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Summary. The observed increase of the dispersion of .

stellar space velocities with age can best be explained
by local fluctuations of the gravitational field in a
galaxy. This irregular field causes a diffusion of stellar
orbits in phase space. The value of the diffusion coeffi-
cient can be derived empirically from the observed in-
crease of stellar velocities with age, even without any
knowledge of the actual physical source of the irregular
field. A disk star changes its space velocity at random
by more than 10 km s~! per galactic revolution. The
diffusion in position is about 1.5 kpc after 2 10® years.
The diffusion of stellar orbits hampers the determination
of stellar birth places. It enhances the dissolution of
stellar groups and would have severe implications for
stellar dynamics of galaxies in general.
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1. Introduction

Orbits of stars in a galaxy are usually calculated by con-
sidering only the regular part of the gravitational field
caused by the smoothed-out distribution of matter
which varies smoothly with position and time. The
irregular part of the gravitational field in galaxies is
generally considered to be negligible because the relaxa-
tion time due to encounters between the stars is some
orders of magnitude larger than the age of the Universe
(e.g. Chandrasekhar, 1960). However, other perturba-
tion processes beside two-body encounters of stars may
lead to much larger local fluctuations of the gravitational
field. Spitzer and Schwarzschild (1951, 1953) discussed
gravitational encounters between stars and large inter-
stellar cloud complexes and their influence on stellar
velocities. Even today, however, the existence of such
complexes of interstellar matter, involving required
masses of about 10° .# ,, remains a delicate and rather
unsettled observational problem. Also since other pos-

sible perturbation mechanisms, discussed in Section 3,
have not been firmly established as significant, the
probable existence of a considerable irregular gravita-
tional field in a galaxy has been either explicitely denied
or at least effectively ignored in most studies of stellar
orbits in galaxies.

It is the purpose of the present paper, (1) to point
out that the observed increase in the velocity dispersion
of stars with age does strongly suggest the existence of
a significant component of the galactic gravitational
field with a rather stochastic behaviour, and (2) to in-
vestigate the implications of such an irregular field for
stellar orbits. The perturbations of stellar orbits can be
studied quantitatively on the basis of the observed
velocities, even without a detailed knowledge of the
basic source of the irregular gravitational field. The
effect of the irregular field on stars can be described
formally by a diffusion process in velocity space. The
result of this process we propose to call “diffusion of
stellar orbits™.

2. Observed Velocity Dispersions

It is well known that the dispersion of the peculiar space
velocities of stars increases with the age of the objects.
Since this fact provides the observational basis of the
following sections, we shall collect here recent results
on this relation. The data are mainly based on the ob-
served space velocities of nearby stars as catalogued by
Gliese (1969). A summary of these results has been
published by Wielen (1974a). More details will be found
in forthcoming papers by JahreiB and Wielen (in pre-
paration).

The velocity dispersion is defined as the root mean
square of the stellar space velocity », or its components,
U, V, W, measured relative to the local mean motion.
In practice, the dispersion of disk stars changes only
slightly if referred to the local circular velocity instead
of to the local mean motion of the stars under con-
sideration. The U-axis points towards the galactic
center, the V-axis in the direction of galactic rotation
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Table 1. Velocity dispersions of stars as a function of age

R. Wielen: The Diffusion of Stellar Orbits

Group of stars Atz~0 Integrated over z Age
(>
e® o oY oy oy ow a, 10° yrs
kms™! kms™! ‘
Classical Cepheids 8 7 5 12 0.05
Nearby 6d 14 8 4 14 8 3 16 0.21
stars 6¢ 17 7 4 20 7 4 21 0.47
on or near 6b 14 11 8 15 12 8 21 1.0
the main 6a 27 18 1 31 20 11 39 23
sequence 5 34 21 21 42 26 25 56 5.0
McCormick HK +8/+3 18 10 8 20 10 6 23 0.3
K+M HK +2 21 16 13 22 17 13 31 1.4
dwarfs HK +1 29 17 15 30 16 15 37 3.0
HK 0 38 23 20 40 21 21 50 5.2
HK —1 40 27 26 40 34 34 63 7.2
HK —-2/-5 66 27 23 67 29 25 77 9.0
All McCormick stars 39 23 20 48 29 25 62 5.0

and the W-axis to the north galactic pole. The velocity
dispersions of nearby stars have not been corrected for
observational errors because the bias is rather small.
An uncertainty of +209% in the distances of nearby
stars causes an overestimation of the velocity dispersion
by less than 2%,.

The nearby stars are observed in a volume element
which lies close to the galactic plane, essentially at z=0.
Since the velocity dispersion ¢ will in general depend
on the distance z from the galactic plane, we shall use
as a more representative quantity the velocity dispersion
averaged over z. The velocity dispersion ¢ within a
cylinder perpendicular to the galactic plane, can be
obtained directly from the velocities observed at z=0
by

R A AN o)
&= SIwiv2 S|, @
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where U;, V;, W, are the observed components of the
space velocity of star i at z=0, measured relative to the
local mean velocity. The method of weighting each
nearby star by its W-component (Wielen, 1974a) is
based on the assumptions that the group of stars is
well-mixed in z, that the oscillation period of the z-
motion is independent of the amplitude in z, and that
the motion of a star parallel to the galactic plane is
decoupled from its z-motion. The factor 1/2 in g%, stems
from the fact that for a harmonic variation of W,
W=W, cos w, (t—1,), the square of the average disper-
sion, a%,={W?), is just one half of (W¢). For the
younger stars, the sampling interval Az around z=0
(distances up to about 20 pc from the Sun) is not really
small compared to the amplitude of the z-motion,

Zmax= | Wo |/, . However, even if Az is 50% of z,,,,, our
procedure for obtaining ¢ is correct within 109, be-
cause W varies only slowly with time or z for |z|<0.5
Zmax'

Our results on the relation between the velocity
dispersion and age are summarized in Table 1. ¢ is
the velocity dispersion at z=0, ¢ is the velocity dispersion
averaged over z, and o,=(0% +0%+0%)'? is the dis-
persion of the total space velocity ». The groups of
nearby stars on or near the main sequence, called 6d
to 5, are those defined by Wielen (1974a). The mean
age, (1), of such a group is assumed to be half the
lifetime of a main sequence star at the mean position
of the group on the H-R diagram. The McCormick
K +M dwarfs in Gliese’s Catalogue are dated (Wielen,
1974a) by means of their Can emission intensity HK
(Wilson and Woolley, 1970). All ages are based on a
constant rate of formation of disk stars over 10'° years.
In addition to these nearby stars, we have added as
representatives for young stars the classical cepheids
within 1 kpc (Wielen, 1974b). The velocity dispersions
of the cepheids correspond already to an average over
z, because the cepheids are not selected according to z.
The ages of the cepheids have been derived from their
pulsation periods.

The difference between ¢ and ¢, shown in Table 1,
indicates a correlation between the W-component and
the U- and V-components of the stellar velocities, even
for stars of the same age. This is in fact the general case,
while the familiar Schwarzschild distribution with its
vanishing correlation between U, ¥ and W is degenerate
in this respect.

The mean mass of the McCormick K+M dwarfs
does not vary significantly over the different age groups
defined by HK. The close agreement between the
relations o(t) obtained from main sequence groups
(with different mean masses) and from the McCormick
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stars rules out any significant dependence of the velo-
city dispersion on stellar mass. Even open clusters of
various ages, with much higher total masses, follow
closely the relation o(t) obtained from field stars
(Wielen, unpublished).

Finally, Table 1 indicates that the ratio of the velo-
city dispersion in different directions, oy, :0y :0y, does
not change significantly with age. Hence the total velo-
city dispersion, o,, is fairly representative for the
relative increase of all dispersions with age.

3. Possible Mechanisms

What causes the observed increase in stellar velocity
dispersion with age t? There are three main classes of
explanations: (1) variation of the typical velocity at
birth with the time of formation, (2) acceleration by
global gravitational fields, (3) acceleration by local
fluctuations of the gravitational field.

Although it is rather probable that the initial velo-
cities of stars do vary with the time of formation over
10'° years, this cannot explain the observed relation
o(7). In Figure 1, we show the velocity dispersion ¢ as
a function of the time of formation, #,=10'" yrs—r,
on a linear scale. It is obvious that the velocity disper-

sion of stars varies slowly with time ¢ - for old stars, but ’

decreases rapidly for stars born in the last billion years.
This would mean an undue preference of our present
epoch, violating the general cosmological principle that
neither our position nor our epoch is of special signifi-
cance. Although we do not know at present which
property of the interstellar medium actually determines
the initial velocity dispersion of stars at birth, we would
expect a rapid variation during the early times but a
gentle variation at present, contrary to the observed run
of a(¢;). We must emphasize that we are concerned
here with stars belonging to the galactic disk only. The
much higher velocity dispersion of halo objects (¢,~ 200
km s™1) is certainly due to the particular conditions at
their time of formation during the early phase of
galactic evolution.

If the initial velocities are not responsible for the
observed increase of ¢ with 7, then the stars must have
been accelerated after their formation by gravitational
processes. The effect of such an acceleration mechanism
depends on the period of time over which it affects the
stars. Therefore, the velocity dispersion should mainly
be a function of the actual age of a star instead of its
time of formation. If we could obtain the data presented
in Figure 1 as a function of various epochs of obser-
vation, we would see merely a horizontal shift of the
fitting curve as the epoch of observation varies. Hence
in the case of an acceleration mechanism, our present
epoch has no exceptional significance.

The most promising global acceleration mechanism
is the gravitational field of a density wave (Barbanis and
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Fig. 1. Total velocity dispersion o, as a function of the time of formation
1;. Symbols: observed values. Curves: Theoretical fits based on different
diffusion coefficients D. Full curve: constant D; dashed curve:
velocity-dependent D; dash-dotted curve: velocity-time-dependent D.

Woltjer, 1967). A stationary density wave, however, will
usually produce an increase in velocity dispersion only
of young stars up to an age of a few times 10® yrs. For
stars older than 10° yrs, the contribution of the density

“wave to the velocity dispersion remains constant. This

has been established by numerically calculating the
orbits of many test stars (Wielen, 1975; Schwerdtfeger
and Wielen, in preparation). The asymptotic behaviour
can be understood qualitatively from the following
linear approximation: Consider the radial velocity
component U of a star. In the presence of a density
wave, the star behaves like a forced harmonic oscillator:
U(t)~ U, cos2(w—Q,) (t—1,)+ U, cosx(t —1.,;). The
first term is due to the density wave, the second one
represents the free epicyclic oscillation. U, is the velo-
city amplitude of the periodic orbit, 2, is the rotational
frequency of the two-armed spiral pattern, w is the
basic galactic rotation frequency, ¢, is a phase constant,
x is the epicyclic\frequency, and U,; and ¢, are two
integrals of motion fixed by the starting conditions. The
final velocity dispersion is obtained by averaging over
t and the individual values of U,y,;: 07 finai=07,per
+07,epi=0.5 (UZ,+<UZ;>). For the usually adopted
density wave in our Galaxy (e.g. Wielen, 1973), we
obtain from the periodic orbit (Wielen, 1975) oy, ., = 8.4
km s™* at R~10 kpc. The value of oy y; is built up by
the contributions of the mean velocity of stars at birth
and of the initial velocity dispersion at birth. We expect
0y,epi=15 km s™*. This leads to oy ¢, <17 km s7.
Hence the acceleration of stars by a stationary density
wave cannot be responsible .for the observed velocity
dispersion of old disk stars (6;,=60 km s~!). Similar
objections can be raised against other global accelera-
tion mechanisms, such as the gravitational field of a
central bar or of other stationary deviations from axial

symmetry.
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The situation is more favourable if the density wave
is not stationary. Barbanis and Woltjer (1967) proposed
a sequence of transient density waves. If a galaxy
switches over abruptly to another density wave of uncor-
related phase, 03 g, increases by (3/2+ (¢/(w — 2,))*/8)
0%, per=(1.56 0y ,.,)* per transition on the average. To
explain the observed value of ;=60 km s™* for the
oldest disk stars, more than 20 consecutive density
waves are required, each with a mean lifetime of less
than 5 108 yrs. Slowly growing and decreasing density
waves have no permanent effect on oy (., because the
stars react “‘adiabatically”. A more plausible deviation
of a density wave from stationarity may be local and
transient wriggles in a density wave of permanent grand
design. This situation is already rather close to purely
local accelerating mechanisms.

In a “local” acceleration mechanism, the corres-
ponding gravitational field will vary “rapidly” as a
function of position and (perhaps) time. The best studied
process of this kind (beside the ineffective star-star
encounters) is the Spitzer-Schwarzschild mechanism of
stellar encounters with large concentrations of inter-
stellar material. Spitzer and Schwarzschild (1953) had
to postulate masses of these complexes of about 10° 4, .
Julian and Toomre (1966) have shown that such a con-
centration of matter will induce a wavelet in the stellar
distribution. Such an amplification may lower the
required mass of the initial perturbation considerably.
While this picture is still the most convincing proposal
for explaining the observed increase in velocity disper-
sion, it still lacks direct observational confirmation.
Neither observations in our Galaxy nor studies of
external galaxies have led to any firm conclusion about
the “roughness” of the gravitational field produced by
local inhomogeneities in the density distribution of
interstellar matter or stars.

Other local acceleration processes beside the Spitzer-
‘Schwarzschild mechanism are possible: There may be
rapid fluctuations in the density of both the interstellar
medium and young populations of stars, e.g. due to
instabilities. Transient density wavelets (e.g. Julian,
1967), coexisting with a global density wave, will also
be effective for gravitational scattering of stars. Local
wriggles in a global density wave have already been
mentioned. Generally speaking, optical pictures or H1
maps of external galaxies usually give the impression
that local irregularities are very common features in the
structure of disk galaxies, although the corresponding
irregularities of the gravitational field are difficult to
estimate. Numerical experiments on the dynamical
evolution of galaxies (e.g. Hohl, 1971; Miller et al.,
1970) reveal also small-scale fluctuations of the gravita-
tional field, but the still unsolved problem of the global
stability of galactic disks (e.g. Toomre, 1974) casts
doubts on the applicability of these results in real
galaxies.

R. Wielen: The Diffusion of Stellar Orbits

4. Diffusion in Velocity Space

The discussion of possible mechanisms has shown that
local accelerating processes are most probably respon-
sible for the observed increase in velocity dispersion
with age. This identification is, however, mainly based
on the inability or inefficiency of other processes rather
than on a positive confirmation of a specific local
mechanism. Hence it seems most appropriate to in-
vestigate the implications of the irregular gravitational
field for stellar orbits in a general way, using only the
essential properties of such a process instead of un-
certain details. Most local accelerating processes, in-
cluding the Spitzer-Schwarzschild mechanism, can be
.approximated by a sequence of independent and random
perturbations of short duration. Each of these stochasti-
cally distributed impulses changes the velocity v of a
star instantaneously by a (small) amount Av;, but not
the position at that time. Such a process is usually
called a “diffusion in velocity space”. We assume that
the sum of the changes in velocity during a (short)
period of time, At, vanishes on the average, ) 4v;> =0,
i

and that the average value of the sum of the squares of
Av; increases proportionally to A¢,

(T (dv)?y=D,4t. @

The quantity D, is a diffusion coefficient. The basic
idea of this paper is that a local accelerating process is
mainly characterized by the corresponding diffusion
coefficient D, and that the value of D, can be empirically
determined from the observed increase in velocity dis-
persion with age, according to D, ~ d(c2)/dx.

In general, the velocity of a star will change for two
reasons: the regular variations along the orbit, and the
irregular perturbations. In this section, we will neglect
the orbital variations. Fortunately, this “force-free
diffusion” combines conceptual simplicity with a rather
accurate description of the time-dependence of the
velocity dispersion. The full equations of motion will
be treated in the next section. The diffusion coefficient,
however, which we determine in the case of force-free
diffusion, differs from the true diffusion coefficient D, .
Hence we shall call it the “apparent” diffusion coefficient
C,. In the absence of other forces beside the perturba-
tions, the space velocity v of a star will be governed by
the differential equation

dw?)=C,dt. A &)

Similar equations hold for the three components of the
velocity, U, V, W. We distinguish the corresponding
diffusion coefficients by indices, Cy, Cy, Cy . It holds
that C,=Cy+ Cy+Cy .

In general, the diffusion will not only change the
velocity dispersion but also the whole velocity distribu-
tion f(U,V,W,t). Within our approximation, the
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change of fis described by a Fokker-Planck equation
of the following form:
éiﬂ
Yow)l

aalaw () (@ 3) o (€
©

Convenient discussions of the role of the Fokker-Planck
equation in stellar dynamics can be found in the ap-
pendices of Chandrasekhar’s book (1960) and in
Hénon’s review (1973). In accordance with our assump-
tion of {4v)=0, we neglect dynamical friction in
Equation (6). This is phenomenologically justified since
there is no indication that the velocity distribution or
the velocity dispersion converges to a final state within
10" yrs. Intuitively, that can be explained by saying
that the mean kinetic energy of stars is far from being in
equipartition with that of the perturbing fluctuations in
density, because the effective mass of each perturbation
is much higher than the mass of a star or even of an
open cluster. Some of the general results presented
below have already been obtained by Kuzmin (1961,
1973), who includes dynamical friction. Since the
amount of dynamical friction is probably small for stars
in galaxies, its inclusion has no practical implications.
We aim here at a simplified but easily applicable pro-
cedure which gives actual numbers for the diffusion of
stellar velocities and positions. Since the observational
information on the change of the velocity distribution
is much poorer than that on the velocity dispersion, we
shall concentrate here mainly on the latter. The diffusion
coefficient may depend on the velocity of the star and
perhaps also on its position or explicitely on time. We
shall study now some typical cases:

4.1. Constant Diffusion Coefficient

A constant value of the diffusion coefficient does not
only represent the simplest case but fits the observations
even better than more sophisticated versions. If C, is
constant, Equation (5) can be immediately integrated,
yielding

=12+ C,1. 0

Here v, is the initial velocity at the time of férmation
t;, v is the statistically expected velocity at the present
time of observation ¢,, and t= t,—1 is the present age
of the star. Averaging over a group of stars with the
same age, we derive

ov = (65,0 + Cvt)llz, (8)

where o, and ¢, are the velocity dispersions at present
and at birth respectively. The relation (8) has been
fitted to the observed data of Table 1. The rather nice
fit for the total velocity dispersion o, shown in Figures 1
and 2, yields

0,0=10kms™!, C,=6.01077 (km s~)?/yr, ®
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Fig. 2. Total velocity dispersion o, and velocity dispersion 'a;y as a
function of age 7. The curves are theoretical fits for an isotropic
constant diffusion coefficient

with an estimated relative uncertainty of +209% in both
quantities. The diffusion coefficient C, is mainly deter-
mined by the stars older than 10° yrs. The younger stars
reflect mostly ¢, . Our value of g,, takes into account
that g, , should beclose to the observed dispersion in total
space velocity of interstellar H1 clouds (Takakubo, 1967).
In reality, the initial velocity dispersion may depend
slightly on the time of formation. There is, however,
no serious error in using a constant value for g, 4, equal
to the present one. Over the last billion years, the
variation of o,, should be negligible, while for older
stars, g, is probably much smaller than the diffusion
term C,z.

In the lower part of Figure 2, we compare the ob-
served data for the velocity dispersion in W with the
relation 6y(1)=0.412 ,(1). The reduction factor 0.412
is based on the assumption that the true diffusion
coefficient is isotropic (see Section 5). The agreement is
fair. In the case of constant diffusion coefficients, the
Fokker-Planck Equation (6) is solved by an ellipsoidal
Schwarzschild velocity distribution in which each velo-
city dispersion oy (1), oy(t) and o, (7) varies according
to Equation (8) after replacing the index v by U, V, or
W. Hence the velocity distribution can be invariant
except for the steady increase of the dispersions. Such a
behaviour is in rather good agreement with the observed
velocity distributions of the various age groups of the
McCormick K +M dwarfs.

While the diffusion process acts primarily on the
velocities of stars, it affects the stellar positions too. A
perturbation in velocity, Av;, at time ¢;, causes a devia-
tion in position, Ar,(f)=Av(t—1t,) for t>t,. Hence the
diffusion in position is

APy = <(Z Avt— ti))-2> = C(1—1Ydv' =% C,2.

i 0 ( 1 0)
Contrary to the derived velocity dispersion (), how-
ever, the force-free result (10) for the diffusion of stellar
positions is realistic for small ages only (see Section 5).
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Fig. 3. As Figure 2, but here with theoretical fits for an isotropic
velocity-dependent diffusion coefficient (full and dashed curves) and
for a velocity-time-dependent coefficient (dash-dotted curve)

4.2. Velocity-Dependent Diffusion Coefficient

Gravitational two-body encounters between stars and
other masses leads usually to a diffusion coefficient
which decreases with increasing peculiar velocity v of
a star (Chandrasekhar, 1960; Hénon, 1973; Spitzer and
Schwarzschild, 1953). The following form of the dif-
fusion coefficient reproduces the gross characteristics
of a diffusion process, based on two-body encounters,
if the velocities of the stars are larger than those of the
scattering masses:

1n

where the constant y, is determined by the diffusion
mechanism only. From Equations (5) and (11), we
obtain

C,=7,/v,

vP=v3+3y,1. (12)

In order to derive the increase of the velocity dispersion

~0,(7) with age 7, we have to integrate v* over the distri-

bution of initial velocities v,. Since this distribution is
not well-known and since the diffusion coefficient (11)
is a poor approximation for small velocities, we assume
that all the stars start with v, =0, ,, yielding

0y,= (63,0 +% YUT)IB' (13)

The error introduced by this assumption is negligible
for 6,>0,, as well as for 6,~0,,, and is usually small
(<10%) for intermediate values. In Figure 3, we show
a fit between the observed data (Tab. 1) and the relation
(13) for

6,0=10kms™", 7,=1.41075 (km s ')3/yr. (14)

The fit is adequate for ages up to about 3 10° yrs.
For higher ages, the observed velocities show a faster
increase with age than allowed by Equation (13). This
may be an indication that the “constant” y, in Equation
(11) is time-dependent. Let us assume that y, decreases

R. Wielen: The Diffusion of Stellar Orbits

with time ¢ according to
yv(t)=Yv,p €Xp (_(t_tp)/Ty)> (15)

because the “roughness” of the gravitational field may
decay with time. The constant y, , is the value of y, at
the present time #,, and T, is the decay time of y,.
From Equations (15), (11) and (5), we derive (using
Vo~ av,O)

613) = 030,0 +% 'yu,p Ty(exp (T/Ty) - 1) (16)

In Figure 3, the dash-dotted line represents the relation
(16) for

0,0=10kms™",y, ,=1.1107% (km s™*)*/yr,
T,=510° yr. an

The fit of the observed data is now as good as in the
case of a constant diffusion coefficient.

If the diffusion coefficient depends on the stellar
velocity, then the diffusion alters not only the velocity
dispersion but also the functional form of the velocity
distribution. Spitzer and Schwarzschild (1951) have
shown, however, that the change in the properly scaled
velocity distribution with age is rather small.

It is therefore difficult at present to distinguish ob-
servationally between the cases of a constant diffusion
coefficient and a properly chosen velocity- and time-
dependent coefficient. The constant coefficient has the
advantage of simplicity, while the velocity-dependent
coefficient is more satisfying from a theoretical point
of view. In the following, we shall present results for all
the three cases [C,=const, Egs. (11) and (15)].

5. Epicyclic Theory of Diffusion

In contrast with Section 4 which dealed with force-free
diffusion, we shall now take into account that the orbit
of a star is mainly determined by the regular field of the
Galaxy and is only perturbed by the diffusion in velo-
city space. We shall treat the problem within the
epicyclic approximation (e.g. Lindblad, 1959) for an
axisymmetric galactic field. Then the equations of stellar
motion are given by

E—2wn=40A¢, (18)
n+2wé=0, (19)
{+w2{=0, (20)

where £E=R—R,, =R, (0—0,) and {=z are the de-
viations of the actual stellar orbit from the circular
orbit of a reference star. The velocity components U,
V, W, referred to the circular velocity at the actual
position of the star, are given by

V =n+24¢, (22)
w=¢. 23)
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The irregular gravitational field produces an extra force
which should be added to the equations of motion
(18)(20). Within our description of the irregular field
by a diffusion in velocity space, however, it is easier
not to introduce the extra force terms explicitely but to
mimic the effect by sudden changes in the velocity of a
star. This can be treated formally as sequential initial
value problems using the unaltered equations of motion
inbetween two successive velocity perturbations.

We ask now for the difference between the orbits of
a star with and without diffusion. Let AR=R (with
diffusion)—R (without diffusion) be the difference be-
tween the distances from the axis of galactic rotation,
AS=RA0 the corresponding difference in the direction
of galactic rotation, 4z=A4({ the difference in height
above the galactic plane and AU, AV, AW the corre-
sponding differences in velocity. Because of the linearity
of Equations (18)—(23), the differential quantities AR,
AS, Az, AU, AV, AW fulfil the same equations of
motion as the total quantities &, ¢, {, U, V, W

(AR)"—2w(4S) =4wAAR, (24)

(48)"+2w(4R) =0, (25)
(42)" + w?d4z =0, (26)
AU = —(4R), 27
AV = (AS) +2A4R, (28)
AW= (4z). (29)

Let us consider first a single velocity perturbation of
amount 6U;, 6V;, 6W, at a time ¢,. Up to t=t¢;, there is
no difference in the orbits: AR=0,..., AW=0. For a
time > t;, the orbits differ by

AR = —» "' sinx(t—1,)0U;

+(—2B)" (1 —cos x(t—1£))5V, (30)
AS =(=2B)~(1 —cos x(t—1))5U,
 1(=2B)"'[(¢/—2B) sin x(t—1) (31)
—24(—1)loV;,
Az =w;!sinw,(t—1)0W,, 32)

AU =cos x(t—1,)0U,— (x/ —2B) sin x(t —1,)0V;, (33)
AV =(—2B[x) sin x(t—1,)0U;+cos x(t—1)0V;, (34)
AW =cos w,(t—1,)0W,. 35

These solutions have been derived from the differential
Equations (24)(29) using the initial values AR=A4S
=4z=0, AU=06U,, AV=06V;, AW=06W, at t=t;. The
complete solution for AR(¢) etc. is given by the sum
(over i) of the contributions of all the velocity pertur-
bations between the time of formation ¢, of a star and
the time of observation, t=¢,. We now introduce our
statistical assumptions on the velocity perturbations,

namely that they are independent and randomly dis-

269
tributed. Then, on the average,
Y 0U=Y. 6¥;=Y. 6W,=0, (36)
Y. 0USY,=Y. 6USW,=Y. 6 V5 W;=0, (37
d(z sUS U) — Dy, (38)
d(z SV Vi) =D, dt, (39)
d(z WS W) =D, dt. (40)

Equations (38)—(40) have been written in a differential
form because the diffusion coefficient D may vary with
time. Using the statistical assumptions (36)—(40), we
derive the following expectation values for the orbital
differences from Equations (30)—(35) as a function of the
age t=1,—1, of a star:

{AR) =48y ={4z) ={AUY ={AV )y ={4W)» =0, (41)

CARPY =] (Dyx~? sin® x(z—7)
0 @2)
+ Dy (2B)"%(1 —cos x (1 —1"))})dt’,

(ASP> =] QBR(Dy(1—cos x(z—7))
0

+ Dy ((%/—2B) sin x(t—1') (43)
—24(t—1)P)dr',

(420> =] Dyw:? sin? w,(t — ), (44)
0

AUy =f (Dy cos® x(t—1")
0

+ Dy (/2B sin? x(c —))d', “5)
AV =] (DB} sin? x(z—7)

"4 Dy vos? w(e— e’ (46)
AW =j D, cos® w(t—')dr. @7

The mixed second order moments are of minor interest
in general, although the majority of them are not
strictly zero. We postpone a discussion of the mixed
moments {AUAV) and (4RAS) to Section 6. The
evaluation of the integrals in Equations (42)—(47) is
straightforward if the diffusion coefficients are either
constant or depend explicitely on age, D(z’), or time,
D(t;+1"). In the case of velocity-dependent coefficients,
the problem can, in principle, only be solved by iteration.

The velocity dispersion, measured now relative to
the local circular velocity, of a group of stars of the same
age is given by

op=0p,0+<(AU)) (48)
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and by similar equations for ¥, W and v. The quantity
oy represents the contribution of the random and
systematic velocities at birth to the velocity dispersion
at later times. oy, may vary with age as long as the
stars are statistically not well-mixed. For simplicity, we
shall identify oy, with the initial velocity dispersion at
birth.

In Section 6, we shall study numerically the be-
haviour of ((4R)?),...,{(AW)*)> with age. It turns out
that each quantity can be decomposed into two parts:
(1) a steady increase with age, and (2) a periodic modu-
lation. The latter oscillation is of no importance in
practice. Hence we shall derive here the more important
first part directly. For that purpose, we may average
the Equations (42)+(47) over e.g. one epicyclic period.
For example, in Equation (47) we may replace cos® w,(t
—1’) by its average value 1/2, yielding:
LAwy» =§ (Dw/2)dr". 49)
This relation shows that the apparent diffusion coeffi-
cient Cy =do%,/dt=dd(AW)*»/dt is smaller than the
true coefficient Dy, :

Cy=0.5Dy,. (50)

The reason for the apparent disappearance of half of
the energy provided by the diffusion is the following:
Although the diffusion enhances primarily the kinetic
energy at the time f#; when the velocity perturbation
occurs, a part of this energy gain is subsequently trans-
formed into potential energy by the orbital motion of
the star in the regular field. Le., the amplitude of the
z-motion is increased on the average and that increase
““absorbs” half of the energy provided by the diffusion
process.

It is illustrative to derive the corresponding results
for U and ¥ not from Equations (45) and (46) but from
the epicyclic energy integral
E=U?+(x/2B)*V>. (51)

The values of U? and V2 averaged over one epicyclic
period, are given by

KU*>=E]2,
(V2 =(2BJx)*E2.

(52)
(53)

These equations show that the long-term increase in oy
and o0y is completely governed by the corresponding
increase in E. The average ratio oy/g, shall be constant
in time, equal to (k/—2B), both with and without diffu-
sion. Hence the ratio of the apparent diffusion coefficients
Cy and Cy, is also equal to (/2B)?, on the average, and
does not provide any information about the ratio
Dy/Dy, of the true coefficients. Introducing a “diffusion
coefficient” Dy for the epicyclic energy E by dE= Dy, dt,
we derive from Equation (51) with our statistical

R. Wielen: The Diffusion of Stellar Orbits’

assumptions (36)—(40)

Dy=Dy+(x/2B)*Dy, (54)
and hence, using Equations (52) and (53),
Cy=dab/di=(Dy+(x/2B)*Dy)/2, (55)
Cy=dok|dt=((2B/x)*Dy+ Dy)/2. (56)

We have to insert a warning here: Although our
statistical assumptions (36)—(40) are suitably chosen for
describing the global effects of a typical diffusion
mechanism on stellar orbits, they will in general not
be strictly valid for a specific physical process. In such
a situation, it can be misleading to calculate the diffusion
coefficients and to insert these into our equations.
Usually, one would have to go back to the basic
Equations (30)~(35). As an extreme example, one could
imagine a process in which each perturbation changes
the velocity components U and ¥V, but nevertheless
conserves the epicyclic energy E. In this case, Dy would
obviously vanish in spite of D;;#0 and Dy, #0, thereby
violating our Equation (54). The failure of our statistical
equations were caused by the correlation between 6U,
and 6V introduced by the condition §E;=0. This shows
that our procedure should not be considered as a general
framework for all local accelerating mechanisms. The
purpose of our procedure is to indicate the expected
order of magnitude of the diffusion of stellar orbits, as
long as we do not possess a better knowledge of the
actual local accelerating mechanism.

Since we have neither from the observations nor
from theoretical considerations any relevant information
about the ratio between the diffusion coefficients Dy
and Dy, we shall consider in the following the simplest
case, namely isotropic diffusion:

Dy=D,=Dy=D. (57)

Using the conventional values for Oort’s constants
(A=15km s !/kpc, B= —10 km s~ /kpc at R~ R, =10
kpc), we have (x/2B)*=2.5, and hence Equations (55),
(56) and (50) lead to

Cy=1.75D, C,,=0.70 D, Cy=0.50 D,
C,=Cy+Cy+Cp=295D.

The numerical value of the true diffusion coefficient D
is obtained from D=C,/2.95 by using the empirical
values of C, according to the Equations (9), (14) or (17).
They are the constant coefficient :

(58)

D=2.010"7 (km s~ 1)?/yr, (59)
velocity-dependent coefficient :
D=(4.7 107 (km s~ 1)3/yr)/v, (60)

velocity-time-dependent coefficient :
D=(3.7107° (km s™)*/yr) exp (—(¢—1,)/5 10°yr)/v.
(61)
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Table 2. Diffusion of stellar orbits for the constant diffusion coefficient [Eq. (59)]

Age Expected rms deviation

T AU av AW Av AR 48 Az 4p
yrIs kms™! kpc

1107 1.5 1.4 12 2.4 0.008 0.008 0.008 0.014
2107 22 1.9 1.3 32 0.025 0.023 0.017 0.038
5107 42 2.7 23 5.5 0.108 0.091 0.025 0.143
1108 5.9 3.8 3.2 7.7 0.300 0.392 0.035 0.495
2108 8.4 54 4.5 10.9 0.410 1.356 0.050 1.418
5108 13.3 8.5 71 17.3 0.67 4.47 0.078 4.52
‘110° 18.8 12.0 10.1 24.5 0.92 12.7 0.111 12.8
210° 26.7 16.9 14.3 34.7 1.30 35.8 0.156 35.8
510° 42.2 26.7 22.5 54.8 2.09 141 0.247 141
110 59.7 37.7 31.9 71.5 2.94 399 0.349 399

Knowing the true diffusion coefficient D, we can
estimate the neglected coefficient # of dynamical fric-
tion. According to Chandrasekhar (1960), it holds in
the case of constant coefficients that n=3D/202,;,
where g,,,; is the total velocity dispersion in the hypo-
thetical final Maxwellian equilibrium state. Since the
observed relation ¢,(t) does not seem to be significantly
affected by dynamical friction, we estimate 0,,,;>100
km s~*. This leads to ™! >3 10'° yrs. Hence dynamical
friction should be of no importance for the diffusion
of stars over the present age of our Galaxy. Further-
more, any allowance for dynamical friction would
increase the derived differences between the actual and
regular orbits: In order to explain the same observed
increase of o(7), the diffusion coefficients would have
to be increased to counteract dynamical friction which
tends to decrease the stellar velocities.

Finally, we shall demonstrate that our assumption
of an isotropic true diffusion coefficient is in accordance
with the observed velocity dispersions of the most
representative group of disk stars, namely the McCor-
mick K+ M dwarfs in Gliese’s catalogue. The observed
values of ay;, oy, 0y are 48, 29 and 25 km s ™%, respec-
tively, according to Table 1. The values predicted from
isotropic diffusion [Eq. (58)],

6y :0y 05 =)/Cy:)/Cy:)/Cp=0.77:0.49 1041, (62)

are, for the same total velocity dispersion o,, 47, 30 and
25 km s~ ! respectively, which is in perfect agreement
with the observed data. Hence, the hypothesis of
isotropic diffusion provides a simple explanation for
the otherwise unexplained ratio of oy to oy and oy .
This was noticed earlier by Kuzmin (1961).

6. Implications for Stellar Orbits

The regular orbit of a star can be rigorously calculated
as soon as the regular gravitational field of a galaxy is
known. A stellar orbit in the presence of a local irregular
field can be described in a statistical sense only, because

the local fluctuations are not known individually but
only statistically, e.g. by means of the diffusion coeffi-
cient. The typical deviations between the actual and
regular orbits can be best characterized by the root
mean squared differences in stellar position and velo-
city, i.e. by AR, ,s=(((4R)*>)'? etc. These quantities
describe the ‘‘uncertainty” of a stellar orbit in the
presence of the irregular field.

In the Tables 24, we present numerical values for
the effect of diffusion on stellar orbits. The quantities
Ap..s and Av,_ ¢ give the total rms deviation in position
and velocity, i.e. 4p, s = {(4r)*>*? and Av, = {(Av)* Y
=(AU%,+AVE +AW2Z )2, The results have been
obtained by analytical or numerical integration of the
epicyclic Equations (42)—(46), using the isotropic dif-
fusion coefficients (59), (60) or (61), respectively. In the
two cases where the diffusion coefficient depends on
the velocity v, we have replaced v by o, according to
Equations (13) or (16). This approximation is adequate
for our present purpose. In the case of the time-dependent
diffusion coefficient, 7 is the present age of a star, i.e.
ty=1,—T.

The data in the Tables 24 do not differ grossly.
This is to be expected, because it is built into the three
cases that they should fit the same observed relation
6,(t). In fact, many of the quantities in Tables 24,
could have been obtained directly from the empirical
relations, if these were not so “noisy”’. For example,
Av,,(t) should be equal to (¢2(t) —a2(0))'/*. For ages
up to a few billion years, the constant diffusion coeffi-
cient produces the smallest orbital diffusion. In that
sense, the constant coefficient is the most conservative
choice. In general, it is obvious that the diffusion of
stellar orbits is rather drastic: A typical star has for-
gotten its initial peculiar velocity (v,=10 km s™')
within 2 10® yrs (4v,,,=11—14 km s~ ). Also later,
after each galactic revolution the total space velocity
has changed again by a random amount of about
10 km s~'. The spread in position is also remarkably
large, especially in the “angular” coordinate S=R0.
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Table 3. Diffusion of stellar orbits for the velocity-dependent diffusion coefficient [Eq. (60)]

Age Expected rms deviation

T AU 4av aw 4v 4R 48 A4z Ap
yrIs kms™! kpc

1107 22 2.1 1.9 3.6 0.013 0.013 0.012 0.022
2107 33 2.9 1.9 4.8 0.037 0.035 0.025 0.057
5107 6.1 3.8 3.2 79 0.159 0.135 0.035 0.211
1108 8.1 5.2 44 10.6 0.428 0.571 0.048 0.715
2108 10.8 7.0 5.8 14.1 0.519 1.858 0.064 1.931
5108 15.4 9.9 8.3 20.1 0.80 5.68 0.092 5.73
110° 20.0 12.8 10.7 26.1 0.97 15.1 0.119 15.1
210° 259 16.3 13.8 33.6 1.25 39.0 0.151 39.0
510° 35.6 22.5 19.0 46.2 1.78 136 0.209 136
110t 45.2 28.6 24.1 58.7 2.23 347 0.264 347

Table 4. Diffusion of stellar orbits for the velocity-time-dependent diffusion coefficient [Eq. (61)]

Age Expected rms deviation

T aU av Vi) 4 Av 4R 48 4z 4p
yrs kms™' . kpc

1107 2.0 1.9 1.7 3.2 0.011 0.011 0.010 0.019
2107 2.9 2.6 1.7 4.2 0.033 0.031 0.022 0.051
5107 5.5 34 2.9 71 0.142 0.121 0.032 0.189
1108 7.3 4.7 3.9 9.6 0.386 0.514 0.043 0.645
2108 9.9 6.4 5.3 12.9 0.476 1.697 0.059 1.763
5108 14.4 9.3 7.7 18.7 0.74 5.31 0.085 5.36
110° 19.0 12.2 10.2 24.8 0.92 14.6 0.113 14.6
210° 25.6 16.1 13.6 33.2 1.23 40.0 0.149 40.0
510° 39.5 25.0 211 51.3 1.98 165 0.232 165
110 61.8 39.1 33.0 80.2 3.05 554 0.362 554

After 10'° yrs, the number of revolutions of a star
around the galactic center is uncertain by +6 revolu-

tions, compared with the average number of 40 revolu-
tions at R=10 kpc. The distance of old disk stars from
the galactic plane is almost completely determined by
the diffusion mechanism. The distances of these old
stars from the galactic center differ typically by a few
kpc from the original values at formation. Altogether,
the diffusion produces a very significant mixing of stars
in position and velocity space.

In Figure 4, we show the modulation of the increase
of the deviations between the actual and regular orbits
of stars. This modulation is caused by the orbital motion
of the stars in the regular field. Since the amplitude of
the modulation remains approximately constant in
time, its relative importance decreases rapidly with
time. The modulation is smaller in the velocities than
in the positions. Especially in the total space velocity
v, there is essentially no modulation. This justifies our
procedure of obtaining the apparent diffusion coefficient
by using the unmodulated relations ¢,(t) according to
Equations (8), (13) or (16). The observed values of the
velocity dispersions do not show any sign of a modula-

tion. This is to be expected, because the modulation is
already small compared to the initial velocity disper-
sions.

In Figure 5, we show the elliptic contours of the rms
deviations in the galactic plane. They are based on the
quantities {(4R)X), {(4S)*> and (ARAS). The mixed
moment {ARAS’ is negative because of the differential
galactic rotation. In spite of the assumed isotropy of
diffusion, the contours are tilted. The major axis turns
monotonically from £=0° for 1 =0 to £=90° for t—co.
There is a small negative vertex deviation if 2.5 Dy, > Dy, .
For the constant isotropic diffusion coefficient, the
moment {AUAV) varies as —sin?xt between 0 and
—(1.7 km s™*)?. Hence it is always small compared
with 67 and o7 . The observed positive vertex deviation
must be due to other effects. Both Figures 4 and 5 are
based on a constant diffusion coefficient but are re-
presentative for the other cases too.

In order to verify the results derived from the
epicyclic approximation, we have numerically integrat-
ed some “diffusion orbits”. The regular field is that
given by Contopoulos and Stromgren (1965) and Wielen
(1973). A constant diffusion coefficient according to

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1977A%26A....60..263W

FIO77A8A 7 2.7607 “Z63W

R. Wielen: The Diffusion of Stellar Orbits

Equation (59) is mimicked by changing the stellar velo-
city by small increments Av after intervals of time At.
The orientation of each Av is chosen at random, while
At=10° yrs and |4v|=(3D41)*?=0.78 km s~ are kept
constant. As an example, we show in Figure 6 the
variation of R(¢) in a diffusion orbit which has been
started with the circular velocity (v,=0, R, =10 kpc).
‘The oscillations in R are excited and subsequently
modified by the diffusion, while the regular field is
revealed by the regular behaviour of each oscillation.
The statistical averages over many of such diffusion
orbits are in good agreement with the results derived
from the epicyclic approximation. Only one significant
difference occurs: There is systematic outward drift of
the diffusion orbits, i.e. (4R is positive and increases
with age. At t=10'" yrs, (4R) is of the order of +1
kpc. This drift is basically caused by the fact that for a
finite deviation of an orbit from its circular reference
orbit, the star makes a larger and longer excursion to
positive values of AR than to negative values. Because
the diffusion enhances the deviation of an actual orbit
from a circular one, it thereby leads to the outward
drift of stars. The occurrence of this drift in real galaxies,
however, is questionable since we have used a fixed
gravitational field for the orbital studies instead of
treating the problem in a self-consistent manner.
Finally, we should emphasize that the expected rms
deviations due to orbital diffusion probably include a
drastic averaging in position and time. For example,
the actual diffusion coefficient may be larger within a
spiral arm than outside, or may decrease with in-
creasing |z|. Furthermore, the diffusion is evident only
in the velocity dispersion of stars older than 10° yrs,
since the velocity dispersion of younger stars is go-
verned by the initial velocities and by the orbital
mixing in the gravitational field of the density wave.
Hence we cannot decide empirically, whether the
diffusion is caused by many small perturbations (say,
|6v;| ~0.8 km s™! in intervals of Az~ 10° yrs) or by rare
large perturbations (e.g., |6v;| ~ 17 km s ~* with A1~ 510°
yrs). At present, however, there is no reason to assume
that the diffusion is inoperative for younger stars. Of
course, the typical time scale of the fluctuations of the

irregular field, as seen by an orbiting star, will be known

only after an identification of the source of this irregular
field. ’

7. Implications for Places of Formation

Stellar orbits, calculated backwards in time, have been
used to derive the places of formation of stars of

known age (Stromgren, 1967; Yuan, 1969; Wielen,

1973; Grosbgl, 1976). The probable diffusion of stellar
orbits affects these calculated birth places significantly.
The diffusion introduces an unavoidable “cosmic error”’
into the presently observed positions and velocities
which are used as initial values for the backward inte-
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Fig. 4. The modulated increase of the expected rms deviations caused
by orbital diffusion as a function of age t. The asymptotic behaviour
for small © (f.—f.=force-free diffusion, using the true diffusion
coefficient) and for large 7 is indicated by the dashed lines

gration of the regular orbits. According to our results
(Tables 2—4), this cosmic error increases with age and
reaches Av,,,~10 km s~* and 4p, ~1.5 kpc after only
2 108 yrs. It is therefore useless to measure the present
space velocity of a star with a much higher accuracy
than Av, (7), for the purpose of deriving birth places.
Hence only objects with rather small ages, up to at most
108 yrs, can be used to derive accurate individual places
of formation. For older stars, it is important to use as
many stars as possible in order to obtain at least some
statistical information on the most probable regions of
star formation. The typical uncertainty of a birth place
can be derived from Figure 5. One has simply to reflect
the ellipses through the AR-axis, because we are now
going backwards in time.

A more detailed treatment of the uncertainty of the
calculated places and velocities of formation has been
worked out by applying the Equations (42)-(47) to this
problem. The reference orbit is now the regular orbit
derived from the presently observed position and velo-
city of a star. Going backwards in time, the actual
orbit deviates from this regular orbit in a similar way
as for the forward direction of time. In fact, for a
constant diffusion coefficient, the expected rms devia-
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Fig. 5. Dispersion ellipses in the galactic plane for orbital diffusion as a function of age t. For a normal distribution, the dispersion ellipse
contains 39%; of the total probability. The 50%-ellipses would be larger by a factor 1.18 )
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Fig. 6. Example of a diffusion orbit. The variation of the stellar
distance R from the galactic center is shown as a function of age <.
The dots represent the expected rms deviation in R

tions (Table 2) are exactly the same for both arrows of
time. For diffusion coefficients which decrease with
increasing age, such as those described by Equations
(60) or (61), the uncertainty of the places of formation
is slightly smaller than the orbital diffusion, presented
in Section 6 for the forward direction of time. The
differences between the forward and backward direc-
tions, however, are so small that Tables 3 and 4 can be
applied without any significant error for birth places
too. The interpretation, however, is now slightly dif-
ferent. When going backwards in time, the increase of
Av,,s, for example, does not imply a corresponding
change of the actual velocity dispersion of stars but
merely reflects the increasing loss of information on the
actual velocity. This does not contradict the real de-
crease of the velocity dispersion as we approach the
time of formation.

8. Dissolution of Stellar Groups

The diffusion of stellar orbits can enhance the dissolution
of stellar groups by increasing the internal velocity
dispersion of the group. We encounter here, however,
the problem of the coherence of the irregular gravita-
tional field over small distances. If two stars are close
together in space, their perturbations at the same time
will be strongly correlated. The distance over which
simultaneous perturbations are significantly correlated,
may be called the coherence length L of the irregular
gravitational field. Its value depends on the physical
mechanism which causes the irregular field. In our
Galaxy, the coherence length may be of the order of a
few hundred parsecs.

The dissolution of a stellar group will proceed in
two phases. At first, the internal velocity dispersion
Oine Will blow up the group until the diameter Q is
larger than the coherence length L. Then the second

- phase starts during which the diffusion mechanism will

support the dissolution of the group. The dispersing
effect of diffusion during this second phase is properly
described by AR, 48, and Az, (Tables 24, Fig. 5),
if the age 7 is replaced by the period of time passed since
the beginning of the second phase. The dutation of the
first phase is proportional to (L— Q)/a,,,, which is about
5107 yrs for 6;,=10 km s~! and L— Q=500 pc. Al-
ready during the first phase, the velocity and position
of the center-of-mass of the group is entirely affected
by the diffusion mechanism, while the relative positions
and velocities in the group are disturbed only by the
smaller tidal effect in the irregular field for Q(r)<L. If
the diffusion coefficient decreases with increasing stellar
velocity, a group with a higher mean peculiar space
velocity will survive longer than those with small mean
velocities (Woolley and Candy, 1968).

The presence of a diffusion mechanism essentially
prevents the existence of old moving groups of large
spatial extent and small internal velocity dispersion.
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This could be used as an observational test against the
assumed diffusion of stellar orbits. At present, however,
no such counter-example is established. Orbital dif-

fusion may help to dissolve ageing spiral arms as well

as clouds of escapers around star clusters.

9. Further Implications of Orbital Diffusion

If the diffusion of stellar orbits is established as a real
phenomenon, this would have far-reaching consequences
for stellar dynamics of galaxies in general. The irregular
field does not allow any strict individual integrals of
motion. Nevertheless, even in the presence of diffusion,
a star would ““be aware” of the existence of integrals of
motion in the regular field. For example, a third integral
in the regular field would still prevent the exchange of
energy, gained by a star from diffusion, between the
motions parallel and perpendicular to the galactic
plane. Other properties of regular orbits would, how-
ever, become less prominent. For example, orbital
resonance effects may largely be washed-out.

For a statistical description of stars in galaxies, the
encounterless Liouville equation would not now be
appropriate. The relaxation time T of young disk stars,
defined by Av,,((T)~o0,,, is about 2 10® yrs. The im-
plications of diffusion for collective effects, such as
spiral density waves, are difficult to assess.

The existence of a rather local acceleration mecha-
nism would hamper numerical experiments on the
dynamical evolution of galaxies. The self-consistent
gravitational field used in these experiments essentially
represents the regular field only. Even if the local
fluctuations of the gravitational field could be self-
consistently incorporated into the numerical model,
the computing time would increase drastically, since a
smaller grid size, a smaller time step and a larger number
of stars are required for such a more detailed model. If
the local fluctuations are mainly caused by the inter-
stellar matter, a self-consistent treatment is still more
difficult. Of course, the diffusion could be artificially
imposed in a similar way as described for our numerical
diffusion orbits (Section 6). Our procedure should then
be generalized in order to take into account the non-zero
coherence length of the supposed irregular field.

10. Concluding Remarks

We have shown that the observed increase of the stellar
velocity dispersion with age seems to indicate the
presence of a rather significant irregular gravitational
field in our Galaxy, and hence, by analogy, presumedly
in similar galaxies too. The diffusion of stellar orbits,
caused by this irregular field, would be important: The
typical relaxation time of young disk stars would be of
the order of the period of revolution, about 2 10® yrs,
in the solar neighbourhood. It is clear, however, that
the diffusion of stellar orbits is at present merely a
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hypothesis, though a very plausible one in the author’s
opinion. The actual existence of the supposed diffusion
mechanism for stars in galaxies cannot be considered
as safely established as long as the physical source of
this irregular field has not been identified with some
certainty.

It has been our philosophy to use only that property
which should be common to most local acceleration
mechanisms, namely the resulting diffusion of stars.
The value of the diffusion coefficient is not based on
presently rather speculative details of possible accelera-
tion mechnisms, but has been derived empirically from
the observed increase of the stellar velocity dispersion
with age. Hence our general results on the diffusion of
stellar orbits will hopefully be approximately valid for
whatever the physical source of the irregular field may
turn out to be.
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