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ABSTRACT 

We present the detailed structure of the interaction of a strong stellar wind with the interstellar 
medium. First we give an adiabatic similarity solution, which is applicable at early times. Second, 
we derive a similarity solution, including the effects of thermal conduction between the hot 
(T x 106 K) interior and the cold shell of swept-up interstellar matter. We then modify this 
solution to include the effects of radiative energy losses. We calculate the evolution of an inter- 
stellar bubble, including the radiative losses. The quantitative results for the outer shell radius and 
velocity and the column density of highly ionized species such as O vi are within a factor 2 of the 
approximate results of Castor, McCray, and Weaver. The effect of stellar motion on the structure 
of a bubble, the hydrodynamic stability of the outer shell, and the observable properties of the hot 
region and the outer shell are discussed. 
Subject headings: hydrodynamics — interstellar: matter — stars: winds 

I. introduction 

In a previous paper (Castor, McCray, and Weaver 
1975, hereafter Paper I), a theory was presented 
describing how an early-type star with a strong stellar 
wind blows a large cavity, or “bubble,” in the ambient 
interstellar medium. The interior of the bubble is filled 
with hot (T ^ 106 K) shocked stellar wind at low 
density and the swept-up interstellar gas is compressed 
into a thin spherical shell. We suggested that the O vi 
observed by the OAO-C Copernicus UV spectrometer 
in the spectra of such stars occurs in the interface, 
where thermal conduction dominates, between the hot 
interior of the bubble and the shell. In Paper I we 
made a number of approximations that permitted us 
to obtain simple analytic formulae for the structure 
and evolution of the bubble. We promised to present 
a more detailed theory and to discuss further observa- 
tional consequences in a later paper; here we do so. 

The plan of this paper is as follows. In §11 we 
present solutions for the structure of an idealized 
model of adiabatic flow without thermal conduction. 
This model may be applicable to the early stages of the 
bubble and possibly to other systems, such as galactic 
winds. In §111 we discuss the method of calculation 
used to find the detailed hydrodynamic structure of a 
bubble. In § IV we describe the details—density, 
temperature, ionization structure, and emission and 
absorption of radiation—of the interior of the bubble 
during the intermediate stage of evolution and com- 
pare the results with the approximate theory of Paper 
I. In § V we follow the evolution of the system into the 
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late stage when radiative losses become comparable to 
the power of the stellar wind. We also describe 
approximately how the structure is modified by stellar 
motion. In § VI we describe the H i and H n regions 
surrounding the bubble. Finally, in § VII, we briefly 
summarize and add a few additional comments on 
observations. 

II. early stage 

Most of the theory of this paper concerns the 
following idealized model. At time ¿ = 0, an early- 
type star begins to blow a steady, spherically sym- 
metric stellar wind with constant terminal velocity Vw 
and mass-loss rate dMJdt. The mechanical luminosity 
of of the wind is therefore given by 

This wind interacts with an ambient interstellar gas of 
uniform atomic density n0 and given cosmic abun- 
dances, resulting in an expanding spherical system, 
which we shall call a bubble. Throughout its evolu- 
tion, the dynamical system consists of four distinct 
zones. Starting from within, they are: (a) the hyper- 
sonic stellar wind ; (b) a region of shocked stellar wind ; 
(c) a shell of shocked interstellar gas; and (d) ambient 
interstellar gas. This structurels depicted schematically 
in Figure 1. In §§ IV and V we shall discuss some 
consequences of relaxing the above idealizations. 

The evolutionary history of the bubble may be 
divided into three stages. At first, the bubble is ex- 
panding so fast that radiative losses in the gas do not 
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(d) 
AMBIENT 

INTERSTELLAR GAS (c) 
SHOCKED 

and 
dp dp dv _ pv _ 
£ + + p- + 2?- = 0. 
dt dr dr r (3) 

The equation of energy conservation for the adiabatic 
flow during this stage is 

D_ 
Dt {pp-y) = Q, (4) 

where D/Dt = d/dt + vd/dr and y = 5/3. 
As was shown in Paper I, the only dimensionless 

variable composed of Lw, p0, r, and t can be written 
f = r/R2(t) where 

R2(t)^*(Lwt*lp0yi*, (5) 

and a is a constant of order unity whose value remains 
to be determined. We define dimensionless functions 
of the self-similar flow by v(r) = F2 £/(£), p(r) = 
PoG(0 and p(r) = PqV2

2P(0- With these definitions, 
equations (2)-(4) become 

Fig. 1.—Schematic sketch indicating the regions and 
boundaries of the flow. 

have time to affect any part of the system, and the 
dynamics of each region is described by adiabatic 
flow. In the second stage, discussed in § III, radiative 
losses cause the expanding shell of swept-up inter- 
stellar gas in region (c) to collapse into a thin shell; 
but region (b), the shocked stellar wind, still con- 
serves energy. In the final stage, discussed in § V, the 
radiative losses also affect the dynamics of region (b). 

The structure of the bubble during the first stage and 
the transition from the first stage to the second stage 
have been considered by Avedisova (1972) and by 
Falle (1975). They show that the first stage lasts a very 
short time; therefore, the structure during this first 
stage is of somewhat academic interest. However, we 
shall review the problem, since the above discussions 
are not complete, and since the hydrodynamical 
solutions we obtain may apply to a broader context 
than just the present model of a stellar wind interacting 
with interstellar gas. 

We consider first region (c) of swept-up interstellar 
gas, whose outer boundary, at R2, is a shock separating 
it from the ambient interstellar gas (d), and whose 
inner boundary, at Rc, is a contact discontinuity 
separating it from the shocked stellar wind (b). The 
structure of this region can be described by a similarity 
solution (Avedisova 1972). Our calculation parallels 
the theory of the adiabatic blast wave given by Taylor 
(1950); the only substantive difference in the case at 
hand is that the energy is fed into the system at a 
constant rate instead of in an initial blast. 

Neglecting gravity and assuming that the flow is 
spherically symmetric, we find that the equations of 
motion and continuity are 

dv 
dt 

' dv \ dp 
+ v ^—I— 7— = 0. dr p dr (2) 

3(1/ - Ç)U' -2U + 3P'IG = 0 , (6) 

(U - OG'/G + U' + 2UI£ = 0, (7) 

and 

3(1/ - OP' - 3yP(U - OG'/G - 4P = 0, (8) 

where the primes denote differentiation with respect to 
£. As long as the expansion velocity V2 of the bubble is 
much greater than the sound speed of the ambient 
interstellar gas, the shock at R2 will be strong and the 
initial conditions needed to solve equations (6)-(8) are 
G(l) = 4, U(l) = 3/4, and P(l) = 3/4. 

We have numerically integrated equations (6)-(7) 
inward to determine the self-similar structure of 
region (c); the results are shown in Figure 2. The 
remarkable property of this solution is that the density 
function G(£) drops suddenly to zero at £c = 0.86. 
This determines the location of the contact surface: 
Rc = 0.86P2- At this point the pressure has the value 
P(0.86) = 0.59, and the velocity is given by U(£c) = 
0.86, or v(Rc) = 0.86 F2, as expected. This similarity 
solution was also obtained in a slightly different form 
by Avedisova (1972). However, the curves shown in 
Figure 1 there, particularly that of the pressure 
function, are not accurate. 

We now consider the flow in region (b), whose outer 
boundary is the contact discontinuity at Rc and whose 
inner boundary is a shock at R^ The assumption of a 
sharp discontinuity at R± is an idealization whose 
validity will be discussed in § III6. We shall see that the 
flow in region (b) is not self-similar (the ratio RJRc 
varies with time). However, we can make a very good 
approximation that enables us to obtain analytic 
expressions for the flow variables there, namely, that 
region (b) is almost isobaric. To see this, consider first 
the flow near the inner shock at Rx. We have that 
dRJdt « Vw, since dRJdt < V2 ~ Vw(pw[p0)112 « Vw. 
The sound speed is then ~ VW9 so that the time for a 
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No. 2, 1977 INTERSTELLAR BUBBLES 379 

Fig. 2.—The similarity variables 17(0, ^(0, and G(0 in 
region (c) for the adiabatic solution. The contact surface is at 
0 = 0.86. 

sound wave to cross region (b) is much less than the 
time t. Thus we may write the pressure of region (b) 
as a function only of time, p(r, t) = p{t) = p{R¿), for 
jRi < r < Rc. As a result, the adiabatic law and the 
continuity equation give 

\Dp 
p Dt ! P- v u) r2 drK J 25t 

An integration of equation (9) yields 

v(r t)=fM + ±i. vv, 1) r2 + 25t 

(9) 

(10) 

The function f(t) is determined by the boundary con- 
ditions On v(r) at r = Rc. At Rc, v(Rc) = 3Rc/5t. Thus, 

= + R.lrsR,. (11) 

The Rankine-Hugoniot conditions at the inner shock 
give 

r» +\ {jy 4dMw/dt 
K*1 ) = T ’ p(Rx ) = ^Tÿw ’ 

+^ 3 VwdMw¡dt 
) = 4 4-rrRS  

In the region R± < r « Rc, the flow is nearly steady, 

and we can apply the adiabatic solar wind theory (see 
Holzer and Axford 1970), with y = 5/3 and neglecting 
gravity. The appropriate subsonic solution is de- 
termined by the values above for v, p, and p at JR1 + . 
This solution gives the following relations for R1 « 
r«Rc: 

v Vw /15\3'2 Rl 
4 \16/ r2 ’ 

AdMJdt ( 16\3'2 

p ~ 4^1
2K„ \15/ 

P 
3 VwdMJdt ( 16\5'2 

~ 4 477V (i5/ 

The expression for v must match equation (11) when 
the second term in the latter is negligible. This implies 

/44\l/2/l6\3/4 V'2 

- (25j (isj (Vj)1'2 

= 0.90a3/2(- ^V'^Vu,1'10^'5 . 
\Po dt ) 

Substituting for Rx yields p for Rx <^r < Rc: 

= 227r(0.86a)3 4,5 ’ 

(12) 

(13) 

Comparing this expression with p{R^) shows that 
a = 0.88. 

A simple check on energy balance shows that these 
results are self-consistent. In region (b) the kinetic 
energy is negligible and the internal energy is 

Eb = m<Rc3 - Ri3)Mt) 

X IttRMO = i\-Lwt. (14) 

In region (c) the total energy Ec is just the work done 
up to the time t across the contact surface : 

Ec = f 4TTRMRc)p(t,)dtf = . (15) 

Thus, Eh + Ec = Lwt, which is the total energy 
released into the wind in time t. Numerical integration 
of appropriate functions of the similarity variables in 
region (c) shows further that 40.47o of Ec is kinetic 
energy, and 59.670 is thermal energy. 

Avedisova (1972) derived an incorrect result 
a = 1.02 from her similarity solution for region (c). 
As was pointed out by Falle (1975), this error is due 
to her assumption that the entire energy Lwt was 
stored in region (c), in contrast to the correct result 
(eq. [15]). Our similarity solution for region (c) agrees 
in detail with the solution that Falle obtained by a 
hydrodynamical calculation. 

The final function of interest is p(r, t) for region (b). 
The streamlines satisfy equation (11), where Rc cc t315. 
An integration of equation (11) yields r3 = R3 + 
Ct12125. Since R3 cc f45/25, all streamlines merge into 
the contact surface for large t. Note that C is negative 
for r < RC9 so these streamlines emerge from the 
origin at a finite time t0, which depends on C. Let t' be 
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the time when a streamline crosses the inner shock. 
Then we have r3 = Rc

3(0 — Rc3(tf)(t¡t')12125, or 
t' = t[l — r3/Rc

3(t)]25133. Now, since pec t~12125 

(from eq. [9]), we have p(r91) = p(Rl9 /t)12125, 
where tf) is taken to be the result found above 
for when Rx « r « Rc, i.e., 

p(R^ t') = (25in)t'(dMwldt)l47TRc
3(t') . 

Thus, we find 

p(r,t) 

^c3(0 

-8/33 

(16) 

Note that equation (16) assures that the total mass for 
r < Rc is t x dMJdt. Also, for r ^ « Rc, we have 
p ä constant, so the assumption of a quasi-steady 
flow was justified. The structure of region (b) given by 
equations (11) and (16) is also in agreement with the 
results obtained by Falle (1975). 

The first stage of evolution terminates when the 
time scale for radiative cooling of the swept-up 
interstellar gas in region (c) becomes comparable with 
the age of the system. Estimates of this time scale by 
Avedisova (1972), by Falle (1975), and in Paper I are 
in fairly good agreement; the typical time scale is 
~2 x 103 yr for a stellar wind of power Lw = 1036 

ergs s“1 and ambient density n0 = 1cm-3. Falle has 
investigated the collapse of region (c) in detail. He also 
shows that the structure of the bubble does not suffer 
the Rayleigh-Taylor instability during most of the 
evolution of the system, except possibly during the 
collapse of region (c). This is to be expected, since 
the expansion is always decelerating and the interior 
structure is stratified, with density increasing outward 
monotonically (see § Vc). 

HI. INTERMEDIATE STAGE 

a) Method of Calculation 

During this stage the swept-up interstellar gas in 
region (c) has collapsed into a thin, almost isobaric 
shell. The inner part of the shell, an H n region with 
temperature T ^ 104 K (see § VI), is adjacent to the 
hot {T > 106 K) shocked stellar wind of region (b). 
The thermal conduction from region (b) to region (c) 
profoundly modifies the structure of the bubble during 
this stage. The conductive energy flux is balanced by a 
mechanical energy flux in the reverse direction 
associated with evaporation of mass from the cold 
region into the hot region and by radiative losses in 
the interface. As we shall show, the evaporated mass 
overwhelms the mass that came from the star and is 
the predominant source of mass for the hot region, yet 
the depletion of the mass of the cold shell is negligible. 

The dynamics of the cold shell are easily described; 
the description is given in § II of Paper I, but it will be 
briefly repeated here. We let R2 stand for the radius of 
the cold shell, which, when the shell is thin, can be the 

radius either of the outer shock, or of the interface 
with the hot region. At advanced times the shell 
thickness is not negligible (see § VI), and we let R2 
stand for the radius of the interface between the cold 
shell and the hot interior. 

For the phase that will concern us in this section, Rx 
is much less than R2. (This will break down later.) 
Owing to the high temperature of the material between 
Rx and R2, the time for a sound wave to cross this 
region is small compared with the age, t, and therefore 
this entire region can be expected to be at a uniform 
pressure, p. Also, because this material is hot, the 
internal energy E contained within the region is much 
larger than the kinetic energy of the region. These facts 
allow us to find simple equations for the evolution of 
E and R2 with time. The mass of the shell is given by 
ms — (47r/3)R2

3Po- Since the volume within Rx is 
negligible compared with that within R2, E is related 
to p by 

3 477 
E = ^R2

3p. (17) 

The momentum equation for the shell becomes 

and the equation of energy balance for the hot region 
is 

dE 
dt 

a t> 2 dR2 
^P-dT 

(19) 

As can be checked by direct substitution, the solution 
to equations (17)-(19) is given by 

E = fiLj , (20) 

/ 250 \1/5 

(2D 

<22) 

Note that equation (21) has the same dimensional 
dependences as equation (5). However, the coefficient 
has changed from a = 0.88 to a = 0.76; this change is 
due to the collapse of region (c). 

In the remainder of this section we shall be con- 
cerned with the properties of region (b), whose 
pressure is given by equation (22). We have found that 
the structure of this region can be described by a 
similarity solution, provided that the conductive and 
mechanical energy fluxes in this region dominate the 
radiative losses. We shall first derive this solution; 
later we shall incorporate the radiative losses as a 
modification to the basic solution. 

We suppose that in the bubble interior the thermal 
conduction flux 

dr or I<2 
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is of the same order of magnitude as the mechanical 
energy flux 

imposed. Equations (26) and (28) can be combined to 
give 

Fm 

The coefficient of thermal conductivity is given by 
K = CT5/2 (Spitzer 1962), where C is a weak function 
of temperature which we shall treat as a constant. (The 
effect of saturation of the conductive flux, discussed by 
Co wie and McKee 1977, will be considered below.) 
The flow speed, t>, is of the same order as V2 or R2lt. 
In order that the two energy fluxes be comparable, T 
must be given by the following: 

which, when integrated, gives 

^-T5,2| = ^ + f’ (29> 

where C' is a constant of integration. The value of C' 
follows from condition B. This arises from the fact 
that the total energy flux 

mr - 

72/754/35 (£^8/35^2/35 

(1547T)8'35 C2'7 
6/35 

Therefore we introduce the similarity variables r, 
and defined by 

£ = — 

_ ( tc yn 
\pR22) 

_ v _ 5 vt 
~V2 

= 3R2 

(23) 

(24) 

(25) 

F = jpv — CT512 8T 
dr 

leads to the expression 

Anr2F = \ÍLJ2^tí - t5'2 = tfLw(ie + C'), 

and, since condition B requires that the left side tend 
to Lw at small £, the value of C' must be 11/10. 
Therefore 

, dr 11 3.¿2/ _ _5/2 — 2,¿ I  
2 ^ T de~ sè + TÖF (30) 

We suppose that r and ^ are functions of £ alone, and 
independent of t. In the same way equation (7) was 
derived from equation (3), we then find 

^ - Ï dr _ 22 
T dt;~ 2\ 

(26) 

and from the energy equation, which with the addition 
of thermal conduction reads 

_D 
Dt 

P_Dp 
p2 Dt 

J_d_ 
pr2 dr (CT”vf) (27) 

we derive the nondimensional equation 

3 & — ê dr _ 13 
edçy dèj 2 t dè 35 

(28) 

Equations (26) and (28) are the system we seek to 
solve in order to describe the hot region (b). Since the 
system is third-order in the space derivative, we need 
to impose three boundary conditions on the solution. 
These are: (A) The temperature tends to zero at 
r = R2, i.e., t->0 as f->l. (B) The sum of the 
mechanical and conductive energy fluxes must tend at 
small radius to the value consistent with the power Lw 
supplied by the stellar wind. (C) The mass flux through 
a sphere of constant £ must tend to zero as £ -> 0. 
(The condition is tantamount to the assumption that 
the main contribution to the mass of region [b] is the 
evaporative flux.) 

Condition B, the energy constraint, is readily 

Equation (30) can be used to eliminate ^ from equa- 
tion (28) to give 

Ul-eidr 13 
10 e rdè 35* 1 j 

In order to impose condition A we look for a solu- 
tion of equation (31) that tends to r ~ ^4(1 — ¿j)q as 
£ 1, where <7 is a positive constant. We find that the 
only such value of q is 2/5, and that this form for r 
satisfies the equation near £ = 1 for all values of A. 
That is, we can assume 

t ~ A{\ - 02/5 for|->l, (32) 

but A must be determined by the third boundary 
condition. A is related to the mass of the hot material. 
The rate at which mass evaporates from the shell into 
region (b) is given by (p = pkTjii) 

^ = lim A7rr2P{èV2 Ul r-*R0 
V) 

The limit can be evaluated by using equations (30) and 
(32), with the result 

dM, 
dt 

b _ 12 J5/2 ' — 7 5^ 
jirRy p. 2/7 

R22 (33) 
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which, when integrated with respect to t, gives 

Mb = l (|i)>7. (34) 

Condition C is a statement about the flux of mass 
through a sphere with a fixed value of That mass 
flux is proportional to £2(£ — ^/r, and so condition 
C takes the form 

lim — (f — <$0 = 0 , 
£-►0 T 

which, in view of equation (30), can be written as 

lim 
£-0 

D-}fV»g = 0. (35) 

In order to apply condition (35) we look for a solution 
of equation (31) that is valid for small We suppose 
that for small f each term on the left side of that 
equation is large compared with unity, so that we may 
consider instead the equation 

given by equation (7) of that paper. A similar formula 
follows from equation (32) and the value that we have 
found for A. We combine these with equations (21), 
(22), and (24), and the numerical value 1.2 x 10 ~ 6 for 
the constant C in the Spitzer conductivity formula, 
and derive the numerical formula 

T = 2.07 x 106L36
8/35«o

2/35Í6'6/35(1 - £>2/5 K , (37) 

where L36 = Lw/1036 ergs s""1 and /6 = ¿/106 yr. This 
differs from equation (7) of Paper I only in that the 
factor 1.98 of Paper I has become 2.07, a change of 
about 5%. The simple formula given in Paper 1 for 
column density of O vi ions is proportional to this 
coefficient to the power —1.5, so the column density 
is reduced by a factor of 0.9 on this account. 

So far we have neglected the cooling of the hot gas 
by emission of radiation. This process causes a unit 
mass of gas to lose energy at the rate nenAlp, where A 
is a certain function of the electron temperature and 
ionization state of the gas. With the inclusion of 
radiative losses, the energy equation for region (b) 
becomes 

d_ 
dt 

l ¿2 3/2 — = O 
y d£j lOr^dç ’ 

which has the integral 

¿2_3/2 d^ i 1 1 — C" 
* d£+ I0r C ’ 

in which C" is another constant of integration. Upon 
comparing this integral with condition (35), we see 
that C" must be zero. Another integration then gives 

with yet another constant of integration, C'". The 
limiting form of r for small £ given by equation (36) 
can be used to evaluate the terms that were neglected 
in approximating equation (31), leading to the im- 
proved approximation 

d_ 
dè ( dè) 

11 dr 
10r2 dè 

24 
35 

2/7 ̂ 6/7 < 

The first integral of this formula can be combined 
with equation (30) to give the behavior of the velocity 
for small £. It is 

£ - 2- (cTWr* 
P2Dt pr2 \ J dr) p ’ 

(38) 

With the similarity solution above, the conduction 
term and the terms on the left side of equation (38) 
vary as ¿~41/35, while the cooling term, if A can be 
regarded as a constant, varies as t~22135. So the cooling 
term grows in importance with time, and must 
eventually be considered. In practice, we have found 
that it must be included when the age exceeds about 
105 years, if the central star is a typical luminous O 
star. When cooling is important, the main parameters 
of a bubble, i.e., R2(t), ^(O* and Eb(t) must be 
allowed to deviate from their similarity solution values. 
The procedure we used to calculate the evolution of 
these parameters is discussed in § V. For our purposes 
here it is suificient to say that we allowed for deviations 
from the similarity solution, due to radiation losses in 
region (b). Specifically, the instantaneous value of 
d(\n R^ld In t is used in place of the constant 3/5, the 
instantaneous value of —¿/Inpjdln t is used in place 
of 4/5, and an estimate is made of (d In Tjd In t) on the 
basis of previous detailed models. Let these three 
numbers be denoted by «, ß, and 3, viz., 

~ ÍU - 

In order to find the solution of equation (31) that 
has the behavior of equation (32) near £ = 1 and the 
behavior of equation (36) for small £, we must solve 
the differential equation numerically. This is con- 
veniently done by using equation (32) to initiate 
integrations inward from £ = 1 for various values of 
A. Each integration leads to a value for the constant 
C", and A is adjusted until C" = 0. The value of A 
that is found is 1.646. 

In Paper I, one of the main results was the formula 
for the temperature, T = Tb(l — £)2/5, in which was 

din R2 

~dhu ’ 

d\np 
d\n t 

(39) 

(40) 

(41) 

With these definitions, equations (3) and (38) become 

+ 8 (42) 

/a In T\ 
\ain t )z 

equations 

r2drK ’ \ t ) T dr t 
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J_d_ 
pr2 dr (cwfH('-7r) 

IËT 
T dr 

nenl± 
P 

ß + 2.5S 
(43) 

These are analogous to equations (26) and (28). The 
boundary conditions are essentially the same : 

A. r->0 as r-^R2. 

B. i? -> F2 as r R2. (This is equivalent to the 
energy conditions used before.) 

C. i? -> 0 as r 0. (This is equivalent to eq. [35].) 

The mass flux from the shell into the hot region is 
given by 

dMb 

dt 
lim Airr2 

r->R2 

pp arjt — v 
T f 

This mass flux can be regarded as a parameter like A 
that must be adjusted in order to satisfy condition C. 
Equation (33) can be used as an initial estimate of 
dMjdt, which is then adjusted until the velocity found 
by numerical integration remains positive and less 
than arjt at some chosen small radius. For each value 
of dMbldt, the integration of equations (42) and (43) 
can be initiated at a radius r slightly less than R2 by 
using the relations 

T = 
125 k dMJdt 
\ 4 pC 4ttR2

2 r)215 , 

dT _ 2 T 
dr 5 R2 — r’ 

ccR2 dMb/dt kT 
t 47ri£2

2 H'P 

(44) 

(45) 

(46) 

One of the most interesting aspects of the structures 
of the bubble is the set of column densities of ions that 
are responsible for absorption lines seen in the 
spectra of the central stars with the Copernicus ultra- 
violet telescope. For that reason, and also because the 
cooling function A depends on the state of ionization 
of the gas, we want to examine the time-dependent 
ionization of the gas as it evaporates and expands in 
the bubble interior. If nu is the number density of the 
yth stage of ionization of element number f, then we 
have the following ionization rate equations 

dnu 1 d a 
-¿f + -pfrir wij) ^ nenij.1Cu^1 

+ neniJ+1aUj + 1 ne(Cifj + . (47) 

The ionization and recombination processes we have 
included are those of the coronal approximation: 
collisional ionization (rate coefficient Ci<;) and radia- 
tive plus dielectronic recombination (rate coefficient 

au). Ionization by the light of the central star is 
negligible in comparison with that due to electron 
collisions except in the region very near the cold shell 
where the temperature is too low to produce much 
collisional ionization. Similarly, ionization by cosmic 
rays and the X-ray background of the Galaxy can be 
neglected. One can easily check that ionization by UV 
and soft X-rays produced within the bubble is also 
negligible. We assume that the distributions of 
ionization stages within the bubble at different times 
are homologous, so that the ionization fractions 
xu = are independent of time at a fixed value 
of r/^2- This approximation should give acceptable 
results for the ionization fractions, since in the part of 
the bubble interior away from the cold shell the 
ionization state should tend to equilibrium, in which 
case the time-derivative term does not matter, and 
since near the cold shell the convective term in the 
equation will be much greater than the time-derivative 
term. The total density of element /, nh satisfies the 
continuity equation (3), so we find the following 
ordinary differential equation for the ionization 
fractions : 

dXjj 
dr 

— neXi'j-iCij-x + neXitj + 1aij + 1 

— ne(Citj + <Xi,j)Xij . (48) 

The species that we have treated are H 1-11, He 1-111, 
C i-vii, N i-viii, O i-ix, and Ne vi-xi. The collisional 
ionization rates used here, and the collisional excita- 
tion rates used for the calculation of A below, are 
given by Cox (1970) and Cox and Tucker (1969). The 
Cox and Tucker approximation for the ionization 
rates does not properly reflect the decrease in the 
ionization cross sections for high electron energies. As 
a result, for temperatures such that kT is much greater 
than the ionization potentials, the Cox and Tucker 
rates can significantly overestimate the true rates. The 
effects of our use of these rates, therefore, may have 
been to underestimate the degree to which the ions are 
out of ionization equilibrium. The dielectronic and 
radiative recombination rates were taken from 
Aldrovandi and Pequignot (1973). The cooling func- 
tion A is given by 

nenh = + CuXu 
i j \k 

+ nenAb, (49) 

where k labels excitation states of the ion /, y, xu,k is 
the excitation potential of the &th excited state above 
the ground state of that ion, is the rate co- 
efficient for excitation of that state from the ground 
state by electron collisions, xUj is the ionization 
potential of that ion, and Ab is the bremsstrahlung 
cooling function, (xu an(i Xu,k are taken from Cox 
1970.) We have also added the approximate contribu- 
tion to the total cooling function at T ^ 106 K due to 
Mg, Si, S, and Fe (see Shapiro and Moore 1976). 
Equation (49) expresses A in terms of the ionization 
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fractions and the temperature, and the ionization 
fractions are determined by equation (48). This cooling 
function is in turn used in equation (43) for the tem- 
perature structure, so that equations (42), (43), and 
(48) must all be integrated simultaneously. 

b) Structure of the Inner Shock 

In our work up to this point we have assumed that 
a shock front of negligible thickness exists at Rl5 
separating the free-streaming stellar wind from the 
hot, conduction-dominated material. Because of the 
very low density of the stellar wind, and its high 
velocity, we may question whether this is, in fact, the 
case. For the nominal conditions, dMJdt = 10"6 M© 
yr"1, n0=l cm-3, t = 106 yr, Vw = 2000kms_1, 
JRi is 1.735 x 1019 cm = 5.6 pc. We would be worried 
about the validity of our solution if the shock thick- 
ness were greater than a few times 1018 cm. One 
estimate of the thickness is given by the stopping 
distances for the stellar wind electrons and ions in the 
hot region. Because of the high velocities, the stopping 
is done primarily by the electrons in the hot region. If 
the conditions are described by a density « = 10_2 

cm-3 and temperature T = 106 K, then the stopping 
distances calculated from the transport coefficients of 
Spitzer (1962) are 7.5 x 1014 cm for electrons, and 
2.7 x 1018 cm for protons. In actuality, the shock 
front will very likely be of the collisionless type, in 
which binary particle interactions will be relatively 
unimportant. In the absence of a magnetic field, one 
might expect a turbulent electrostatic shock, as dis- 
cussed by Tidman and Krall (1971). The shock thick- 
ness in this case is uncertain, but likely to be of the 
order of the wind speed divided by the proton plasma 
frequency. That distance is about 109 cm in this case. 
This thickness is certainly short enough to be neglected. 

The shock structure that results from the collision- 
less shock is complicated by the fact that the shock 
transition affects the ions, but leaves the electron 
distribution function nearly unaltered. This is a result 
of the great mobility of the electrons, a property that 
is also responsible for the importance of conduction in 
the hot region. The solution we obtained for the 
temperature distribution in the small r region, which 
should apply just outside r = Ru implies that the 
entire energy flux is carried by conduction. This is in 
contrast to the case discussed by, for example, 
ZePdovich and Raizer (1967), in which conduction is 
negligible except in the shock front itself. Thus one 
should probably not think of the electrons as passing 
through a shock at all. Two other facts support this 
view. The first is that the mean thermal speed of the 
electrons in the conduction region is several times 
108cms_1, larger than the shock speed. The other 
fact is that the saturated conduction flux formula given 
by Cowie and McKee (1977) yields a value at Ri that 
is nearly equal to the conduction flux demanded at that 
point by equation (36); the implication is that the 
electron velocity distribution is highly skewed in the 
outward direction. Thus the electron velocities are not 
randomized in direction upon passage through the 

shock, but only at a radius larger than Rx where the 
conduction flux is not saturated. 

Evidently the nature of the shock transition at R1 is 
not simple, especially as it applies to the electron 
distribution function. Fortunately, the overall struc- 
ture and evolution of the bubble do not depend on the 
details near R^ because all of the power of the stellar 
wind must flow through this region into region (b), and 
this power alone determines the structure of the rest of 
the bubble. Furthermore, our predictions of observable 
properties of the bubble are quite insensitive to the 
model inadequacies in this region, owing to the fact 
that very little column density of any species is 
accumulated near Rx. Conversely, we may regret that 
the observations do not allow an opportunity to 
improve our understanding of collisionless shocks. 

c) Validity of the Classical Conductivity Formula 

Throughout our discussion up to now we have 
assumed that the energy flux due to thermal conduc- 
tion is given by the classical formula of Spitzer (1962): 
qc = CT5I2VT. Since this classical formula can under 
some circumstances predict a greater energy flux than 
can be carried by the electrons, we must verify that the 
thermal conduction is not “saturated.” Cowie and 
McKee (1977) argue that the maximum allowable 
thermal energy flux is given by 

qs ~ 0A(2kTel7rme)
ll2nekTe. 

Their analysis includes the effect of the electric field 
that results from the slower diffusion rate of protons, 
as does the Spitzer formula. Cowie and McKee define 
a “saturation parameter” by ors = qc¡qs, and show that 
as x 4.6A/Lr, where A is the mean free path of the 
thermal electrons (given by their eq. [3]) and LT = 
r/|vr|. 

We may estimate the importance of saturation in 
our theory by using the approximate formulae of 
Paper I for the structure and evolution of the bubble to 
obtain o-s ^ 0.1(77r0)

1/2L36
3/35«o_8/35^6_11/35* Thus we 

may conclude that in a typical bubble the thermal 
conduction is not saturated at the conduction front 
near Rc, where T < Tb9 and that the Spitzer formula 
should be valid there. The conductive energy flux near 
Rc determines the rate of evaporation of gas into 
region (b), the O vi column density, and other ob- 
servable properties of the bubble. Saturation of 
thermal conduction is likely to be significant near Rl9 
and this effect may cause the temperature and density 
structure near R± to be different from what we have 
calculated by using the Spitzer formula. As we have 
remarked, the structure of the shock there is uncertain 
anyway. 

Another concern is that a magnetic field frozen in 
the shell (c) of swept-up interstellar gas may suppress 
the thermal conduction. But Cowie and McKee (1977, 
and private communication) have pointed out that this 
is not a significant effect, because any magnetic field 
should become combed in the radial direction as 
the gas diffuses from the shell into the low-density 
region (b). 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
77

A
pJ

. 
. .

21
8.

 .3
77

W
 

No. 2, 1977 INTERSTELLAR BUBBLES 385 

IV. RESULTS—INTERIOR STRUCTURE OF A 
TYPICAL BUBBLE 

In this section we present the results of a detailed 
calculation of the interior structure of a bubble. Let 
us consider an interstellar bubble of age i = 106 yr, 
surrounding a star of mass-loss rate dMw¡dt = 10"6 

Mq yr-1 and wind velocity Vw = 2000 km s_1, hence 
Lw = 1.27 x 1036 ergs s_1, expanding into a medium 
of constant atomic density, nQ = 1cm-3 (henceforth 
we shall refer to these numerical values as a “typical 
bubble”). In the next section we shall discuss the time 
evolution of this bubble. The gross features of the 
temperature and density structure at t = 106 yr are 
shown in Figure 3. Working from the inside outward, 
one sees first region (a) of hypersonic stellar wind, 
whose density njjr) oz r~2 according to the continuity 
equation. This stellar wind encounters a shock at 
Rxit), some 6 pc from the central star. Beyond the 
shock is region (b) of hot (T ^ 106 K) low-density 
shocked stellar wind that occupies most of the volume 
of the bubble. The gas in region (b) is an inefficient 
radiator, so the shock at R^t) is not an isothermal 
one. However, thermal conduction carries energy away 
from the inner shock into region (b), so that the density 
discontinuity at R^t) is greater than the value of 4 
appropriate for an adiabatic shock, and the dis- 
continuity is not sharp. 

Region (b) is bounded by a thin shell (c) at R2(t) ~ 
27 pc of swept-up interstellar gas. This shell may be 
entirely H n, or it may also contain an outer layer of 
H I if the stellar radiation is insufficient to photoionize 
all the gas in the shell. The structure of this outer shell 
is described in more detail in § VI. 

The interface between region (b) of shocked stellar 
wind and the shell (c) of swept-up interstellar gas is 
particularly interesting because there the temperature 
spans the range 105 K < T < 106 K, where highly 
ionized species such as O vi are the dominant ioniza- 
tion stages. The structure of this interface is determined 
by electron thermal conduction of heat from region 

Fig. 3.—The large-scale features of the temperature and 
density structure of an interstellar bubble for which Lw — 
121 x 1036 ergss-\ n0 = 1 cirr3, and / = 106 yr. ISM 
means ambient interstellar medium. For a typical 07 I star, 
the H ii region would extend to ~3 A2. 

(b) into the shell. Roughly 40% of the conductive heat 
flux is radiated away in the interface by collisional 
excitation of UV resonance lines such as O vi A1035. 
The other 60% causes evaporation of gas from the 
shell, which diffuses into region (b) and mixes with the 
shocked stellar wind. In fact, the dominant source of 
mass in region (b), say, 35 M0, is the interstellar gas 
evaporated from the shell (c) rather than the stellar 
wind itself. One can show that the saturation of 
thermal conductivity (see Cowie and McKee 1977) is 
not significant in this interface, although, as we have 
already mentioned, it is likely to be significant near the 
shock at i?!. 

In Paper I we calculated the column density of O vi 
and other ions through the conductive interface. To 
our surprise and delight, the theoretical column 
density of O vi turned out to be right in the range of 
column densities observed in the survey by Jenkins and 
Meloy (1974)! The theoretical result from Paper I is 

N(0 vi) 3.4 x 1016Xo«o9/35L36
1/35i6

8/35 cm"2 , 

(50) 

where XQ is the fractional abundance of oxygen atoms. 
For example, equation (50) gives A(0 vi) ^ 1.5 x 
1013 cm-2 for typical values of stellar wind mass-loss 
rates and terminal velocities, a cosmic abundance of 
oxygen X0 = 4.4 x 10"4, n0 = 1 cm-3, and t = 
106 yr. It also implies that the observed column 
densities of O vi should not be correlated very well 
with the properties of the central star. The scaling law 
of N(0 vi) oc Lw

1/35 must break down for some later 
spectral types. This effect is discussed below in § V6, 
and in somewhat more detail by Weaver (1977). 

In order to obtain the simple analytic description of 
the bubble in Paper I, we made three major approxi- 
mations: first, we treated the conduction front in a 
plane-parallel approximation; second, we neglected 
the radiative losses in the conduction front; and third, 
we assumed that the ionization of trace elements in the 
conduction front was given by a coronal approxima- 
tion, in which a local balance between collisional 
ionization and radiative recombination is assumed. 

Each of these approximations has been removed in 
the present calculation. Figure 4 shows the temperature 
and density structure through the conduction front. 
The dominance of the electron thermal conduction is 
seen by the abrupt temperature rise from T 104 to 
T ^ 106 K in a region only ~2pc thick. The tem- 
perature gradient in the conduction front is slightly 
steeper than it was in our approximate model of 
Paper I, in which the radiative cooling term in the 
energy equation (38) was ignored. Including this term 
tends to increase \dTjdr\ at a given temperature. 

The effect on N(0 vi) of removing the three approxi- 
mations is as follows. First, going from a plane- 
parallel description to a spherical description reduces 
the column density of O vi by about 10% (see eq. 
[37]). Removing the second approximation has a more 
significant effect. Since the inclusion of the radiative 
losses in the energy equation steepens the temperature 
gradient, the region where O vi predominates becomes 
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Fig. 4.—The detailed structure of the conduction front for 
the same model as in Fig. 3. The time-dependent and steady- 
state ionization fractions, /o viTD(r) and /o viss(0, respectively, 
are shown. The units of the ordinate are, respectively, 7X104 K), 
«tot(10~2 cm“3), and/oviTD,/oviss(10“2). 

more narrow. This reduces the column density of O vi 
by a further factor 0.5. However, these reductions are 
more than compensated by removing the third approxi- 
mation of a steady-state ionization balance. When we 
calculate the ionization structure of trace elements in 
the conduction front by solving time-dependent rate 
equations, we find that the column density of O vi is 
increased by a factor 3.4 over the value obtained by 
using the steady-state assumption. This occurs because 
collisional ionization of O vi lags behind the tempera- 
ture rise, with the result that the zone where the 
fractional abundance of O vi is large extends farther 
into the hot interior of the bubble. This effect can be 
seen on Figure 4, where we have also shown the 
steady-state and time-dependent fractions of O vi, 

fovi(r) = m(0+5)/2 n(0+i) 

We have also calculated the theoretical profiles of 
the O vi absorption lines including the effects of 
thermal broadening and Doppler broadening owing 
to bulk motion of the gas. The region where foiy(r) 
becomes large is physically narrow; thus there is a 
small change in the flow velocity across this region, 
and the optical depth r0vi(r) can be well represented 
by a Gaussian whose broadening is given by an 
effective temperature Teif £ 4.5 x 105 K. The velocity 
of the line center v{0 vi) relative to the central star is 
less than the outer shell velocity V2 because it is 
formed in gas that is flowing inward relative to the 
shell. For this model we find v(0 vi) = 0.43 K2, and 

typically r(Ovi) is in the range 0.42 F2 < ¿?(Ovi) < 
0.5 F2 for other detailed models we have calculated. 

We have also calculated the column densities of 
other highly ionized trace elements that may have 
observable UV absorption lines. The ratios of their 
column densities to those of O vi should be almost 
independent of the parameters of the system, and we 
find log A(Z)/A(0 vi) = —0.8, -1.2, -2.0, and 
-1.5, respectively, for X = C iv, N v, Si iv, and S iv, 
assuming cosmic abundances Zc = 3.3 x 10'4, ZN = 
9.1 x 10-5, ZSi = 3.1 x 10~5, and Xs = 1.6 x 10“5. 
(The approximate values quoted for Si and S in Paper I 
were wrong.) 

The discrepancy between our theoretical value for 
log N(N v)/jV(0 vi) = —1.2 and the value —1.6 
found by York (1974) in the spectrum of À Seo is less 
than before but still exists. We have no facile ex- 
planations for this discrepancy, but we would point 
out that the same discrepancy should be inherent in 
any hot gas model for O vi, be it circumstellar bubbles 
or supernova tunnels, unless the gas temperature 
happened to be at just the right value and did not span 
a range (see Shapiro and Moore 1976)—a highly 
unlikely situation, in our view. 

The hot gas in the interior of the bubble should be 
a soft X-ray source. We have calculated the X-ray 
luminosity and spectrum of our model bubble by 
folding the spectral emissivity of the optically thin gas 
with the theoretical temperature and density structure 
shown in Figure 4. This spectral emissivity has been 
calculated from a revised version, to be published, of 
the code of Shapiro and Moore (1976), in which more 
atomic transitions and improved excitation and 
ionization rates have been included. The main result 
of this revision is that the total emissivity of soft X-rays 
is reduced by a factor of roughly 4 compared with that 
calculated by Tucker and Koren (1971). The resulting 
X-ray spectrum for 1 Â < À < 100 Â is shown in 
Figure 5. This X-ray spectrum is calculated by assum- 
ing steady-state ionization balance. Since the collisional 
ionization of the various ions lags behind the tem- 
perature rise, ionization fractions for ions such as 
O vin and N vn, which in the steady-state approxima- 
tion are most abundant around T x Tb z, few times 
106 K, will not be accurately calculated in the steady- 
state approximation. In general, we expect that 
LiSS ^ Li

TD, where SS(TD) refers to the steady-state 
(time-dependent) ionization balance, for those X-ray 
emitting ions i which in equilibrium are most abundant 
at T ^ Tb. Accordingly, the total soft X-ray emissivity 
in the TD case should be less than that in the SS case 
shown here. In order to examine just how sensitive the 
X-ray spectrum is to the steady-state approximation, 
we have calculated the luminosity of several X-ray 
lines by using the correct time-dependent ionization 
balance. We find, for example, that the luminosity of 
the O vin hydrogen-like La line at À = 19.0 Â is 
¿ovmTD = Fl x 1030 ergs s_1 and L0viiiSS = 7.7 x 
1030 ergs s-1, while the luminosity of the O vn helium- 
like line at A = 21.6 Â is LoViiTD = 2.4 x 1032 ergs 
s-1 and L0viiss = l-5 x 1032 ergss_1. 

Our calculated X-ray luminosity in the steady-state 
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Fig. 5.—The X-ray spectrum of a bubble for 0.5 Â < A < 100 Â in 0.5 Â bins calculated from the detailed temperature and 
density structure of the same model as in Fig. 3 but assuming steady-state ionization balance. Some of the more important lines 
are labeled. 

case, integrated over the 44-70 Â band, is £44-70 = 
2.2 x 1033 ergss_1 or roughly 10~3 times the total 
luminosity Lh of the bubble, which is expected to be 
comparable to the stellar wind luminosity L^. (Most 
of Lb is emitted in the form of U V resonance lines such 
as O vi A1035.) Therefore a typical bubble with 
Lx ä 1033 ergs s-1 is a very weak soft X-ray source 
compared with a typical supernova shell, for which 
Lx ä 1035 to 1036 ergss_1. Furthermore, the nearest 
stars of sufficiently early type to blow a bubble are the 
Orion stars, some 460 pc away. Some soft X-ray 
excess in the direction of Orion has been observed by 
the Wisconsin group (Burstein et al. 1977) and by the 
ANS group (den Boggende et al. 1977), and it is 
reasonable to assume that this excess is due to bubbles 
around these stars. However, the soft X-ray source in 
Orion is very faint compared with the Vela supernova 
remnant. Since the bubbles are intrinsically weak soft 
X-ray sources, and most are so distant that the inter- 
vening interstellar gas is opaque to soft X-rays, it is 
unlikely that they contribute significantly to the galactic 
soft X-ray background. 

Another way that the hot interior of a bubble might 
be observed, in principle, is through optical or UV 
emission lines due to multiply ionized atoms. In order 
to see whether this is feasible, we calculate the dif- 
ferential emission measure through this hot interior 
region (b). Consider first looking at a bubble through 
the center of the apparent circle on the sky. The 
differential emission measure is then d{EM)QldT = 
2n2l\dT/dr |. Using the simple theory of Paper I for the 

temperature and density structure, we find that 

d(EM)0 

dT 

Thus, for a typical bubble with tb = l9 for which 
nb x 10~2 cm-3, R2 £ 27 pc, and Th = 2 x 106 K, 
we find that the total emission measure of the interior 
(104 K < T < Tb) is (EM)o ^ 10-2 cm-6 pc. How- 
ever, if one is looking for emission from some particular 
ion whose abundance peaks near R2, there can be a 
significant limb-brightening effect. We have estimated 
that the resulting maximum enhancement factor of the 
emission measure is ~ 10. Emission measures of this 
magnitude may be observable with the Space Telescope. 

V. EVOLUTION OF A TYPICAL INTERSTELLAR BUBBLE 

a) Method of Calculation 

The evolution of an interstellar bubble for typical 
conditions depends critically on the rate of energy loss 
due to radiation. If the radiative energy losses were 
negligible, the time dependence of the various param- 
eters would be approximated very well by the formulae 
of Paper I. Here we summarize the main results given 
in that paper. The expansion of the outer shell was 
given by 

R2{t) = 27«o'1/5L361/5^3/5 pc , (51) 

from which one may readily derive the expansion 
velocity 

V2(t) = 16«0-
1/5£361/5Í6-2/5 km s-1 . (52) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
77

A
pJ

. 
. .

21
8.

 .3
77

W
 

388 WEAVER ET AL. Vol. 218 

Furthermore, since the radius, Rl5 of the inner shock 
is determined by the balance between the ram pressure 
of the stellar wind and the internal energy density of 
region (b), the rate at which energy escapes region (b) 
crucially affects the volume of region (b). From the 
simple formula of Paper I, Lbcct16135, one might 
expect the radiative losses to continue to increase with 
time until Lb > Lw. If so, the energy, and hence the 
pressure of region (b), would drop, causing the inner 
shock to accelerate out. Region (b) would then collapse 
with Ri ä R29 and the stellar wind would collide 
directly with the outer shell. The O vi column density 
would vanish, and the shell would then expand accord- 
ing to the law Rsheii(0 ^ *1/2 given by Steigman, 
Strittmatter, and Williams (1975). However, if Lb 
remains less than Lw, the energy of region (b) would 
continue to increase for the duration of the stellar 
wind. We have found that Lb æ Lw so the assumption 

£ 0 must be removed. In this section we describe 
the method we used in order to follow the approach of 
Lb to Lw and the consequent deviation from similarity 
due to the radiative losses. 

In order to determine the evolution of an interstellar 
bubble, allowing for radiative losses, we must modify 
equations (17), (18), and (19) to include the time 
variation of R^t) and the radiative cooling. Thus the 
internal energy of region (b) is now 

have derived an alternative procedure which consists 
of deriving an approximate formula for Lb(t) and of 
using that formula to close the system of evolutionary 
equations. 

We find that the time development of Lb(t) can be 
estimated from equation (57) in the following manner. 
From equation (37) we have 

Hr) = T, (1 - r¡R2) ' 
(1 - RJRiX 

2/5 

where = TXR^). Thus, assuming uniform pressure 
in region (b), equation (57) can be approximated by 

Lb oc 

HT). 

As long as the ratio RJR2 does not approach unity and 
Tr ^ 106 K, the integral is approximately independent 
of time. Moreover, the temperature just outside the 
inner shock, Tl9 should scale in the same manner as the 
mean temperature, <T>, of region (b). Thus, we assume 
that T± oc <r> oc Eb/Mb, and the functional form for 
the luminosity used in our calculations is 

Eb = 2ttP(Rc? — Rx
3) . (53) 

The pressure specified by equation (53) is then used to 
modify the momentum equation for the shell to obtain 

7,^rR‘d-ÿ)-‘h’R^‘’-^ <54> 

where pll is the pressure in the H 11 region outside the 
shell. This pressure is included until the H 11 region is 
trapped by the shell (see § VI). Pressure balance at Rx 
yields : 

Ri = (55) 

When cooling of region (b) is not negligible, Lb must 
also be included in the. equation for the evolution of 
the total energy ^(O* 

dEh^ 
dt 

a z> 2 dR2 -u (56) 

The luminosity Lb is given by 

Lb — [ nenMTTr2dr , (57) 

and can be evaluated only when the temperature 
structure of the conduction front is known. 

In principle one could solve the evolutionary 
equations (54), (55), and (56) by calculating Lb(t) at 
each instant of time from a detailed structural model 
according to the method described in § III. However, 
this procedure is prohibitively expensive. Therefore we 

(58) 

This form of the luminosity introduces the additional 
variable, Mb. The main source of mass to region (b) is 
the evaporative mass flux due to thermal conduction 
into the outer shell. The approximate formula for 
dMh/dt from Paper I can be improved by using 
spherical coordinates. For purposes of obtaining an 
approximate equation for dMb¡dt9 we use the following 
procedure. Assuming stationary flow, the energy flux 
in region (b) is described by 

1 dMh dH \^d_ 
477T2 dt dr r2 dr 

nenA(T), 

(59) 

where H = SkT/lp is the specific enthalpy (cf. eq. [5] 
of Paper I). If the radiative loss term nenA(T) is 
ignored, integration of equation (59) gives results for 
dMb/dt which can be represented by the interpolation 
formula 

^ = C^Ty^RzHRz - RO , (60) 

where the C1 = 167t/xC/25A: = 1.81 x 10”14(cgs). A 
better estimate, Ci = 4.13 x 10_14(cgs), which in- 
corporates the effects of the nonstationary flow, is 
obtained by comparison of equation (60) with equa- 
tion (33). When the radiative losses of region (b) are 
included, dMb/dt must decrease. One sees from equa- 
tion (59) that dimensionally the reduction in dMb/dt 
must be proportional to ^LblkT. The constant of 
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proportionality is determined in the following way. 
We obtain the value of dMjdt and Lb from the initial 
detailed model. Then we solve a modified equation 
(60) for this constant, C2 : 

^ = C^>5/2Ä 
r f¿Lb (61) 

where T' = 2 x 105 K is approximately the tempera- 
ture at which the time-dependent cooling curve peaks. 
We find that C2 = 2.00. 

Now, equations (58) and (61) together with the 
evolutionary equations form a closed system of 
ordinary differential equations that can easily be 
integrated numerically to find Ru R2, K2, Eb, and Mb 
as a function of time. 

The procedure we have adopted to find the evolution 
of an interstellar bubble is the following. At some 
initial time, t0 = 5 x 104 yr, we obtain a detailed 
model of the interior structure of a bubble. The initial 
conditions needed for this detailed model are given by 
the similarity solution. The luminosity of region (b) 
calculated for this model is used as the coefficient of 
equation (55). The initial similarity values for i?2, K2, 
and Eb and the mass of region (b) calculated for this 
model from the initial conditions needed to integrate 
the evolutionary equations. At some new epoch, the 
resulting variables are then used in similarity-type 
equations, as discussed in § Ilia. The luminosity 
calculated from the detailed model at this new epoch, 
Lö

calc, is then compared with the value Lb
pred, predicted 

by equation (58); if satisfactory agreement is 
found, the magnitude of the luminosity in equation 
(58) is adjusted and the evolution continued. If the 
agreement is not satisfactory [i.e., if |(Lb

pred — Lb
calc)/ 

Lb
pred| > 0.2], then the time step is reduced until Lb

calc 

varies from Lb
pred by less than 207o. In practice we 

found that with this method we could follow very 
efficiently the evolution of a bubble. 

b) Results 

The evolution of the parameters of a typical bubble 
is shown in Figure 6. The values shown by the solid 
curves were calculated by assuming that the pressure 
outside the shell was negligible. The dashed curves 
show the modifications to these curves if the exterior 
region is an H n region with T = 8000 K. It can be 
seen that the outer shock varies approximately as 
*2(0 oc t058, while the inner shock radius varies as 
RAt) oc /°-44. Thus, R2{t) is overestimated and R-dd) 
is underestimated by the simple similarity solution of 
Paper I. The velocity V2{t) is slightly less than the 
approximate result from equation (52), until V2{t) ^ 
10 km s-1. At this time the exterior pressure becomes 
important and causes the outer shell to stall at 
5 x 106 yr. 

The actual energy and mass of region (b) are also 
reduced from their similarity values. The energy, £b, 
at any epoch is reduced by an amount approximately 
equal to the sum of the total radiated power from the 
initial time to that epoch. The mass, Mb, is reduced 

Fig. 6.—The evolution of the important parameters of a 
bubble for Lw = 1.27 x 1036 and nQ = \ cm-3. The values 
shown by the solid curves were calculated by assuming that the 
pressure outside the outer shell was negligible. The dashed 
curves show the modifications to these curves if the exterior 
region is an H n region at T = 8000 K. The units of the 
ordinate are, respectively: Ri, R2(1018cm); Mb(1033 g); 
£b(1049 ergs); Lb(1035 ergs s-1); A(0 vi) (1013cm~2); and 
K2 (km s“1). 

owing to the fact that a large fraction of the thermal 
energy that is conducted into the shell is radiated away 
instead of causing evaporation. The actual values of 
these parameters depend on the asymptotic form of 
Lb{t) as t becomes large (more than a few times 106 yr). 
We find that Lb never exceeds L^. This is due to a 
thermostatic mechanism inherent in the evolution of a 
bubble. As the radiated power increases, the mass flux 
into region (b) through the conduction front decreases 
rapidly (see eq. [61]). The decrease in mass flux across 
the front causes the density of region (b) to decrease in 
such a way as to limit any further increase in Lb. Thus 
the power radiated from this region asymptotically 
approaches a constant value of some fixed fraction of 
the wind power, Lw. For the model at í = 106 yr 
described in § IV, Lb ^ QALW and Lb approaches the 
constant value of Q.9LW as 7 ^ 1 x 107 yr (if the star 
exists this long). Thus region (b) does not collapse. 
However, when Lb has to be included in the calcula- 
tions, one sees from Figure 6 that the expansion of the 
bubble, R2{t) oc ¿°-58, is intermediate between the law 
R2(t) oc t0,60 of Paper I and the law R2(t) oc t0-5 of 
Steigman, Strittmatter, and Williams (1975). 

The increase of the radiated power of region (b) has 
an interesting effect on the column density of highly 
ionized species which exist at temperatures 104 < £ ^ 
106 K. As stated in § Va, the physical effect of an 
increasing luminosity with time is to steepen the tem- 
perature gradient in the conduction front. This effect 
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will tend to decrease the physical radius over which 
any particular ion is important. However, the volume 
expansion of the bubble is almost sufficient to equalize 
this eifect. Thus the column density of O vi, for ex- 
ample, varies by only ~ 15% during the evolution of a 
bubble. The calculated time variation of 7V(0 vi) is 
shown in Figure 6. The column density of O vi 
actually decreases slightly with time, as opposed to the 
Paper I result that N(0 vi) oc i8/35. So, in this idealized 
model, the column density of highly ionized species will 
not be appreciably altered until the early-type star 
evolves off the main sequence or the wind stops, 
whichever occurs first. 

We have investigated the effect on N(0 vi) of reduc- 
ing the luminosity L^. The extremely weak dependence 
of N{0 vi) on Lw given by equation (50) is likely to 
break down for sufficiently small luminosities, and it is 
important to determine whether this would imply an 
absence of O vi in stars with weak winds, contrary to 
observation. A sequence of detailed models having 
reduced values of Lw shows that equation (50) is 
obeyed rather well until Lw is reduced to the point that 
the temperature in the bubble interior, which also 
declines as Lw is reduced, drops below the values for 
which O vi is abundant. Further reduction of Lw then 
decreases N(0 vi) sharply. The cutoff value of Lw 
increases with the age of the bubble, since the bubble 
temperature decreases with age, and at an age of 106 yr 
the cutoff comes at ^ 2 x 1033 ergs s_1. This is 
consistent with the presence of O vi in essentially all 
the hot stars that have been observed. The details of 
these calculations are given by Weaver (1977). 

c) Stability Considerations 

In the idealized model of the bubble we have been 
discussing up to now, we have assumed that the stellar 
wind has been blowing with constant luminosity Lw 
since time t = 0 into a medium of uniform density pQ. 
We find in this case that d2R2ldt2 < 0. Under such 
circumstances the system is stably stratified because 
the hot, low-density gas in the interior of the shell rests 
“ on top” of the dense expanding shell in the sense that 
a comoving parcel of fluid feels an effective outward 
gravity. However, if the system is expanding into a gas 
whose density is decreasing with radius, or if Lw is 
increasing with time, it is possible that the shell may 
begin to accelerate. If so, the system should suffer the 
Rayleigh-Taylor instability and the shell should break 
into filaments in a time scale comparable with the 
expansion time scale. Therefore, if the expansion of 
the shell can be described at any moment by a power 
law R(t) cc ta, the stability criterion as stated above is 
a < 1. 

In order to examine the effect of an unsteady stellar 
wind and a nonuniform ambient density on the 
stability of the system, we make a simple dimensional 
argument to estimate the behavior of R(t) in the more 
general case where it is assumed that the wind lumi- 
nosity obeys the law Lw(t) = Kwtm and the ambient 
density profile is given by p(r) = Kpr~

n. Then it is 
easy to show that the only quantity with the dimensions 
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of length that one can construct from Lw(t\ p(r), and 
t is 

R{t) = , (62) 

where C is a dimensionless constant. For example, in 
the case where n = m = 0, so that Kp = p0 and 
Kw = Lw, we recover the result of Paper I, in which a 
detailed calculation gives R(t) = 0.16Lw

ll5p0~ll5t315. 
We can now write the stability criterion a < 1 for the 
general case in the form 

« + m < 2. (63) 

Of course, including the radiative losses Lb in the 
theory, as we have done in § Va, introduces an addi- 
tional dimensional variable into the system, and this 
precludes deriving the exponent a in such a simple way. 
However, since we have found from our detailed 
studies of the case n = m = 0 that the modification of 
a due to the inclusion of Lb is slight, we think that 
equation (63) is likely to be a good approximate 
stability criterion in general. 

The development of a Rayleigh-Taylor instability 
during the expansion of a bubble is likely to occur 
commonly, because early-type stars must have been 
born in a high-density molecular cloud and they cannot 
have moved far from this coeval cloud in their short 
lifetimes. A newly born star or OB association should 
begin to blow a bubble while it is inside that cloud. 
But when R2{t) reaches the outer boundary of the 
cloud where the density is decreasing abruptly, the 
bubble should burst and the circumstellar shell should 
break up into high-velocity filaments. Then a new 
bubble of greater size should begin to form in the 
low-density gas outside the molecular cloud. We 
suggest that the high-velocity filaments around the 
Trapezium stars may be the remnant of a bubble that 
has recently burst. 

d) Effect of Stellar Motion 

Another idealization of our model has been to 
assume that the star is at rest with respect to its 
ambient interstellar gas. This is probably a good 
approximation for the average OB star (Conti, Leep, 
and Lorre 1977). However, if a particular early-type 
star has a large space velocity, K*, then the idealized 
structure of a bubble will be modified. Therefore we 
consider briefly these modifications if the star is in 
uniform motion through a medium of constant 
density. 

Consider first early times, such that V*t < R2(t) - 
Rif) where RffO and R2(t) are the radii of the inner 
and outer shocks, respectively, calculated as before 
under the assumption F* = 0. Neglecting Rft), and 
using the approximate theory of Paper 1 for R2(t), we 
may write this condition as 

/ ^ 2 x 106/7o-1/2L36
1/2(K*/20 km s-1)~5/2 yr . (64) 

In this case, to first approximation, the shell at R2{t) 
should still be a sphere centered on the original (t = 0) 
stellar position, and the shock at R^t) should still be 
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Fig. 7.—Schematic illustration of the effect of stellar motion on the structure of a bubble: (a) at early times when V*t < R2 — Ri; 
(b) at intermediate times for a star that has large velocity with respect to its ambient interstellar medium; (c) at extremely advanced 
times. Note that the scale of this figure changes—i.e., we have kept i?2(0 ~ constant. 

a sphere centered on the present (t = t) stellar position, 
as indicated schematically in Figure la. This approxi- 
mate description is good for the following reasons. 
Provided F* < Q, where Cb ^ 100 km s-1 is the 
sound speed in region (b), region (b) remains isobaric 
as before, irrespective of the stellar location, because 
RzICb < t. Therefore the expansion velocity V2(t) is 
independent of direction and centered on the stellar 
position at i = 0. Provided Vw > Cb9 the inner shock 
at i?i(Y) is also approximately spherical but centered 
on the stellar position at t because its location is 
determined by pressure balance between the gas 
pressure of region (b) and the ram pressure of the 
stellar wind, whose isobars are concentric with the star. 

Once condition (64) is violated, and the shock at 
Ri(t) abuts the shell at R2(t), the bubble becomes 
distorted as indicated schematically by Figure lb. Now 
the shape of the leading edge of the bubble is de- 
termined by a balance between the ram pressure of the 
stellar wind and that of the interstellar medium; this 
shape has been calculated by Baranov, Krasnobaev, 
and Kulikovskii (1971), Baranov, Krasnobaev, and 
Ruderman (1976), and Dyson (1975). The frontal 
shock remains a fixed distance ahead of the moving 
star from this time on unless the density p0 of the 
ambient gas changes. We have not attempted to 
calculate the structure of the gas between the two 
shocks at the leading edge of such a system, but we 
expect that the column density of O vi through this 
structure should be much less than before. However, 
the shape of the trailing part of the bubble should 
remain approximately spherical, and the column 
density of O vi along rays trailing the star should be 
more or less the same as before. 

In the limit when V*t » R2{t), the frontal shock 
should still have the shape calculated by Baranov, but 
the trailing part of the bubble should also become 
elongated as a result of stellar motion. One can show 
in this case that the shape of the trailing part of the 
bubble should be approximately a paraboloid of 
revolution, as indicated schematically in Figure 1c. 
The perpendicular distance p from the axis should be 
related to the distance z behind the star by 

p(z)=[20Lw/(337rp0V**)]ll±z112. (65) 

However, a real star would probably not last long 
enough for such a system to develop. 

VI. THE OUTER SHELL 

a) Hydrodynamic Structure 

The mass swept up by a bubble of radius R2 in a 
medium of uniform density p0 is Ms = 477-p07?2

3/3. We 
have seen that only a small fraction of this mass is 
evaporated into region (b), so most remains in a thin 
shell, through which the column density is 

Ns = n0R2/3. (66) 

The temperature immediately behind the outer shock 
at R2 is elevated to a value T2 = 3/xK2

2/16£ appro- 
priate to an adiabatic shock; this temperature rise is 
indicated by the spike at R2 in Figure 3. However, 
radiative cooling in this shocked layer should be rapid, 
so there should be an abrupt drop in temperature and 
corresponding rise in density behind the shock. The 
thickness of the radiative cooling zone behind the 
shock depends on the state of the ambient gas, but 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
77

A
pJ

. 
. .

21
8.

 .3
77

W
 

392 WEAVER ET AL. Vol. 218 

should be in any case (see Cox 1972; 
McCray, Stein, and Kafatos 1975; Field et al. 1968; 
London, McCray, and Chu 1977). The temperature of 
the gas in the shell behind this zone should be of order 
Tj ä 80 K if the gas is primarily H i or H2, and of 
order Tu ^ 8000 K if the gas is H n as a result of 
photoionization by the central star. For simplicity in 
the ensuing discussion, we shall assume that most of 
the gas in the shell is isothermal at one of the two 
above temperatures, and that the isothermal sound 
speed Cs = (kTjn)112 can be Cx ä 1 km s-1 if the gas 
is H i or H2, or Cn # 10 km s-1 if the gas is H n. 
However, the reader should keep in mind that there 
may be a significant variation through the shell of 
temperature, hence Cs, in real situations. 

Given these assumptions, we may use the jump 
condition for an isothermal shock to write the gas 
density ns in the shell in terms of the upstream ambient 
density^o- 

«s =/îo(F2
2 + Co2)/Cs

2 , (67) 

where C0 is the isothermal sound speed in the ambient 
gas. Equation (67) is valid only if C0

2 + F2
2 » V2CS. 

This condition fails when V2 approaches C0 ; in that 
case the shock at R2 will weaken and the approxima- 
tion that region (c) is thin will also fail, with the result 
that our treatment of the dynamics is no longer correct. 

There should be a slight density gradient in the shell 
because it is decelerating, so the pressure at the inner 
boundary of the shell should be less than that at R2. 
By integrating the equation of hydrostatic equilibrium 
through the shell in a comoving frame of reference, 
we find that the gas pressure Pd at the inner boundary 
of the shell is related to the pressure p2 immediately 
behind jR2 by 

PdlPz = 1 ~ H? 3(F2
2 + C0

2) ' (68') 

by the central star. A table of Si as a function of 
spectral type can be found in the paper by Hollenbach, 
Chu, and McCray (1976). Assume also, for simplicity, 
that an H n region has a constant temperature Tu ^ 
8000 K, so that the isothermal sound velocity is 
Cu £ 10.5kms_1. If the star were embedded in a 
medium of uniform atomic density n0, the Strömgren 
radius R0 would be given by 

Ro = [BSj/(47ra(2))]1/3ft0”
213 ä 30S^ll3n0-

213 pc , 

(69) 

where S48 = (^/lO48 s-1), and a(2) = 3.1 x 10~13 

cm3 s_1 is the rate coefficient for radiative recombina- 
tion to form excited hydrogen atoms at 8000 K (see 
Osterbrock 1974). Suppose now that a fully ionized 
circumstellar shell is expanding within the H n region. 
If so, the rate at which the shell absorbs ionizing 
photons is given by 

S' = 47rR2
2kRa™ns

2 , (70) 

where AR is the thickness of the shell. The condition 
for the ionization front to be trapped by the shell is 
S/ = Sii and using equations (69) and (70), we may 
write this condition as 

R2(h)/Ro = (1 + [L2(0/Cn]2}-1/3, (71) 

where t1 is the time at which the ionization front is 
first trapped within the expanding shell. We may 
obtain a numerical estimate of when this occurs by 
using the approximate theory of Paper I for R2(t) and 
V2(t). Then one may derive from equations (51), (52), 
and (71) the transcendental equation 

1 + (fycn)2 = 0.18L36“
3l2n0~ 1I2S±q(V2ICn)9/2 , 

(72) 

For example, if R2oz ta and V2 » C0, then we find 
Pa/P2 = (4a — l)/3a, and for the typical value of 
a ^ 0.58, pd/p2 ^ 0.76. To justify equation (68), one 
must verify that the time ts for sound to travel through 
the shell is less than the age t of the system. One finds 
tjt ^ CsR2l3V2t; ts/t ^ 0.03 for Cs ^ 1 km s_1, and 
tjt ^ 0.3 for Cs ^ 10 km s_1. 

In order not to clutter the equations to follow, we 
shall ignore this variation of pressure through the shell 
from now on. It is a simple matter to make the 
appropriate refinements if the reader wishes results 
that are accurate to within better than a factor of 2. 

b) Ionization Structure 

As we have already remarked, the expanding shell 
may be fully ionized by the central star, or it may have 
an outer layer of H i and H2 if the ionization front is 
trapped in the shell. We now find the criterion for 
trapping of the ionization front and describe how 
potentially observable quantities depend on the 
parameters of the system. 

Let Si be the rate of production of ionizing photons 

where L36 = LJ1036 ergs s_1. For example, one finds 
for w0 = 1, L36 = 1, and S^q =12, which are reason- 
able estimates for an 07 III star, that V^t^jC^ ^1.0, 
which yields R2(t^)jR0 ^ 0.79 and ^ £ 4.7 x 106 yr. 

Before the ionization front is trapped, the column 
density of H n in the expanding shell is given by equa- 
tion (66), and the thickness of the shell is given by 

R2 
3(1 + F2

2/Cn
2) * 

(73) 

Therefore the emission measure of the shell looking 
along a ray through its center is given by 

EM0 = Inf/SRn - 2(1 + F2
2/Cn

2K*2/3 . (74) 

The shell has a bright rim because of the geometry of 
the system. The ratio of the maximum surface bright- 
ness at the rim of the bubble to that at its center is 
equal to the ratio of path lengths, and may be written 

w21 = WA*,:)1'2 = [6(1 + F^/Cn2)]1'2. (75) 
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Once the ionization front is trapped (/ > ¿O, an 
outer layer of H i forms in the expanding shell. If there 
are no other early-type stars nearby, the H n between 
R2(ti) and R0 should cool and recombine, making a 
“fossil H ii region” which may have interesting 
observable consequences. For example, the cooling 
time scale of the gas rc æ Wne~

1 yr, is less than the 
recombination time scale, rR æ IO5«*,-1 yr by a factor 
~10 (Schwarz 1973). Therefore, there is a possibility 
of finding cold (T ^ 100 K), partially ionized 
(nelnH ^ 10 "2) gas outside such a bubble by, say, 
radio recombination-line observations (see Shaver 
1976). Further, the cooling gas in the fossil H n region 
is thermally unstable and should form small-scale H i 
condensations of high density (Schwarz, McCray, and 
Stein 1972). However, after a time t2 ^ 1.3^, the 
expanding shell should sweep up this fossil H n region 
and continue into the H i beyond. 

Now the H ii is confined to the inner layer of the 
shell. Its column density Nu = nsARu is determined by 
equating St to S/ of equation (70). This and equation 
(67) give a column density 

* =__5 ( çs \ 
11 W2>*2

2«o\F2
2 + CoV 

= 2.7 x 1Q22^8»o - ^(pc) -2( vf;Co2) , 

(76) 
thickness 

= 9.0 x lO^aWo'^Cpc)-2^^1 c^
2 pc , 

(77) 
and emission'measure 

EM = 2nsNu = 1.8 x lO^si^ipc)-2 cm-6 pc . 

(78) 

We find for reasonable parameters of the theory 
presented in this paper that the time when the H n 
ionization front is trapped in the outer shell is ap- 
proximately equal to the time when the outer shell 
stalls. The consequence of this time coincidence is that, 
after the shell stalls, the various column densities 
through the shell will remain approximately constant. 
Thus it is possible that the ionization front (I-front) 
may never be trapped. Indeed, we find that, for the 
model presented in §V, the H n 1-front is almost 
trapped. However, the shell stalls just before tl9 and 
thus the outer shell of that model would remain an 
H ii region. One can show that a rough criterion for 
trapping of the H n I-front is whether L36

3n0SáQ~2 ^ 
5 x IO'3. 

We note also that the emission measure through a 
bubble should be nearly independent of time. Before 
the I-front is trapped EM0 £ t~115 (see eq. [74]), 
until the shell stalls; after this time the emission 

measure is approximately constant. On the other hand, 
if the I-front were trapped, the shell would stall soon 
thereafter; again the emission measure would be 
approximately constant. 

One way the emission measure of the shell can be 
effectively observed is by measuring absorption lines 
of excited fine-structure levels of ions such as N n** 
1085.7 Â. Morton (1975) shows that 

jV(Nn**) = 6.4 x 1011 Em(8-7-^1q-_-5) , 

where the units of NÇN n**) and EM are cm-2 and 
cm-6 pc, respectively, and XN is the abundance of 
nitrogen. 

If the I-front were trapped, then the H i column 
density through the shell would increase until the shell 
stalled. Molecular hydrogen would then begin to form. 
Hollenbach, Chu, and McCray (1976) have discussed 
the time-dependent formation of H2 in the shell based 
on the simple theory of Paper I. We note here that the 
simple results for R2(t) and F2(0 given by equations 
(51) and (52), respectively, should begin to break down 
just when the H2 in the shell is forming. Therefore, the 
theory of Hollenbach et al. should be modified 
appropriately. However, the qualitative behavior of 
their results should be correct. The molecules in the 
shell would be formed in a high-pressure and high-UV 
photon flux environment. Thus one would expect a 
significant population of high-y molecules (Jura 
1975tf, 6; Hollenbach, Chu, and McCray 1976). 
Equation (29) of Hollenbach et al. is valid independent 
of the assumed gas dynamical model, and can be used 
to relate the column density of high-y molecules to the 
total H2 column density and the radius of the shell. 

VII. CONCLUSIONS 

The main conclusions of our theoretical picture for 
interstellar bubbles are the following: 

1. The hydrodynamic structure of a bubble at early 
times can be accurately described by a similarity 
solution, in much the same manner as is done for 
supernova remnants. However, compared with the 
SNR theory, there is a continuous injection of energy 
into a bubble until the wind stops. Including the 
radiated luminosity of the hot interior causes signifi- 
cant departures from the approximate similarity 
solution of Paper I. However, the numerical estimates 
of Paper I are usually within a factor of 2 of the correct 
answer. 

2. The hot interior region (b) will not collapse owing 
to the large radiative losses (Lh ^ Ly). Thus the 
conduction-dominated interface between the shell of 
swept-up interstellar gas and the hot region will persist 
for the duration of the stellar wind. Also, the column 
densities of highly ionized species such as O vi will not 
be diminished by more than 1570 for the same 
duration. 

3. For a typical bubble with Lw = 1.27 x 1036 ergs 
s“1 and n0 = 1 cm-3, N0vi(t = 106) = 2.3 x 1013 

cm-2, which is just in the range of column densities 
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observed with the UV spectrometer on the Copernicus 
satellite. 

4. The emission measure of an interstellar bubble 
may be observable. 

5. The interpretation of stellar or interstellar 
medium properties based on the radius of an H n 
region can be significantly altered by the presence of a 
bubble. 

We think such bubbles have been observed. Take, 
for example, the Gum nebula, whose properties have 
been reviewed recently by Reynolds (1976a, b). There 
have been several theoretical models of the Gum 
nebula to account for the observed parameters— 
radius, R ä 125 pc; velocity, Fsheii £ 20 km s-1; and 
an emission measure which varies between 20 cm-6 pc 
and 600 cm-6 pc across the visible shell (Reynolds 
1976a, è). These models have included the “fossil 
Strömgren sphere” model, the evolved H n region 
model, the supernova remnant (SNR) model, and the 
interstellar bubble model. Reynolds (19766) has 
reviewed these models in light of recent observations 
and has concluded that observations support only the 
SNR and bubble models. His main argument against 
the bubble interpretation was the fact that Ç Puppis, 
the star thought to have blown the bubble, was off- 
center in the nebula, yet the nebula was still spherical 
in shape. 

We believe the theory presented in this paper 
supports the bubble interpretation of the Gum nebula. 
Indeed, the stellar wind from £ Pup is very strong: 
dMjdt ^ 7 x 10_6Moyr"1 (Lamers and Morton 
1976) and æ 2700 km s_1 (Snow and Morton 
1976). Furthermore, the interstellar density in the 
direction of the Gum nebula is low, n0 æ 0.25 cm“3 

(Wallerstein and Silk 1971 ; Gorenstein, Harnden, and 
Tucker 1974). Assuming these parameters and an age 
of t = 106 yr, we find that the radius and velocity from 
equations (51) and (52) are R2 = 126 pc and V2 = 
25 km s“1. These values agree well with the observed 
parameters of the nebula. Further support of the 
bubble model is provided by the observed emission 
measure through various chords of the nebula. 
Reynolds (1976a) shows the emission measure varying 
from a minimum of ~20 cm-6 pc near the center of 
the nebula to a maximum of ~500 cm“6 pc near the 
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rim, which agrees well with the values obtained from 
the formula of § VI. 

The fact that £ Pup is still within the “spherical” 
nebula is easily explained. A large fraction of the 
observed “radial” velocity of this Of star is likely to 
originate from atmospheric motion at levels where the 
absorption lines are formed (Conti, Leep, and Lorre 
1977). Thus the velocity of £ Pup with respect to its 
local interstellar medium is likely to be less than 
20 km s“1, and the bubble found will still be spherical, 
as was schematically shown in Figure lb. 

There are additional sources of stellar wind lumi- 
nosity inside the Gum nebula. The B association and 
y2 Vel should contribute a significant amount of 
energy to the interior of the bubble. The main effect of 
these additional sources is to increase the pressure in 
region (b) of the entire bubble complex. There should 
be small cavities (i.e., r < R^) of free streaming stellar 
winds around each of the sources. 

Other shell structures in the interstellar medium 
which we believe can also be explained by this theory 
include the Bubble nebula = NGC 7635 (see Icke 
1973) and portions of the 30 Doradus complex 
(Melnick 1976). Further observations of these and 
other circumstellar shells around hot stars should be 
made to help to determine stellar and interstellar 
properties based on the bubble theory. Perhaps the 
best observational test of the bubble hypothesis would 
be to make further UV spectroscopic observations to 
study correlations in the velocities of lines such as 
N h** À1086, which indicates the presence of high- 
pressure H ii regions; H2(j = 4, 5) Lyman lines, 
which indicate the presence of high-pressure H i in the 
vicinity of a strong source of UV photons (see Jura 
1975a, 6); and O vi A1035, which indicates the 
presence of a gas with temperature T £ 2-5 x 105 K. 
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