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ABSTRACT 

Hydrogen and helium are the major constituents of Jupiter and Saturn, and phase transitions 
can have important effects on the planetary structure. In this paper, the relevant phase diagrams 
and microscopic transport properties are analyzed in detail. The following paper (Paper II) 
applies these results to the evolution and present dynamic structure of the Jovian planets. 

Pure hydrogen is first discussed, especially the nature of the molecular-metallic transition 
and the melting curves for the two phases. It is concluded that at the temperatures and pressures 
of interest (T ä 104 K, P ^ 1-10 Mbar), both phases are fluid, but the transition between them 
might nevertheless be first-order. The insulator-metal transition in helium occurs at a much higher 
pressure (~70 Mbars) and is not of interest. 

The phase diagrams for both molecular and metallic hydrogen-helium mixtures are discussed. 
In the metallic mixture, calculations indicate a miscibility gap for T ^ 104 K. Immiscibility in 
the molecular mixture is more difficult to predict but almost certainly occurs at much lower 
temperatures. A fluid-state model is constructed which predicts the likely topology of the three- 
dimensional phase diagram. The greater solubility of helium in the molecular phase leads to the 
prediction that the He/H mass ratio is typically twice as large in the molecular phase as in the 
coexisting metallic phase. Under these circumstances a “density inversion” is possible in which 
the molecular phase becomes more dense than the metallic phase. 

The partitioning of minor constituents is also considered: The deuterium/hydrogen mass 
ratio is essentially the same for all coexisting hydrogen-helium phases, at least for T ^ 5000 K. 
The partitioning of H20, CH4, and NH3 probably favors the molecular (or helium-rich) phase. 
Substances with high conduction electron density (e.g., Al) may partition into the metallic phase. 

Electronic and thermal conductivities, viscosity, helium diffusivity, and Soret coefficient are 
evaluated for the fluid molecular and metallic phases, all to at least order-of-magnitude accuracy. 
The properties of the metallic phase are typical of a liquid alkali metal, and those of the molecular 
phase are typical of a dense neutral fluid (except that the conductivities may be almost metallic 
at the transition pressure). The opacities of molecular hydrogen and solar-composition mixtures 
are discussed for T æ 500 K, where molecular hydrogen alone may be insufficiently opaque to 
ensure convection in the Jovian planets. Sufficient opacity to initiate convection is probably 
supplied by the minor constituents. Current uncertainties are assessed. 
Subject headings: equation of state — planets : interiors 

I. INTRODUCTION 

Hydrogen and helium comprise roughly 85% of the 
total planetary mass in our solar system, and are the 
major constituents of Jupiter and Saturn. They are 
also the simplest atomic species, so their thermo- 
dynamic and transport properties should be amenable 
to first-principles calculation at those pressures which 
are presently unattainable by experiment. 

There has been recent intensive modeling of the 
interior of Jupiter by several groups (Podolak and 
Cameron 1975; Zharkov et al 1975; Hubbard and 
Slattery 1976; Stevenson and Salpeter 1976; Podolak 
1977), and much attention has been given to the 
equation of state and other thermodynamic derivatives 
for hydrogen and hydrogen-helium mixtures. How- 
ever, all these models assume a homogeneous mixture 

of hydrogen and helium. This assumption may be 
fundamentally incompatible with the phase diagram 
of hydrogen-helium mixtures. 

The present paper and the following paper (Steven- 
son and Salpeter 1977, hereafter Paper II) consider in 
detail the phase diagram for hydrogen-helium mix- 
tures, and its implications for the interiors of the Jovian 
planets. Since these implications depend on details 
of the transport (including fluid-dynamical) processes, 
the present paper also contains a survey of the current 
knowledge of the microscopic transport properties of 
dense hydrogen-helium mixtures. 

The present paper concentrates on the condensed- 
matter physics of such mixtures, with emphasis given 
to the pressure-temperature domain appropriate to 
Jupiter and Saturn. The emphasis is on the fluid 
state, which is almost certainly applicable to the 
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present interiors of Jupiter and Saturn, but there is 
also a discussion of melting curves for the hydrogen- 
helium phases. Since the Jovian planets contain 
constituents other than hydrogen and helium, the 
effects of these are considered briefly. The equation 
of state and other thermodynamic derivatives are not 
discussed in detail here, but an extensive review is to 
be found elsewhere (Stevenson and Salpeter 1976). 

In § II, we discuss the properties of pure hydrogen 
and helium, especially the melting curves and in- 
sulator-metal transitions. The nature of the molecular- 
metallic hydrogen phase transition is not yet well 
understood, but is expected to occur at 2 Mbar ^ P ^ 
4 Mbar and to be first-order at least until T x 103 K 
and quite possibly even for T ^ 104 K. At 104 K, the 
two phases are certainly both fluid. The insulator- 
metal transition in helium occurs at P ^ 70 Mbar, 
which is too high to be of interest for the Jovian 
planets. 

In § III, calculations (Stevenson 1975) for the phase 
diagram of metallic hydrogen-helium mixtures are 
reviewed. A miscibility gap is predicted for a solar 
composition mixture at megabar pressures and 
temperatures less than 104 K. 

In § IV, the phase diagram of molecular hydrogen- 
helium mixtures is discussed. Unlike the metallic 
phase, where an essentially first-principles calculation 
can be made, calculations for the molecular phase 
must rely on semiempirical intermolecular potentials, 
and are necessarily suspect. However, the prediction 
that helium is more soluble in molecular hydrogen 
than in metallic hydrogen is reliable. 

In § V, the conclusions of the previous sections are 
used to model a total phase diagram which simul- 
taneously accounts for the first-order character of the 
molecular-metallic hydrogen transition, the limited 
solubility of helium, and the thermodynamic pre- 
ference for helium to be dissolved in the molecular 
hydrogen rather than metallic hydrogen phase. This 
model may be numerically imprecise, but is expected 
to predict the correct topology of the (three-dimen- 
sional) phase diagram. The predicted phase diagrams 
are similar to those suggested by Smoluchowski 
(1973). This model contains two other useful features: 
First, it predicts the circumstances for which a 
“density inversion” occurs (i.e., when a helium-poor 
metallic phase is less dense than a coexisting helium- 
rich molecular phase). Second, it predicts the limited 
range of metastability for the molecular phase in the 
metallic region, and vice versa. 

In § VI, minor constituents are discussed. Immisci- 
bilities appear unlikely, but the partitioning of minor 
constituents among the various hydrogen-helium 
phases is undoubtedly nonuniform. A special case is 
deuterium, for which calculations indicate that the 
deuterium/hydrogen mass ratio in each phase is 
essentially uniform, at least for T ^ 5000 K. A model 
is proposed for other minor constituents, in which 
partitioning is in favor of the phase with the most 
similar electron density at the Wigner-Seitz cell 
boundary. This model predicts that HsO, NH3, and 
CH4 prefer molecular or helium-rich phases, but the 

degree of nonuniform partitioning is probably less 
than an order of magnitude. 

Section VII is a summary of the microscopic trans- 
port properties of the metallic phase. Electronic and 
thermal conductivities, viscosity, and helium diffusivity 
are given particular attention. 

In § VIII, the corresponding transport properties of 
the molecular phase are considered. In addition, the 
opacities of dense molecular hydrogen and solar- 
composition mixtures are discussed, especially for 
temperatures of order 500 K. 

Section IX concludes with an assessment of current 
uncertainties. In the following paper (Paper II), 
specific thermal and compositional evolutions of a 
hydrogen-helium planet like Jupiter are discussed 
semiquantitatively. 

n. THE PURE PHASES 

d) Hydrogen 

Even at T7 = 0 K, there must be some sufficiently 
high density for which the Pauli exclusion principle 
precludes the existence of molecules or localized states 
and dense hydrogen becomes a Coulomb plasma: 
protons immersed in an almost uniform, degenerate 
sea of electrons. Wigner and Huntington (1935) 
pointed out that this atomic state would be analogous 
to the conventional alkali metals and therefore metallic. 
This atomic state is referred to as “metallic hydrogen” 
to indicate that its high conductivity is a consequence 
of itinerant electronic states in a monovalent metal, 
rather than being a consequence of temperature. 

If the density is reduced sufficiently and the tem- 
perature is low enough, then it becomes thermo- 
dynamically favorable to pair the protons in the 
form of H2 molecules. This is the experimentally 
accessible molecular phase. The transition between 
the molecular and metallic phases occurs at a pressure 
given approximately by the dissociation energy per 
molecule divided by the volume per molecule: a few 
megabars. The molecular phase exists in both solid 
and liquid forms, and the metallic phase is expected to 
behave likewise. Additional low-temperature phases 
that cannot be categorized as either metallic or molec- 
ular are not yet rigorously excluded, but neither are 
they indicated experimentally or theoretically. We 
discuss below the metallic phase, the molecular phase, 
and the metallic-molecular transition. 

i) Metallic Hydrogen 
The evaluation of the thermodynamics of the alkali 

metals from first principles is well established for both 
the solid and fluid phases (see, for example, Stroud 
and Ashcroft 1972), and the properties of metallic 
hydrogen can be evaluated in a similar fashion. There 
are two important respects in which metallic hydrogen 
is unlike the conventional alkalis : the effective electron- 
ion interaction is stronger (because there are no core 
states) and quantum effects for the ions (i.e., protons) 
are significant (because of the larger electron-ion mass 
ratio). The former is particularly important at low 
densities whereas the latter is most important at 
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high densities and low temperatures. Hubbard and 
Smoluchowski (1973) have an excellent review of 
earlier work on metallic hydrogen and we comment 
here on more recent work, with a particular emphasis 
on the solid-fluid transition. 

The most recent calculations for a static metallic 
hydrogen lattice by a variety of perturbative and non- 
perturbative techniques are in excellent agreement 
(Ross and McMahan 1976). The most favored lattice 
structure has not been established, but this is un- 
important for most purposes since the energy difference 
between structures is so small. It has been suggested 
that the lowest energy structure is highly anisotropic 
(Brovman, Kagan, and Kholas 1972), but this con- 
clusion is premature (Hammerberg and Ashcroft 
1974; Ross and McMahan 1976). The finite tempera- 
ture and zero-point motion corrections are not as 
well understood (Brovman, Kagan, and Kholas 1972; 
Caron 1974; Straus and Ashcroft 1977) but appear 
to be describable by a Debye model in which two 
Debye temperatures are defined—one for the longi- 
tudinal modes and one for the transverse modes. 
Most of these calculations indicate that the transverse 
modes are “soft,” and in some instances the stability 
of the lattice is in doubt. 

Recent fluid-state calculations have been made by 
Hubbard and Slattery (1971), Stevenson (1975), 
Hansen and Vieillefosse (1976), and Hubbard and 
DeWitt (1976). As with all simple metals, the thermo- 
dynamic derivatives with respect to volume or pressure 
(e.g., the equation of state) are very similar to the solid. 
Thermodynamic derivatives with respect to tempera- 
ture (e.g., entropy) are, of course, substantially 
different from the solid, but the various methods used 
are substantially in agreement. The results are sum- 
marized in Stevenson and Salpeter (1976). 

The only rigorous way to calculate the melting 
temperature of a substance (assuming, of course, that 
the solid state exists) is by equating the Gibbs free 
energies for the two phases. This is a very difficult 
procedure since, although the energy of each phase is 
very accurately known, most of the energy is structure- 
independent, and the energy difference between the 
phases is very small at all temperatures. Pollock and 
Hansen (1973) used their Monte Carlo results for 
each phase to deduce a melting temperature TM for 
metallic hydrogen and found 

Tm ä 1500p1/3 K (1) 

by equating Gibbs energies, where p is the density in 
gem-3. This is probably an upper bound since it does 
not include the effects of screening on the ion-ion 
interaction. A similar calculation, including screening, 
has been attempted by Stevenson and Straus (un- 
published) using the solid-state free energies of Straus, 
Ashcroft, and Beck (1977) and the fluid-state free 
energies of Stevenson (1975). The fluid state appeared 
to always have lower energy, but the energy difference 
was found to be comparable to the errors inherent 
in the calculations. The conclusion reached is that 
equation (1) is indeed an upper bound. 
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Several other methods have been tried for estimating 
Tm. One common method is Lindemann’s rule, but 
this method is unreliable for a substance such as 
metallic hydrogen, where TM is less than the Debye 
temperature (Stevenson and Ashcroft 1974). Another 
method is based on the solidification of the classical 
hard sphere liquid at 45% packing (Wainwright and 
Alder 1958), but this method predicts TM ä HOOK 
at p = 1 g cm-3, a value that may be too low for the 
classical theory to be applicable (Stevenson 1975). 

At sufficiently high densities, where screening is 
unimportant, the large zero-point motion of the 
protons precludes a solid at T = 0 K. The density 
above which there is no solid is about 104-105 gem-3 

(Glyde et al. 1976; Van Horn 1967). This is too high 
to be of interest in the giant planets. Whether screening 
precludes a solid phase at much lower densities has 
not yet been established. 

If the solid exists at p # 1 g cm-3, then it is most 
likely a superconductor below about 100 K (Ashcroft 
1968; Caron 1974). If no solid exists, then an aniso- 
tropic superfluid may be possible. However, these low- 
temperature effects are not relevant to the giant 
planets where T ^ 104 K is implied (see Paper II), 
and the fluid state is ensured without invoking 
quantum effects. Subsequent discussion of the metallic 
state in this paper is mainly for the fluid. 

ii) Molecular Hydrogen 
At P ^ 0.1 Mbar this phase is quite well understood 

experimentally, but the experimental uncertainty 
increases as the pressure increases (Ross 1974). Past 
theoretical calculations are no more accurate than 
experiment at the highest pressures because of the 
failure of the pair potential approximation (Ree and 
Bender 1974), but recent band structure calculations 
(Ramaker, Kumar, and Harris 1975; Friedli and 
Ashcroft 1976) are potentially capable of greater 
accuracy. Nevertheless, it is still necessary for most 
purposes to resort to semiempirical pair potentials 
that are compatible with the experimental shock data 
(Ross 1974) yet are also plausible modifications of 
first-principles calculations (McMahan, Beck, and 
Krumhansl 1974). The most recent first-principles 
calculations of the effective pair potential are by 
Etters, Danilowicz, and England (1975) and include 
detailed consideration of the anisotropy of the inter- 
action. They found that the energy associated with 
molecular orientation becomes larger than the zero- 
point energy as the pressure increases, so that the 
molecules become “frozen” into a particular con- 
figuration at T = 0 K and P ^ 0.3 Mbar. The pre- 
ferred lattice configuration appears to be the tetragonal 
y-nitrogen structure rather than the essentially cubic 
a-nitrogen structure. At megabar pressures, the energy 
required to rotate a molecule is equivalent to a 
temperature of order 2000 K. 

The excited states of molecular hydrogen are even 
less well understood than the ground state. The 
characteristic temperature for intramolecular vibration 
appears to be only weakly dependent on density and 
may actually decrease at the highest pressures (Silver 
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and Stevens 1973). Electronic excitation and molecular 
dissociation at the highest pressures are not under- 
stood quantitatively, but are expected to be important. 
The thermodynamic uncertainties are discussed in 
Stevenson and Salpeter (1976). 

Recent fluid-state calculations have been made by 
Ross (1974) and Stevenson and Salpeter (1976), 
assuming a sphericalized potential. As usual, the solid 
and fluid equations of state at high pressure are very 
similar, provided the same potential is used for each. 
These fluid-state calculations suggest a melting 
temperature TM, according to the criterion that the 
packing fraction in the equivalent hard sphere liquid 
not exceed 45% (Wainwright and Alder 1958). For 
P ^ 0.4 g cm-3, Stevenson (1976a) finds 

Tm x 2800 p2 K , (2) 

and Ross (1974) has obtained similar results. This 
result is uncertain by perhaps 50%, because of the 
uncertainty in the effective potential, and also assumes 
that the potential can be approximated by a spherical 
average. This may be valid for the fluid phase, but if 
the solid has an ordered configuration of molecular 
orientations, then the hard sphere criterion may be 
invalid. However, similar values for TM are suggested 
by the Lindemann criterion (Neece, Rogers, and 
Hoover 1971). 

In summary, the thermodynamics of molecular 
hydrogen at P ^ 0.1 Mbar are not well understood, 
and the best constraint on the equation of state is the 
experimental shock data. The melting temperature 
is known to about a factor of 2, but is nevertheless 
almost certainly too low for the solid phase to exist in 
the present giant planets (see Paper II). Unlike 
metallic hydrogen, the molecular phase is increasingly 
classical as the pressure increases (Krumhansl and Wu 
1968). Despite the uncertainties, we shall find that 
useful quantitative calculations can be made. 

iii) The Molecular-metallic Transition 

There has not yet been a convincing experimental 
verification of this transition, although two claims 
(Grigoryev et al. 1972; Vereschchagin, Yakovlev, and 
Timofeev 1975a) have been made. The transition 
pressure is therefore estimated by theoretical calcula- 
tions for the energies of the two phases and the usual 
common tangent construction. The most recent and 
most accurate calculations for P = 0 K (Ross 1974) 
predict a transition pressure of between 2 and 4 
Megabars. The factor of 2 uncertainty reflects the 
uncertainty in the molecular equation of state. It has 
been suggested that there is a comparable uncertainty 
arising from the possibly incorrect usage of the free 
electron correlation energy in the metallic-state cal- 
culation (Monkhurst and Oddershede 1973; Ross and 
McMahan 1976). Since the correlation energy is very 
weakly density-dependent, this would represent an 
uncertainty in the energy scale and not in the equation 
of state. (Computation of the correlation energy in the 
molecular state from first principles would be even 
more difficult. This problem does not arise in most 
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calculations at present, which rely on the experimental 
properties of molecular hydrogen.) In conclusion, it 
seems almost certain that the transition pressure ex- 
ceeds 1 Mbar. An upper limit cannot be established 
with the same certainty, but is probably about 5 Mbar. 
For the “most likely” transition pressure of ~3 
Mbar, the densities at transition are roughly 0.9 g 
cm-3 for the molecular phase and 1.1 g cm-3 for the 
metallic phase. 

It is likely that the transition is first-order at zero 
temperature because of the apparent dissimilarity of 
the two phases (for example, the large predicted 
density change at the transition). The nature of the 
transition is directly related to the sign of the micro- 
scopic “surface energy” between the phases. In a 
simple model to be described below, this sign is found 
to be positive. 

As the temperature increases, entropy considera- 
tions ensure some “mixing” of the phases, and some 
temperature must exist beyond which the transition 
ceases to be first-order. It is possible that the upper 
limit of the first-order character is coincident with the 
melting curve; i.e., there exists a triple point at which 
metallic solid, molecular solid, and a “mixed” fluid 
phase are in mutual equilibrium (cf. Trubitsyn 1972). 
On the other hand, Landau and Zel’dovich (1943) 
favor at least one critical point in the fluid region, in 
which case distinct metallic fluid and molecular fluid 
phases could coexist. The solid-fluid transition is a 
rather subtle one, from an energetic standpoint, with 
the main change being the absence of long-range order 
in the fluid phase. Indeed, the volume change upon 
melting for either phase is very small (less than 3%), 
whereas the volume change that accompanies the 
molecular-metallic transition is comparatively large 
(20-30%). In other words, the electronic structures of 
the fluid and the solid are very similar whether one 
considers the molecular or the metallic state; but the 
electronic structure for molecular hydrogen differs 
substantially from that for metallic hydrogen. 

Nevertheless, two calculations (Kerley 1972; Aviram 
et al. 1976) suggest that the transition is continuous in 
the fluid state. Neither calculation can be regarded as 
satisfactory, since neither treats the two extremes (pure 
molecular and pure metallic) with a comparable degree 
of sophistication. Calculation of the phase diagram 
requires a very careful calculation of the Gibbs 
energy for an arbitrary mixture of the two phases. We 
shall not attempt this, but the relevant energies in 
such a calculation may be indicated by the following 
model. 

We first note that it is not meaningful to think of the 
electrons as being “localized” in very dense molecular 
hydrogen. With the exception of small regions centered 
on each proton (in which the electron density is highly 
nonuniform in both molecular and metallic phases), 
the electron density is quite uniform. In the language 
of band theory, dense molecular hydrogen is insulating 
because it is divalent, with a nonvanishing indirect 
band gap. In fact, this band gap is much less than the 
band width at megabar pressures (Friedli and Ashcroft 
1976). 
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Our model rests on three hypotheses : 
1. A hydrogen molecule exists as a bound, meta- 

stable state when surrounded by metallic hydrogen 
at P = Pt, the transition pressure. This hypothesis is 
crucial to the model, but difficult to verify. 

2. The volume per electron in a mixture of the 
metallic and molecular phases is approximately 
independent of position, i.e., the electron density does 
not fluctuate greatly according to whether one is near 
a molecule or near an unbound proton. This is 
reasonable, since the Thomas-Fermi screening length 
is comparable to typical interproton distances. 

3. The energy of a neutral entity (i.e., a “mole- 
cule,” or an unbound proton together with a screening 
cloud of one electronic charge) is a function only of 
the volume it occupies. This is the Wigner-Seitz 
hypothesis, and is expected to be quite accurate. 

Figure 1 shows the T = 0 K internal energies of the 
two pure phases (Ross 1974). Consider the formation 
of a molecule in the metallic state at the transition 
pressure Pt x 3 Mbar. According to hypothesis 2, 
this occurs with essentially no volume change. 
According to hypothesis 3, the cost in energy per 
proton is just the difference AE1 shown in Figure 1. 
Similarly, Ais2 is the energy cost per proton for 
breaking up a molecule in the molecular phase. Since 
these energies are both positive, we have established 
from very simple considerations that the microscopic 
surface energy, between the two phases, is positive. 
The transition will be first-order until a temperature 
Tc such that the entropy of mixing, roughly kBTc In 2 
(where kB is Boltzmann’s constant), is comparable to 
AE1 or AE2. This predicts that Tc is a few thousand 
kelvins. 

This model has been quantified (Stevenson 1976a) 
by expressing the Gibbs free energy per proton as a 
function G{x, P) of pressure P and of the fraction x 
of the protons which are bound in molecules. The 
transition pressure, critical temperature, and critical 

Fig. 1.—Internal energy at T = 0 K for molecular and 
metallic phases. Dashed line is a common tangent with slope 
P = 3 Mbar. See text for discussion of AEU AE2. 

concentration are found from simultaneous solution 
of the equations 

dJj_d*G_d*G_ 
dx dx2 ' dx3 ’ ( J 

where the derivatives are at constant pressure and 
temperature. The results are Pt x 3 Mbar, Tc # 
3500 K, and xc # 0.4. 

The significance of this model is not in the numerical 
results, but rather in the identification of the relevant 
energies. According to this model, the relevant energy 
characterizing the transition is an order of magnitude 
smaller than the dissociation energy of an isolated 

Fig. 2.—Several possible phase diagrams of high-pressure 
hydrogen. In (a) (top) no critical point exists. In (b) (middle) 
there is a critical point so that two distinct liquid states 
coexist. In (c) (bottom) the low-temperature phase diagram 
of (b) is joined in a natural way to the high-temperature phase 
diagram of Filinov and Norman (1975). The high-temperature 
dashed line represents the onset of degeneracy or even the 
possibility of another first-order transition (cf. Landau and 
Zel’dovich 1943). In all these phase diagrams, the solid 
metallic phase is assumed to exist. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
7 

7 A
p J

 S
. 

. .
35

. 
.2

21
S 

226 STEVENSON AND SALPETER Vol. 35 

hydrogen molecule. The estimated critical temperature 
is comparable to the melting temperature of the molec- 
ular phase at pilgern“3, but this is purely 
coincidental. Our model may, however, be misleading 
and our first hypothesis may not even hold. An upper 
limit to Tc is of order 105 K, and any value in the 
range 103 ^ Tc ^ 105 K cannot presently be dis- 
counted. In Figure 2, three possible high-pressure 
phase diagrams of hydrogen are shown to illustrate 
the large uncertainty. The bottom phase diagram in 
Figure 2 is highly unconventional, but is a natural 
extension of a recent suggestion by Filinov and 
Norman (1975) that hydrogen undergoes a gas-liquid 
transition, analogous to that of cesium, in which the 
gas is almost fully ionized nondegenerate atomic 
hydrogen, and the “liquid” is partially ionized atomic 
hydrogen. This last phase diagram is also in the spirit 
of the Landau-Zel’dovich (1943) hypothesis. 

To conclude, there is a quite high probability that 
the molecular-metallic transition is first-order in part 
of the fluid phase. The transition is possibly first- 
order even at 10,000 K, the relevant temperature for 
the present interior of Jupiter (see Paper II). 

b) Helium 
Helium is the most difficult element to ionize and 

the most difficult substance to metallize. Estimates of 
the insulator-metal transition pressure range from 
20Mbar to 100 Mbar (Simcox and March 1962; 
Trubitsyn 1967; Brust 1972; Ross 1972; 0stgaard 
1974; Stevenson 1976a), but the most reliable of these 
estimates are near the upper limit. Since this transition 
is so far removed from the hydrogen transition, we 
will effectively ignore it, but it may be important in 
cold stars of low mass. 

There are two approaches to the thermodynamics 
of helium. At low pressures, an interatomic pair 
potential compatible with experiment can be used 
(Trubitsyn 1967). At sufficiently high pressures (P ^ 
lOMbars), a first-principles approach analogous to 
metallic hydrogen can be used. This approach is 
accurate provided the band gap (between valence and 
conduction bands) is less than the valence band width, 
and does not require that the helium actually be 
metallic. The overlap between the two procedures is 
substantial and readily leads to a smooth interpolation 
between the low-pressure and high-pressure limits 
(Trubitsyn 1967). The considerations in the next three 
sections are not sensitive to the slight mismatch of the 
two approaches. 

The melting temperature can be estimated from the 
criterion for freezing of a hard sphere fluid or from 
Lindemann’s rule. At low pressures, the hard sphere 
criterion predicts TM ^ 1700 K at P = 1 Mbar and 
Tm ä 4500 K at P = 4 Mbar (Stevenson 1976a). At 
high pressures, the melting temperature increases less 
rapidly with 

Tm x 4700p1/3 K (4) 

for p in g cm-3 (Trubitsyn 1967; Stevenson and Ash- 
croft 1974). For example, TM x 10,000 K at P = 50 
Mbar. Like hydrogen, helium also melts at P = 0 K 

for a sufficiently high density (Stevenson and Ashcroft 
1974), but this is of no interest for the giant planets. 

III. METALLIC HYDROGEN-HELIUM MIXTURES 

We first consider fluid mixtures. The existence of 
miscibility gaps in many liquid metal mixtures is well 
known experimentally, but is difficult to predict 
theoretically since it depends on subtle free energy 
differences between the mixed and separated states. 
Nevertheless, it has recently become possible to pre- 
dict phase diagrams to roughly 10% accuracy, at least 
for simple metals where the interactions are well 
known (Stroud 1973). These calculations are based 
on a nearly free electron theory of metals, and a 
hard sphere perturbation theory for the structural 
properties of the liquid. 

Metallic hydrogen-helium mixtures differ from 
alloys currently accessible in the laboratory, in that 
there are no “core” electrons to contend with, so the 
accuracy of a calculation is limited only by our 
knowledge of the dielectric response of the electron 
gas and the structural properties of the liquid. On 
the other hand, the “bare” protons and «-particles 
are rather severe perturbations on the electron gas, 
so it is desirable to evaluate the electronic response 
to higher order than the usual low-order (linear 
response) approximation. A recent calculation (Steven- 
son 1975) evaluates the Gibbs energy to third-order 
in the electron-ion interaction, and uses a perturbation 
theory of fluids. This calculation predicts a miscibility 
gap, the pressure dependence of which is shown in 
Figure 3. Below the critical line, a mixture containing 
roughly 40% helium by number will phase-separate 
into helium-rich and hydrogen-rich phases. Below the 
dashed line, any mixture with a composition between 
10% and 70% helium will similarly phase-separate. 

Fig. 3.—Critical line for immiscibility in a metallic H-He 
mixture. Also shown ( ) is the temperature below which a 
solar composition mixture (10% He by number) would phase 
separate, and two typical adiabais ( ) appropriate to 
Jupiter or Saturn. 
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Calculations to second-order in the electron-ion 
interaction (Hansen and Vieillefosse 1976; Firey and 
Ashcroft 1976) confirm the general features of the 
phase diagram, but predict somewhat lower critical 
temperatures. The existence of a miscibility gap can 
be explained merely by consideration of the Madelung 
energy (the electrostatic energy of the point ions 
immersed in a uniform electron gas), although 
correct allowance for the nonuniformity of the electron 
gas appears to increase the gap. The Madelung energy 

can be adequately approximated by assuming ion- 
sphere charge averaging (Salpeter 1954), according to 
which Em at constant electron density is a linear 
function of ionic concentration. However, the com- 
parison of alloy and separated phases must be made 
at constant pressure, and Stevenson (1976&) shows 
that under this constraint, there is a nonlinear de- 
pendence of on ionic concentration such that the 
alloy is unfavorable relative to the separated phases. 
The crucial point is that at the densities and pressures 
of interest, the pressure is not just the Fermi contribu- 
tion (independent of composition), but also has a 
substantial (negative) contribution from isM. At much 
higher pressures (for which the electron gas is rela- 
tivistic) the miscibility gap may no longer exist, since 
constant pressure and constant electron density be- 
come equivalent (Dyson 1971 ; Witten 1974). In Figure 
3, Madelung energy considerations dominate for 
P ^ 102 Mbar, whereas the rise in the critical tem- 
perature at lower pressures is explained by higher- 
order effects (the nonuniformity of the electron 
gas). 

Pollock and Alder (1977) agree with the above 
conclusions in the high-pressure limit {P ^ 102 Mbar), 
but conclude that at the lower pressures relevant 
to Jupiter, helium may be highly soluble (perhaps 
soluble in all proportions). However, this conclusion 
is based on very crude models for the low-density 
interactions, and it is possible to construct physi- 
cally realistic models which predict that the helium 
solubility is least at zero pressure and increases 
monotonically with pressure for 0 ^ P ^ 102 Mbar. 
More needs to be known about the electronic structure 
of helium dissolved in low-density metallic hydrogen 
before firm conclusions can be reached for the solu- 
bility at the lowest pressures. We shall adopt the 
working hypothesis that helium is least soluble in 
metallic hydrogen at the lowest pressure of interest 
(i.e., at the molecular-to-metallic hydrogen transition), 
and that phase separation begins for T ^ 10,000 K 
at this pressure. 

Solid hydrogen-helium alloys have been considered 
by Straus, Ashcroft, and Beck (1977). Their calcula- 
tions indicate an even larger miscibility gap in the 
solid state than in the fluid state. This suggests that 
the liquidas for the alloy is lower than at least one of 
the melting temperatures for the pure phases, at all 
compositions. This effect of alloying on the melting 
temperature was suggested by Smoluchowski (1971) 
on the basis of known trends in metallic alloys. It 
follows that the metallic core of the giant planets is 
fluid (see Paper II). 

IV. MOLECULAR HYDROGEN-HELIUM MIXTURES 

In contrast to the metallic state, the molecular state 
is not readily amenable to first-principles calculations, 
and we are forced to resort to semiempirical pair 
potentials that are compatible with experimental data, 
yet are also plausible modifications of first-principles 
calculations. Experiments have been conducted on 
molecular H2-He mixtures for pressures up to 7 
kilobars, and a miscibility gap has been observed 
(Streett 1973). The calculation about to be described 
for megabar pressures can only be suggestive, and is 
not as quantitatively reliable as the metallic calculation 
reviewed in the previous section. 

The Helmholtz free energy F was calculated by 
Stevenson (1976a) as a function of density, tempera- 
ture, the fraction x (the number of molecules) of He 
in the fluid H2-He mixture. Two different calculations 
were carried out, one using a simple exponential 6-8 
form for all the interaction potentials, with the 
coefficients for the H2-H2, H2-He, and He-He inter- 
actions taken from Ross (1974), Shafer and Gordon 
(1973), and Trubitsyn (1967), respectively. This cal- 
culation was carried out for all pressures from 1 kbar 
up to 5 Mbar. The second calculation used Lennard- 
Jones 6-12 potentials and was carried out only at low 
pressures. From F, the Gibbs free energy G{P, T, x) 
was then obtained. For each pressure P, the require- 
ment d2G/dx2 = d3Gldx3 = 0 gives the critical tem- 
perature Tc and the critical helium mole fraction xc. 
The calculated results for TC(P) are given in Figure 4 
and agree fairly well with Streett’s experimental 
results, especially with regard to slope. The calculated 
ratio kBTc/Ge(P), where Ge is the nonideal gas part of 
the Gibbs free energy of the critical mixture, varies 
by only 50% as the pressure changes by two orders 
of magnitude. The slopes of the curves for Ge(P) and 
TC(P) are probably fairly reliable, and, in view of the 
agreement with the experimental data at low pressures, 

Fig. 4.—Critical line for immiscibility in a fluid H2-He 
mixture, for exp 6-8 and L-J potentials. Also shown are 
Streett’s experimental critical values (■) and a typical Jovian 
adiabat (•••). 
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the critical curve in Figure 4 is better than an order-of- 
magnitude estimate and perhaps within a factor of 2 
of the correct value. The calculated value for the 
critical helium mole fraction was xc # 0.55 at pres- 
sures appropriate to Streett’s experiment, close to the 
experimental value of xc # 0.58. The calculated value 
changed little with pressure, decreasing to ^ 0.50 ± 
0.05 at P = 3 Mbar. 

To summarize: If the intermolecular potentials can 
all be written in the simple form chosen, then Streett’s 
experimental results have implications for the phase 
diagram at megabar pressures. It seems likely that 
at P 3 Mbar, 2000 K ^ Pc ^ 6000 K. This is at 
least a factor of 2 smaller than the critical temperature 
of the metallic mixture at P ^ 3 Mbar. 

A notable feature of both Streett’s experimental 
results and the above fluid-state calculations is that 
Tc is very similar to the melting point of either pure 
phase. The eutectic temperature may be substantially 
lower, but there is nevertheless uncertainty as to 
whether fluid-state calculations are relevant. No solid- 
state calculation has been attempted for the mixture, 
and all subsequent considerations are confined to the 
fluid state. This is justified in our discussions in Paper 
II, since only the evolution prior to immiscibility in 
the molecular phase is considered in detail. 

V. THE TOTAL PHASE DIAGRAM 

The previous three sections have dealt with three 
aspects of the hydrogen-helium phase diagram as 
though they were distinct and unrelated. We now 
unify these into a single, coherent topology for the 
three-dimensional phase diagram (the dimensions 
being pressure P, temperature P, and composition x) 
according to the following model. 

We consider an arbitrary hydrogen-helium mixture 
as a constrained ternary system of N protons and 
helium atoms, in which xN particles are helium atoms, 
(1 — x)yAare unbound protons, and (1 — x)(l — y)N 
are protons bound together as H2 molecules. The 
Gibbs energy of the system is approximated as 

G(P, T) = xfi^XT) + i 2 *A(V2)(P)] , 

(5) 

where i ranges from 1 to 3, and Xi is the number 
fraction for each of the three species (z = 1 is He, 
i — 2 is H + , z = 3 is bound protons). Pi:f is the 
probability that a particle of species z will have a 
particle of species j as one of its nearest neighbors. 
The Gi{1) incorporate the ideal entropy of mixing and 
any chemical potential relative to an arbitrarily chosen 
energy zero. In other words, 

G1
(1) = kBT\n (xfs), 

G2
(1) = kBT\n [(1 - x)yfs] + , 

C3
(1) = ikBTln [(1 - *)(1 - y)/2s], 

s = x + (1 - a;);; + i(l - x)(l - y) , (6) 

where D is the dissociation energy of the hydrogen 
molecule. Entropy effects (other than the ideal entropy 
of mixing) are omitted in these expressions, since ther- 
mal contributions are minor perturbations in cold 
systems (these entropy perturbations can be readily 
reintroduced for evaluating thermal derivatives along 
phase boundaries). The diagonal elements of G¿/2) are 
known since they correspond to the three pure phases 
(see § II). The three distinct off-diagonal elements are 
found by assuming numerical values for the three 
distinct critical temperatures J^H-He), 7,

C(H2-He), 
and T^H-He). For example, T^H-He) is the solution 
of d2G/dx2 = d3G/dx3 = 0 for y = 1. A random 
mixture was assumed, so that = Xj/s. This simple 
choice automatically implies the following simple 
compositions for the critical mixtures: a:c = 1/2 for 
H-He, *c = 1/3 for H2-He (half H2, half He), and 
.y = 1/3 for H-H2 (half H2, half H)—all crude but 
adequate approximations. The total Gibbs energy for 
a given x, P, and T is then minimized with respect to 
y to yield the equilibrium state of the hydrogen. At 
sufficiently low temperatures there are two minima— 
one corresponding to “metallic” hydrogen, the other 
corresponding to “molecular” hydrogen. Except in 
special cases, one minimum will be lower than the 
other and correspond to the equilibrium state. The 
higher minimum corresponds to the metastable state. 
If the temperature is too high, or the helium content 
is too great, then the first-order character of the molec- 
ular-metallic transition is “washed out,” and there 
is only one minimum. 

For each (P, T) the existence of one or more 
common tangents to the equilibrium Gibbs energy as 
a function of x determines the coexisting phases and 
the thermodynamically inaccessible regions. In this 
way, the phase diagram was mapped out for all P, P, 
a; of interest. 

We shall describe in detail the results for the choice 

PC(H-He) = 12,000 K , 

PC(H2-He) = 6,000 K , 

Pc(H-H2) = 18,000 K , (7) 

which, according to the discussion of the previous 
sections, is a possible selection. (For simplicity, the 
pressure dependence of each Tc is ignored.) Figure 5 
illustrates the results. Consider, first, diagram (a), for 
which T = 13,000 K. At each pressure in the range 
3^4.6 megabars there coexist a helium-poor metallic 
phase and a helium-rich molecular phase whenever the 
total helium content lies within the shaded region. 
Below the dashed line, the metallic phase is more dense 
than the molecular phase, whereas the reverse is true 
above the dashed line. This “density inversion” is a 
consequence of the competition between the density 
increase accompanying the addition of helium, and 
the density decrease accompanying the metallic- 
molecular transition. At sufficiently large helium 
concentration a:, the first-order character of the 
metallic-molecular transition is lost and there are no 
excluded regions. 
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Fig. 5.—Phase diagrams for three different temperatures: 
(a) T = 13,000 K, (6) T = 7500 K, (c) T = 4000 K. In each 
case, the phase-excluded region is shaded. Above the dashed 
line ( ), the phase on the right-hand side of the phase- 
excluded region has greater mass density than the coexisting 
phase on the left-hand side. Below the lower dot-dashed curve 
( ) the metallic phase ceases to be metastable. Above the 
upper dot-dashed curve the molecular phase ceases to be 
metastable. Note the presence of a triple point A in diagram 
(c). 

Consider diagram (b) of Figure 5. Since T = 
7500 K < T^H-He), there is now a miscibility gap 
which extends to high pressures. This evolves smoothly 
from the “loop” of diagram (a). Notice that there is 
no clear distinction between the molecular-metallic 
transition and the phase separation in the metallic 
fluid. Proceeding smoothly along the lower phase 

boundary from small x to large x, the fluid pro- 
gresses smoothly from predominantly molecular to 
predominantly metallic. 

In diagram (c), T = 4000 K and there is now a 
miscibility gap in the molecular fluid. This miscibility 
gap forms smoothly from diagram (b), as Tis lowered, 
in the following way: At some critical temperature, 
rc*, an inflection becomes formed in the lower phase 
boundary of diagram (b). In this model, rc* is com- 
parable to rc(H2-He). For T < Tc* a minimum in P 
(as a function of x along the phase boundary) is 
formed, and the miscibility gap rapidly grows as T is 
further reduced. Immediately below Tc* a triple point 
[marked A in diagram (c)] is formed. Thus there is a 
line of triple points ending at a critical point T = rc* 
(at P x 3.5 Mbar). The concentration at the triple 
point is a sensitive function of temperature, and be- 
comes smaller as the temperature is reduced and the 
excluded region expands to fill most of (P, x)-space. 
At low temperatures, the “density inversion” effect 
eventually vanishes and the immiscibility effects 
dominate. 

For general values of the parameters in equation 
(7) one can define a “configuration space” in which 
each point is itself a phase diagram. This is shown in 
Figure 6 for the choice rc(H-He) = 2rc(H2-He). For 
given values of rc(H-He), rc(H-H2), and T one can 
find from this “configuration” diagram what the 
topology of the physical phase diagram is. 

In the following paper (Paper II) these model phase 
diagrams will be used in considering specific composi- 
tional and thermal histories of an evolving hydrogen- 
helium planet such as Jupiter. 

VI. MINOR CONSTITUENTS 

It is clear both from atmospheric observations and 
interior models that the hydrogen-helium planets 
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Fig. 6.—Various possible phase diagrams, assuming 
TUH-He) = 2 rc(H2-He). Each small diagram within the 
figure is a schematic representation of a (P, ^-diagram similar 
to that in Fig. 5. 

contain minor constituents at least to the extent of 
solar abundance. The distribution of these minor 
constituents is important both for model construction 
and for relating the observed atmospheric abundance 
to the total abundance. There is the possibility that an 
appropriately chosen minor constituent or group of 
constituents could be very precise66 tracers ” of internal 
dynamic processes by virtue of their almost complete 
partitioning into one of the hydrogen-helium phases. 
No especially appropriate tracer is indicated by the 
analysis of this section, which deals primarily with 
general trends. The special case of deuterium is dis- 
cussed separately. This section deals only with thermo- 
dynamic considerations. The actual distribution of 
constituents within an evolving planet also depends 
on fluid-dynamic and diffusive processes (Paper II). 

a) Deuterium 

Both CH3D (Beer et al. 1972) and HD (Trauger 
et al. 1973) have been observed in the Jovian at- 
mosphere, and the inferred deuterium abundance has 
been frequently quoted as indicative of the primordial 
solar (or even cosmic) abundance. The partitioning of 
deuterium therefore has an importance out of pro- 
portion to its abundance. Unlike other minor con- 
stituents, the chemical potential of deuterium is readily 
calculable (as a simple extension of the analysis of 
ordinary hydrogen). 

Consider, first, the partitioning of a small amount 
of deuterium between pure, coexisting molecular and 
metallic phases of ordinary hydrogen. Hubbard 

(1974) concluded that the mass fraction of deuterium 
in the metallic phase exceeds that in the molecular 
phase by roughly 15%. His calculation is for the 
“classical” (i.e., high-temperature) limit but neglects 
the vibrational degrees of freedom for the H2 and HD 
molecules, and also neglects dissociation. If, instead, 
one assumes that the vibrational degrees of freedom 
are fully excited and harmonic, then the chemical 
constant of HD is increased by £ In (f) relative to Hs, 
and the mass fraction of deuterium in each phase is 
exactly the same. (This is a general result for the 
classical limit and not a special property of hydrogen.) 
Excitation of the vibrational modes probably is 
achieved at 104 K, the temperature of interest, since the 
low-density vibrational temperature for H2 is 6000 K, 
and this does not appear to increase at high density 
(Silver and Stevens 1973). As the temperature is re- 
duced, another effect not considered by Hubbard 
becomes important: quantum corrections to the 
translational energy of the protons and deuterons in 
the metallic state. This can be calculated from the 
Wigner theory as in Stevenson (1975). This positive 
contribution to the chemical potential is larger for 
protons than for deuterons and therefore favors 
partitioning of deuterons into the metallic phase. (The 
competing quantum effect in the molecular phase is 
negligible.) The incomplete excitation of the vibra- 
tional modes of H2 and HD also favors partitioning 
into the metallic phase. Numerical calculations indi- 
cate that the mass ratio of deuterium (metallic) to 
deuterium (molecular) is essentially unity for T ^ 
8000 K, about 1.05 at T ^ 5000 K, and 1.25 at 
T x 2500 K. 

Consider now the partitioning of deuterium between 
hydrogen-rich and helium-rich metallic phases. In the 
relevant high-temperature limit, the only free energy 
contribution tending to produce a partitioning of 
deuterons different from the partitioning of protons 
is the quantum translational energy. According to the 
Wigner theory, the shift in equilibrium is such as to 
favor less variation of the ionic thermal de Broghe 
wavenumber. The deuterium-to-hydrogen ratio is thus 
greater in the helium-rich phase. Numerical calcula- 
tion, based on the evaluation of FQ in Stevenson 
(1975), indicates that this ratio is 10% larger in the 
helium-rich phase than in the hydrogen-rich phase 
at T = 5000 K, with the difference vanishing at 
T ^ 10,000 K. 

The deuterium-to-hydrogen ratios in coexisting 
hydrogen-rich and helium-rich molecular phases 
should coincide at the temperatures of interest, pro- 
vided the rotational and vibrational degrees of free- 
dom of the H2 and HD molecules are not strongly 
influenced by the fraction of helium in the local 
environment. In the absence of a detailed model for 
these modes, no quantitative calculation can be made. 
Substantially unequal partitioning seems unlikely, 
however. 

In conclusion, the partitioning of deuterium be- 
tween the various hydrogen-helium phases appears to 
preserve the deuterium-to-hydrogen mass ratio, at 
least for T ^ 5000 K. The deuterium content in the 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
7 

7 A
p J

 S
. 

. .
35

. 
.2

21
S 

No. 2, 1977 HYDROGEN-HELIUM FLUID PLANETS 231 

uppermost convective layers of hydrogen-helium 
planets should therefore be representative of the bulk 
composition, provided the reservoir of material from 
which the planet formed had a uniform distribution 
of deuterium. 

b) Other Minor Constituents 

First, consider the possibility of a phase transition 
caused by a minor constituent (e.g., insolubility of a 
minor constituent). This could occur independently 
of the existence of phase boundaries in the hydrogen- 
helium, but it is improbable for the low concentrations 
and high temperatures of interest. If the number 
fraction of a minor constituent is z, then an energy of 
about —kBT\nz, which favors the dissolved state, 
must be compensated by an effect which favors the 
separated phase. For example, water at T ^ 300 K, 
pressures of order of a few bars, and abundance 
z ä 10-3 can preferentially form droplets since 
— kBT\n z ^ 0.2 eV can be overcome by the binding 
energy of the liquid water. In the deep interior of the 
planet, however, —/:Brin z # 6 eV, and there is 
apparently no correspondingly large binding effect. 
Water is probably insoluble in molecular hydrogen at 
low enough temperatures or high enough concentra- 
tions, but this is probably not relevant to the deep 
interiors of present giant planets. We shall therefore 
restrict ourselves to a discussion of partitioning 
between phases of the hydrogen-helium system. 

The degree of partitioning is determined by equating 
the chemical potentials for the impurity in the two 
coexisting phases. At high pressures, the chemical 
potential can be meaningfully separated into four 
parts: (i) the “nonchemical” electronic contribution 
(i.e., a part which does not explicitly invoke the 
symmetry properties or discreet band structure of the 
electronic spectrum); (ii) residual chemical effects 
[i.e., electronic effects not included in (i)]; (iii) con- 
figurational (including entropy) effects, resulting from 
the different size of solute and solvent atoms; and 
(iv) the ideal free energy of mixing. 

Consider first the “nonchemical” electronic contri- 
bution. In the high-pressure limit, where the electrons 
can be considered to be a uniform Fermi gas, Steven- 
son (1976è) showed that the miscibility gap in a 
binary alloy increases as the difference between the 
nuclear charges of the constituents increases. A direct 
corollary of this result is that ions will partition so as 
to minimize nuclear charge differences. Thus all 
elements with Z > 3 will preferentially partition into 
the helium-rich phase of a hydrogen-helium mixture. 
A more general result, applicable to lower pressures, 
can be obtained by an extension of the Thomas-Fermi- 
Dirac (TFD) method. The usual TFD procedure for 
an alloy is to assume volume additivity, whereby the 
locally evaluated “pressure” at the Wigner-Seitz cell 
boundary is assumed to be the same for every cell. 
If electron correlation is ignored, or evaluated in a 
local approximation, then this also implies continuity 
of the electron density across cell boundaries (Salpeter 
and Zapolsky 1967). Clearly, this procedure predicts 

that the chemical potential of a constituent is inde- 
pendent of its environment (at a given pressure) so 
that no nonuniform partitioning could occur. The 
failure of the TFD method is not so much in the 
prescription for determining the charge density (which 
is very accurate at sufficiently high pressure) but in the 
unphysical procedures for evaluating pressure and 
assigning boundary conditions. We propose that a 
better, albeit more complicated, procedure is to en- 
force continuity of the electron density at the cell 
boundaries, and calculate pressure according to the 
rigorous (i.e., nonlocal) thermodynamic .derivative 
of the total energy with respect to volume. Let p = 
p(P) be the actual electron density at the Wigner- 
Seitz cell boundary (approximated by a sphere) at 
pressure P. Let V^p) be the specific (cell) volume of 
species /, and E^V) be the energy per cell (evaluated 
as though the substance were purely species /). In 
accord with the Wigner-Seitz philosophy, the total 
energy per atom is assumed to be 

E = J<xlEi{Vi[p(P)]}, (8) 
i 

where xt is the number fraction of species i. [The 
energy is not a linear function of the since p{P) is 
also a self-consistently determined function of the 
alloy composition.] It then follows that in the limit of 
vanishing concentration for species z, the chemical 
potential /x* is 

Pi = Pi0 + Vi > 

Pi° = EmptiP)]} + pvapííp)] , 

A 1 (dP\ \r ^ dVi l2 

(9) 

to lowest nonvanishing order in (p0 — Pi)> where pi(P) 
is the cell boundary electron density for a pure sub- 
stance composed of species z, and p0(P) is the cell- 
boundary electron density for the solvent phase (the 
relevant hydrogen-helium phase in this case). The 
TFD procedure (without correlation or with locally 
evaluated correlation) predicts p0 = pi and A/^ = 0. 
The above procedure does not require that the E^V) 
be evaluated according to TFD and, in general, 
p0 / pi- The A/xf is always positive, and can be re- 
garded as a microscopic “surface energy.” The model 
predicts that a solute preferentially enters the phase 
in which the cell boundary electron density is most 
compatible. For example, />(He) is more similar to 
p(H2) than ^(metallic H), and helium therefore prefers 
the molecular phase, in accord with our discussion in 
§V. 

Unfortunately, the pressure of interest is not high 
enough for simple generalities based only on nuclear 
charge. For example, Na and Al, elements with similar 
nuclear charges, behave quite differently. Pseudo- 
potential theory (with polarizable core states) suggests 
that the essentially monovalent Na has p x 0.041ao-3 

at P = 3 Mbar (a0 is the first Bohr radius), whereas the 
trivalent Al has p x 0.058ao“

3- (For a discussion of 
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pseudopotential theory, see Ashcroft and Langreth 
1967.) The corresponding cell boundary densities for 
hydrogen are 0.06ao“

3 (metallic) and 0.035-0.04ao-3 

(molecular). The metallic value is estimated from 
Wigner-Seitz calculations (Neece, Rogers, and Hoover 
1971) and the molecular value from band structure 
calculations (Friedli and Ashcroft 1976). If metallic 
hydrogen is the solvent, then (from eq. [9]), A^Na ^ 
2eV and Àju,A1 # 0; whereas if molecular hydrogen 
is the solvent, then A^Na # 0 and A^ ^ 1.5 eV. If 
other factors were negligible then A1 would prefer 
metallic hydrogen and helium-poor phases, whereas 
Na would prefer molecular hydrogen and helium- 
rich phases. Further generalization is difficult, and 
the partitioning of Fe and Mg (for example) is not 
readily predicted. One would expect, however, that 
atoms or molecules with closed shell configurations 
at low densities would, in most instances, still have 
low cell boundary electron densities even at megabar 
pressures, and prefer molecular or helium-rich phases. 
This might include the abundant “closed shell” 
species H20, CH4, and NH3 (but see the discussion 
on H20 at the end of this section). 

Consider, now, the “chemical” effects that are not 
implicit in the previous analysis. These are difficult 
to estimate, but appear to be small. For example, it 
might be supposed that a metal would not dissolve in 
dense molecular hydrogen because the available con- 
duction states in the hydrogen are separated from the 
valence band by an energy gap. However, the band 
gap is ^ 1 eV at the transition pressure (Friedli and 
Ashcroft 1976), so this effect may be less than that 
predicted by equation (9). Similarly, the categoriza- 
tion of polar and nonpolar molecules is meaning- 
less at megabar pressures, and the distinctions 
among covalent, ionic, and metallic bonding become 
inapplicable. 

The configurational contribution to the chemical 
potential can be estimated for the fluid phase by 
the hard sphere model (Lebowitz and Rowlinson 
1964), with the effective (pressure- and temperature- 
dependent) hard sphere diameters determined by 
minimization of the total free energy. Numerical 
calculations indicate that this contribution is several 
kBT at T ä 104 K, but that the difference between 
solute potentials for the various solvent phases is 
less than kBT £: 1 eV and therefore usually small 
compared with electronic differences. 

The ideal free energy of mixing is kBT In z, where 
z is the number fraction of the solute. Typically, the 
electronic chemical potential differences between two 
coexisting phases are a few eV, so that for kBT ^ 1 eV 
the value of z could change by as much as an order of 
magnitude as one crosses a phase boundary. 

We conclude with a brief discussion of the parti- 
tioning of H20, probably the most abundant minor 
constituent in Jupiter and Saturn (although possibly 
underabundant in the Jovian atmosphere, according 
to Larson et al. 1975). According to the preceding 
analysis, we would expect H20 to prefer molecular 
and helium-rich phases. However, this assumes that 
the configuration—and the electronic structure—of 

H20 is similar for each phase. Pure water is completely 
dissociated into H30

+ and OH- at about 200 kilobars 
(Hamann and Linton 1966) and is metalized at several 
megabars (Ramsey 1963; Vereschchagin, Yakovlev, 
and Timofeev 1975&), at which pressure nothing is 
known about the configuration. The dissociation does 
not significantly modify the previous analysis, since 
H30

+ and OH" are both isoelectronic with a closed 
shell atom (neon). However, one should consider the 
possibility that H20 enters metallic hydrogen as 
2H+ + On+ + (« + 2)e-, where ft > 0. Approxi- 
mate numerical calculations suggest that this is highly 
improbable, even for ft = 1, despite the similarity of 
the first ionization energy of oxygen (~13.6 eV) and 
the binding energy per electron of the metallic state. 
The problem is that the energy reduction gained by 
“metalizing” the oxygen atom is small, and does not 
compensate the rather large binding energy of the OH “ 
ion. The chemical potential of H20 in molecular 
hydrogen is ~20eV (relative to the isolated zero- 
pressure H20 molecule), whereas the chemical po- 
tential for the hypothetical metalized state (with the 
oxygen in the 0+ form) has a chemical potential 
~ 28 eY at least. 

VII. TRANSPORT PROPERTIES OF THE METALLIC 
PHASE 

We consider essentially all the “first-order” atomic 
transport coefficients in the following order: electrical 
conductivity, thermal conductivity, viscosity, self- 
diffusion, inter-diffusion, and radiative opacity. There 
is also a brief discussion of “second-order” (or off- 
diagonal) transport coefficients such as the Soret 
coefficient. 

a) Electrical Conductivity 

This has been evaluated by Stevenson and Ashcroft 
(1974) using the well-known Ziman theory, and the 
hard sphere static structure factors. In that paper, the 
temperature scale was only estimated, but subsequent 
thermodynamic calculations (Stevenson 1975) estab- 
lished the correspondence between hard sphere 
diameter and temperature for each density. An esti- 
mate can also be made for the dynamic corrections, 
using the theory of Baym (1964) and the molecular- 
dynamics results of Hansen, McDonald, and Pollock 
(1975) for the one-component plasma. The improved 
temperature scale and the dynamic corrections each 
modify the results of Stevenson and Ashcroft (1974) 
by as much as a factor of 2—but in opposite directions. 
The final result is the following approximate formula 
for the conductivity v: 

(T 
5 x 102V/3 

T(\ +• 3x) 
esu, (10) 

where p is the mass density in g cm-3, and x is the 
helium number fraction. This formula should be 
correct to within a factor of 2 for 1 ^ p ^ 102 g cm“3 

and 103 ^ 7" C 106 K, but should only be used for 
x ^ 0.2. In the conditions prevailing in the Jovian 
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core at present, a x 1017 esu, comparable to that of 
room-temperature alkali metals. The value of a given 
by equation (10) is about a factor of 2 larger than the 
estimates for solid metallic hydrogen by Abrikosov 
(1964) and Hubbard and Lampe (1969). 

b) Thermal Conductivity 

In the metallic phase, thermal conductivity is 
dominated by electronic transport. If the electrons 
are degenerate, and if the Bom approximation is 
valid (see Stevenson and Ashcroft 1974 for a discussion 
of this point), then the thermal conductivity is related 
to the electrical conductivity by the Wiedemann- 
Franz relation. The thermometric conductivity k is 
then given by 

^ 1.5 x 10V/3 /nx 
pCPK g ^ + ergs cm ^ ^ (11) 

or, if we assume Cp æ 37VfcB, where N is the number 
of ions per gram, 

k ^ 0.3p113 cm2 s-1. (12) 

Notice that the temperature T does not appear in 
equations (11) and (12). The accuracy and validity of 
these equations is the same as for the electrical con- 
ductivity. 

c) Viscosity 

Unlike the electronic transport properties above, 
viscosity and atomic diffusion depend explicitly on the 
dynamic properties of the fluid. There is no generally 
accepted and successful theory for the dynamics of a 
dense fluid. However, models which work for the 
conventional alkali metals, such as the Longuet- 
Higgins and Pople (1956) model, as adapted by 
Ascarelli and Paskin (1968) and modified by Vadovic 
and Colver (1971), probably are also satisfactory for 
metallic hydrogen. The following approximate formula 
is then deduced: 

v # 4 x 10-37,4“1/2 cm2 s"1, (13) 

for any hydrogen-helium mixture, where T4 is the 
temperature in units of 104 K. The apparent lack of 
density dependence in this result is only approximate. 
At the temperatures and densities of interest, this 
result should be correct to at least a factor of 5 (and 
probably a factor of 2). 

This calculation is based on a hard sphere approach. 
The opposite extreme is the one-component plasma, 
which can be regarded as the unscreened metallic 
state. Two calculations for this system (Hansen, 
McDonald, and Pollock 1975; Yieillefosse and 
Hansen 1975) agree that 

* x O.lwpf2 (14) 

to within a factor of 2, where œv is the ion plasma 
frequency and r is the radius of that sphere which 
contains one ion on the average. This formula yields 

233 

a value that is typically a factor of 2 smaller than 
equation (13), at least for T* 1, and it also predicts 
a very weak density dependence (v oc p~1,Q). 

From equations (12) and (13), we can now estimate 
the Prandtl number Pr: 

Pr = v-K 10-^^'V1,3 , (15) 

provided the helium content satisfies x ^ 0.2. (Helium- 
rich fluids may have a substantially lower k.) Thus, 
for r4 1 and p ^ 1 gem-3, Pr ^ 10-2, which is 
typical of liquid alkali metals. 

d) Self-Diffusion 

This transport property may not be of great 
interest itself, but it provides a means of estimating the 
more interesting interdiffusion (diffusion of helium 
in hydrogen). We use the same theory as for the 
viscosity (Vadovic and Colver 1971), which predicts 
that the product of self-diffusion D and viscosity v 
is given by 

Dv ~ O.17a20j^ , (16) 

where a is the effective hard sphere diameter, and M 
the ion mass. This result is experimentally verified 
when a is chosen by thermodynamic considerations 
alone. Thus, 

D 'Z,3 x 10"3p-2/3r4
3/2 cm2 s"1, (17) 

for both pure hydrogen and pure helium. 
The one-component plasma studies (Hansen, Mc- 

Donald, and Pollock 1975; Yieillefosse and Hansen 
1975) predict D oc p~^Tm and a magnitude that is 
typically a factor of 3 smaller than that given by equa- 
tion (17). This agreement is satisfactory, and suggests 
that this transport property is not strongly dependent 
on the details of the ion-ion interaction. 

e) Interdiffusion 

There is no similarly successful model for inter- 
diffusion, so we shall resort to empirical evidence. 
Experiments on liquid metal mixtures (Ejima and 
Yamamura 1973) indicate that the interdiffusion of 
one atomic species in another differs from the self- 
diffusion of the most abundant species to the extent 
that the species differ in “size.” Thermodynamic 
calculations (Stevenson 1975) indicate that the helium 
pseudoatom («-particle plus screening cloud of 
electrons) is 30% larger than the hydrogen pseudo- 
atom. The experiments then indicate that a small 
amount of helium in hydrogen should diffuse about 
half as rapidly as the self-diffusion of hydrogen. Thus 

Aï-né ^ 1-5 x lO“3^"2'3!^2 cm2s_1, (18) 

and independent of composition to a first approxi- 
mation. 

HYDROGEN-HELIUM FLUID PLANETS 
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To see whether diffusion is anomalous near a phase 
transition, we first express the interdiffusion co- 
efficient D in a more fundamental form (Landau and 
Lifshitz 1959): 

where p is the helium chemical potential, x is the 
helium concentration, and a is a “canonical” kinetic 
coefficient, as explained by Landau and Lifshitz. The 
requirement that entropy increase with time implies 
that a > 0. Consider, now, the specific Gibbs energy 
in Figure 7a. (This is a schematic representation of 
Fig. 2 in Stevenson 1975.) Between A and D, a fluid 
mixture is energetically unfavorable relative to sepa- 
rated helium-rich and hydrogen-rich phases. Between 
A and B and between C and D the fluid mixtures are 
metastable (i.e., d2\Gldx2 = dp/dx > 0). In these 
regions, phase separation must proceed by nucléation 
and can be strongly inhibited by the surface energy 
between the phases. Between B and C, the fluid mix- 
ture is unstable to spinodal decomposition (the onset 

Fig. 7. (a) {top)—Gibbs energy of mixing for a H-He 
mixture at a given pressure and temperature, as a function of 
helium concentration x. The dashed line is a common tangent 
to the Gibbs energy curve. Regions AB and CD correspond 
to metastable fluid mixtures, and the diffusion constant is not 
anomalous, except near B and C. The region between B and 
C corresponds to unstable mixtures, {b) {bottom) The phase 
diagram of H-He mixtures for a given pressure. In region I the 
uniform mixture is thermodynamically favored. In region II 
the uniform mixtures are metastable and diffusion is not 
anomalous. In region III the uniform mixture is unstable and 
undergoes spinodal decomposition. The dashed line separates 
regions of normal and “anomalous” diffusion. 

of long-wavelength concentration fluctuations), the rate 
of which is essentially limited only by diffusion rather 
than by surface energy. In this region, dp/dx < 0, and 
the diffusion coefficient can be regarded as negative 
in the sense that compositional inhomogeneities tend 
to grow rather than decay with time. At the points B 
and C, the diffusion constant is zero. In Figure lb the 
phase diagram for a given pressure is shown and the 
various regions indicated. Spinodal decomposition 
has recently been clearly simulated for the first time 
in computer experiments (Abraham et al. 1976) and has 
been the subject of several theoretical investigations 
(Abraham 1975a, b). 

The important point for our considerations is that, 
provided one is not within or near region III in Figure 
lb, the diffusion coefficient is not anomalous. We will 
return to this point in Paper II, where the dynamics 
of the phase separation are discussed for a real system. 

/) Radiative Opacity 

At the temperatures of interest (T æ 104 K), 
thermal photons have energies of order 1 eV. At the 
densities of interest (p^lgcm-3), the electron 
plasmon energy is of order 30 eV. Photons cannot 
propagate below the plasmon energy and still undergo 
substantial absorption above the plasmon energy. It 
follows that the radiative opacity exceeds the electron 
conduction “opacity” by many orders of magnitude 
in the metallic phase. It can therefore be ignored. 

g) Second-Order Transport Coefficients 

Among the many “second-order” transport co- 
efficients, there are those which characterize the effect 
of simultaneous concentration, thermal, and pressure 
gradients in a nonconvecting fluid. First, there is the 
barodiffusion caused by the pressure gradient. In the 
applications to be discussed in Paper II, the com- 
position varies over a smaller length scale than the 
pressure scale height, so the effect of barodiffusion is 
small. (Of course, barodiffusion does nevertheless 
ensure that the zero temperature final state of a self- 
gravitating body is inhomogeneous.) Second, there 
is the effect of solute flux on the thermal gradient (the 
DuFour effect). The Onsager reciprocal relations 
ensure that this effect is always negligibly small for a 
dense fluid (Caldwell 1973). Third, there is the effect 
of the temperature gradient on the solute flux Fx 

(Landau and Lifshitz 1959), 

= + (20) 

where x is the fractional concentration of solute (i.e., 
helium) and kT is the Soret (or thermodiffusion) co- 
efficient. This coefficient is not small in general: it 
can be as large as of order unity, and can have either 
sign. In a metal, an apparently successful model for 
kT (Bhat and Swalin 1971) evaluates this coefficient 
as the sum of a “dense gas” contribution (determined 
by the mass and size of the pseudoatoms) and an 
electronic contribution, given by Gerl (1967). The 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
7 

7 A
p J

 S
. 

. .
35

. 
.2

21
S 

HYDROGEN-HELIUM FLUID PLANETS 235 No. 2, 1977 

former was evaluated using the hard sphere diameters 
implied by thermodynamics, and the latter was 
evaluated using the conductivity calculations of 
Stevenson and Ashcroft (1974). Both contributions 
were positive and approximately 0.5x each, where x is 
the (assumed small) helium number fraction. In the 
situations of interest, we might therefore expect 
kT æ + 0.1. As in the case of molecular diffusion, this 
result should be viewed with suspicion if the fluid is 
near a phase transition. A positive value of kT implies 
that the helium tends to diffuse toward colder regions. 
In most of the considerations in Paper II, kT should 
be small enough to only slightly modify the solute 
flux (and certainly not change the direction of flux). 
We shall therefore ignore it. 

vm. TRANSPORT PROPERTIES OF THE MOLECULAR 
PHASE 

We repeat the considerations of the last section, but 
for the molecular phase. 

a) Electrical Conductivity 

Except near the molecular-metallic phase transition, 
molecular hydrogen is an insulator, and the only 
electrical conduction arises from impurities (Smolu- 
chowski 1972). However, quite general considerations, 
together with recent band-structure calculations 
(Friedli and Ashcroft 1976), indicate that the indirect 
band gap in molecular hydrogen vanishes at or near 
the molecular-metallic transition. Smoluchowski(1975) 
has pointed out that under these circumstances, the 
electronic conductivity at the phase transition could 
be within an order of magnitude of that given by 
equation (10). 

b) Thermal Conductivity 

If electrical conduction is almost metallic at the 
phase transition, then heat can be transported by 
electrons, with /c # 0.1 cm2 s-1 (eq. [12]). If no 
electronic degrees of freedom are available, then the 
less efficient molecular motions must be utilized. 
Neglecting the internal motion of the hydrogen 
molecule, this implies 

(2,) 

where c is a correction factor of order unity, <r is a 
hard sphere diameter, and M is the mass of the 
molecule. The correction factor can be deduced from 
Chapman-Enskog theory, or from Monte Carlo 
results for hard spheres (Alder, Gass, and Wainwright 
1970). As usual, the hard sphere diameter is deduced 
from thermodynamic models (e.g., § IV). For a 
hydrogen-rich fluid, the molecular contribution to k 
is then 

k: 10-2r4-
1/2 cm2 s-1, (22) 

accurate to perhaps a factor of 2, for p ^ 1 g cm-3. 

c) Viscosity 

Dense molecular fluids, like gases, have a Prandtl 
number close to unity. This property is predicted by 
kinetic theories and Monte Carlo calculations (Alder, 
Gass, and Wainwright 1970), which show that both 
viscosity and thermal conductivity vary linearly as the 
Enskog correction. We shall not attempt to evaluate 
the Prandtl number more accurately, so it is adequate 
to use 

v^10-2T4-
1/2 cm2 s-1. (23) 

If electronic transport is negligible, then Pr æ 1. If 
electronic transport is almost metallic, then Pr ^ 0.1 
or even 0.01. 

d) Self-Diffusion 

This transport coefficient is comparable to v, but 
varies inversely as the Enskog correction and thus has 
a different density and temperature dependence. Using 
equation (21), with c given by Monte Carlo results 
(Alder, Gass, and Wainwright 1970), one finds 

Dx4 x 10-3p"5/6r4
3/2 cm2 s"1 (24) 

for pure hydrogen or pure helium, to within a factor 
of 2. 

e) Interdiffusion 

The thermodynamic calculations (§ IV) indicate that 
the H2 molecule is 15% larger than the helium atom. 
The diffusion of a small amount of helium in hydrogen 
should therefore proceed slightly faster than the self- 
diffusion of hydrogen. This effect is smaller than the 
probable inaccuracies in the calculation, so equation 
(24) suflices for the interdiffusion. As in the metallic 
case, this result should be viewed with caution near 
phase transitions. 

/) Second-Order Transport Coefficients 

The only second-order coefficient that is likely to be 
important is kT, the Soret coefficient. The dense-gas 
theory (Chapman and Cowling 1952) predicts kT # 
0.5x, where x is the (assumed small) helium mole 
fraction. The positive value is ensured by the greater 
mass of the helium atom and the strongly repulsive 
character of the intermolecular potentials. As usual, 
this result is suspect near phase transitions. 

g) Radiative Opacity 

Unlike the preceding discussion, which has con- 
centrated on the dense fluid regime (p ^ 0.1 to 1 g 
cm-3), the radiative opacity is of interest for a much 
wider range of densities and temperatures. Interior 
models of Jupiter, for example, always assume an 
adiabatic molecular envelope, and do not allow for the 
possibility that molecular hydrogen may be sufficiently 
transparent for radiation to transport the internal heat 
flux subadiabatically. Stevenson (1976¿z) has considered 
this problem, and concludes that molecular hydrogen 
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alone is sufficiently opaque to ensure convection, 
except at temperatures and pressures for which the 
1500 cm-1 to 3000 cm-1 window in the hydrogen 
spectrum is important. These calculations are based 
on the theory and observations of Linsky (1969), 
Welsh (1969), and Herzberg (1952). In Jupiter, the 
1500 cm-1 to 3000 cm-1 window is most important 
for 400 K ^ T ^ 700 K. For T ^ 400 K, pure transla- 
tional and rotation-translational pressure-induced 
bands provide sufficient opacity to ensure convection, 
until the optical depth to free space becomes less 
than unity at T ^ 150 K (Trafton and Stone 1974; 
Wallace, Prather, and Belton 1974). At T ^ 700 K, 
the vibration-rotation translational band (v x 4000 
cm-1), and higher-order bands (v æ 8000 cm-1, 
12,000 cm-1) ensure convection in Jupiter. Since the 
pressure-induced opacity varies roughly as P2, where 
P is the pressure, and since the bands become 
broadened and overlapping at higher pressures, the 
radiative heat transport decreases as one goes deeper 
into the planet. At even higher temperatures (T ^ 
3000 K) free-free absorption, arising from the small 
number of conduction electrons in the molecular 
fluid, begins to dominate. Unlike the free-free ab- 
sorption usually considered (e.g., Clayton 1968), the 
molecular fluid is so dense that the electron-molecule 
interactions are more important than electron-ion 
interactions in ensuring momentum conservation. 

The region 400 K ^ P ^ 700 K is nevertheless 
probably convective, but only because of the small 
amounts of strongly absorbing molecules such as 
H20, CH4, and NH3. The opacities of these species are 
“spiky” at room temperature, with typical strong line 
separations of about 1 cm-1. However, the pressure 
broadening exceeds the line spacing for pressures in 
excess of 5 or 10 bars, so that the opacity becomes 
quasi-continuous. Assuming the validity of the quasi- 
continuous approximation, Stevenson (1976a) esti- 
mates that H20, CH4, and NH3 have sufficient 
combined opacity to “block” the 1500 cm-1 to 3000 
cm-1 hydrogen window in Jupiter. The data used 
in this calculation were Ferriso, Ludwig, and Thomson 
(1966) for H20; Burch and Williams (1962) and 
Plyler, Tidwell, and Blaine (1960) for CH4; and Gille 
and Lee (1969) and Benedict, Plyler, and Tidwell 
(1958) for NH3. Some uncertainty does remain, 
however, especially in the 2000-2500 cm-1 region 
where none of H20, CH4, or NH3 is strongly absorb- 
ing, so a careful band model is probably desirable. 

To conclude: A hydrogen-helium mixture is not 
sufficiently opaque to ensure convection in the deep 
atmosphere under typical conditions (such as those 
which prevail in Jupiter). The addition of a solar 
abundance of minor constituents (H20, CH4, NH3) 
probably suffices to reduce the radiative heat transport 

to less than 10% of the total and ensure an adiabatic 
thermal structure. 

IX. CONCLUSION 

It is evident from our discussion of the phase 
diagram that the main uncertainty lies in the value of 
the critical temperature for the pure molecular- 
metallic hydrogen transition. Whereas this critical 
value is only known to about an order of magnitude, 
the metallic H-He critical temperature is known to 
perhaps 20%, and the H2-He critical temperature 
to perhaps a factor of 2. This uncertainty forces us to 
consider a wide range of possibilities in Paper II 
(Stevenson and Salpeter 1977), where specific thermal 
and compositional evolutions are discussed. Improve- 
ments in the value of the molecular-metallic hydrogen 
critical temperature will not be easy from purely 
theoretical calculations, and some experimental input 
is highly desirable. 

The partitioning of minor constituents is clearly 
difficult to predict quantitatively, with the exception 
of deuterium. It is particularly desirable to understand 
more about the high-pressure properties of H20. 
Generally speaking, the relevant temperature (~104 

K) is too great for highly nonuniform partitioning of 
the kind that is observed in the Earth, for example. 
Constituents such as H20, CH4, and NH3 probably 
prefer molecular or helium-rich phases. 

With two notable exceptions (electronic con- 
ductivity and radiative opacity of the molecular phase), 
the transport properties are known to within a factor 
of 3, typically. This is usually quite adequate for the 
purposes of Paper II. The uncertainty in the electronic 
conductivity of the molecular phase near the molec- 
ular-metallic phase transition is of concern, since if 
electronic degrees of freedom are available for heat 
transport, then the efficiency of upward transport of 
helium by convection is generally low (see Paper II). 
The uncertainty in the radiative opacity is generally 
only large at those temperatures and pressures for 
which the opacity is one or more orders of magnitude 
in excess of that required to transport the heat flux 
at an adiabatic temperature gradient. 

Apart from the radiative opacity, where minor 
constituents are crucial, the effect of such molecules 
as H20, CH4, and NH3 on the phase diagram and 
transport properties is small, provided their abun- 
dances are close to solar. 
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