We have compared our PST intensities with the intensities given in the 2A catalog for those sources observed in common which have not been characterized as variable. The agreement is quite good, as can be seen from Figure 4.

408

1978ApJS...38..357F

 
 TABLE 7

 Sources from the Second Ariel Catalog Not Observed in the Fourth Uhuru Catalog

Name	Intensity (Ariel counts s ⁻¹ )	2A Error Box Area (deg ² )
<b>2A</b> 0102 – 242	$0.3 \pm 0.1$	1.00
$2A 0122 + 338 \dots$	$0.6 \pm 0.1$	0.22
2A 0235 – 526	$0.5 \pm 0.1$	0.08
<b>2A</b> 0349 – 139	$0.3 \pm 0.1$	0.30
<b>2A</b> 0456 – 449	$0.7 \pm 0.1$	1.13
2A 0526 - 328	$0.8 \pm 0.1$	0.16
2A 0708 – 357	$0.6 \pm 0.1$	1.07
2A 0710+456	$0.6 \pm 0.1$	0.15
2A 0738+498	$0.6 \pm 0.1$	0.58
2A 0815-075	$0.8 \pm 0.1$	0.45
2A 0859 + 509	$0.3 \pm 0.1$	1.45
2A 1041 – 079	$0.4 \pm 0.1$	0.39
$2A 1052 + 606 \dots$	$0.3 \pm 0.1$	1.34
2A 1102 + 384	$0.8 \pm 0.2$	0.04
2A 1150 + 720	$0.8 \pm 0.1$	0.10
2A 1219 + 305	$0.9 \pm 0.1$	0.10
2A 1306-012	$1.1 \pm 0.1$	0.21
2A 1347 – 300	$1.7 \pm 0.2$	0.10
2A 1348 + 700	$0.9 \pm 0.2$	0.28
2A 1418+485	$0.4 \pm 0.1$	0.22
2A 1508 + 062	$1.4 \pm 0.2$	0.09
2A 1519+082	$1.3 \pm 0.1$	0.28
2A 1556-756	$0.9 \pm 0.1$	0.66
2A 1659 + 337	$0.6 \pm 0.1$	0.76
$2A 1705 + 609 \dots$	$0.4 \pm 0.1$	1.62
2A 1938-105	$0.7 \pm 0.1$	0.24
2A 2009 – 569	$1.2 \pm 0.1$	0.07
2A 2040-115	$0.9 \pm 0.1$	0.40
2A 2151 – 316	$0.9 \pm 0.1$	0.25
2A 2220-022	$1.0 \pm 0.1$	0.17
2A 2237 – 256	$0.5 \pm 0.1$	0.41
2A 2251 – 179	$0.8 \pm 0.1$	0.19
2A 2315-428	$0.7 \pm 0.1$	0.07
2A 2318 - 272	$0.4 \pm 0.1$	0.56



FIG. 4.—Uhuru PST intensities of nonvariable sources listed in Table 5 are plotted versus intensities listed in the 2A catalog. The line is of slope 2.3, which represents our best estimate of the conversion from Ariel (SSI) to Uhuru counts.

# VIII. DISCUSSION

## a) Source Distributions

The sources in this catalog are displayed in galactic coordinates in Figure 5. This distribution does not differ markedly from that shown in the third *Uhuru* catalog. However, we do wish to emphasize two points.

First, we note the presence of an increased number of weak galactic sources  $(I < 10 \text{ counts s}^{-1})$  in the region  $100^{\circ} < l^{II} < 240^{\circ}$ . As Gursky (1975) suggested, these sources must be at distances of 5–10 kpc if they are to have luminosities comparable to those of the X-ray binaries. Because of their galactic longitude we would expect them to be nearer and hence of lower luminosity. Thus they may represent a distinct class of low-luminosity sources.

Second, the number-intensity distributions for galactic and extragalactic sources present no surprising results. Figure 6 shows both the galactic  $(|b^{II}| < 20^{\circ})$  and extragalactic  $(|b^{II}| > 20^{\circ})$  distributions. The observations from the fourth *Uhuru* catalog agree with previously derived functional forms and their normalizations (Murray 1977; Schwartz, Murray, and Gursky 1976; Matilsky *et al.* 1973).

#### b) Transient Phenomena

Variability of X-ray sources has now been observed to encompass an extraordinary range of characteristics. As the data base of X-ray astronomy continues to grow, the observed time scales increase correspondingly, and as capabilities improve, phenomena with ever shorter time scales are detected and studied. Table 8 lists the transient sources observed by *Uhuru* and listed in the catalog portion of this paper. We have included as transient those sources which are below the limits of detectability for a large portion—at least 50%—of the working life of *Uhuru*. These sources include "standard" transients such as the Norma transient, 4U 1543-47 = 3U 1543-47

TABLE 8

TRANSIENT	SOURCES
-----------	---------

Name	Maximum Intensity	Max/Min	Comments
4U 0115+63	70	>10	
4U 0336+01	100	>10	Several-day transient
4U 0836-42	47	>10	
4U 1543-47	2000	>100	
4U 1630-47	220	>20	Recurrent transient
4U 1730-22	120	>10	
4U 1735-28	565	> 20	
4U 1743 – 19	150	>15	Globular cluster transient in NGC 6440
4U 1807 – 10	10	> 3	
4U 1901 + 03	87	>10	
4U 1908 + 00	200	> 20	Recurrent transient
4U 1918+15	50	>10	in units for it

No. 4, 1978

#### FOURTH UHURU CATALOG

409



FIG. 5.—The sources listed in Table 1 are displayed in galactic coordinates. The size of the symbols representing the sources is proportional to the logarithm of the peak source intensity.



FIG. 6.—The log *N*-log *S* curves for galactic ( $|b| < 20^{\circ}$ ) and extragalactic ( $|b| > 20^{\circ}$ ) latitudes are shown. PST intensities were used for sources in Table 5. Sources with intensity less than 2.0 counts s⁻¹ were omitted since we cannot reliably correct for our coverage. We have corrected the galactic distribution for contamination using the  $|b| > 20^{\circ}$  distribution.

In the galactic plane we cannot detect the weaker sources within  $1^{\circ}-2^{\circ}$  of the strong sources. Therefore, the coverage for the weak sources is reduced, which could increase the points at 2 and 4 counts s⁻¹ by 10-20%.

The lines drawn to schematically show the galactic and extraglactic distributions are of slope -0.4 and -1.5 and normalizations 160 and 200, respectively. The extragalactic distribution is normalized to the entire celestial sphere, while the galactic distribution covers  $|b| < 20^{\circ}$  only.

(Matilsky *et al.* 1972; Li, Sprott, and Clark 1976); the first recurrent transient,  $4U \, 1630 - 47$  (Jones *et al.* 1976); and a high-latitude phenomenon lasting several days,  $4U \, 0336 + 01$ .

We have surveyed the entire Uhuru data base for transient events with durations of less than 1 day. Each peak detected in the computer search of the superposed data was tested for upward fluctuations by a factor of 2 or by  $3\sigma$  above the average intensity. In general the sources associated with such fluctuations were well known, e.g., Cygnus X-1 or binary sources going into or coming out of eclipse. Only a few single peaks resulting from such variability were found out of a total sample of 10,000 which could not be attributed to background fluctuations. These possible sources will be discussed in detail elsewhere. However, we mention this work here to point out that the weak sources in this catalog are not of this type.

We also wish to note that Grindlay and Gursky (1977) found bursts from MXB 1730-335 = rapid burster (Lewin *et al.* 1976) in the *Uhuru* data. This source is seen in the wide collimator superposed on other strong galactic center sources. It was therefore not selected by the data-processing system and is not contained in the catalog.

#### c) Seyfert Galaxies and BL Lacertae Objects

The first Seyfert galaxy X-ray source, NGC 4151, was observed by *Uhuru* (Gursky *et al.* 1971*a*) and was listed in the third *Uhuru* catalog. The recent *Ariel 5* catalog lists 10 additional Seyferts and shows that this type of galaxy comprises a significant fraction of the observed extragalactic X-ray sources. The present catalog confirms five of the already reported 410

11 and lists five additional suggested identifications. It is interesting to note that all the observed Seyferts are of type 1, supporting the suggested difference in the energy production mechanisms between type 1 and type 2 Seyferts (Weedman 1977). Also of interest is the large range of X-ray luminosity for this class of objects. Depending on the actual average luminosity of this class of X-ray emitting galaxies and their space density, they could produce a substantial fraction of the diffuse X-ray background. Tananbaum et al. (1978) discuss the Seyfert X-ray phenomenon in detail using Uhuru observations.

Cooke et al. (1978) reported X-ray emission from the BL Lacertae object Mrk 421. In this catalog we suggest that Mrk 501 is also an X-ray emitter and is associated with 4U 1651+39. Both of these BL Lacertae objects have been identified as radio sources (Colla et al. 1972) and may represent the first members of a new class of extragalactic X-ray sources.

## d) Clusters of Galaxies

X-ray emission from clusters of galaxies was first reported by Meekins et al. (1971), Fritz et al. (1971), and Gursky et al. (1971a, b). Kellogg et al. (1972) and Forman et al. (1972) first reported that the cluster sources are extended, with sizes comparable to those of the optically defined clusters. Clusters of galaxies form the largest single class of extragalactic X-ray sources. In the present catalog, 45 X-ray sources are associated with clusters whose distance class is less than or equal to 4. The distance and richness classes for each cluster are given in column (5A) of Table 1. We anticipate additional identifications as the presently unidentified high-galactic-latitude objects in the southern sky are studied optically.

Jones and Forman (1977) discuss the cluster sources listed in this catalog. They find that the X-ray luminosity of clusters is correlated with the optically determined richness. Based on PST results, several clusters appear more extended than suggested by other observations.

## e) Superclusters

Superclusters of clusters of galaxies, or second-order clusters, were first discussed by Abell (1958, 1961). Based on his catalog of clusters, Abell listed a subset of typical superclusters. When compiling this catalog, we found that several X-ray sources lay in groups of clusters. We therefore examined the possibility that superclusters are associated with X-ray sources.

Murray et al. (1978) have analyzed the sources contained in this catalog and suggest that superclusters may be a new class of X-ray-emitting objects. We have noted possible supercluster identifications in column (5A) of Table 1. Murray et al. (1978) suggest that the emission is produced by thermal bremsstrahlung from a hot gas pervading the entire supercluster. Their computations indicate that the mass of the gas is comparable to that of the clusters themselves. These objects should be extended, with sizes of several degrees, and their association with X-ray sources can be verified by the HEAO X-ray observatories.

As this catalog of X-ray sources represents the final compilation of sources observed by Uhuru, we wish to thank the many people who have helped make it possible.

Drs. A. Opp and S. Sofia of NASA Headquarters have been of invaluable assistance throughout this project. We wish to thank Dr. D. Kniffen for his continued support as the NASA Technical Officer. We would not have been able to complete the tremendous data-analysis effort which was required without his numerous efforts to make available the requisite computational facilities. We also acknowledge H. Bitting and the computer staff for assisting us with our logistical and technical difficulties at GSFC. We wish to thank J. Finn, R. Fitzpatrick, and N. Hall of the Center for Astrophysics Computing Center for accommodating our special needs. Several individuals have contributed to the SAS A project and, while not directly working on this present catalog, have helped us indirectly. These people include Drs. E. Schreier, H. Gursky, D. Koch, E. Kellogg, and M. Ulmer. We are grateful to Dr. G. Fabbiano and L. Chaisson for helping us to process the enormous amount of data used in this catalog. We wish to thank L. Emerson for his extensive programming assistance and G. Bower and G. Taubes for assisting in several of the tedious tasks required in the data analysis and compilation of the catalog. We are grateful to Drs. J. Huchra, H. Helmken, and G. Share, and J. Morris and A. Epstein for assisting with source identifications. We appreciate the excellent illustrations of J. Hamwey and J. Singarella for this article as well as previous ones. Finally, we wish to thank B. Rowe for helping with various administrative problems, and M. Twomey for preparing the manuscript.

This work was supported by NASA grant NAS5-20048.

#### REFERENCES

- Abell, G. 1958, Ap. J. Suppl., 3, 211. Abell, G. O. 1961, A.J., 66, 607. Adams, T. F. 1977, Ap. J. Suppl., 33, 19.
- Arp, H. 1966, in *Galactic Structure*, ed. A. Blaauw and M. Schmidt (Chicago: University of Chicago Press). Bahcall, J. N., and Bahcall, N. A. 1972, *Ap. J. (Letters)*, **178**, L1.
- Bahcall, N., and Sargent, W. 1977, Ap. J. (Letters), 217, L19.
  Becker, R. H., Boldt, E. A., Holt, S. S., Pravdo, S. H., Rothschild, R. E., Serlemitsos, P. J., and Swank, J. H. 1976, Ap. J. (Letters), 209, L65.
- Becklin, E. E., Neugebauer, G., Hawkins, F. J., Mason, K. O., Sanford, P. W., Mathews, K., and Wynn-Williams, C. G. 1973, *Nature*, **245**, 302.
- Belian, R. D., Conner, J. P., and Evans, W. D. 1976, Ap. J. (Letters), 207, L33.
  Bennett, A. S. 1962, M.N.R.A.S., 68, 163.
  Bolton, C. T. 1972, Nature, 235, 271.
  Bowyer, S., Byram, E., Chubb, T., and Friedman, H. 1964, Contemportation of the second secon

- Science, 146, 912.
- Bradt, H., Burnett, B., Mayer, W., Rappaport, S., and Schnopper, H. 1971, *Nature*, **229**, 96.

No. 4, 1978

- Bradt, H., Naranan, S., Rappaport, S., and Spada, G. 1968, Ap. J., 152, 1005
- Brinkman, A. C., Heise, J., den Boggende, A. J. F., Grindlay, J., Gursky, H., and Parsignault, D. 1977, Ap. J., 214, 35.
   Brucato, R. J., and Kristian, J. 1972, Ap. J. (Letters), 173,
- L105
- Carpenter, G. F., Eyles, C. J., Skinner, G. K., Wilson, P., and Willmore, A. P. 1977, *M.N.R.A.S.*, 179, 27.
  Colla, G., Fanti, C., Fanti, R., Ficarra, A., Formiggini, L.,
- Gandolfi, E., Gioia, I., Lari, C., Marano, B., Pariell, L., and Tomasi, P. 1972, Astr. Ap. Suppl., 7, 1.

- and Tomasi, P. 1972, Astr. Ap. Suppl., 7, 1. Cominsky, L., Forman, W., Jones, C., and Tananbaum, H. 1977, Ap. J. (Letters), 211, L9. Cominsky, L., Jones, C., Forman, W. and Tananbaum, H. 1978, Ap. J., 224, 46. Cooke, B. A., et al. 1978, M.N.R.A.S., 182, 489. Cowley, A., Crampton, D., Szkody, P., and Brownlee, D. 1976, IAU Circ., No. 2984. Davidsen, A., Malina, R., Smith, H., Spinrad, H., Margon, B., Mason, K., Hawkins, F., and Sanford, P. 1974, Ap. J. (Letters), 193, L25. Davison, P. J., Culhane, J. L., Mitchell, R. J., and Fabian,

- Davison, P. J., Culhane, J. L., Mitchell, R. J., and Fabian, A. C. 1975, Ap. J. (Letters), 196, L23.
  Delvaille, J. 1976, IAU Circ., No. 2936.
  de Vaucouleurs, G., and de Vaucouleurs, A. 1964, Reference Catalogue of Bright Galaxies (Austin: University of Texas Press)
- de Veny, J. B., Osborn, W. H., and Hanes, K. 1972, *Pub.* A.S.P., 83, 611; and private communication.
  Downes, D. 1971, A.J., 76, 305.
  Doxsey, R. 1975, *IAU Circ.*, No. 2820.
  Eyles, C. J., Skinner, G. K., and Willmore, A. P. 1975, *IAU Circ.* No. 2774.

- IAU Circ., No. 2774.
- Fabian, A. C., Zarnecki, J. C., Culhane, J. L., Hawkins, F. J. Peacock, A., Pounds, K. A., and Parkinson, J. H. 1974, *Ap. J. (Letters)*, **189**, L59.
- Finlay, E. A., and Jones, B. B. 1973, Australian J. Phys., 26, 389.

- Forman, W., Jones, C., Tananbaum, H., Gursky, H., Kellogg, E., and Giacconi, R. 1973, Ap. J. (Letters), 182, L103.
- Forman, W., Kellogg, E., Gursky, H., Tananbaum, H., and Giacconi, R. 1972, Ap. J., 178, 309.
   Fritz, G., Henry, R., Meekins, J., Chubb, T. A., and Fried-man, H. 1969, Science, 164, 709.
   Fritz, Gilbert, Davidsen, Arthur, Meekins, John F., and Fried-mene H. 1071, Ap. Unstantian John F., and Fried-mene H. 1071, Ap. Unstantian John Science, 164, 709.
- man, H. 1971, Ap. J. (Letters), 164, L81

- man, H. 1971, Ap. J. (Letters), 164, L81.
  Giacconi, R., Gorenstein, P., Gursky, H., Usher, P. D., Waters, J. R., Sandage, A. R., Osmer, R., and Peach, J. V. 1967, Ap. J. (Letters), 148, L129.
  Giacconi, R., Gursky, H., Kellogg, E., Levinson, R., Schreier, E., and Tananbaum, H. 1973, Ap. J., 184, 227.
  Giacconi, R., Gursky, H., Kellogg, E., Schreier, E., and Tananbaum, H. 1971a, Ap. J. (Letters), 167, L67.
  Giacconi, R., Kellogg, E., Gorenstein, P., Gursky, H., and Tananbaum, H. 1971b, Ap. J. (Letters), 165, L27.
  Giacconi, R., Murray, S., Gursky, H., Kellogg, E., Schreier, E., Matilsky, T., Koch, D., and Tananbaum, H. 1974, Ap. J. Suppl., 27, 37.
  Gregory, P. C., Kronberg, P. P., Seaguist, E. R., Hughes, V. A., Woodsworth, A., Viner, M. R., and Retallack, D. 1972, Nature, 239, 440.
  Grindlay, J., and Gursky, H. 1977, Ap. J. (Letters), 218, L117.
- Grindlay, J., and Gursky, H. 1977, Ap. J. (Letters), 218, L117.
- Grindlay, J., Gursky, H., Schnopper, H., Parsignault, D. R., Heise, J., Brinkman, A. C., and Schrijver, J. 1976, Ap. J. (Letters), 205, L127.
- Grindlay, J. E., Helmken, H. F., Hanbury-Brown, R., Davis, J., and Allen, L. R. 1975a, Ap. J. (Letters), 197, L9.
  Grindlay, J., Schnopper, H., Schreier, E., Gursky, H., and Parsignault, D. 1975b, Ap. J. (Letters), 201, L133.
  Cursky, H. 1075, Sumposium on X ray, Pincing, Goddard
- Gursky, H. 1975, Symposium on X-ray Binaries, Goddard
- Space Flight Center, Greenbelt, Maryland. Gursky, H., Kellogg, E., Leong, C., Tananbaum, H., and Giacconi, R. 1971*a*, Ap. J. (Letters), 165, L43.

- Gursky, H., Kellogg, E., Murray, S., Leong, C., Tananbaum, H., and Giacconi, R. 1971b, Ap. J. (Letters), 167, L81.
- Harnden, F. R., Jr., and Gorenstein, P. 1973, Nature, 241, 107. Hawkins, F. J., Mason, K. O., and Sanford, P. W. 1973, Nature Phys. Sci., 241, 109.
- Hearn, D. R., and Richardson, J. A. 1977, Ap. J. (Letters), 213, L115
- Hiltner, W. A., Werner, J., and Osmer, P. 1972, Ap. J. (Letters), 175, L19.
- Hjellming, R. M., and Wade, C. M. 1971, Ap. J. (Letters), 168, L21.
- Hoffman, J. A., Doty, J., and Lewin, W. H. G. 1977, IAU Circ., No. 3025.
- Hoffman, J. A., Lewin, W. H. G., Doty, J., Hearn, D. R., Clark, G. W., Jernigan, G., and Li, F. K. 1976, *Ap. J.* (*Letters*), **210**, L13.
- Holt, S., Boldt, E. A., Serlemitsos, P. J., and Kaluzienski, L. J. 1976a, Ap. J. (Letters), 205, L143.
- Holt, S. S., Boldt, E. A., Serlemitsos, P. J., Kaluzienski, L. J., Pravdo, S. H., Peacock, A., Elvis, M., Watson, M. G., and Pounds, K. A. 1976b, *Nature*, 260, 592.
- Hutchings, J. B., Cowley, A. P., Crampton, D., and Redman, R. O. 1974, Ap, J. (Letters), 191, L101. Jernigan, J. G. 1976, IAU Circ. No. 2900. Jones, C., and Forman, W. 1978, Ap, J., 224, 1. Jones, C., Forman, W., Tananbaum, H., Schreier, E., Gursky, H. Kellong, E. and Giacconi P. 1072, Ap. J. (Letters)

- H., Kellogg, E., and Giacconi, R. 1973, Ap. J. (Letters), 181, L43.
- Jones, C., Forman, W., Tananbaum, H., and Turner, M. J. L. 1976, Ap. J. (Letters), 210, L9.
- Jones, C., Giacconi, R., Forman, W., and Tananbaum, H. 1974, Ap. J. (Letters), 191, L71. Kaluzienski, L. J., Holt, S. S., Boldt, E. A., and Serlemitsos,
- P. J. 1976, Ap. J. (Letters), 208, L71.

- . 1977, preprint. Kellogg, E. 1970, American Science and Engineering, Inc. Report ASE 2536.
- Kellogg, E., Gursky, H., Murray, S., Tananbaum, H., and Giacconi, R. 1971, Ap. J. (Letters), 169, L99.
  Kellogg, E., Gurksy, H., Tananbaum, H., Giacconi, R., and
- Pounds, K. 1972, Ap. J. (Letters), 174, 165.
   Kellogg, E., Murray, S., Giacconi, R., Tananbaum, H., and Gursky, H. 1973, Ap. J. (Letters), 185, L13.
   Klemola, A. R. 1969, A.J., 74, 804.
   Kraus, J. D. 1966, Radio Astronomy (New York: Macmillan), Ap. J.
- p. 429.
- Krzeminski, W. 1974, Ap. J. (Letters), 192, L135.
- Leong, C., Kellogg, E., Gursky, H., Tananbaum, H., and Giacconi, R. 1971, Ap. J. (Letters), 170, L67.
- Lewin, W. H. G. 1976, *IAU Circ.*, No. 2922. Lewin, W. H. G., Hoffman, J. A., and Doty, J. 1976, *IAU* Circ., No. 2994. Lewin, W., McClintock, J., Ryckman, S., and Smith, W.
- 1971a, Ap. J., 166, 169
- Lewin, W. H. G. et al. 1976, Ap. J. (Letters), 207, L95. Lewin, W. H. G., Ricker, G. R., and McClintock, J. E. 1971b, Lewin, W. H. G., Nickey, G. K., and A. J. J. (Letters), **169**, L17. Li, F., and Lewin, W. H. G. 1976, *IAU Circ.*, No. 2983. Li, F. K. 1976, *IAU Circ.*, No. 2936.

- Li, F. K., Sprott, G. F., and Clark, G. W. 1976, Ap. J., 203, 187.
- Li, F., Jernigan, G., and Clark, G. 1977, IAU Circ., No. 3125. Liller, W. 1972, IAU Circ., No. 2415
- 1973, Ap. J. (Letters), 184, L37

- Lucke, R., Yentis, D., Friedman, H., Fritz, G., and Shulman, S. 1976, Ap. J. (Letters), 206, L25.
   Lugger, P. 1978, Ap. J., 221, 745.
   Maraschi, L., Treves, A., and van den Heuvel, E. P. J. 1976, Nature, 259, 292.
   Markert, T. 1972, LAU Circ. No. 2010.
- Markert, T. 1973, IAU Circ., No. 2540.
- Markert, 1. 19/3, IAU Circ., No. 2340.
  Markert, T., and Clark, G. 1974, IAU Circ., No. 2735.
  Markert, T. H., Bradt, H. V., Clark, G. W., Lewin, W. H. G., Li, F. K., Schnopper, H. W., Sprott, G. F., and Wargo, G. F. 1975, IAU Circ., No. 2765.
  Markert, T. H., Canizares, C. R., Clark, G. W., Li, F. K., Northridge, P. L., Sprott, G. F., and Wargo, G. F. 1976, Ap. 1 206.
- Ap. J., 206, 265.

412

- Markert, G. H., Clark, G. W., Lewin, W. H. G., Schnopper, H. W., and Sprott, G. F. 1973, *IAU Circ.*, No. 2483. Markert, T., Li, F. K., McClintock, J., and Rappaport, S. 1977, *IAU Circ.*, No. 3054.
- Matilsky, T. A., Giacconi, R., Gursky, H., Kellogg, E. M., and Tananbaum, H. D. 1972, Ap. J. (Letters), 174, L53.
   Matilsky, T., Gursky, H., Kellogg, E., Tananbaum, H., Murray, S., and Giacconi, R. 1973, Ap. J., 181, 753.
   Mauder, H., and Ammann, M. 1976, *IAU Circ.*, No. 2980.
   Mayer, W., Bradt, H., and Rappaport, S. 1970, Ap. J. (Letters), 150.
- 159, L115.
- McClintock, J., Li, F. K., Nugent, J., and Rappaport, S. 1977, *IAU Circ.*, No. 3039.
- 1977, IAU Circ., No. 3039.
  McClintock, J., Rappaport, S., Joss, P., Bradt, H., Buff, J., Clark, G., Hearn, D., Lewin, W., Matilsky, T., Mayer, W., and Primini, F. 1976, Ap. J. (Letters), 206, L99.
  Meekins, J. F., Gilbert, F., Chubb, T. A., Friedman, H., and Henry, R. C. 1971, Nature, 237, 269.
  Melnick, J., and Quintana, H. 1975, Ap. J. (Letters), 198, L97.
  Milne, D. K. 1970, Australian J. Phys., 23, 425.
  Moore R 1977 private communication.

- Moore, R. 1977, private communication.
- Murdin, P., Penston, M. J., Penston, M. V., Glass, I., Sanford, P., Hawkins, F., Mason, K., and Willmore, A. 1974, *M.N.R.A.S.*, **169**, 25. Murray, S. 1977, preprint.

- Murray, S. 1977, preprint.
  Murray, S., Giacconi, R., Forman, W., and Jones, C. 1978, Ap. J. (Letters), 219, L89.
  Oda, M., and Matsuoka, M. 1970, Progr. Elementary Particle Cosmic Ray Phys., 10, 305.
  Parsignault, D. R., Gursky, H., Kellogg, E. M., Matilsky, T., Murray, S., Schreier, E., Tananbaum, H., Giacconi, R., and Brinkman, A. C. 1972, Nature, 239, 123.
  Penston M. V. and Snarke L. S. 1975, Observatory 95, 17.
- and Diminian, A. C. 1972, Nature, 29, 122.
  Penston, M. V., and Sparke, L. S. 1975, Observatory, 95, 17.
  Ricker, G. R., McClintock, J. F., Gerassimenko, M., and Lewin, W. H. G. 1973, Ap. J., 184, 237.
  Rothschild, R., Boldt, E., Holt, S., and Serlemitsos, P. 1974, Ap. J. (J. et al.) 199, 112.
- Ap. J. (Letters), 189, L13
- Sandage, A. R., Osmer, P., Giacconi, R., Gorenstein, P., Gursky, H., Waters, J., Bradt, H., Garmire, G., Sreekantan, B. V., Oda, M., Osawa, K., and Jugaku, J. 1966, Ap. J., 146, 316.
- Schnopper, H. W., Epstein, A., Delvaille, J. P., Tucker, W.
- Doxsey, R., and Jernigan, G. 1977, Ap. J. (Letters), 215, L7.
  Schreier, E., Giacconi, R., Gursky, H., Kellogg, E., and Tananbaum, H. 1972a, Ap. J. (Letters), 178, L71.
  Schreier, E., Gursky, H., Kellogg, E., Tananbaum, H., and Giacconi, R. 1971, Ap. J. (Letters), 170, L21.

- Schreier, E., Levinson, R., Gursky, H., Kellogg, E., Tanan-baum, H., and Giacconi, R. 1972b, Ap. J. (Letters), 172, L79
- Schwartz, D., Murray, S., and Gursky, H. 1976, Ap. J., 204, 315.
- Seward, F. 1970, Lawrence Radiation Lab. Report UDID-1562

- 15622.
   Seward, F. D., Page, C. G., Turner, M. J. L., and Pounds, K. 1976a, *M.N.R.A.S.*, 175, 39.
   —. 1976b, *M.N.R.A.S.*, 177, 13.
   Swank, J. H., Becker, R. H., Boldt, E. A., Holt, S. S., Pravdo, S. H., and Serlemitsos, P. J. 1977, *Ap. J. (Letters)*, 212, L73.
   Swank, J. H., Becker, R. H., Pravdo, S. H., Saba, J. R., and Serlemitsos, P. J. 1976, *IAU Circ.*, No. 3000.
   Swank, J. H., Becker, R. H., Pravdo, S. H., and Serlemitsos.
- Swank, J. H., Becker, R. H., Pravdo, S. H., and Serlemitsos, P. J. 1976b, IAU Circ., No. 2963.
- Tananbaum, H., Chaisson, L. J., Forman, W., Jones, C., and Matilsky, T. A. 1976, Ap. J. (Letters), 209, L125.
  Tananbaum, H., Gursky, H., Kellogg, E., Giacconi, R., and Jones, C. 1972a, Ap. J. (Letters), 177, L5.
  Tananbaum, H., Gursky, H., Kellogg, E., Levinson, R., Schreier, E. and Giacconi, P. 1972b, Ap. J. (Letters), 174
- Schreier, E., and Giacconi, R. 1972b, Ap. J. (Letters), 174, L143.
- Tananbaum, H., Kellogg, E., Gursky, H., Murray, S., Schreier, E., and Giacconi, R. 1971, Ap. J. (Letters), 165, L37.
- Tananbaum, H., Peters, G., Forman, W., Jones, C., Avni, Y., and Giacconi, R. 1978, Ap. J., 223, 74.
- Terzian, Y. 1973, private communication. Toor, A. 1977, preprint.

- 176, 609

- Webster, B. L., and Murdin, P. 1972, Nature, 235, 37.
  Weedman, D. W. 1977, Ann. Rev. Astr. Ap., 15, 69.
  White, N. E., Mason, K. O., Huckle, H. E., Charles, P. A., and Sanford, P. W. 1976a, Ap. J. (Letters), 209, L119.
  White, N. E., Mason, K. O., Sanford, P. W., and Murdin, P. 1976b, M.N.R.A.S., 176, 201.
  Winkley B. E. and Leider E. M. 1076, Ap. J. (Letters), 204.
- Winkler, P. F., and Laird, F. N. 1976, Ap. J. (Letters), 204, L111.

L. COMINSKY, W. FORMAN, R. GIACCONI, C. JONES, P. JULIEN, S. MURRAY, G. PETERS, and H. TANANBAUM: Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138