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ABSTRACT 

Stars with massive envelopes (Mfnw ^ 1 M©) and degenerate neutron cores (Mcore ~ 1 M©, 
Rcore ~ 10 km) are analyzed theoretically: General-relativistic equations of structure are derived 
under the assumptions of hydrostatic and thermal equilibrium, spherical symmetry, no rotation, 
and no magnetic field. Numerical models are constructed, and analytic expressions are derived 
for the stellar structure in various interior regions. It is argued that all nonrotating, equilibrium 
models probably resemble qualitatively those constructed in this paper. Brief discussions are 
given of the stability and evolution of the models, and of prospects for identifying such stars 
observationally. 

Viewed externally, our models are extreme M supergiants (L ~ 3 x 104 to 1.3 x 105 L©, 
^photosphere ~ 2600 to 3100 K, photosphere - 1000 Rq). The large, diffuse envelope of each model 
is separated from its compact core by a thin ( ~ 40 meter) energy-generation layer called the “ halo. ” 
The envelope convects from the outer edge of the halo all the way out to the photosphere. Matter 
contracts from the envelope through the halo and into the core at a rate of ~ 1 x 10"8 M0 yr "1. 
The contracting matter releases its gravitational energy and burns its hydrogen and helium 
while passing through the halo. When the envelope mass exceeds ~ 10 M©, the hydrogen-burning 
shell occurs at the halo-envelope interface, and the products of hot (T ä 1 x 109 K) non- 
equilibrium hydrogen burning are convected directly from the burning shell out to the photo- 
sphere, where they should be observable. 
Subject headings: relativity — stars: interiors — stars : late-type — stars: neutron — 

stars: supergiants 

I. INTRODUCTION AND OVERVIEW 

a) Stars with Neutron Cores Compared with Stars with White-Dwarf Cores 

This is the first of several papers devoted to the question, What are the possible equilibrium states for a star 
consisting of a massive nondegenerate envelope surrounding a degenerate neutron core? 

The analogous question, What are the equilibrium states for a star with a massive, nondegenerate envelope 
surrounding a degenerate-electron (white-dwarf) core? has a well-known answer: Such stars are red giants which 
reside near the Hayashi track of the H-R diagram. In these stars matter continually, but slowly, flows from the 
inner regions of the envelope onto the outer regions of the core, passing through one or more nuclear-burning shells 
as it flows. The inflow releases nuclear and gravitational energy, converting it into stellar luminosity L: 

L = Lnuc + Lgrav, ¿nue = Mc*Q, LKrav = ^ . (Ua) 

Q X 0.007, GMJRçC2 X IO"4. (1.1b) 

(Here til is the rate of mass flow into the core, Q is the efficiency of nuclear burning for converting rest mass into 
thermal energy, and GMcIRcc

2 is the analogous efficiency of gravitational contraction with Mc and Rc the core 
mass and radius.) 

For the case of a star with neutron core, one might expect a similar answer: Red-giant star near the Hayashi 
track; gradual inflow of matter from envelope to core; formula (1.1a) for energy generation again valid, but now 
with 

Ô ä 0.007 , GMJRçC2 ä 0.15 . (1.1b') 

* Supported in part by the National Science Foundation [AST 75-01398 A01]. 
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STARS WITH DEGENERATE NEUTRON CORES 833 

The enormous strengthening of the gravitational potential, GMCIRC, when the white-dwarf core is replaced by a 
neutron core, has two consequences : (i) The relative roles of nuclear burning and gravitation as sources of luminosity 
are reversed: 

Lnuc/L ä 0.99 , Lgrav/L £ 0.01 for white-dwarf core; (1.2a) 

Lnilc/L ä 0.04, Lgrav/L ä 0.96 for neutron core . (1.2b) 

(ii) The time scale for marked evolution of the star is much longer in the neutron case than in the white-dwarf case, 
if one compares stars of similar luminosities: 

Tneut ^ 1 ^ LW^JO,OQ1 C2 __ ^w.d. J (1 3} 
rw.d. 1 MQ/$[W'd. ^neut/0-15 C2 -^neut 

b) Qualitative Overview of the Internal Structure 

The above discussion is corroborated by the detailed stellar models that we shall construct in this paper—so 
long as the total mass of the star is ^ 10 M© (we shall call such stars “giants”). For M ^ 10 Af© (“supergiants”) 
our models have convective envelopes that extend all the way into the hydrogen-burning shell. As a consequence, 
most of the burned material is recycled back into the envelope, rather than being passed on into the core; the 
relative importance of nuclear and gravitational energy generation is reversed back to the white-dwarf-type 
situation, Lnuc » Lgrav ; the evolution of the star is dominated by chemical changes in the envelope rather than by 
growth of the core; and the evolution time scale is comparable to the white-dwarf-core case. 

Except for location of the hydrogen-burning shell and its resulting influence on the star’s evolution (giant versus 
supergiant), our stellar models all have similar structures. Figure 1 depicts their common structure, and defines a 
number of terms (“envelope,” “knee,” “halo,” “core,” ...) which we shall use throughout this paper in discussing 
our models. 

The stellar structure depicted in Figure 1 is very peculiar; many of its features are unique to stars with neutron 
cores, and violate intuition based on studies of more normal stellar models. For example: (i) In no other type of 
stellar model yet constructed does a single convection zone link the photosphere to a nuclear-burning region, (ii) The 
region between the core and the base of the convective envelope is nearly isothermal and has a total thickness of 
only ~ 40 meters ; we call this region the star’s “ halo.” (iii) All of the gravitational energy release occurs in the upper 
regions (^20 meters) of this halo, (iv) In giant models this halo contains both the hydrogen- and helium-burning shell 
sources, each with thickness ^ 5 meters; in supergiants the hydrogen-burning shell overlaps the envelope, so the 
halo contains only the helium-burning shell. 

c) Observable Features of the Models 

Unfortunately all of these extreme halo conditions are thoroughly hidden from the prying eyes of the astronomer 
by the huge, tenuous, red-giant envelope. The envelope acts as a buffer: Consider two stellar models with the same 
core mass, envelope mass, and total luminosity, but with different cores (white-dwarf versus neutron). Imagine 
comparing these models by swimming outward from the core through the envelope to the photosphere. The 
differences one would see are enormous near the core; but they would gradually die away as one moves outward 
through the envelope. At the photosphere only one tiny difference would remain: the star with a neutron core 
would be slightly redder, by A log rpll « 0.1. 

Put differently: aside from chemical composition (see below), the only distinguishing external feature of our 
models with neutron cores is their extreme redness : because they sit precisely on the edge of the Hayashi forbidden 
region, they must be the reddest stars in the universe ; but they will be redder than stars at the tip of the normal 
giant branch by only a very slight amount, A log rph < 0.1. This difference is so slight that it will get lost in other 
effects (reddening by circumstellar material and interstellar material, differences in chemical composition causing 
differences in 7^, uncertainties in values of molecular opacities and convective mixing lengths, etc.). Hence, this 
redness difference is not a good “handle” to use in observational searches for stars with neutron cores. 

Thus far our model building has yielded only one good observational handle—and we are not yet sure of its 
details: In our supergiant models convection should carry the products of hydrogen burning directly from the 
nuclear-burning shell to the photosphere. The hydrogen will be burned by a hot (T ä 1 x 109 K), nonequilibrium 
CNO-Ne reaction network, and presumably will produce very peculiar relative abundances of various catalyst 
isotopes (180, 170, 160, 13C, 12C, etc.). It may be possible to measure these abundances in the photosphere by 
observational studies of molecular band spectra—e.g., rotational bands of carbon monoxide, vanadium oxide, and 
titanium oxide. In collaboration with Michael Newman we are now calculating the details of the nuclear reaction 
chains and the resulting abundances; we shall publish them in a subsequent paper in this series. 

It is conceivable that our models may experience instabilities that do not occur in white-dwarf-cored stars with 
massive envelopes—and that the effects of these instabilities might be discernible observationally. However, we 
have not yet undertaken detailed stability analyses of our models. 
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834 THORNE AND ZYTKOW Vol. 212 

Our preliminary, crude studies of stability suggest that the envelopes of our models might be unstable against 
complete disruption for M ^ 3 AT© when Mcore ä 1 M©. However, it seems quite possible that our stars are stable 
against disruption if M ^ 5 M©, and in this case live for 107 to 108 years. 

Although a red giant of given luminosity may live 20 times longer if it has a neutron core than if it has a white- 
dwarf core, giants with neutron cores may well be much less abundant in the universe than giants with white-dwarf 
cores: When massive stars form neutron cores by gravitational collapse, their loosely bound, tenuous envelopes 
probably get ejected. If so, then the only way the neutron core can become a red giant is by acquiring a new 
envelope—and the only place this is likely to happen is in a very close binary system, by supercritical mass transfer 
from a companion or by a cannibalistic sinking into the companion’s center and eating of the companion’s core. 
Recently Ostriker and Paczynski (1975) have speculated about such events. 

d) Previous Work on Stars with Neutron Cores 

We are aware of the following previous work on stars with neutron cores: (i) In the 1930s a number of people 
speculated about the structures and stellar-evolutionary roles of such stars, but no detailed analyses were carried 
out and no firm conclusions were reached; see, e.g., Gamow (1937), Landau (1937), Oppenheimer and Volkoff 
(1939). For example, Landau (1937) noticed the enormous efficiency, GMcIRcc

2 # 0.15, with which contraction 
onto a neutron core can liberate energy; he proposed that this might be the source of the luminosity of the Sun and 
other stars; and he suggested that one try to build stellar models of this type. (Presumably nobody tried because 
shortly thereafter nuclear burning was recognized as the true energy source.) (ii) Murray Gell-Mann tells us that 
in the early 1950s Enrico Fermi speculated that stars with neutron cores would be red supergiants; however, so far 
as we have been able to learn, Fermi never published anything on this subject, (iii) Zel’dovich, Ivanova, and 
Nadyozhin (1972) studied the contraction of small-mass envelopes (Menv ^ 10“5 M©) onto neutron stars. They 
found a neutrino luminosity far greater than the photon luminosity; and they speculated that, by analogy, stars 
with neutron cores and massive envelopes might be unstable against collapse of the envelope onto the core, with 
the collapse energy being carried off by neutrinos. We shall argue later (§ VI below) that our models do not suffer 
this “neutrino-runaway instability.” (iv) Stothers and Cheng (1974) speculated that the envelope of a star with a 
neutron core would be rapidly ejected by a secular instability. Our studies (§ VI below) suggest that this might be 
correct for low-mass envelopes (Menv ^ 2 M©), but that more massive envelopes might be stable against disruption, 
(iv) Paczynski (private communication, 1973) suggested that one of us (A. N. 2.) try to construct stellar models with 
neutron cores, and we decided to collaborate on the project. We published a brief account of our results as Thorne 
and 2ytkow (1975). (v) Ostriker and Paczynski (1975) speculated on the role of such stars in the evolution of close 
binary systems (see above). 

In the last section of this paper we shall list a number of further investigations that are needed. 

e) Notation Used in This Paper 

We here summarize for future reference those mathematical symbols which are used in more than one place in 
this paper, and we give reference to equations which contain further details. Equation numbers beginning with T 
are from Thorne (1977); those beginning with A are in the appendix of this paper. We list first the “main symbols” 
and then the “subscripts and superscripts.” 

main symbols: 

a radiation constant appearing in Prad = ^aT*. 
B nuclear binding energy per unit rest mass; eqs. (T, 5b) and (2.23). 
c speed of light. 
C abundance of carbon (12C) by mass. 
ê relativistic energy correction factor; eq. (T, 6d). 
Fconv energy flux carried convectively; eq. (T, 10). 
g local acceleration of gravity; eq. (T, 8a). 
G Newton’s gravitation constant. 
G(T) Sampson’s Klein-Nishina correction factor for electron-scattering opacity; eq. (2.32c). 
^ relativistic gravitational-acceleration correction factor; eq. (T, 6c). 
H scale height [HP eq. (T, 8b); HPg eq. (4.5); Hh eq. (4.20b)]. 
34? relativistic enthalpy correction factor; eq. (T, 6e) eq. (4.2)]. 
k Boltzmann constant. 
lt mixing length; eq. (T, 8c). 
L total nonneutrino luminosity as measured at photosphere and by observers far from star; eq. (4.8b) 

[Lgraveq. (4.8a)]. 
Lr nonneutrino luminosity as measured at radius r inside star; eqs. (T, 4a) and (2.43) [Lr

nuc eq. (4.16); 
Lr

crit eq. (4.4b); Lr
rad eq. (4.3)]. 

Lv total neutrino luminosity as measured at photosphere [Lov eq. (T, 13); Lnv eq. (T, 13)]. 
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No. 3, 1977 STARS WITH DEGENERATE NEUTRON CORES 835 

eq. (2.42b)]. 

Lr
v total neutrino luminosity as measured at radius r [Lr

ov eq. (T, 4c); Lr
nv eqs. (T? 4b) and (2.42a)]. 

raH mass of hydrogen atom. 
M total rest mass; eq. (T, 13) [Mr eq. (T, 2a)]. 
Mt total mass-energy; eq. (T, 13) [Mtr eq. (T, 3b)]. 
Ki rate of inflow of rest mass from envelope to core; eqs. (2.14) and (2.44). 
P pressure; eq. (T, 5a). 
r and R radius; equal to (1/27t) x (circumference); eqs. (T, 3a) and (T, 13). 

relativistic redshift correction factor; eq. (T, 6a) and (2.36) \ßc eq. (2.42b); 
t Schwarzschild coordinate time; eq. (T, 2b). 
T temperature; eq. (T, lb); TQ = T/109 K; = kT¡\ keV. 
v locally measured velocity [inflow velocity vin eq. (2.19); turbulent velocity vt eq. (T, 10c)]. 
X abundance of hydrogen QB) by mass. 
Xi abundance of nuclear species i by mass; (T, 1c). 
Y abundance of helium (4He) by mass. 
y electron-positron pair parameter; eq. (A.8). 
Z 1 — X — 7; abundance of “metals” by mass. 
a luminosity parameter; eq. (2.10); except in Table 3 where a is the ratio of mixing length to pressure 

scale-height, a =/f/^fiTp. 
ai nuclear reaction rate for species i; eq. (T, 5i). 
ßg PJP- 
ßL 1 - Lr/Lr

crit. 
y g ßgK^ ßg) == PglPr&û* 
7l Ml - ft) ^ Lr

crlV^r - 1. 
V “actual gradient,” din T/din P; eq. (T, 10). 
Vad adiabatic gradient, eq. (T, 9b). 
Vrad radiative gradient; eq. (T, 9a). 
€ energy generation rate [€nuc eq. (T, 5f); €nv eq. (T, 5g); eov eq. (T, 5h)]. 
K opacity; eq. (T, 5e). 
Kes opacity due to scattering of photons by electrons and positrons; eq. (2.32). 
Kdeg.e opacity against heat transport by degenerate electrons; eq. (2.31) and (2.8). 
fju mean molecular weight; eq. (4.9a) [fjLe eq. (2.30); nion eq. (2.29a)]; except in Appendix where ju, is 

chemical potential. 
H specific internal energy; eq. (T, 5c). 
p density of rest mass; eq. (T, la); p6 = p/lO6 g cm-3; p10 = pjlO10 g cm"3. 
a Stefan-Boltzmann constant; o-= ac/4. 
r optical depth measured from the star’s surface inward. 
® gravitational potential; eqs. (T, 3c) and (2.34). 

SUBSCRIPTS AND SUPERSCRIPTS: 

c outer edge of core (point where electron degeneracy sets in; p £ 106 g cm"3). 
C carbon; or at the center of the carbon-burning shell (point where C = 0.5). 
CC 12C + 12C reaction network. 
CNO CNO reaction network for hydrogen burning, 
crit critical luminosity. 
e ionization electrons, 
env envelope of star. 
g gas (plasma; everything except radiation), 
grav gravitational. 
h halo of star. 
H hydrogen; or at the center of the hydrogen-burning shell (point outside which half the nuclear energy 

release has occurred). 
He helium; or at the center of the helium-burning shell (point where Y = 0.5). 
i nuclear species /. 
in mass inflow from envelope to core. 
ion ions. 
K knee of star. 
m-i at the interface between the middle and inner regions; eq. (2.2). 
nuc nonneutrino energy from nuclear burning. 
nv neutrino energy from nuclear burning; eq. (T, 4b). 
ov neutrino energy from processes other than nuclear-burning networks; eq. (T, 4c). 
o-m at the interface between the outer and middle regions; eq. (2.1). 
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836 THORNE AND ¿YTKOW Vol. 212 

P pressure, 
pair electron-positron pairs, 
ph photosphere of star. 
r measured at radius r. 
rad radiation. 
s sound. 
t turbulence (convective motion); except in Mt and Mtr where t means “total.” 
3cc 3« reaction network for helium burning. 
— electrons (including ionization electrons and pair electrons). 
+ positrons. 

f) Outline of Paper 

In § II we lay down the physical and mathematical foundations for the construction of models of stars with 
neutron cores. Section III is a series of graphs and tables displaying the details of our numerical models. In § IV 
we discuss and analyze analytically our “giant models”; and in § V we do the same for our “supergiants.” In 
§§ VI and VII we discuss briefly the stability and evolution of our models. Finally, § VIII is a list of topics which 
need further investigation. 

II. FOUNDATIONS FOR OUR MODEL BUILDING 

In this section we describe the assumptions, equations, and numerical techniques that underlie our computer- 
generated models and underlie our analytic approximations to them. 

We begin by demanding that our models be spherically symmetric, nonrotating, and devoid of magnetic fields, 
and that they be in slowly evolving equilibrium states (evolution time scale long compared to hydrodynamic and 
thermal time scales). 

Because of the strength of gravity near the neutron core, we ask that our models be general-relativistic rather 
than Newtonian—except that Newtonian analyses suflice in the outer region of the star and in order-of-magnitude 
estimates of effects. 

a) Partition of Model into Three Regions 

In our computer calculations we divide each model into three regions (see Fig. 1). The “outer region” contains 
the atmosphere, the photosphere, and the static part of the envelope—i.e., that portion of the envelope in which 
mass inflow has negligible effects. The “middle region” contains the inflowing part of the envelope, the halo, and 
the outermost layers of the core where the carbon-burning shell is located. The “inner region” is the entire core, 
except its outermost layers. 

The boundary between outer and middle regions, r0_m, occurs where the inflow first begins to influence the local 
luminosity Lr; this happens when the enthalpy II + p/p and/or the gravitational potential GMtrlr becomes larger 
than ~ 0.003 of its maximum value (~0.1 c2). Thus, we arbitrarily set 

r0_m = ^that radius at which p + ^ == 3 x 10-4j • (2.1) 

(All symbols used here are explained in § le.) 
The boundary between the middle and inner regions, rm_j, occurs where nuclear energy generation is no longer 

significant. In our models more than 99% of all energy generation is by gravity and by thermonuclear hydrogen 
burning, so it is not very necessary to include the effects of helium, carbon, or further nuclear-burning stages. 
However, to see what their effects may be, we have included helium burning and carbon burning. It turns out that 
the carbon burning is complete by a density of p £ 1 x 108 g cm“3. Therefore, we choose 

fm-i = (that radius at which p = 3 x 108 g cm“3) . (2.2) 

b) Structure of the Inner Region 

In the inner region the high density enforces degeneracy and thereby guarantees that the hydrostatic structure 
(p, P, r, Mtr, O as functions of Mr) is decoupled from the thermal structure (Lr and T as functions of Mr). 

The massive envelope of the star can influence the hydrostatic structure of the inner region in only one way: by 
its weight, which squeezes the inner region to a pressure and density, at given Mr, that are higher than for a bare 
(envelope-free) neutron star. This compressional effect can be evaluated by integrating the equation of hydrostatic 
equilibrium outward through the star (throughout this subsection we use Newtonian theory because 50% accuracy 
is adequate): 

<2'3) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
77

A
pJ

. 
. .

21
2.

 .
83

2T
 

No. 3, 1977 STARS WITH DEGENERATE NEUTRON CORES 837 

Atmosphere 
(3 x icr3) p PHOTOSPHERE j 

fO 
E 
o 

cn 

cl 

(IO'6) 

(I) 
(10) 

(I04) 
do5) 

do6) 

(3xl07) 
3XI08 

3x10 

(10 15' 

Static 
Envelope 

ENVELOPE 

OUTER 
REGION 

 T- 

Inflowing 
Envelope 

ro-m 

Gravitational Energy Release  

 1' w MIDDLE 
HALO"" ,7. _ " REGION" 

CO 

  H Shell  
 He Shell---- 
(Nondegenerate) 
♦(Degenerate) f 

C Shell---!- 

^E Insulating Layer 
'm-i 

•-CENTER 

i î 
Isothermal Core 

J L 

INNER 
REGION 

1 

(6.5 x 10 ) 

(I07) 

0 
(-20) ' 

(-30) 
(-38) 

(-40) ' 

(-60) 
(-100) 

(-700) 

HO4) 

Fig. 1.—The structure of stars with degenerate neutron cores. The interior of the box lists a number of features of the stellar 
interior. The locations of those features are indicated on the left of the box in terms of density p, and on the right of the box in 
terms of radius minus the radius of the star’s “knee,” r - rK. Numbers not in parentheses are exact and apply to all of our models. 
Numbers in parentheses are taken from a general-relativistic “giant” model (Table 1) with total mass Mt = 5 M©, total core mass 
Mtc = 1 M0, and core radius Rc = 10 km—but these parenthesized numbers are qualitatively correct for all models. 

In the left column of the box are listed the major regions of the stellar interior: the photosphere, which is the point with optical 
depth t = f ; the envelope, which extends downward from the photosphere to the knee; the knee, which is the point where envelope 
convection stops; the halo, which extends inward from the knee to the point of onset of electron degeneracy; and the core, which 
extends from the onset of electron degeneracy in to the center of the star. 

In the middle column of the box are listed a number of subregions of the stellar interior including: the atmosphere, which lies 
above the photosphere; the static envelope, which is a convective region extending from the photosphere down to a (arbitrarily 
chosen) radius r0-m where inflow of matter from envelope to core becomes important; the inflowing envelope, which is also convective 
and extends downward from r0_m to the star’s knee where convection ceases; the region of gravitational-energy release, which extends 
inward from the knee to a density p ~ 10pknee; the hydrogen-burning shell, helium-burning shell, and carbon-burning shell', an 
insulating layer which extends from the onset of electron degeneracy down to the point p = 3 x 1011 g cm-3 where neutrons drip 
off the atomic nuclei to form a superconducting, superfluid medium; and the isothermal core in which r|^0o|1/2 = TM is nearly 
constant, and which extends from p = 3 x 1011 in to the center of the star. 

In the right column are listed three regions into which we subdivide the model for computational purposes : the outer region, which 
includes atmosphere, photosphere, and static envelope; the middle region, which includes contracting envelope, halo, and the outer- 
most part of the core (down to radius rm-i where p = 3 x 108 g cm-3); and the inner region, which includes the remainder of the 
core. 

Supergiant models (M ^ 10 M©) differ from giant models (M ^ 10 M©; depicted in this figure) in only one qualitative way: the 
hydrogen-burning shell overlaps the knee and envelope instead of being confined to the halo. 

The fractional contribution of the nondegenerate envelope and halo (region with p ^ 106) to the inner-region 
pressure is 

(AP)env If0 GMrdMr , 
P _ pJ106 4w4 dp ap (2.4) 

The amount of envelope and halo matter below r = 2 x 104 km turns out to be ^ 10“10 M0 (see Tables 1 and 2), 
which is far less than the amount of core matter between p = 1 x 108 and p = 3 x 108 g cm “ 3 ; hence, in evaluating 
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THORNE AND 2YTKOW 838 Vol. 212 

expression (2.4) we can ignore the envelope matter at r < 2 x 104 km—i.e., we can regard the envelope as a mass 
M ^ 10 Mq residing at r > 2 x 104 km: 

(AP)env . 1 G(10Mo)2 _ 1 x 1023 dyn cm-2 ^ 1 x 1023 1 x 1023 , 
P " P47t(2 x 104 km)4 P " Pm_¡ ~ 1 x 1026 <<C 1 ‘ ( 

This result allows us to conclude that the envelope has no significant influence on the hydrostatic structure of the 
inner region; the inner region will have the same hydrostatic structure as a bare (envelope-free) neutron star. 

Turn next to the thermal structure of the inner region. At densities above p = 3 x 1011 (“neutron-drip point”) 
the heat conductivity is so high that the star is very nearly isothermal [T æ const, in Newtonian theory; TM # 
const, in general relativity]. Almost all of the core mass is contained in this isothermal region of the core. Between 
this isothermal core and the halo (3 x 1011 ^ p ^ 106) is a thin “insulating layer” of degenerate-electron matter 
which thermally isolates the core from the rest of the star. We have arbitrarily placed our middle-inner region 
dividing line rmM in the center of the insulating layer, at p = 3 x 108. 

Let us estimate the maximum heat flow that the insulating layer can support. For ease of computation we shall 
confine attention to the region in which the electrons are fully relativistic, 107 < p < 3 x 1011—i.e., we shall 
ignore the outermost part of the insulating layer, 106 ^ p < 107. Our estimate relies on the following equation, 
which is a combination of the (relativistic) equation of diffusive heat transfer (eqs. [2.20h] and [T, 9a]) and the 
relativistic-degenerate-electron equation of state P = (4.89 x 1014 dyn cm _2)(p/g cm_3)4/3: 

d\XlT   K Lfflc P   J rïg K PlQ4^3 f'r MQ ,v 
din p ~ Utt GcMtrPrad - 

AUÖ cm2 g"1 T9
4 L0 Mtc * 

[Here, because the insulating layer is very thin in radius and mass (Ar/r « 1, AMtrIMtr « 1), the temperature 
redshift effect (1 — S’/Jf term in Vrad) has been ignored, and Mtr has been set equal to the total mass of the core 
Mtd also the approximations ä 1, ^ ä Mir/Mr, and ^ have been used.] The energy transport 
is by electron conduction; and the dominant resistance to the conducting electrons in the relevant temperature- 
density regime 

107 < p < 3 x 1011, 108 < T < 1010 (2.7) 

is electron-electron scattering above the ion-crystal melting temperature (TQ > T9melt ~ 1.8 p10
1/3), and electron- 

phonon scattering below the melting temperature (T9 < TQmeit ~ 1.8 pi0
1/3); see Flowers and Itoh (1975). In these 

two regimes the computations of Flowers and Itoh give (see their Figs. 12 and 6 for electron conductivity, which is 
related to opacity by ^opaCity ^eondüetivity 4¿zcT3/3p). 

k = (3.9 x IO-6 cm2/g)r9
4pio"2 for T9 > 1.8 p10

1/3 , (2.8a) 

k = (1.11 x 10"5 cm2/g)7,
9
3p10"

5/3 for T9 < 1.8 p10
1/3 . (2.8b) 

When inserted into equation (2.6) these opacities give 

dT9ldln p10 = 0.35aT9p10~213 in molten region , T9 > 1.8 p10
113 , (2.9a) 

dT9¡d\n p10 = ap10~113 in crystalline region , r9 < 1.8 p10
113 ; (2.9b) 

(2-10) 

Equations (2.9) and (2.10) set the scale of allowable heat transfers Lr through the insulating layer: T9 cannot 
change by more than a factor 3, as one traverses the insulating layer, because of the following: (i) Core neutrino 
losses keep the isothermal core (and thence its outer boundary, p = 3 x 1011) at a temperature T9 < 2. (A neutron 
star cools by neutrino losses to T9ç0Te < 6 in 12 hours and to r9core < 2 in one year; see Tables 8, 9, and 10 of 
Tsuruta and Cameron [1966] and Fig. 1 of Tsuruta et al. 1972.) (ii) The outer edge of our insulating layer, p = 107, 
has T9 ä 0.5 to 1.0; see Figure 2. (iii) Neutrino losses, which vary as T9

n with n ^ 9/2 in our insulating layer 
(Beaudet, Petrosian, and Salpeter 1967), will hold the temperature below T9 x 3 throughout the insulating layer. 
These constraints on T9, together with equations (2.9), require M < 1 nearly everywhere in the degenerate electron 
surface layer—and, in fact, \a\ ^ in most places including our middle-inner region interface, r = rm_i and 
p = 3 x 108. Hence, 

|Lr| ^ (100 L0)(Mic/M0)^c"
1 / at p = 3 x 108 . (2.11) 

This heat transfer is negligible compared to the star’s total luminosity L ä 105 L©. 
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Nuclear burning of inflowing matter will generate heat in the insulating layer of giant models at a rate 

(dE\ ~ /total luminosity of\ tGMjX-1 l efficiency, 0.0008 of mass-to-energy \ ^ r 1?^ 
dt) ~ \star, ~5 x 104Lo/ 

X \c2JRc/ 
X \conversion when oxygen burns to iron/ ^ ° ’ v * v 

Electron conductivity cannot carry away much more than ~ 100 L© of this energy; the rest must be carried off by 
neutrinos. 

The above estimates show that the inner region (p > 3 x 108) is extremely well decoupled from the middle and 
outer regions, both hydrostatically and thermally. Its structure and thermal evolution are essentially the same as for 
an isolated (envelope-free) neutron star—and, thus, they are not of interest to us here. Henceforth we shall restrict 
attention to the middle and outer regions ; and in calculating their structures we shall replace the inner region by the 
“insulation boundary conditions” 

/njf tíæ j \ Í values for a “bare” \ (Mr, Mtr, and r) - (^eutron star at p = 3 x 10sj 

Lr — 0 

at r = rm-i, 

at r = . 

(2.13a) 

(2.13b) 

c) The Outer Region: Physics and Computational Methods 

The outer region includes the atmosphere, the photosphere, and the static envelope; see Figure 1. Our numerical 
models for this region were generated using Paczynski’s (1969) computer program GOB, which calculates static 
stellar envelopes with extended atmospheres using inward integrations that begin, in our case, at a density p = 
lx 10"12 g cm-3. Each static envelope constructed by GOB can be characterized by the star’s total (nonneutrino) 
luminosity L and mass Mu the photospheric temperature Tphj and the envelope’s nuclear abundances—assumed 
equal to the photospheric abundances Zph, 7ph, Zph. 

The physics and equations which go into the outer region integrations are spelled out by Paczynski (1969). In 
brief, the physics is this : (i) Newtonian equations of stellar structure with luminosity constant throughout and with 
the standard mixing-length formalism for convection; (ii) a simple gray atmosphere model based on the Eddington 
approximation with corrections to account for the “ 1 /r 2 ” dilution of the outgoing radiation, which can be important 
in extended atmospheres; (iii) an opacity table for composition X = 0.7, Z = 0.03 (Paczynski 1970a), which is 
interpolated from the Cox-Stewart (1968) opacities and augmented by an approximation to Auman’s (1967) H20 
opacity; (iv) an analytic equation of state including contributions from H2, H, He, H+, He+, He + + , free electrons, 
and radiation. 

d) The Middle Region: Physics and Computational Methods 

In the middle region, which we analyze with care, general relativistic effects can be important. Therefore, our 
numerical computations utilized the general-relativistic equations of stellar structure—which are presented in the 
preceding paper (Thorne 1977; equations in this paper are denoted by a T; e.g., eq. [T, 11a]). 

The middle region acts as a conduit through which mass flows from the outer region to the inner region. At any 
given time the total mass in this conduit is ~ 10"8 M© (cf. Tables 1 and 2), which is ~ 108 times less than the mass 
in the reservoirs (outer and inner regions) at its two ends. Assuming that the star is stable, this huge mass contrast 
guarantees that the rate (per unit Killing-vector-defined coordinate time t), at which rest mass flows inward across 
a surface of radius r, is independent of r : 

M = (dMr¡dt)r = constant, independent of r or Mr. (2.14) 

(See Thorne 1977 and § We of this paper for notation used here and below.) Also assuming the star is stable, the 
stellar structure is stationary on time scales «107 years: 

stellar-interior variable) = 0 . 
fixed r 

This stationarity, together with the identity 

(2.15) 

(2.16) 

and equation (2.14), implies a simple relationship between the time derivatives and the radial derivatives which 
appear in the stellar-structure equations (T, 11) : 

(2.17) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
77

A
pJ

. 
. .

21
2.

 .
83

2T
 

THORNE AND 2YTKOW 840 Vol. 212 

For example, if we let both sides of equation (2.17) act on the radius function r, and if we combine with equation 
(T, 11a), we obtain the relation 

til = , 

where i;in, the locally measured velocity of inflow of rest mass, is defined by 

-(rm(dridt)Mr 

(2.18) 

(2.19) 

(cf. eq. [T, 7]). 
The above considerations are patterned after Paczynski’s (19706) analysis of Newtonian stars with mass inflow 

through stationary shell sources. When equation (2.17) is inserted into the relativistic equations of stellar structure 
(T, 11), it produces the relativistic analog of Paczynski’s stationary-shell-source equations: 

dr/dMr = (477r 2pir) “1, (2.20a) 

dMtrldMr = , (2.20b) 

d®ldMr = [GMrK^p)]#'?', (2.20c) 

d(Lræ)ldMr = ^2(enuc - eov) + ^tif[dUldMr - (Plp2)dpldMr], (2.20d) 

d(Lr
nvæ)ldMr = œ2€nv, (2.20e) 

d(Lr
0V&2)ldMr = &2€ov , (2.20f) 

dXijdMr = —¿ftai/tif if Vrad < Vad 

= 0 if Vrad > Vad, (2.20g) 

dhiTldMr = Vradrf In PldMr if Vrad < Vad 

= Vrf In PldMr if Vrad > Vad, (2.20h) 

dPldMr = -[GMr/(47rr4)]^or . (2.20i) 

Here we have replaced all partial derivatives (dldMr)t by ordinary derivatives dldMr because all time derivatives 
have disappeared from our equations. In equation (2.20g) we have imposed the physical constraint that the 
abundances not change radially in the convective region. 

At the outer edge of the middle region the relativistic correction factors <f, Ÿ' all differ from unity by 
^ 10"3 (cf. eq. [2.1]); temperatures are so low that no nuclear burning has occurred; and consequently the above 
equations of structure for the middle region reduce to the standard Newtonian equations of structure with constant 
luminosity, which we use in our outer-region analysis. This fact guarantees that we obtain a reasonable match 
between middle region and outer region by simply enforcing continuity of the fundamental variables r, Mr, Mir, O, 
Lr, Lr

nv, Lr
ov, Z{, r, and p at radius r0_m. But in doing so we must be careful with Mr and Mir\ In Newtonian theory 

Mr is both rest mass and active gravitational mass. In general relativity Mr is rest mass, while Mtr is active gravita- 
tional mass; and the additive normalization of Mir is crucial, while that of Mr is unimportant (all details of the 
model except Mr are unchanged by the renormalization Mr -> Mr + constant). These facts dictate that 

/ Mr of outer, \ _ / Mtr of middle, \ 
\Newtonian region/ ~ \relativistic region/ 

at joint point ; (2.21a) 

one need not enforce any matching condition on the middle-region Mr. (2.21b) 

In our analysis of the middle region we use specific analytic expressions for all the auxiliary variables (pressure P, 
opacity fc, relativistic correction factors <f, ^ etc.) as functions of our fundamental variables: 

The nuclear species which we consider are 1H (hydrogen) with abundance X = ZH, 4He (helium) with abundance 
Y = ZHe, 12C (carbon) with abundance C = Xc, and “metals” with abundance Z = \ — X — Y. The binding 
energies per baryon relative to hydrogen are 

helium: (1 — mnel4mn)c2 = 0.007118c2 , (2.22a) 

carbon: (1 - m0/12mH)c2 = 0.007118(1 + l/11.0)c2 , (2.22b) 

products of carbon burning: 0.007118(1 + 1/11.0 + l/13)c2 ; (2.22c) 
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and, consequently, the mean binding energy per baryon is 

B = 0.007118^1 - X + 1 - + 1 ~ Z ~ 7 ~ Cjc2 . (2.23) 

In our numerical calculations we have assumed that hydrogen burns by the normal CNO cycle; this is a serious 
source of error, as will be discussed in § V. For the normal CNO cycle 93.6% of the energy goes into heat and 6.4% 
into neutrinos; hence, the energy generation rates enuc

CN0 and €nv
CN0 are related to the rates of change of hydrogen 

and helium abundance aH
CN0 and aHeCN0 by 

€nuc
CN0 = (-0.006662c>hcno , env

CNO = (-0.000456c2KCNO , aHe
CNO = “aHONO . (2.24) 

The CNO energy generation rate €nuc
CN0 is expressed as a function of X, Z, p, and Tby equations (17.280), (17.282), 

and (17.283) of Cox and Giuli (1968) with XCN = Z/2. When helium burns by the 3a process to form carbon, 
neutrino losses are negligible; hence 

*nuc3a = (-0.000647c2)aHe3a, env
3a = 0, a0

3“ = -aHe
3a. (2.25) 

We use equations (17.341) and (17.342) of Cox and Giuli (1968) for the 3a energy generation rate €nuC
3a. We assume 

that carbon is burned by 12C + 12C reactions, and in doing so we ignore neutrino energy generation: 

enuc00 = (-0.00055c2)«o
co , €nv

cc = 0 . (2.26) 

We use the Arnett-Truran (1969) analytic expression for the CC burning rate together with the Salpeter-Van Horn 
(1969) analytic expressions for the screening factors. The non-nuclear-burning neutrino energy generation rate 
€0V(Z, Y, p, T) (including pair, photo, bremsstrahlung, and plasma neutrinos but excluding Urea) we take from 
Beaudet, Petrosian and Salpeter (1967). 

The pressure P and specific internal energy II are split up into four contributions: radiation, ions, ionization 
electrons, and pairs : 

P = Prad + -Pi0n + Pg + Ppair > ^ = nrad + rilon + IIe + Hpair . (2.27) 

The radiation contribution has the usual form 

Prad = Hrad = 3(Prad/f>) , a = 7.5647 x 10'15 ergs cm"3 K"4 . (2.28) 

Crystallization of the ions is ignored in P and II ; they are assumed to form a perfect gas with mean molecular 
weight 

,*ion = (X+ Y/4 + Z/16)-1, (2.29a) 
for which 

Pion :=: (JcIW’h)(pIH'íod)T i Ilion == f(Pion/¿>. (2.29b) 

In the middle region temperatures are so high (T ^ 106 K) that the plasma is fully ionized, and the mean molecular 
weight per ionization electron is 

fte = 2/(l + Z). (2.30) 

Our middle region covers a temperature-density regime in which the ionization electrons range from extreme 
nondegeneracy to extreme degeneracy (see Fig. 2). Over the entire range we describe Pe(P, p, /xe) and ne(7; p, /z?) 
by the Eggleton-Faulkner-Flannery (1973) analytic fit to the relevant Fermi-Dirac integrals ; in that fit we use their 
“thermodynamically consistent coefficients” (their Table 5). Near the knees of our supergiant models electron- 
positron pairs play a crucial role (see Fig. 2 and the discussion in § V). Fortunately, the pairs occur only in a regime 
[(p/4 x 106gcm_3)2/3 « kTlme

2 « 1] where their contribution to P and II can be expressed in fairly simple 
analytic form and can be added linearly onto the contributions from other sources. The relevant expressions for 
Ppair and IIpair are given in the Appendix [eqs. (A8) and (All)]. 

In the middle region all sources of opacity are negligible except electron and positron scattering of photons, and 
opacity to heat conduction by degenerate electrons: 

« = OKs + IKes..)-1 • (2-31) 

We use the following analytic formula for the scattering opacity: 

Kes = (0.4 cm2 g^K'Xl + 2n+lne)G(T) , (2.32a) 

G(T) = 0.4 + 0.6 exp (-0.04328 Tk) , if 0 < T* < 20, (2.32b) 

G(T) = -0.13887 + 4.9871 Tk-
m - 5.9479 T^1 - 2.362 7^"3,2 , if 20 < Tk < 125. (2.32c) 
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Here Tk = kTl(\ keV) = r/(1.160 x 107 K); G(T) is the special-relativistic correction to the electron-scattering 
opacity ; formula (2.32c) for G{T) is taken from Sampson (1959); formula (2.32b) is our analytic fit to Sampson’s 
computations; and «+/«e is the number density of positrons divided by the number density of ionization electrons 
as given by equations (A10) and (A8) of the Appendix. At the time of our numerical work the Flowers-Itoh (1975) 
degenerate-electron heat conductivities were not available, so we used Paczynski’s (private communication) 
analytic fit to the tables of Canuto (1970) for carbon: 

logxo /Cdeg.e = “0.05 + 0.533 pq-112 - 1.057 log10 />6 + 2.17 log10 T9 . (2.33) 

(This formula gives a good fit for 1.05 + 3 logi0 TQ < log10 p6 < 6.15 + 3 logi0 TV) Here p6 is density in units 
of 106 g cm"3, and TQ is temperature in units of 109 K. 

Because the total amount of mass in the middle region (~ 10"8 M0) is negligible compared to that in the core, 
the gravitational field in the middle region is (very nearly) the Schwarzschild gravitational field of the core: 

0 = £c2 ln (1 - 2GMtclc
2r) . (2.34) 

Here Mtc is the total mass (“active gravitational mass”) of the core, 

Mic = Mir at outer edge of core . (2.35) 

In our middle-region computations we used expression (2.34) for <I>; we used the corresponding Schwarzschild- 
metric expressions for the redshift and volume correction factors 

<% = r-' = (1 - 2GMtclc
2r)112; (2.36) 

and we used expressions (T, 6c, d, e) for the relativistic correction factors ¿f, Jf. 
Our computation of the radiative, adiabatic, and convective gradients Vrad, Vad, and V followed the prescription 

of equations (T, 9) and (T, 10) with mixing length equal to pressure scale height lt = Hp. However, in our solution 
of the mixing equations (T, 10) we stupidly used Newtonian rather than relativistic expressions for g and Hp : 

g = GMtrlr2 = gcorrect/^ = (0.84 tO 1.0) X ^correct 

Hp = Plpg = (#Pcorrect) X ^ = (1.00 tO 1.43) X 7TpcorreCt. (2.37) 

These errors have the same effect on the star’s structure as using the correct g and Hp, but making the ratio ltIHp 
increase from its chosen value up to 1.25 its chosen value as one moves inward toward the knee of the star—i.e., they 
cause the convection to be a little more efficient than it should have been near the knee. Because the mixing-length 
theory is so unreliable, and because the convection is fairly efficient near the knee, we have not recomputed our 
models with these errors corrected. 

e) Global Structure of the Computation 

To construct a stellar model one can proceed as follows: (i) Specify the following parameters: 

(^phj ^ph5 Cph) — (photospheric abundances of hydrogen, helium, and carbon), 

Mt = (total mass of star) s (“active gravitational mass”), 

= (total mass of inner region) = Mtc[\ + an error of 0(10 ~8)]. 

Rm-i = (radius of inner region) = iJc[l + an error of 0(10_2)]. (2.38) 

For given the value of Rm^ is taken from the theory of bare (envelope-free) neutron stars, (ii) Pick trial 
values of the quantities required for starting inward integrations: 

L = (total photon luminosity of star), (2.39a) 

Tph = (photospheric temperature) ; (2.39b) 
and also pick a trial value oí 

Kl — (rate of inflow of rest mass) , (2.39c) 

which plays an important role in the middle region but not the outer region, (iii) Integrate the equations of stellar 
structure inward from the photosphere to the middle-inner match point rm^ \ and iterate the three trial parameters 
L, Tpn, and til until the three matching conditions 

Mtr = , r = , Lr = 0, at P = 3 x 108gcm"3 (2.40) 

(eqs. 2.13), are satisfied. 
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In practice the L-TvYl-tilparameter search is not difficult: L and 7ph can be determined with rather good accuracy 
by Newtonian, outer-region integrations only (see § YWd)—and these can be performed once and for all, with ease, 
to give a family of outer-region models for subsequent join onto middle-region models. Moreover, in the case of 
giant stars, where negligible nuclear burning occurs in the convective region, and where—it turns out—non- 
nuclear-burning neutrino losses are negligible, one can express tit as an analytic function of Mic, Rc, and L. But in 
supergiants hydrogen burning in the convective envelope prevents one from finding an analytic expression for ^T. 

The principal key to the giant-star expression for Ki is the following equation of energy conservation, which is 
valid everywhere in our stellar models except in convective nuclear-burning regions: 

Lr + Lr
ov + Lr

nv = + constant] 

= itór(II + P/p — 2? + O) + constant in Newtonian limit. (2.41) 

[This equation can be derived as follows: (i) add eqs. (2.20d, e, f); (ii) use eqs. (T, 20) and (2.17) to eliminate 
€nuc + €nv (this step requires that the nuclear-burning region be nonconvective); (iii) write —(Plp2)dpldMr as 
d(Plp)ldMr — p~1dP¡dMr, and use eqs. (2.20i, c) and (T, 6a) to express dPI3Mr in terms of d&ldMr; (iv) use defini- 
tion (T, 6e) of to bring the equation into perfect differential form; (v) integrate it.] Another key to the expression 
for 71Ï is a conservation law for the nuclear-burning-induced neutrino losses Lr

nv, again valid everywhere except in 
convective nuclear-burning regions: 

Lr
nv = ^“2[0.000456J/l4fc2X^H + constant]. (2.42a) 

Here is the value of & at the center of the hydrogen-burning shell, which is so near the core that 

<^H = = (1 _ 2GMtclc
2Rc)

112 (2.42b) 

is a good approximation. [This equation can be derived as follows : (i) in equation (2.20e) replace env by expressions 
(2.24), (2.25), and (2.26), and then replace aH

CN0 by expression (2.20g); (ii) invoke the fact that X changes only in 
the hydrogen-burning shell, which is so thin that it has & essentially constant throughout; using this fact, write the 
equation in perfect differential form; (iii) integrate it.] In giant stars it turns out that the non-nuclear-burning 
neutrino losses are totally negligible throughout the outer and middle regions (Lov — &2Lr

0V « L©), and no signif- 
icant nuclear burning occurs in convective regions. Thus, equations (2.41) and (2.42) can be combined to obtain 
the following relation, valid throughout the outer and middle regions : 

Lr = &~2L + &-2ti[c2[jr@ - 1 + BJc2 + 0.000456^H(*ph - X)]. (2.43) 

Here the constant has been evaluated at the photosphere, where Lr — L, 0t can be approximated as unity, = 
1 — Bphlc

2 with Bvh the photospheric value of the nuclear binding energy, and Xvh is the photospheric value of the 
hydrogen abundance. To obtain the desired expression for til, we need only evaluate expression (2.43) at the inner 
edge of the carbon-burning shell, where Lr = 0, X = 7 = C = 0, ^ = (1 — 2GMtclc

2Rc)
112, and can be 

approximated as 1 — Bjc2 with B taken from equation (2.23): 

Me2 = ¿[-(l - 1,2(0-991687 + 0.000456^ph) + 1 

f i 1 Xph Yph 1 Xph Yph Cph 
ph 11.0 13 

III. NUMERICAL MODELS 

Some details of our numerical models for stars with neutron cores are shown in Figure 2 and Tables 1-4. The 
physical features of these models will be discussed in §§ IV and V. 

IV. DETAILS OF THE STELLAR STRUCTURE: GIANT MODELS 

Table 1 and Figure 2 display the internal structure of a typical giant model—one with a total mass of 5 M© and 
core mass and radius of 1 M© and 10 km. Tables 3 and 4 show some details of other giant models. In this section 
we shall point out and analyze analytically some important features of these models. 

-0.007118 
(- ) 

-i 
(2.44) 

a) Overall Structure 

In § 116 we explained, analytically, the hydrostatic and thermal decoupling of the core (inner region) from the 
rest of the star. We shall now elucidate the reasons for the gross features of the rest of the star (extremely thin halo 
surrounded by very deeply convective envelope). 
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STARS WITH DEGENERATE NEUTRON CORES 847 

Fig. 2.—The internal distributions of density and temperature for a giant model with total mass Mt = 5 MQ, and a supergiant 
with Mf = 12 M©. Both models have envelope abundances (=photospheric abundances) Xph — 0.70, Yvh — 0.27, Cph = 0, and 
core mass and radius Mtc = 1 M©, Rc — 10 km. Further details of the internal structures of these stars are given in Tables 1 and 2. 
The solid curves are the runs of density and temperature in the two models. Along these curves are marked several regions of the 
model which were described qualitatively in Fig. 1 (photosphere, static envelope, junction point r0_m between outer and middle 
regions, inflowing envelope, knee, halo, junction point Rc between halo and core, core, and junction point rm_t between middle and 
inner regions. Also shown along each curve are the locations of the hydrogen-, helium-, and carbon-burning shells. 

The dotted lines are several regions of interest in the density-temperature plane: Above the “PAIRS—NO PAIRS” line the 
density of electron-positron pairs exceeds that of ionization electrons; below, ionization electrons dominate. [This curve is given 
analytically by y = 0.354 where y is defined by eq. (A.8) of the Appendix.] The “RADIATION DOMINANCE-GAS 
DOMINANCE” line is the line where ßg = (gas pressure)/(radiation pressure plus gas pressure) is 0.5. For further details on notation 
see § le. 

Consider the forces which act on the plasma (gas) in the nondegenerate region r > Rc. The pull of gravity is 
counteracted by the plasma’s own pressure-buoyancy force and by the force of outflowing radiation: 

/gravitational force\ ^ GMrp 1 dPg xpL™* /41x 
\ per unit volume / — r2 9 y dr 4irr2c 

Here ^ is the relativistic enthalpy correction factor for the gas only, 

jeg = l + (Ug -B + Pglp)lc* (4.2) 

(cf. eq. [T, 6e]); Lr
rad is the locally measured luminosity carried by diffusing radiation 

L™* = Lr - 4Trr2Fconv; (4.3) 
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and all other quantities have been defined earlier (cf. § le). This force-balance equation can be derived either from 
first principles, or from the relativistic equations of stellar structure (2.20a, h, i), (2.28), (4.2), (4.3), (T, 6d, e), 
(T, 8a, b), (T, 9a), and (T, 10a). By analogy with Newtonian theory, it is convenient to rearrange the force-balance 
equation (4.1) as follows: 

J_áP9 

-r dr 
GMrp (i _ vin 

\ VriV 
(4.4a) 

where 
Lr

orit = ^GcMrK-^J^-T (4.4b) 

is the “critical luminosity’’ above which the force of outflowing radiation on the plasma exceeds the force of 
gravity. Equation (4.4a) shows that the scale height for the gas pressure is 

HP_ = 
--Tdr 
dlnP, 

-i -iy- Vaa\-i 
z,r

orl7 

= (6 x 10-V) 
i1 

(4.5) 

[Here use is made of the plasma equation of state Pg = (pl^mH)kT.] 
As one moves outward through the star, this equation for HPg first becomes valid where electron degeneracy 

turns off (at p ~ 106 g cm-3, r = Rc). At that point all quantities on the right-hand side of the equation are of 
order unity, so HPJr ~ 6 x 10 "4. Thus, the plasma just above the core’s edge has the extremely small scale height 
of a hot (T = 109 K) neutron-star atmosphere: HPg ~ 1 meter. Physically this scale height is governed by the 
inability of the mean particle kinetic energies, kT ~ 10"4mHc2, to compete with the extremely strong pull of gravity, 
GMclc

2r~0.l. 
The “halo” of our models is the region just above the core where HPg ~ 1 meter. As one moves outward through 

the halo a distance ~15 meters, the density drops to ~106 x e-15 ~ 1 gem“3. This rapid density drop cannot 
continue for many more meters if the star is to support a massive envelope around itself. Something must happen 
soon to increase HPJr from ~6 x 10“ 4 to ~ 1. Equation (4.5) shows two ways to increase HPJr : (i) by a decrease 
of the mean molecular weight to ~ 10“3 due to a profuse turn-on of electron-positron pairs; (ii) by an increase of 
Lr

rad/Lr
crlt to near unity so that the force of outflowing radiation on the plasma strongly counteracts the inward 

force of gravity. In all of our models the radiation force (case ii) is responsible for the increase in HPJr. It is con- 
ceivable—but seems unlikely to us—that one could build models of type (i), where HPJr increases due to profuse 
pairs. 

In our giant models, as one moves outward through the halo (where energy transport is all radiative), gravita- 
tional energy release drives Lr = Lr

rad up higher and higher. Ultimately, at ~ 1 g cm“3, the luminosity Lr goes 
supercritical and HPJr becomes ~ 1. Very shortly before this point the force of outflowing radiation on the plasma 
becomes so great that it begins to drive convection.1 The onset of convection marks the end of the halo and the 
beginning of the convective envelope. 

Throughout the strong-gravity region of the convective envelope, the plasma is protected against the pull of 
gravity by the force of outflowing radiation (1 — Lr

rad/Lr
crit ~ 10 “3). Because the radiative luminosity is so 

extremely close to critical, the star is forced to remain convective throughout this region. Ultimately, with increasing 
radius, gravity weakens enough that there might be some hope of the plasma supporting itself without the help of 
radiation forces. However, the outflowing luminosity cannot now be shut off. It is pouring outward with a rate Lr 
designed to counterbalance gravity at small radii, Lr ä Lr

crit(strong-gravity region) ; and with ever-increasing r and 
ever-decreasing T the opacity is rising higher and higher, driving Lr

crit lower and lower. Thus, the star remains 
supercritical (and therefore convective) all the way from its knee out to the photosphere. 

One knows from the theory of stellar envelopes that because our stars have very deep convection they must 
be near the Hayashi track of the H-R diagram where photospheric temperatures are low: 

jTpfc ^ 3000 K. (4.6a) 

The above argument shows, moreover, that the luminosities of our stars must be 

L ~ Lr
crit(strong-gravity region) ~ AttGcMqIk^ ~ 4 x 104 L© . (4.6b) 

These numbers agree with the detailed models of Tables 1-4. 
We suspect, but are not certain, that it is impossible to construct equilibrium models of stars with neutron cores 

and massive envelopes that lie elsewhere in the H-R diagram. The extreme force of gravity near the core probably 
always enforces deep convection and very high L—and thereby red-supergiant surface features. 

1 The Newtonian proof (Joss, Salpeter, and Ostriker 1973), that convection sets in before Lr becomes supercritical, is easily 
generalized to relativity theory. 
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No. 3, 1977 STARS WITH DEGENERATE NEUTRON CORES 849 

Using the above information about the stellar structure, we can understand semiquantitatively the flow of energy 
inside the star: Mass flows from the static envelope, through the inflowing envelope, into the halo, and thence into 
the core. In the inflowing envelope, because of inefficiency of convection, the temperature gradient is slightly 
superadiabatic, so the inflowing matter gets heated not only by adiabatic compression due to gravity, but also by 
the absorption of some of the upflowing luminosity Lr. Mathematically, in the equation of energy generation (2.20d) 
dU¡dMr — (Plp2)(dpldMr) is negative due to superadiabaticity, so Lr&

2 (the redshifted luminosity) increases inward. 
Equivalently, in the equation of energy conservation (2.43) superadiabaticity means that ¿^3# increases inward, so 
LjM2 also increases inward. 

By the time it reaches the knee, the inflowing matter contains an enormous amount of internal energy, almost all 
of it tied up in radiation: 

(^)k > ^3~ n +/lp > (1 - £ph/c2)[(l - 2GMtc¡c
2Rc)~

112 - 1] ~ 0.2. (4.7) 

[Here we have used expressions (T, 6e) and (2.36) for and together with the fact that because the knee 
is so close to the core boundary, the redshift factor & is very nearly the same at the knee as at the core boundary.] 
At the knee the temperature gradient goes very subadiabatic (in fact, nearly isothermal), so the contracting matter 
begins to release its huge store of thermal energy, converting it into outflowing radiation. Because its temperature 
is now remaining constant, its specific internal energy II ä aTá/p falls off as l//>. After the density has increased 
by only a factor 10 above pknee, 90% of the stored energy has been converted into luminosity Lr. After several more 
decades of density increase, nuclear burning begins to occur, producing further luminosity (but much less than was 
produced by gravity and released just below the knee). By the time the flowing matter gets inside the core, essentially 
all the star’s luminosity has been accounted for ; Lr has dropped nearly to zero. Overall, the contribution of gravita- 
tional contraction to the total luminosity of the star is 

Lgrav = Mc2(l - BJc2)[l - (1 - 2GMtclRcc
2)112] (4.8a) 

(cf. eq. [2.43] and associated discussion); and the contribution of nuclear burning is 

Lnuc = Mc2(1 - 2GMic/Rcc
2)1/20.007118[0.936 Xph + (Xph + Tpll)/11.0 + (Xph + rph + Cph)/13]. (4.8b) 

The ratio Lnuc/L = Lnuc/(Lnuc + Lgr&v) is shown for various models in Tables 3 and 4. 
For a detailed example of these features of energy flow, see the columns labeled r — rK, p, and 1 — ^2Lr¡L in 

Table 1. 
Non-nuclear-burning neutrino losses are totally negligible («IL©) in the outer and middle regions (p < 

3 x 108 g cm-3) of all our models; cf. Tables 1 and 2. We have not made a thorough search for models with high 
neutrino losses; but we suspect that high losses are incompatible with stellar equilibrium as well as stability. 

b) Structure of the Halo and Sharpness of the Knee 

The halos of our giant models are remarkably isothermal, and the transition through the knee into a super- 
adiabatic temperature gradient is remarkably sharp (see Fig. 2). These features can be understood as follows: 

To avoid issues of radially changing chemical composition, consider that region of the halo which lies outside 
the hydrogen-burning shell (p < 3 x 103 g cm-3 for the 5 M© model of Fig. 2). Here the pressure and internal 
energy due to gas and radiation are 

pkT . 

p, = 

i ap 
P — - nT± • IT — rad • rad — o M-£ 5 J-Arad 5 3 p 

Because the halo is so thin in radius and contains so little mass, throughout it we can set r 
thence 

-jr-i = ^ = (1 - 2GMtclc
2Rc)

112 

(4.9a) 

Rc, Mtr = Mtc; and 

(4.9b) 

(cf. eq. [2.36]). Also, because Pjc2 ^ p « M^AnR2 throughout the halo, and because nuclear binding energies 
and particle kinetic energies are small compared to mHc2, we can approximate 

3? = Mic/Mr, 3eg = 1 (4.9c) 

(cf. eqs. [T, 6c] and [4.2]). Finally, because all luminosity is carried radiatively in the halo, we can set £r
rad = Lr. 

By using the above relations we can rewrite the force-balance equation (4.4a) for the plasma in the halo as 

(4.10a) 
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where gc is the acceleration of gravity at the edge of the core, 

gc = (GMtcIRc2)^^1. (4.10b) 

The analogous equation of force balance for the radiation is obtained by setting Prad = P — Pgi by taking the 
difference of equations (2.20i, a) and (4.10a), and by invoking the relations (4.9b, c), (4.10b), and ¿4? — l x 
4i>rad//>c2 [cf. eqs. (T, 6e) and (4.9a, c)] : 

dPrad    4gc Prad   gc Lr 

dr ” c2 @c 
pLr°

Tit' 
(4.11) 

The first term on the right-hand side is a gravitational redshift term ; it can be neglected because of the thinness of 
the halo (r* — Pc « Pc): 

dPTJdr= -(gcl@c)P(LrILr°™). (4.11') 

By taking the ratio of the force-balance equations (4.10a) and (4.11') and combining with the equation of state 
(4.9a), we obtain 

dlnT/dln p = (4yL/yg - 1) 1, (4.12a) 

where 

yL EE Lr
CTitlLr ~ 1 = ßLl(l - ßL) , y g = P gl ■PT&ù. = ßgl(X - ßg) « (4.12b) 

We shall see below that yL » yg throughout the halo, except very near the knee and near the nuclear-burning shells; 
thus, the halo must be nearly isothermal (d In T¡d In p « 1). 

The opacity in the halo is due, almost entirely, to electron scattering and thus depends on temperature but not 
density (eq. [2.32])—and is essentially constant throughout the halo. Thus, Lr

crit (eq. [4.4b]) is also essentially 
constant, with value 

T crlt _ AttGcMíc _ 3.2 x 1O4L0 Mtc 2 . 
^C/Ces @cG(Tk) Mq 1 + xph ’ 

where G(TK) is the Klein-Nishina correction function for the electron scattering opacity, evaluated at the tempera- 
ture of the knee TK. The knee occurs where the temperature gradient becomes adiabatic; thus 

d In T/d In p = (d In T/d In p)s = £ at knee . (4.14a) 

(Here we have used the fact that Prad » Pg near the knee, so that the adiabais are T3lp = const.) Equations (4.14a) 
and (4.12a) show that 

yL = yg at knee ; yL > yg in halo . (4.14b) 

The value of yL in the halo is governed by Lr, which is determined by the equation of energy conservation: 

Lr = Vuc + + prad/p) = Lr
nuc + const.//). (4.15) 

[See eqs. (2.43), (4.8b), and (T, 6e) specialized to the case r — Pc « RC; B = Bph, X ^ph5 and Ilgas + P&as/p 
radially constant because of isothermality. Here Lr

nuc is the total contribution of nuclear burning to Lr in the halo : 

Lr
nuc = ^c~2£nuc = ^e-W-O.OOTlSSIO^SÓ Zph + (Xph + Fph)/11.0 + (Xph + Yph + Cph)/13]; (4.16) 

cf. eq. (4.8b).] By combining equations (4.15) and (4.12b), using (4.14b) to evaluate the constant in (4.15), using 
the constancy of Lr

crit, and ignoring a factor ygK where it is unimportant, we obtain 

v — (p/pidiygK + 1) i 
n 1 + ßnucip/PK - 1) 

T n 

iSnuc = r 

Lr
crlt 

^nuc - 0-03 because 

0.03. (4.17) 

Here pK and ygK are the values of p and yg at the knee, and ßn 

Lr
nnc = &c~

2LnvLC - 0.030MC~
2L - 0.030Lr(knee) ä 0.030Lr

crit. 

Because yff = ygK(plp¿) in the isothermal region, we have 

n = J + (pIPk ~~ 1)(1 ~ ßnuc ~ ßmicYgK.plPk) _ 
y g [1 + ßnucip/pK ~ mygKPlpK) 

(4.18) 
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The isothermal region is that region in which y£/y9 » 1 (cf. eq. [4.12a]). Equation (4.18) shows that it extends over 
the range 

5 x IO"4 ~ ygK « (pIpk - 1) « ll(ßnVLCy9K) - 7 x 10+4 . (4.19) 

The p-T curve for the 5 AT© star in Figure 2 demonstrates this : At the left end of the halo the termination of iso- 
thermality is so sharp (Ap/p ~ ~ 5 x 10-4) that the slope of the p-T curve looks discontinuous. Toward the 
right isothermality ends at p ~ 2 x K^p* ~ 103 gem-3. The above analysis diagnoses correctly small departures 
from isothermality; but as the departures become significant (din T¡dIn p ~ 0.1), the analysis produces serious 
errors. 

The density-radius relation in the isothermal region can be derived by combining the plasma equation of state 
(4.9a) and expressions (4.12b), (4.17) for Lr/Lr

crit with the plasma force-balance equation (4.10a), and then integrat- 
ing. The result is 

P — Pk = constant x exp ^ ) > (4.20a) 

where Hh is the value of the gas-pressure scale height (4.5) a few meters below the knee where Lr = Lr
nuc: 

P'iX ßnnc) 
(4.20b) 

For the 5 M© star of Table 1 and Figure 1 this formula gives &cHh = 1.30 meters. The density profile (4.20a) agrees 
rather well with the numerical model of Table 1 inside its realm of validity (eq. [4.19]). For example, it describes 
within a few percent accuracy the increase in density scale height from Hp = Hh — 1.55 meters deep in the halo 
to Hp = Hh(l — pkIp)'1 — 50metersatl — pKlp = 3 x 10 “2. However, very near the knee (at 1 — pKlp ~ ygK — 
5 x 10 “4), it breaks down because of the breakdown in isothermality (din T/d In p no longer « 1). 

Unfortunately, in the neighborhood of the knee there is a serious omission in the physics which we have put into 
our analysis: We have ignored the possibility of “convective overshoot” in which turbulent cells plow through the 
knee and into the upper layers of the halo before being stopped by pressure buoyancy forces. 

We can estimate the effects of convective overshoot in our 5 MQ model (Table 1) as follows: Just above the knee 
the mixing length (assumed equal to pressure scale height) is lt # RJ4 = 2.5 km (cf. eq. [4.26] below and recall that 
P oc T4). Table 1 shows that convective cells within this distance of the knee have typical velocities of vt x 
IO7*8 cm s_1. Suppose that a small cell moving downward with this speed hits the knee, and that when it hits it has 
the same density and temperature, pK and TK, as its surroundings. Because the cell’s velocity vt is far less than its 
sound speed (vs ä 109-85 cm s_1), it maintains pressure equilibrium with its surroundings as it penetrates the halo. 
Pressure equilibrium means temperature equilibrium since Prad » Pgas, which means constancy of temperature 
since the halo is isothermal. Assuming negligible heat exchange between the cell and its surroundings (T*¡p constant 
in cell), we conclude that the cell maintains constant density, pcell = pK, as it penetrates the halo. Consequently, its 
deceleration rate as it moves through the halo is given by 

Pk^c 1dvjdt — —gc(p — Pk) ? 

where gc is the (constant) acceleration of gravity throughout the halo (eq. [4.10b].) Since v — —Mc~
2dr¡dt, and 

since the density profile has the form (4.20a), we can rewrite this deceleration equation in the form 

dv2jd(p — pK) = —2gcHhlpK . (4.21) 

Integrating this equation and imposing the boundary condition v = vt at p = pK, we obtain for the density /Wersuoot 
at which the cell halts its plunge and begins to rise: 

/^overshoot 
Pk 

1 = 
2gcHh 

i(l ßnvLo) 
Vt2 p^rn^c2 

c2 kTK 
(4.22) 

For our 5 M© model, with ßnuc = 0.028, vt = 107*8 cm s-1, = 0.62, and TK = 108*25 K this gives /w-shoot/p* ^ 
1.08. Cells moving 3 times as fast will penetrate 10 times farther, i.e., to povershootlPk ~ 2. 

The above estimates suggest that convective overshoot is of some, but not great, importance. However, the follow- 
ing factors make this conclusion somewhat uncertain : (i) We evaluated the convective overshoot assuming a small 
convective cell, but the size of a typical cell just above the knee is probably ~RC/10 ~ 1km, which is far greater 
than the scale height (a few tens of meters) of the region into which the cell penetrates, (ii) The region of overshoot 
is the region of greatest gravitational energy release: the energy release between pK and pis 

ALr = (Lr
crit - Lrc)(l - PkIp) ; (4.23) 

cf. eq. (4.15). A serious modification of the temperature distribution in this region due to overshoot will seriously 
affect the details of gravitational energy release, and will thereby affect the average density profile and the pressure- 
buoyancy force on the convective cell, and might thus seriously affect our above estimates. 
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Obviously, a detailed study of overshoot is needed. 
In this discussion of the halo, turn attention now to the nuclear-burning shells. Because of the extremely small 

scale height in the halo and in the outer layers of the core, the nuclear-burning shells are very thin: typically 
(physical thickness) = ¿%c~

1Ar ~ 2 meters for the hydrogen shell, 4 meters for the helium shell, and 20 meters for 
the carbon shell (see Table 1). The time required for matter to contract through these shells is âlc~

1Arlvln ~ 10 s 
for the hydrogen shell, ~ 30 minutes for the helium shell, and ~ 10 days for the carbon shell. Note that the electrons 
are nondegenerate in the hydrogen shell, slightly degenerate in the helium shell, and fully degenerate in the carbon 
shell. However, these conclusions, particularly concerning the hydrogen shell, are somewhat uncertain because of 
inadequacy of our nuclear-burning rates (cf. § V). On the other hand, LDUCIL a: 0.030 is so small that errors in our 
treatment of nuclear burning are probably unimportant for the overall structure of the star. 

c) Structure of the Inflowing Envelope 

In the inner regions of the inflowing envelopes of our giant stars (107 K < T < T^) convection is fairly efficient, 
so the temperature gradient is not far from adiabatic; cf. Table 1, where adiabaticity would mean constancy of ßB, 
and Figure 2 where adiabaticity would mean a T-p curve parallel to the jS, = constant lines. (One must not diagnose 
adiabaticity from V - Vad in regions where ßg « 1.) 

By approximating the temperature gradient as adiabatic, we can derive simple expressions for the structure of 
the inflowing envelope. Adiabaticity of the flow implies (by virtue of the relativistic Bernoulli equation, or by 
eq. [2.43] with ¿t$2Lr constant) that is independent of radius. Because ßg « 1 and because nuclear binding 
energies can be ignored, equation (T, 6e) for ^ reduces to 1 + (4aT'4)/3pc2. By combining this expression for «Sf7 

with the relation 
& = PJPt&i = (3klpmBa)(plT3) 

and with expression (2.36) for 5?, and by setting #0% = (.?f¿$)A-, we obtain 

4 kT 
ßg pmRcd = (1 + 

4 kTK \ /1 
— 2GMtclc

2Rc\
1/2 

ßgpmHc2)\ 1 - 2GMtclc
2r ) 

(4.24) 

In order that the temperature T not go negative and not go isothermal at r » rK, the knee temperature must satisfy 

4 kTK 1 
ßaKPmnc2 (1 - 2GMtclc

2Rc)
112 (4.25) 

Deviations from this relation are a measure of the deviation from adiabaticity. For the 5 Af© model of Table 1 
this relation predicts log TK = 8.217 compared to an actual value of log TK = 8.249. Using relation (4.25) we can 
rewrite equation (4.24) for the temperature profile as 

4 kT 1 . GMtc 

ßgpmBc2 (1 - 2GMtclc
2r)m ~ c2r ’ 

(4.26) 

where ” is the Newtonian limit. 
Note that T<x l ¡r implies p oc 1/r3, which means that Mr and Mtr increase only logarithmically with radius 

Mtr A/(jr ~ 47rpJf/?c
3 In (rjrK) . (4.27) 

This accounts for the very small amount of mass contained in the inflowing envelope (third column of Table 1). 

d) Structure of the Outer Region 

The outer regions of our models (r > static envelope, photosphere, atmosphere) are very similar to the 
outer regions of red supergiants with white-dwarf cores or nondegenerate cores. Therefore, we shall not comment 
on their detailed structures or on their sensitivity to the choice of mixing length (Table 3). 

However, it is very important to notice that the luminosities and photospheric temperatures, L and Tpb, are 
exceedingly insensitive to the details of the core, halo, and inflowing envelope. L and Tph are fixed almost completely 
by the total mass Mt, the core mass Mtc, and the envelope composition 2^, yph, Cph. Compare, for example, the 
following three models with the same Mt, Mtc, Xph, Ypb, Cph, and ratio of mixing length to pressure scale height: 
the third model in Table 3 and the third model in Table 4 (relativistic models with different core radii), and the 
eleventh model in Table 3 (which is Newtonian). Despite the difference in their inflowing envelopes, halos, and 
cores, their luminosities and photospheric temperatures agree almost exactly. 

Figure 3 explains this remarkable fact. Figure 3 is an H-R diagram for static stellar envelopes near the Hayashi 
track of a 5 Me star. All the curves in Figure 3 were constructed using Paczynski’s computer program GOB for 
static stellar envelopes (§ lie), with no attempt to join the envelopes onto any kind of core. Notice the extremely 
narrow range of photospheric temperatures on the horizontal axis. 
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Fig. 3.—H-R diagram (luminosity versus photospheric temperature) for stars of total mass Mt = 5 M©, envelope abundances 
Xph = 0.70, Fph = 0.27, and ratio of mixing length to pressure scale height ltlHP = 1. Each point in the L-Tph diagram corresponds 
to a unique static envelope constructed by the prescription of § lie. Each dotted curve is a region of constant core mass, Mtc = 
Mt — Menv The curve Mic = 0 was calculated by extrapolation from Mic > 0. Each thick solid curve is a region of constant 
temperature To-m at the base of the envelope (radius r0-m defined by eq. [2.1]). To the left of the thin solid curve the turbulent 
velocity of convection is less than half the adiabatic sound velocity throughout the static envelope. To the right, vt > vs/2 near the 
base of the envelope—and therefore we are not justified in our use of subsonic mixing-length theory. The large dots are the surface 
properties of the six stellar models of Table 4. 

The absolute temperatures and luminosities along the various curves are unreliable because of uncertainties in opacities and mixing 
length (which is here assumed equal to pressure scale height). However, the temperature and luminosity differences between various 
curves should be somewhat reliable. 

The envelopes of Figure 3 can be joined onto a variety of types of cores. In the case of a white-dwarf core with 
hydrogen-burning shell source, the base of the static envelope, r0_m of equation (2.1), is near or inside the shell 
source; thus log ro_m ~ 7 to 8 and stars with white-dwarf cores typically lie between the solid curves 8 and 7 of 
Figure 3. 

In the case of a neutron core, the temperature falls off roughly as 1/r between rK and r0_m ~ 103 rK; and because 
Tk < 109 K, we must have T0.m ^ 106 K. In fact, all of our detailed giant models (Tables 3 and 4) have 5.9 ^ 
log r0_m ^ 6.4. In the envelope H-R diagram (Fig. 3) such models lie along an extremely narrow strip, A log Tphtt 
0.001 ; and for given core mass Mtc, the luminosity within this strip varies by only A log L ~ 0.02. Thus, to within 
A log Tph ä 0.001 and A logL ~ 0.02, the envelope is oblivious of the details of the core and halo. 

This behavior is due to the well-known fact that as one moves rightward in the H-R diagram, approaching the 
Hayashi forbidden region, the characteristics of the base of the envelope change extremely rapidly. 

The above discussion shows that, for given L, the photospheric temperature is not even sensitive to the difference 
between a white-dwarf core and a neutron core. The star with a neutron core will be redder by only A log Tvh ~ 0.01. 

V. DETAILS OF THE STELLAR STRUCTURE: SUPERGIANTS AND MASS GAP 

Consider a sequence of models with fixed core properties (Mtc, Rc) and successively higher total mass Mt—e.g., 
the sequence in Table 3. The low-mass models have “giant” structures of the type discussed in § IV. The high-mass 
models have “supergiant” structures (convective envelope dips into hydrogen-burning shell, and most of the energy 
generation is by hydrogen burning rather than gravitational contraction). Between the giant and supergiant models 
there is a “mass gap” in which our computations have failed to produce any equilibrium configurations. 

This peculiar situation can be understood as follows (see Fig. 4). The critical luminosity Lr
crit in the inflowing 

envelope has the form 
^Vrit = 47rGcMic//ces (5.1) 

(eqs. [4.4b], [4.9b, c]), where /ces is the electron-scattering opacity 

k63 = (0.4 cm2/g)[(l + Xph)j2](l + 2n+lne)G(T) (5.2) 
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Fig. 4.—Local luminosity Lr and critical luminosity Lr
crlt as functions of temperature T in the inflowing envelopes of the 5 M0 

giant model of Table 1, and the 12 M© supergiant model of Table 2. We actually plot vertically Lr and Lr
orit multiplied by the red- 

shift factor M because the product &Lr
crit is very nearly a function of temperature only and is therefore the same for all models with 

the same core masses (cf. eqs. [5.1], [5.2]). The Lr curves are parametrized by radius r in kilometers. The knee (r = 10.0 km) occurs 
where I/r goes subcritical. 

(eq. 2.32). The product ^Lr
crit is plotted, as a function of temperature T for Xvh = 0.70, Mtc — 1 M0, and p ~ 

(10 g cm"3)(77109 K)3, in Figure 4. (The dependence on p, which is exceedingly weak and can be ignored, enters 
through the ratio n+lne of pairs to ionization electrons; see the Appendix.) At low temperatures (T ^ 107 K), 
&Lr

CTit is constant; but at T > 107 K the Klein-Nishina corrections G(T) begin to reduce the electron-scattering 
opacity, and thereby increase &Lr

crit. At log T ä 8.70, when &Lr
CTit has increased by a factor 2.0, electron-positron 

pairs turn on, increasing the number of photon scatterers, thereby increasing /ces, and thence decreasing 3$Lr
crit. 

The turn-on of pairs with increasing T is so sharp above log T = 8.70 that &Lr
crit plummets dramatically (see 

Fig. 4). 
In the envelopes of our models the local luminosity Lr is everywhere supercritical (see § IVa). Moving inward 

through the envelope, one reaches the knee (termination of convection) immediately after Lr goes subcritical. 
Figure 4 shows two Lr(T) curves: one for the interior of a giant model, the other for the interior of a supergiant. 
The difference between the two is obvious : The giant goes subcritical, with increasing T, before the peak of &Lr

crit 

is reached. The supergiant has such a high luminosity that it passes over the peak; but shortly thereafter hydrogen 
burning turns on, driving Lr down through the now plummeting Lr

crit curve. The hydrogen burning has to generate 
a very large luminosity (Lnuc ä L) in order for Lr to catch up with the rapid plummet of L7

crit. 
The sharpness of the pair turn-on at log T = 8.70 (the sharpness of the peak in Lr

crit) is responsible for the mass 
gap between our giant and supergiant models. For a model in the mass gap one can choose a total luminosity L 
such that Lr goes subcritical very slightly before the Lr

crit peak (giant-type structure) ; but such a choice always leads 
to a knee radius rK larger than the desired core radius Rc—and thus to no viable model. If one chooses L slightly 
larger, so that Lr skims over the Lr

crit peak and somewhat later plummets due to hydrogen burning (supergiant-type 
structure), one obtains a knee radius rK smaller than Rc—and again no viable model. No choice of L can produce 
the desired knee radius. 

Unfortunately, the above discussion is based on an inadequate treatment of hydrogen burning: Our detailed 
models utilized a CNO-cycle burning rate appropriate to the temperatures of normal stars (T ~ [2 to 10] x 107 K), 
whereas in our supergiants the hydrogen-burning shell has T ä 108-9 K. The “hot CNO-Ne cycle” burning rates 
of Audouze, Truran, and Zimmerman (1973) would be more appropriate. However, even they would be extremely 
inadequate: Some of the crucial ß-decays involved in the hot CNO-Ne cycle have lifetimes of ~ 1 to 100 seconds, 
whereas convection circulates matter into and back out of our hydrogen-burning shell in a time A* ~ 0.01 s 
(cf. Table 2). For this reason we expect hydrogen burning to proceed in the following very unconventional manner: 
Convection circulates unburned matter into the hydrogen-burning shell, where all strong interactions go to com- 
pletion almost instantaneously (Ai « 0.01 s). The reaction chains then get hung up waiting for ß-decays to proceed. 
After ~0.01 s the ß-hung-up matter gets swept back up to larger radii (lower temperatures), where it convectively 
random-walks from place to place, while undergoing ß-decay. Sometime later, after the jS-decay is partially or 
fully complete, the matter random-walks its way back into the hydrogen-burning shell, where its strong interactions 
proceed once again. 

In a subsequent paper we hope to analyze supergiant hydrogen burning from this point of view. We presume that 
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the reaction products will include very peculiar relative abundances of various catalyst isotopes, and that these may 
provide an observational handle for stars with neutron cores (see § Ic). 

It is quite possible that an improved treatment of hydrogen burning will change the hydrogen-shell structure of 
our supergiants substantially, and will destroy the mass gap between giants and supergiants. 

VI. STABILITY OF OUR MODELS 

We have worried about five possible instabilities in our stellar models : 
Dynamical instability of the envelope, caused by the low adiabatic index (1^ < 4/3) in the regions of hydrogen 

and helium ionization, where much of the envelope mass resides. The situation here is similar to that in red super- 
giants with degenerate white-dwarf cores (cf. Paczynski and Ziólkowski 1968), since the envelopes there and here 
are nearly identical. In such envelopes the thermal and hydrodynamical time scales are comparable, so energy trans- 
port has a strong influence on the time development of any instability. We have analyzed the stability of our 
envelopes ignoring energy transport (stability against linearized adiabatic, radial perturbations); see last column 
of Tables 3 and 4. For envelope masses Menv ^ 2 M0 our envelopes are adiabatically unstable; for Menv > 2 M©, 
they are adiabatically stable. This result suggests (see, e.g., Keeley 1970a,b;) that a more correct, nonadiabatic 
analysis may reveal either pulsational or disruptive instabilities for our least massive envelopes; but that our most 
massive envelopes might be stable against all perturbations, except convective ones. 

Thermal instability^/ the shell sources. Consider a nonconvective shell source with average luminosity and 
temperature Lr and T, and with luminosity and temperature drop across itself of ALr and AT. A crude analysis 
(simple generalization of page 857 of Schwarzschild and Härm 1965) shows that an average temperature rise of 
ST7inside the shell produces the following rate of increase of the shell’s internal energy: 

^internal — (\\ 1S o T ^ 8T (6 \\ jt - (ALr)^ - 8 -=- • (6.1) 

Here v is the temperature exponent of the nuclear-burning rate, € oc Tv. The nonconvective halos of our models are 
extremely isothermal—so isothermal that &(Lr¡ ALr)(TI AT) has values of ~30 to 40 for the giant model of Table 1, 
and ^ 1000 for the supergiant of Table 2. This is sufficiently large compared to v that our nonconvective halos are 
probably stable against thermal runaway (positive 8T sets up a heat flow out of the shell which exceeds the increased 
nuclear burning). Even if the nonconvective shell sources turn out to be unstable, their very small contribution to 
the star’s total luminosity, and their location deep below the envelope, and the very short time scale of the instability 
will probably prevent the instability from producing observable effects at the photosphere. 

In our supergiant models the convective hydrogen shell source should be protected from thermal runaway by 
the 0-decay hang-up discussed in § V. On the other hand, the convective hydrogen burning described in § V might 
proceed in a series of local flashes rather than as a smooth energy flow. Even if this is the case, the time scale of the 
flashes will be so short (A¿ « 1 s) that their effects presumably will be smoothed out in the overlying envelope. 

Instability of the region of gravitational energy release (pK < p ^ 10 pK). We do not now have any insight into the 
stability of this region. Any adequate analysis would have to take account of convective overshoot. 

Runaway neutrino losses, accompanied by an ever-increasing rate of envelope contraction. The computations of 
Zel’dovich, Ivanova, and Nadyozhin (1972) suggest that such an instability may occur in models with halo 
temperatures much higher than ours—if such models can exist. However, our low halo temperatures (T ^ 
1 x 109 K) keep the middle-region neutrino losses small (« 1 L©) and presumably will prevent them from running 
away. Because of thermal decoupling (§ lib), neutrino losses in the core cannot produce an instability in the over- 
lying halo and envelope. 

Instability of the mass inflow pattern. Bisnovatyi-Kogan (private communication) has argued that the inflowing 
envelope, halo, and outer core may be unstable against perturbations which break the radial constancy of til. A 
specific example of such an instability is the possibility (Cameron, private communication) that at densities 
~3 x 108 to ~1014gcm“3 rapid pycnonuclear reactions and electron capture, followed by intensive neutrino- 
antineutrino emission, might produce a rapid shrinkage of the outer core. We doubt that such instabilities exist, 
but we have no proof. 

A Henyey-type evolutionary calculation would be a powerful tool to use in testing for the above instabilities 
and others. 

VII. EVOLUTION OF OUR MODELS 

We saw in § IVd that stars with neutron cores can occupy only an extremely narrow strip in the H-R diagram, 
sitting precisely on the edge of the Hayashi forbidden region. The boundaries of this strip can be found with good 
accuracy by static-envelope integrations; see § IVrf and Figure 3. 

Take a star with a neutron core and a given total mass Mt, and assume that it does not undergo any violent 
instabilities during the time required for its core mass Mtc to grow significantly. Such a star should evolve through a 
sequence of quasi-equilibrium states of the type discussed in this paper. Restrict attention to giant-type stars, for 
which the envelope does not evolve chemically. Then the evolution of the surface features, L and can be read 
off a static-envelope H-R diagram such as Figure 3, without any reference to the structure of the inflowing envelope 
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or halo. As Mtc increases, L and T’ph must move up the narrow allowed strip (strip with 7,
0_m ~ 106). The evolution 

will terminate by collapse of the core to form a black hole when Mtc reaches the Oppenheimer-Volkoff limit 
(maximum mass of neutron star) M0y ~ 1.5 or 2 M©. 

To verify for a given star that giant-type evolution (unchanging envelope abundances) really is reasonable, and 
to learn the details of evolution of the star’s deep interior, one must construct a sequence of evolutionary models 
for the entire stellar envelope and halo. One could do so using a Henyey-type code. However, we think this is not 
necessary. Assuming that our models are stable, Henyey evolution would have to reproduce the unique sequence 
of models which we obtain by our methods holding the star’s total rest mass M fixed and increasing its core mass 
Mc from model to model. Such a sequence would be nearly the same as the one shown in Table 4 with fixed total 
mass Mi and increasing Mic. 

The evolutionary sequence in Table 4 is for a star with total mass Mt = 5 M©, with envelope abundances 
Xph = 0.70, Yph = 0.27, Cph = 0, and with core mass increasing from 0.40 M© initially to a final, Oppenheimer- 
Volkoff limit of 1.625 M©. The core radius-mass relation Rc(Mtc) is that of Malone, Johnson, and Bethe (1975, their 
model V-H). In our models we were satisfied with reproducing the desired Rc(Mtc) to within about 1%. All models 
in our evolutionary sequence (Table 4) have giant-type structures. As one might expect, as the core mass grows 
and the acceleration of gravity at the core edge increases, the thickness of the halo decreases (cf. § IV6). The total 
time required for evolution from Mtc = 0.4 M© to the point of core collapse, Mtc = 1.625 M©, is 

Ai = J til-'dMc = J x 7.4 x 107 years . (7.1) 

The evolution of a supergiant is more complex than that of a giant; it is driven not only by core growth, but also 
by chemical evolution of the envelope. The rate at which envelope hydrogen is burned by the shell sources of our 
models to form envelope helium is typically ~ 500 times greater than the rate at which envelope matter flows into 
the core ; see Table 3. To burn all of its envelope hydrogen, a supergiant of 12 M© requires ~ 1.1 x 107 years, and 
a supergiant of 25 M© requires ~1.4 x 107 years. For comparison, the time required for the core rest mass to 
increase 1 M© is ~6 x 108 years in the first case and ~7 x 108 years in the second. These estimates may be in 
serious error because they are based on our inadequate treatment of the hydrogen burning (§ V) and on models 
(Table 3) of one chemical composition only. We have not yet attempted to construct supergiant models with 
hydrogen-deficient envelopes. 

VIII. CONCLUSION 

We regard this paper as merely a first rough overview of stellar models with neutron cores. This overview has 
uncovered a large number of problems which must be resolved before the theory will be in satisfactory shape. At 
present we are pursuing only three of these problems vigorously: the details of nuclear burning and nucleosynthesis 
in supergiant models (§ V), the resulting chemical evolution (§ VII), and the possibility of discovering such stars by 
observation of peculiar photospheric abundances (§ Ic). 

Other problems that require study are these: (i) The stability of our models, with emphasis on the five possible 
instabilities described in § VI. (ii) A search for models with very different structures from those exhibited in this 
paper—e.g., models with large neutrino losses supplied by large mass inflow rates (cf. § TVa and § VI) and models 
in which profuse electron-positron pairs replace large Lr as the source of reasonable scale heights above the halo 
(§ I Va), (iii) The effect of convective overshoot on the structures of our giant models (§ IVÔ). (iv) The effect of 
magnetic fields in reducing the opacity at densities 106 ^ p ^ 3 x 1011 and thereby permitting significant heat 
transfer between core and halo (§ lié). 

All of the above problems seem somewhat tractable. Less tractable, but obviously very important, is the issue of 
how such stars might form in nature (Ostriker and Paczynski 1975). 

We are deeply indebted to Bohdan Paczynski for suggesting this research problem, for many helpful discussions 
during its execution, and for making available to us his envelope integration program GOB and the neutrino-loss 
and C+C subroutines for our middle-region integrations. We also gratefully acknowledge valuable discussions 
with Yevgeny Bisnovatyi-Kogan, Wojciech Dziembowski, Douglas Eardley, Douglas Keeley, Jeremiah P. Ostriker, 
and Martin Schwarzschild, as well as valuable assistance in numerical work from Barbara Zimmerman. 

APPENDIX 

ELECTRON-POSITRON PAIRS IN THE NONRELATIVISTIC, NONDEGENERATE APPROXIMATION 

In thermodynamic equilibrium at temperature T, the number density of electrons “ —” and positrons “ + ” in 
phase space is 

dN* 2 1 
^ ~ d3xdap h3 1 + exp [{p0 + p)¡kT\ (Al) 
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where /x is the chemical potential, pQ = (m2 + p2)112 is the total mass-energy of a particle, p is the magnitude of the 
spatial part of its 4-momentum, m is the electron rest mass, k is Boltzmann’s constant, and we set the speed of light 
equal to unity. Here and below, equations containing double signs (+ or ±) are valid for electrons (including 
ionization electrons and pair electrons) with the upper sign and for positrons with the lower sign. The number 
densities in physical space , the pressure PT, and the energy densities including rest mass are 

= J ^Td
zp, P* = e* = J Po^d^p, (A2) 

where d*p = A7Tp
2dp, 

We assume that the number of electrons exceeds the number of positrons, so ^ > 0; and we specialize to the 
nonrelativistic, nondegenerate regime: 

fi > 0 , m/kT » 1 , (m — p)¡kT » 1 . (A3) 

In this regime relativistic particles make negligible contributions to and IIT ; consequently, we can set 
p2l2m « m, and use 

pQ = m + p2¡2m . (A4) 
Assumptions (A3) then allow us to write 

- |exp (- ¿Sy) exp (±^) • (AS) 

By inserting expressions (A4) and (A5) into (A2) and integrating, we obtain the following results : (i) The electron 
and positron pressures and energy densities are given by the usual nonrelativistic expressions 

= n^kT, = n^(m + fAT). (A6a) 

(ii) The number densities of electrons and positrons are 

nT = (2lh3)(27rmkT)312 exp [(±p - m)lkT]. (A6b) 

The number density of ionization electrons ne is the difference between «_ and n+—and is also equal to plmHpe, 
where pe is the mean molecular weight per electron: 

plmuH'e = ne = n- — n+ = (2lh3)(27rmkT)312 — e-»ncT] ^7^ 

Let us introduce the parameter 

y = 
h3ne 

4(27rmkT)312 
atnlkT 

=(#)(fr-(f) 
(A8) 

where p6 is density in units of 106 gem-3 and T9 is temperature in units of 109 K. Then by solving equation (A7) 
for eulkT we obtain 

eßlkT = -y _|_ (j;2 + 1)1/2 . ^9) 

and by combining with (A6b) we obtain for the ratio of number of electron-positron pairs to number of ionization 
electrons 

n+ n- — ne 1 
hc - «e “ 2y[y + (1 + j^2)1'2] * 

(A10) 

Equation (A6a) then shows that the ionization electrons make the usual contribution to the pressure and energy 
density, while the pairs make the contribution (in cgs units) 

pair 2n+kT 
y[y + (I + y2)112] 

pHpaip = 2n+(mc2 + jkT) = 
{plixem^)(mc2 + ffeP) 

y[y + (i+ y2)m] 

(Alla) 

(Allb) 

The temperature-density regime in which the above expressions are valid can be deduced by combining equations 
(A8), (A9), and (A3): 

Tg « 5.93, (A12) 
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The T-p curve along which the number of pairs equals the number of ionization electrons is given by >> = 0.354 
and is shown graphically in Figure 2. Note that when our stellar interiors cross over this curve so pairs become 
important, they remain well within the realm of validity of our approximations, equations (A12). 
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