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Abstract. We show the existence of a general relation between the parameters of periodic solutions
in dynamical systems with ignorable coordinates. In particular, for time-independent systems with
an axis of symmetry, the relation takes the form 0T/04= — 0®/0F, where T is the period, A4 is the
angular momentum, @ is the angle through which the system has rotated after one period, and E is
the energy.

1. The General Relation

We wish to call attention to a curious relation which is obeyed by families of periodic
solutions in dynamical systems. This relation does not seem to have been noticed so
far, although it is rather simple.

We begin by recalling some classical notions (Whittaker, 1937, Section 38 ; Goldstein,
1956, Section 7.2). Consider a dynamical system with n degrees of freedom, defined
by a Lagrangian

L(q1>°-°aqn> q.l""’ q.na t) (1)

and suppose that there are k ignorable coordinates. We may choose them to be
dis---» 9, and the Lagrangian reduces to

L(qk+1s'°-3qn9 q1,~°°9 qn’ t)' (2)
There are then k integrals of the motion

oL

= = Pi, i=1,..,k 3

7 =B ) 3

and the system can be reduced to n—k degrees of freedom by the process of ignoration
of coordinates. A new function, called the Routhian, is introduced '

R =

M=

B — L. ()

i=1

-
I

The k£ Equations (3) are solved for ¢;,..., §, and the resulting expressions are sub-
stituted in (4), so that R takes the form

R(qk+1:---aqn= q.k+1a'-'9 q’na t:ﬂl)""ﬂk)' (5)

As is easily shown, R is then the Lagrangian of a reduced system with n— k coordinates
Qi+1s---» 4u- The quantities f,,..., B appear as parameters in this reduced system.
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Once a solution of the reduced system has been found, the corresponding solutions
of the original system are obtained by computing the ignorable coordinates from

q; = f:—g ds, @i=1,..k). 6)

Note that k integration constants will appear as arbitrary additive constants in the g;.
We shall assume now that the Lagrangian (2) is periodic with respect to time, and
we take the period equal to 1 for convenience

L(qk+1,'~~a q.n,t+ 1) =L(qk+1>~-~a qnat)' (7)

The Routhian (5) is then also periodic with period 1. From now on we restrict our
attention to periodic solutions of the reduced system, i.e. solutions such that the reduced
variables and their derivatives come back to their initial values after one period

() =40, ¢1)=4(0), (=k+1..n. ®)

For given values of f,,..., B, we may expect such periodic solutions to exist in
general, because (8) represents a system of 2(n—k) conditions on the 2(n—Kk) initial
values.

We consider now a particular periodic solution of the reduced system

), G=k+1,...,n) )

and the corresponding solutions of the original problem. According to (6), after one
period each ignorable coordinate g; has increased by a quantity 7;, given by

1

T, = q(1) — 0) = f N T (10)

The T; have no reason to vanish in general; thus, the ignorable coordinates do not
come back to their initial values, and the solutions of the original problem are not
periodic in general.

The quantities T;, which we shall call generalized periods, do not depend on the
integration constants in (6). They do not depend either on the origin of time, i.e., there
is more generally

T, = qi(t + 1) — q:(2). (11)

Thus, the generalized periods T; can be considered as intrinsic parameters of the
periodic solution. They often have a simple physical meaning, as we shall see below.

Another intrinsic parameter of the periodic orbit is the Lagrangian action (Synge,
1960, Section 65), computed over one period

1

S = J.R dz. (12)

0
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So far we have been considering a particular periodic solution of the reduced
system, corresponding to given values of the parameters f, ..., fi. Suppose now that
'we let these parameters vary. The periodic solution will also vary, and will generate
a k-parameter family of periodic solutions, defined by

qi(taﬁlsﬂ"ﬁk): (l= k + 15'-', n)' (13)
Each generalized period becomes a function of the parameters
Ti(ﬁla“'sﬂk)’ (i= 1,---, k)- (14)

The Lagrangian action S, defined by (12), also becomes a function of the f;. We

compute the partial derivatives of this function, using (5)
1

a8 ( " oRd, I 0R, aR)
o RYy 22y OR) g (15)
op; f i=x+194; 0B, ;=k4104; 9B, B,

Substituting Lagrange’s equations

0

oR d (@R

bRl Bl 1

oq; dt (3%), (16)
we obtain

1

oS o d (8R aqj) ER]

—_— = — |—=—=3) + —| dz. 17

op, Jl:j=§+1 dt \9q; op, op, a7

0

The first term vanishes because the g;, R, and their derivatives all take again the same
values after one period. Taking (10) into account, we are left with

oS
P
The Lagrangian action S does not have an immediate physical meaning in general.

Therefore, provided that the number of ignorable coordinates is two or more, it is
convenient to eliminate S from the relations (18) and to write them in the form

=T, (=1,.,k). (18)

i, (G j=1,..,k). (19)

These equations relate in a simple way the generalized periods 7; and the integrals
B, inside a family of periodic orbits.

2. The Case of a Time-Independent Lagrangian

We consider now the very frequent case where the Lagrangian does not contain the
time explicitly. We assume also, as in the preceding section, that the system has &
ignorable coordinates, so that the Lagrangian has the form
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L(qk+la--~,qns q.ls'-" qn)' (20)

As is well known (Whittaker, 1937, Section 42), the time can then be considered as
an additional ignorable coordinate. To show this, we introduce a new independent

variable T and new dependent variables Q,,..., Q, defined by

g =0; for i#k+1; Gk+1 = 7T; t = Qrs1s (21)
from which we obtain

g = Qi/Qky1 for i#k+1;  Gors=1/Cks1, (22)

where the prime represents derivation with respect to 7. In effect, we have simply
exchanged the roles of g, ; and ¢. The new Lagrangian L* is given by

L*dr = Ldt, (23)
or, substituting (21) and (22),

L*(Qla“-a Qn’ Q’17~--: Qt’n T) = L(‘L-) Qk+2,°“’ Qna
Qi/Ql::+1’-"a QI’c/Q1,c+1= 1/Q1,c+1’ Ql’c+2/Ql::+1a---’ Q;/Ql,c+1)Ql’c+1

This new Lagrangian contains 7 explicitly; on the other hand, it does not depend on
Q1,-.-5 Qx+1. Thus we have a system with k+ 1 ignorable coordinates, to which the
treatment of the previous section can be applied. We obtain relations

oT}  oTf¥

BF ~ BF
where the ¥ and the T;* are the integrals and the generalized periods for the new
Lagrangian L*. Using (24) and (3), we have

(24)

Gj=1,.k+1) 25)

oL* oL
*=———’=—.= N i=1,...,k,
B =55 =5 =P )
oL¥* k oL Q; oL 1
Sy=gr—=L— Y F 26
P 00k+1 12:1 0Gy Qx+1 OGk+1 Qk+1 26)
" oL Q) " oL |
- =7 —=L— 2 —dq=—FE,
i1=%+2 9q; Ok+1 =194, i

where E is the total energy of the system (Whittaker, 1937, Section 41). Thus, the
first k integrals are the same as in the original system, while the last integral, associated
to the ignorable coordinate Q,,,; which corresponds to the original time, is minus
the total energy.

One minor difference with Section 1 is that the new independent variable 7 does not
grow monotonously, but oscillates for a periodic solution, since it corresponds to one
of the original coordinates. Thus, a periodic solution will now be characterized by the
property that the variables Q. ,,..., Q, of the reduced system and their derivatives
come back to their initial values when 7 itself comes back to its initial value. Integrals
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from 0 to 1 in the equations of the previous section should be replaced here by closed
path integrals, taken along one revolution of the periodic solution. The generalized
periods are

Ti*=§in=§dqi=Tio (l= la'-':k)’
27

Ti: = §ko+1 = 3€dt =T.

Thus, the first k generalized periods are the same as in the original system, and the
last generalized period Ty, , is simply the ordinary period T of the orbit, i.e., the time
taken by one revolution.

Using (26) and (27), we can now go back to the original system, described by the
Lagrangian (20), and replace the relations (25) by

oT, _ oT,

B; B,
where T, ..., T and f,, ..., p; are the generalized periods and the integrals associated
with the k ignorable coordinates ¢, ..., g, While Ty, and B, are defined by

Tk+1 = T, ﬂk+1 = —E. (29)

Gj=1..k+1), (28)

3. Applications

In the remainder of this paper, we shall consider the case of a time-independent system
with an axis of symmetry (Whittaker, 1937, section 39): we assume that g, is an
ignorable coordinate, and moreover that an increase of ¢, by a quantity a corresponds
to a rotation of the physical system through an angle a around the z axis. Then the
associated integral f; is the angular momentum with respect to the z axis, which we
call A. For periodic solutions, the generalized period 77 is the angle through which the
configuration has rotated after one period; we call that angle @.

Equations (28) and (29) give then

oT oD

94~ ~ °F 9
a remarkable relation between period, rotation angle, angular momentum, and energy
inside families of periodic orbits. We shall now consider some specific applications
of this relation.

(a) We consider first the classical problem of the plane motion of a particle in a
central field. This problem has two degrees of freedom. There are two ignorable
coordinates, the position angle and the time, associated to two integrals, the angular
momentum and the energy. Thus, the reduced system has zero degrees of freedom: the
problem is completely integrable. Every solution is periodic in the reduced system;
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this corresponds to the fact that every solution is a rosette curve (Landau and Lifchitz,
1960), repeating itself after a period T and a rotation @ around the origin. Thus, the
family of periodic orbits corresponds here to the totality of solutions. Each solution
is characterized by its energy E and angular momentum A ; for an arbitrary force law,
the period and the rotation angle are therefore functions T'(E, 4), ®(E, A). The rela-
tion (30) applies to these functions.

The relation shows in particular that if all the orbits are closed, i.e. @=0, then the
period is a function of energy only. This is the case for the inverse-square law, and
also for a force proportional to distance.

The ‘isochron’ model of spherical star clusters (Hénon, 1959) was defined by the
property that the period is a function of energy only. It encompasses the two cases
above, and also a more general case where the orbits are not closed. It was found that
the rotation angle @ is a function of 4 only. This observed property is now explained
by the relation (30).

(b) We consider now the motion of a paiticle in a time-independent, three-dimen-
sional, axisymmetric field. This problem has three degrees of freedom, and can be
reduced to one by using the integrals of angular momentum and energy; it cannot
be integrated further in general. For given values of 4 and E, isolated periodic orbits
are found; when 4 and FE are varied, two-parameter families are generated (see for
instance Mayer and Martinet, 1973). These families should satisfy the relation (30).

(c¢) Another application of interest is the N-body problem. As is well known, the
system can be reduced from 3N to 3N—6 degrees of freedom (Whittaker, 1937,
sections 157 to 159). We consider here for simplicity the system already reduced to
3N —4 degrees of freedom by the following restrictions: the centre of mass is at rest
at the origin, and the angular momentum is carried by the z-axis. Periodic solutions
will then form two-parameter families, with 4 and E as parameters, and the relation
(30) once more applies.

A further simplification of the relation is possible here, because of the similarity
property of solutions of the N-body problem (Landau and Lifchitz, 1960, Section 10).
Given any particular periodic solution, an infinity of other periodic solutions is
obtained by multiplying distances by A2, times by A3, and velocities by A7!; A is an
arbitrary parameter. This one-parameter family of periodic solutions is a subset of the
full two-parameter family to which the original periodic solution belongs. The energy
E is multiplied by A~2 and the angular momentum A is multiplied by A. The angle
@, being dimensionless, does not change. Therefore we have

D(A~2E, 14) = D(E, A). 31)
Deriving with respect to A and substituting A=1, we obtain
ob oP
Ao —2E 52 =0 (32)

and combining with (30)
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94~ ~2Eed (33)
Because of the similarity property, when one studies periodic solutions (or indeed
arbitrary solutions) of the N-body problem, it is sufficient to consider the solutions
which have a given normalized value of the energy E. Periodic solutions form then
simple one-parameter families, with A4 as parameter, and (33) can be written

o= TR (34
This relation has been verified numerically in the case of the plane three-body problem
(Hénon, 1975); in fact, it was the observation that an extremum of T along the family
coincided with an extremum of & which led to the relation (34), and then to the
general relation.

We remark that (34) can be written in the even simpler form

dT A

6~ "2 (33)

For a generalized N-body problem in which the force is proportional to the power
m of the separation, this relation becomes

dT m+34

3B~ 3E (36)
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