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Summary. We examine various physical mechanisms
which may produce tidal friction in close binary stars.
We find that the most efficient in stars with convective
envelopes is turbulent viscosity retarding the equilibrium
tide, and in stars with radiative envelopes the action of
radiative damping on the dynamical tide. Theoretical
predictions based on these dissipative processes are in
good agreement with the rotational velocities and
orbital eccentricities observed in close binaries. The
results are applied to the X-ray binaries Her X-1 and
Cen X-3. '
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1. Introduction

A well established property of close binary stars is that
they rotate in general more slowly than single stars of
the same type. In fact, the observations reveal that in close
pairs the rotation tends to be synchronized with the or-
bital motion, and that the two stars need not be in contact
to achieve this. To explain it, one is naturally tempted to
invoke tidal friction, a mechanism which is so effective
in the Earth-Moon system. Starting with Jeans (1929),
many authors have addressed the problems posed by
stellar tides, and the recent discovery of the X-ray
binaries has provided a new impetus for such studies.

The main difficulty has been to identify the physical
processes which are actually responsible for the tidal
torque. A first step was to recognize the prominent role
of turbulent friction in stars possessing an extended
outer convection zone (Zahn, 1966b). But the tidal
evolution of binaries with radiative envelopes was not
understood until recently, when it was shown that
radiative damping could produce the regquired torque
by retarding the dynamical tide (Zahn, 1975b).

The purpose of this article is to analyze the theoretical
results which are presently available, and to compare

them with the observations. We first establish in §2
the gravitational potential of a tidally distorted star in
terms of its structural parameters. Next, we reformulate
in §3 the secular equations which govern the exchanges
of energy and angular momentum in a binary system.
Then we examine in §4 the various dissipation mecha-
nisms that can retard the equilibrium tide. In §5 we
describe some properties of the dynamical tide ex-
perienced by a star with a radiative envelope. In §6
the observations of rotational velocities and orbital
eccentricities in close binary stars are discussed in
terms of the previously outlined theoretical predictions.
Finally, §7 applies these results to the X-ray binaries
Her X-1 and Cen X-3.

2. The Perturbing Potential

If one wishes to analyze the dynamical effects caused by
the tides in a binary star, it is necessary first to determine
the outer gravity field created by the two components.
Beside the familiar graviational pull between mass
centers, each star experiences an additional force
arising from the non-spherical part of the mass distribu-
tion within the tidally distorted companion. It is the
work done by this extra force, as the stars revolve
around each other, that is responsible for the changes
in energy and angular momentum of the orbital
motion.

Let us concentrate on one of the stars in a binary
system, and refer to it from now on as the primary. Its
tidal distortion is produced by the gravity field of the
other star (the secondary). This perturbing potential
can be conveniténtly expanded in terms of spherical
functions, as described for instance by Kopal (1959).
In the general case where the orbit is not circular, it is
necessary to decompose further each spherical harmonic
in Fourier series of the mean anomaly. This is illustrated
here only for the dominant term of the tidal potential,
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which involves the spherical harmonic of order n=2
(Zahn, 1966a):

GM, (r\*[ 1
U= 2 (Z) ‘[— EPZ(COSB)

. (1+ %e2+3e coswt+ %ez cos2cot)
1, 5, e
+ ZPz(cos 01— 3¢ cosuwt —2¢)— Ecos(a)t—2¢)

+ %e cos(3wt—2¢)+ g e? cos(dwt— 2¢)) + 0(e3)} .

2.1)

In this expression M, is the mass of the secondary
star, w the mean orbital motion, and a and e are the
semi-major axis and the eccentricity of the orbit. The
spherical coordinates r, # and ¢ are measured in a
reference frame whose origin is the center of the primary
and whose polar axis is perpendicular to the orbital
plane; the mean anomaly wt and the azimutal angle ¢
are counted from the direction of the periastron.

Let us for simplicity assume that the star rotates
uniformly with an angular velocity Q and that its spin
axis is perpendicular to the orbital plane; in a similar
reference frame, but which is now corotating with the
star, the Fourier components of the external gravita-
tional field take the general form

U™(r/R)" P (cos 0) exp i(a,,t — m) (2.2)

where R is the radius of the primary star, and o, =Iw
—mgQ is the apparent frequency of that tidal component.
The amplitude coefficients U™ are readily determined;
from expression (2.1) we see for instance that the
largest of them is

1GM 5
22 __ 2 _ T2 4
U3 =1 R (a) (1 5e +0(e )).

The main reason for breaking the external gravity
field into such Fourier components is that one can then
readily study the oscillations of a star forced by a
potential which varies sinusoidally in time. If it is
further assumed that the amplitudes of the oscillations
remain small enough to justify a linear treatment of the
problem, the total response of the star is just the
sum of its responses to each individual Fourier com-
ponent. In such a linear approach, the tidal problem is
then reduced to determining the outer gravitational
potential created by the star when it is submitted to a
single component of the perturbing field.

The spatial dependence of that outer potential is
imposed by the condition that it be harmonic and
vanish at infinity; it must therefore be of the form

®"(r/R)~"" 1 P™(cos 0) expi(ay,,t —m) . 24

23)

The problem is then to evaluate, as functions of the
tidal frequencies ¢,,, the amplitude coefficients @™
which are in general complex quantities.
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The most complete solution available applies to
stars with early-type main sequence structure, pos-
sessing convective cores and radiative envelopes. It is
further assumed that the effects of the Coriolis force on
the tidal oscillation are negligible; the validity of this
assumption however remains to be justified. Under
these conditions, an asymptotic treatment can be used
in the limit of small tidal frequencies (Zahn, 1975b),
to yield ‘

¢£|m/U£lm = 2k €xXp ia(slm)
+ Ey i (@ (Sim) + 1Pn(S1m)) - @3)

This expression is valid for s,,,; <1, with s, being the
dimensionsless form of the tidal frequency o, defined as

Sim= Oy (R3/GM)M2 = (Io — mQ)(R3/GM)L/2 . 2.6)

Here M (without subscript) designates the mass of the
primary.

The first term in the expression (2.5) for @i"/U™
represents the contribution of the equilibrium tide.
This tide can be described by simply assuming that the .
star is always in hydrostatic equilibrium; k, is the
familiar apsidal motion constant (see Kopal 1959).
The angle o determines the phase shift of the equilibrium
tide that is produced by the dissipative processes which
operate in the star; we w111 see in §4 how this angle
can be estimated.

The second term in expression (2.5) results from the
dynamical tide and will be analyzed in some detail in
§5. It suffices to mention here that E,, is the analog of the
apsidal motion constant, that the function p,(s) is
always positive and that it tends to unity for small
tidal frequenmes s.

It is well known that the real part of 45""/U"" i
responsible for the advance of the apsidal line, a property
for which the centrifugal distortion is also partly
responsible. Here, however, we shall be dealing with
the exchanges of energy and angular momentum due
to the tides, and these are exclusively caused by the
imaginary part of the outer potential. For the present
purpose, it is thus not necessary to describe the deforma-
tion of the star due to the rotation and to the stationary
part (I=m=0) of the tidal potential; in other words,
the star is assumed spherically symmetrical in zero
order.

In the next section, we shall derive the differential
equations that describe the secular changes of the
orbital parameters. Before doing so, it is convenient
to rewrite the imaginary part of expression (2.5) as

Im(@;"/U"=¢", 2.7)

with the understanding that /™ contains the contribu-
tions of both the equilibrium and the dynamical
tides:

eim = 2kn sin a(slm) +E n Slsr'{SP n(Slm) . (28)
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This simplified notation will be used in the equations
that govern the rotational and orbital evolution of
binary system, which will now be presented.

3. The Secular Equations

The next step in determining the secular effects of the
tides is to evaluate the perturbing force exerted by the
primary star upon the secondary. To do so, we take the
gradient of the outer potential created by the primary
at the center of the secondary, whose polar coordinates
are (r, 0,v—Q1) in the reference frame of the primary.
Replacing the true anomaly v by its expansion in terms
of the mean anomaly wt:

v=wt+2esinwt+ 3e* sin2wt + 0(e?), (3.1)
we can likewise express the perturbing acceleration
experienced by the secondary as a Fourier series in wt.
In this series, we retain here only the terms that are
capable of producing a net work over a complete
orbital revolution; these are the terms R, odd in wt,
for the radial component of the acceleration, and the
even terms, S, for its tangential component. We thereby
obtain

R— _ 2OM, (R\" (a\*
4 R? \a) \r

. 1
esinot (aéo + - e32—4e2? 4 %832) +0(e2)]

1 3.2)

and
S=_§GM2 57 24
2 R?> \a/ \r

1 7
. [s§2+e coswt <— —ed?2+ 5822)

2

1
+e? (852 - 73 g2+ 7832)

+e? cos2mt (—a§2+4a§2 —7e3% 4+ % 8‘2‘2) +0(e3)] )
' (3.3)

To simplify the presentation, we limit ourselves to the
spherical harmonic of order n=2 of the perturbing
acceleration, and keep only quadratic terms in the
eccentricity e. The first of these truncations is well
justified in most situations, since the apsidal motion
constants k, decrease rapidly with order n (Kopal, 1959),
and even more so the coefficients E, (Zahn, 1975b).
It is necessary to include terms of higher order in e in
the expansions when the orbit under consideration has
an appreciable eccentricity (say e>0.3), but this
presents no essential difficulty.

The perturbing acceleration modifies the orbit in
a manner which is described by the classical variational
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equations for the semi-major axis a and the eccentricity
e (see for instance Sterne 1960):
da  M+M,2(1—e*)'"? [Rzesinv Ly
d M ) (1—e?) r |
de M+M,(1—-eH)2] . S L. a?
— = R —((1—e?)= —1]|.
It M oa [ sinv+ e((l e )r2 1

(3.5
If we now substitute the components R and S of the
perturbing acceleration in these variational equations,
and take the time averages over one orbital period,

we obtain the following expressions for the secular
variation of a and e

da 3 M+M,GM, (R)7

(34)

ad o M R? \a

147

2 3 = e§2> +0(e4)} , (3.6)

de  3eM+M,GM, (R)B

3 1
-[e§2+e2 (_ 04 Test o522y

it~ 40 M R
3 1 49
58%0— Z 52—8224‘ T
In order to simplify the presentation as much as possible,
these equations contain only the contribution of the
primary star, but they can be readily extended to include
the tidal friction of the secondary.

Similarly, by taking the time average of the torque
—M,rS applied to the primary star, we find that its
rotational velocity Q varies with time according to
d 3GM3(R\®
—(IQ)=z—""22
dt 2 R \a
[e3? +e(Ges® —5e3% +4263%) + 0(e*)], (3-8

I being the momentum of inertia of the primary about
its axis of rotation. One readily verifies that the total
angular momentum of the system is conserved since

d MM,
dt (m T MM,

a

: 324+ 0(?)|. (3.7)

(1= 260+ M 202 =0,

(39
where again only the contribution of the primary has
been included.

The coupled differential Equations (3.6)—3.8), to-
gether with an equation similar to (3.8) for the rotational
velocity of the secondary, may be integrated numerically
to follow the dynamical evolution of a close binary,
once the coefficients ™ are known. We now proceed
to evaluate those tidal coefficients; we will examine
first, in §4, the dissipative mechanisms acting upon the
equilibrium tide and thereafter, in §5, those operating
on the dynamical tide.

4. The Equilibrium Tide

When all forms of dissipation are neglected, the descrip-
tion of the equilibrium tide becomes simply that of the
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hydrostatic equilibrium achieved by a star when it is
submitted to a harmonic gravity potential of the form
defined in Equation (2.2). For a thorough account on
this classical problem, we refer the reader to Kopal’s
(1959) treatise. It will suffice here to recall that the tidal
coefficient &™ reduces then to twice the apsidal motion
constant k,, and that its value is determined by the
structure of the star.

In a star that is not cerotating with the perturbing

potential, the effect of dissipation is to render this tidal-

coefficient complex, as in
eim =2k, expio(oy,,) - @4.1)

The value of the phase angle o depends on the dissipation
mechanisms that are at work, and these will now be
discussed.

a) Viscous Dissipation

Darwin (1879) was the first to establish the value of this
angle in the case of a viscous body. In the limit of small
viscosities, he found it to be proportional to the tidal
frequency 7, as in

a=t5 {(R3/GM)a,,, . 4.2)

We introduce here a friction time f; to measure the
efficiency of viscous dissipation (the smaller this time
tr, the more efficient the dissipation). In general, t;
depends on the order of the tidal potential, but we will
omit the subscript n for simplicity.

Using this parameter t; and replacing the tidal
frequency by its value lo —mQ, we can reformulate the
differential equations that govern theé variation of the
‘semi-major axis a (3.6), the eccentricity e (3.7) and the
rotational velocity Q (3.8) as

1da 8

. [(1 —Q/w)+e? (23 - 22—7 Q/w) + O(e“)] , 4.3)

cai= a0l -7 o) roe)
44

d k, R\®
—(IQ)=6 -2 g2 2 (=
dt(Q) 6th MR (a)

- [(0—Q)+€*(260 — 15Q2)+ 0(e*)] 4.5)

(g is the mass ratio g=M,/M). From these equations,
we can deduce the two time scales which characterize
the tidal evolution of a binary system. These are:

i) the synchronization time t,,. defined as

1L __ L de kK 2MRZ(R)

tyne  (Q—w) dt th I

4.6)
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where the corrections due to a finite eccentricity has
been neglected * ;
ii) the circularization time t,, given by

1 lde 63k, R\
=GRy @

assuming that corotation has already been achieved
(Q2=w).

When the phase angle « is proportional to the tidal
frequency, as in expression (4.2), with no further modifica-
tion of the amplitude of the outer potential, this has
been sometimes identified as the weak-friction case.
One easily verifies that the phase-shift of each Fourier
component of the potential can then be interpreted in
terms of a time delay (R3/GM)/tr, which does not
depend on [ or m. Making use of this property, Alexander
(1973) recently treated the tidal problem in a very
elegant way; dispensing with the usual Fourier ex-
pansions, he derived secular equations similar to (4.3)
and (4.4), but that are valid for any value of the ec-
centricity e. (It is unfortunate that his method cannot be
used when the phase angle o ceases to be proportional
to the tidal frequency, as will be the case with the other
dissipation mechanisms.) One readily verifies that
Alexander’s equations are identical to ours at the lowest
order in e. The same conclusions may therefore be
drawn from both. For instance, a circular orbit is
stable (i.e. de/dt<0) only if the ratio of the rotational
to the orbital velocities satisfies the inequality
Q/w < 18/11, a result first established by Darwin (1879).
Also, the semi-major axis of an eccentric orbit will be
stationary if

Qlo=1+12e24+0(e*). 4.8)

We now turn to the estimation of the viscous
friction time tp. According to Darwin this time is
given by

tr=ty=R*/v @9)

in a star of typical kinematical viscosity v, if one neglects
numerical factors of order unity. This is a time of the
order of 10*2 or 10'3 years; viscous dissipation can
therefore be completely neglected when describing the
equilibrium tide.

b) Radiative Dissipation

Radiative dissipation looks at first sight a more prom-
ising mechanism, since one may then expect the friction
time to be comparable to the Kelvin-Helmholtz time

teu=RL/GM? , 4.10)

! There appears to be an error in Kopal’s (1972) result concerning

this synchronization time. His prediction of a (a/R)® dependence for
tyne €an be traced to a wrong upper limit applied to his integral (6.71)
representing the viscous torque
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L being the luminosity of the star. However, a more
detailed analysis reveals that the analog of t is larger
by a factor of 10, at least (Zahn, 1965, 1966c; Dziem-
bowski, 1967). Introducing this value of #; in expressions
(4.6) and (4.7) for the characteristic time scales, we
see that radiative damping, when acting upon the
equilibrium tide, is ineffectual during the nuclear life
span of the system. (We will see in §5 however that the
same radiative dissipation is much more powerful when
operating on the dynamical tide.)

¢) Turbulent Dissipation in Stars Possessing a Convective
Envelope

A much more effective mechanism is that of turbulent
friction occurring in the convective regions of a star.
Unfortunately, no satisfactory description for ordinary
stellar convection is even available, let alone for the
coupling between convection and large scale oscillations.
If one wishes nonetheless to estimate the interaction
between the tides and the convective motions, one has
to resort to some approximate phenomenological
procedure. For instance, one may use the artifact of
eddy-viscosity to evaluate the tidal torque exerted on
the convective regions. If the convective region occupies
a substantial fraction of the star, and if convection
transports most of the energy flux, one finds that the
friction time is given by (Zahn, 1966b)

tFNtEV=(MR2/L)1/3 . (4.11)

This time scale turns out to be typically of the order of
one year, leading us to the important conclusion that
turbulent convection is by far the most powerful agent
retarding the equilibrium tide. Using this friction time,
the characteristic times for synchronization and cir-
cularization introduced in Equations (4.6) and (4.7)
can be expressed as

1 [MR2\!® I [q\

- a 4.
= L) W (®) 412
and
. 2\1/3 8
oire= 1 (MR a) . 4.13)

63q(l+qk, \ L R

Highly conjectural as they may appear, such
estimates based on the eddy-viscosity nevertheless seem
to represent adequately the tidal time scales, but only for
those stars possessing a thick convective envelope, such
as the Sun. For brevity, we shall designate such stars from
now on as the CE stars (for convective envelope);
in §6 we shall see how our theoretical predictions
compare with the observations of binary stars of that
kind.

d) Turbulent Dissipation in Stars Possessing a Convective
Core

The crudeness of the eddy-viscosity approach should
perhaps deter one from trying to refine further the
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Table 1. Parameters for the equilibrium tide. The eddy-viscous
friction time ¢z and the cut-off frequency sz (in dimensionless
units) serve to evaluate the time scales which characterize the equi-
librium tide damped through turbulent friction in stars possessing
a convective core [cf. Egs. (4.14) and (4.16)]. These two parameters
are given here for zero age main sequence stars of various masses

Mass (M) tgy (years) Sgv
16 8.14 105 4701073
2 1.2210° 3801073
3 3.07 10* 4641073
5 8.00 103 6241073
7 325103 7.031073
10 1.27 103 7901073
15 4.41 107 7531073

expression (4.11) estimating the friction time t;. However,
when dealing with stars in which convection plays a
lesser role, one is obliged to proceed with a somewhat
more detailed analysis. This is the case with stars
possessing a convective core and a radiative envelope,
such as early-type main sequence stars; we shall call
them for brevity the CC stars (for convective core). It
was found (Zahn, 1966b) that the friction time is then
considerably increased, since it scales roughly as
(R/R.)", R. being the radius of the convective core.
Another loss of efficiency arises from the fact that the
convective motions are then so slow that they cover
during one tidal period a distance which is often much
shorter than the mixing length. It is this actual distance
that must then be taken as the mean-free path of the
turbulent elements, and hence the eddy-viscosity coef-
ficient will be accordingly reduced. The outcome is that
for those CC stars the friction time may be approximated
by '

tp~tgy=(MR?*/L)'*(R/R), (4.14)
and that the phase angle o is then given by
a=tzy (R*/GM)  61,1(0) - (4.15)

The efficiency factor # in this expression (4.15) is a
function of the tidal frequency; in terms of the dimen-
sionless frequency s, it is defined by

n=1 for s<sgy, (4.16a)
and
N=2sgy/s)—(sgy/s)* for s>sgy. (4.16b)

The cut-off frequency sz, corresponds essentially to the
time needed by a turbulent element to travel across the
convective core. In Table 1 we present numerical
values of tgy and sz, for main-sequence stars of various
masses.

In those CC stars, the phase angle « thus ceases to be
proportional to the tidal frequency s as soon as s> sgy.
The weak friction approximation then no longer
holds and one cannot use the simple expressions (4.6)
and (4.7) to predict the evolution of the binary system.
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Instead, one has to go back to the original Equations
(3.7) and (3.8) and substitute there the tidal coefficient
by .

em =2k, t} (R®/GM)' 2 5,,,11(s1,) - (4.17)

In the asymptotic regime of s,,>sg,, the rotational
velocity then varies as

140 1 k, MR? (R\°?
- 32 21 12" [T ,
@ dt tsync tEV Sevd ( +q) I (a)

(4.18)

where we have neglected the correction in e®. Likewise,
the eccentricity of the orbit follows the law

1 1 13/2
s et ot (R L (- RN

edt ty. 4ty
again with the assumption of corotation (2= w).

These characteristic times turn out to be very large.
The synchronization time of a 10M ; main-sequence
star, for instance, would exceed the nuclear life-time as
soon as the fractional separation of the system becomes
larger than a/R =2.85; this semi-major axis corresponds
to the very short period of 0.93 day, assuming a mass
ratio g of unity. Such estimates disagree with the
observations, which instead suggest that corotation can
be achieved at separations which are typically two or

three times larger than those inferred from expression
(4.18).

e) Turbulent Dissipation Generated by the Tide Itself

Another dissipation mechanism has been recently
proposed by Horedt (1975), Press et al. (1975) and
Lecar et al. (1976). They notice that the tidal flow itself
could generate turbulence, since the Reynolds number
which characterizes it is very high (102 or more), and
that this turbulence could well retard the tide, much
like the convective turbulence discussed above.

However, the shear induced by the tides oscillates
periodically in time around a zero mean value; it is
therefore extremely unlikely that it becomes unstable,
as was pointed out by Seguin (1976), since the growth
-rate of small (linear) perturbations is much smaller than
typical tidal frequencies. Moreover, the density stratifica-
tion exerts a strong stabilizing influence on the horizontal
shear, even if one takes radiative damping into account
[as outlined, for instance, in Zahn (1975a)].

The observations seem also to rule out this instability.
It is well known that close binary components evolve
towards the giants branch, like single stars of the same
type, and thus that they too build up a helium-rich core.
This would not be possible with tidally induced turbu-
lence, which would maintain a star in a homogeneous
state.

Let us summarize the results of this section. The
most efficient form of dissipation which may operate
on the equilibrium tide is clearly turbulent viscosity

J.-P. Zahn: Tidal Friction in Close Binaries

in the convective regions of a star. This mechanism
provides a satisfactory interpretation of the behavior
of stars possessing a convective envelope, as we will see
in §6. But when convection is confined in the core of a
star, as is the case in stars with radiative envelopes, this
process is not powerful enough to explain the observed
synchronization of close binaries of that type. In the
next section we propose another mechanism which we
believe to be responsible for this.

'5. The Dynamical Tide with Radiative Damping

Due to the elastic properties of the stellar material, a
star can experience a variety of oscillations. Those
oscillations that are self-excited through some instability
mechanism have been extensively studied in connection
with variable stars. Yet the oscillations that are driven
by an outer perturbing force, such as arise from the tides,
have received much less attention.

Cowling (1941) was the first to describe those forced
oscillations in a binary component, which include both
the dynamical and the equilibrium part of the tide. But
his study was restricted to the non-dissipative case, and
hence it cannot be used to evaluate the exchanges of
energy and momentum. The effects of viscous dissipa-
tion, be it of molecular or turbulent origin, have been
analyzed by Kopal (1968a—d); his results have however
limited application since they are derived for a stellar
model that is everywhere strongly superadiabatic. It
is well known that in such a model all the gravity modes
are unstable; they will therefore overwhelm the oscilla-
tion that is forced by the tidal potential, and it makes
little sense to calculate the tidal lag under those condi-
tions. More realistic models are required to estimate the
effects of viscosity on the dynamical tide, but it is
unlikely that these effects are as important as those
experienced by the equilibrium tide, which have been
considered in the preceding section.

We have examined recently the effects of radiative
damping on the dynamical tide (Zahn, 1975b); our
results apply to stars possessing a convective core and
a radiative envelope (the CC stars). The physical
process may be sketched in the following way. The
tidal potential generates a variety of gravity waves
in the star under consideration; if dissipation were
negligible, these waves would be totally reflected by the
surface and they would result in standing waves,
locked in phase with the tidal potential. But in the outer
region of the star, the radiative cooling time is compar-
able with the tidal period and thus the waves undergo
some amount of damping. Only a fraction of the
incident wave is reflected by the surface, phase-shifted,
and a net flux of mechanical energy is therefore trans-
ported from the adiabatic interior to the dissipative
region near the surface. This serves-to transfer angular
momentum from the rotation of the star to the orbital
motion.
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The properties of the dynamical tide acting on those
CC stars, when radiative damping is taken in account,
are presented in the original paper. They may be
summarized as follows:

i) The bulge raised by the dynamical tide is much
smaller than that produced by the equilibrium tide, but
unlike the latter, it can take any orientation with respect
to the companion star, depending on the tidal fre-
quency.

ii) This tidal bulge does not coincide in general
with an equipotential surface; the phase lag of the
outer potential created by the dynamical tide also
depends on the tidal frequency, and is given by

m — tan~1(y, tan(n/3 — ™)+ tan~(y, tany™). (5.1)

Here ™ is a linear function of the tidal period 2n/s,,
which takes the values n/2, 37/2, 57/2,... at the eigen-
periods of the free modes of oscillation. The damping
factor y, increases monotonically with the tidal period,
from zero (vanishing period) to unity (very large
periods). Notice that in this latter case of y,=1 the
phase angle @™ ceases to be a function of ™ and that
it then takes its asymptotic value 7/3.

The function p, introduced in Equation (2.5) can
also be expressed in terms of those two arguments
y™ and y, as

2, m

Pa(Sim) ="7n/(cOS> Y} + 72 sin® y)™) . (5.2)

For most applications, such as time integrations of the-

secular Equations (3.6)—3.8), the function p, may be
replaced by its sliding mean defined as

y+m/2

Pa(8)= J5272 Pals)dp/n=1. (53)

This comes about because all functions f(s) involved
in such integrations will vary very slowly with v, as
also does y,, so that integrals of the type

[ pa(s)f (st

over large enough intervals (4y > 1) can be approximated
by '

[ Da(s)f(s)di= | f(s)dt .

Remarkably enough, this sliding mean p, does not
depend on the tidal frequency s, nor on the details of
radiative damping represented by the damping factor
Vn:

Replacing p, by its constant value 1, we find that
the contribution of the dynamical tide to the imaginary
part of /U™ in Equation (2.5), may be approximated
by

Im __ 8/3
em=E,ss3

(5.4a)

(5.4b)

(5.5)

The tidal coefficients E, are very sensitive to the structure
of the star, particularly to the size of the convective
core: to first approximation, they scale as (Ro/R)*"**4.
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Fig. 1. The intrinsic synchronization rate versus the tidal frequency
522 =2(Q—)(R3/GM)'2 for a 5Mg, star. This intrinsic rate must be
multiplied by ¢?(R/a)® to yield the actual synchronization rate
(Q—w)~1dQ/dt [see Eq. (5.6)]. The contributions of the equilibrium
tide (damped by turbulent friction in the convective core) and of the
dynamical tide (damped by radiative dissipation) are shown separately

In a fully radiative star, the E, would vanish altogether,
and one would have to carry the asymptotic treatment
to a higher order in s. As for the apsidal constants k,,
these coefficients must be determined through numerical
integration, using stellar structure models; this is
explained in the original paper (Zahn, 1975b), where
numerical values of the E, for zero age main sequence
stars are also provided.

With the approximate expression (5.5) for the
coefficients ey, we can now evaluate the time-scales
characterizing the dynamical tide. For instance, the
rotational velocity of a close binary component varies as

1 dQ 1 GM\'/2 MR? R\¢
e S S § i) B el 2 [BY7 53
Q- dt trot ( R3 ) I E2 [q (a) %22
: | (5.6)

again neglecting here the correction called for when the
orbit is eccentric. The synchronization rate t ! is a
function of both the strength of the perturbing potential,
as measured by the quantity in brackets [¢q%(R/a)®], and
of the tidal frequency s,,=2(Q2—w)R3/GM)'?. In
Figure 1, we have singled out the latter dependence by
displaying the “intrinsic” rate t![q*(R/a)®]™ ! versus
the dimensionless frequency s,,; the model chosen is
that of a 5M main sequence star. For comparison, we
also show that same intrinsic synchronization rate for
the equilibrium tide, with this tide being damped by
turbulent viscosity in the convective core, as explained
in §4d. Notice that it is the dynamical tide which is the
more efficient of the two, except for very small tidal
frequencies; this property holds for all stars with
radiative envelopes.
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Fig. 2. Variation of the circularization rate characterizing the dynam-
ical tide, as a function of Q/w, the ratio between rotational and
orbital velocities. The semi-major axis is fixed [see Eq. (5.10)]

If we neglect entirely the contribution of the equi-
librium tide, it is more meaningful to introduce a new
synchronization time t,, . defined as

ync

1/tagne=52"3(GM/R®)*(MR*/I)g*(1 + q)*'°E,(R/a)* 7.
(5.7)

In most binary systems, the momentum of inertia I of
the stars is much smaller than the orbjtal momentum
[g/(1 +q)]Ma?, so that the variations of the orbital
velocity @ can be neglected compared to those of the
rotational velocity Q. Under such conditions, the relative
departure from synchronism (2 —w)/w varies.in time
according to

d _
E«' I(Q —co)/a)| = 1/tsync: ’ (58)

if one further neglects the possible variations of the
momentum of inertia.

We shall characterize the eccentricity variations,
as before with the CE stars, by the circularization time
lio=el(de/dt)"". In most circumstances this time is
larger than the synchronization time ., so that the
star approaches synchronism before the eccentricity has
been appreciably modified. We can thus evaluate the
time ¢, for Q=w, which results in

1/t e =21/2GM/R3) 2 q(1 +q)* /*E,(R/a)*' . (5.9)

But we must keep in mind that the circularization
rate varies with the relative departure from synchronism.
According to (3.7) and (5.5) we have

lde 1 173
edt 1t 14|2

circ

oy Dagen

(5.10)

with { =2(Q — w)/w. The variation of this function with
Q/w is displayed in Figure 2. Notice that for Q/w >2.007

J.-P. Zahn: Tidal Friction in Close Binaries

the eccentricity would increase with time, if the dynamical
tide were operating alone; one may compare this value
with that found by Darwin for the equilibrium tide with
viscous damping (Q/w=18/11=1.636).

Due to the high exponents of (R/a) in expressions
(5.7) and (5.9), the time scales for the synchronization
and circularization of CC binary stars are generally
orders of magnitude longer than those characterizing the
equilibrium tide in the CE stars. We may therefore
conclude that the strongest tidal effects are to be found
in binary systems that contain stars possessing a
convective envelope. We will see in the next section
that this is borne out by the observations.

6. Comparison with the Observations

In this section, we shall compare the theoretical predic-
tions of §§4 and 5 with the observational results that are
available, This comparison can be made only in a broad
statistical sense, for we lack information about the
initial rotation speeds and often also about the ages of
the systems. Nevertheless, the observations bring forth
separations or periods that divide the close binaries in
two somewhat overlapping groups; those which have
experienced synchronization, and those which have not.
The same occurs also for circularization. These limiting

‘separations and periods are the parameters which can

be conveniently confronted with the theoretical predic-
tions.

We will restrict here our attention to those stars
which have not envolved too far from the main sequence.
One reason for doing this is that the stars generally
loose very little mass prior to the end of the hydrogen-
burning phase, and thus exchanges of energy and
momentum in a binary system are then due solely to
tidal friction.

Even more important is the fact that on the main
sequence the rotation of the stars is likely not to deviate
much from solid body rotation, and this has been
implicitly assumed in the preceding sections. The tidal
torque per unit mass varies with depth and latitude
in a star, and therefore it tends to induce differential
rotation. However, as long as a star remains homoge-
neous, it is liable to various instabilities which tend to
restore uniform rotation. Among these, the most
efficient appear to be the shear instabilities which are
only partly hindered by the stabilizing density stratifica-
tion (Zahn, 1975a). This permits us to treat a homoge-
neous star as a solid rotator, at least to a first approxima-
tion, thereby avoiding having to deal with the intricacies
of differential rotation. However such a simple treatment
is not possible once the star has left the main sequence,
since it then develops a helium-rich core whose rotation
is likely to decouple from that of the envelope.

When examining the tidal evolution of close binaries,
one has to distinguish between the CE stars which
possess a convective envelope and the CC stars which
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do not. We have seen that the major contribution to
the tidal torque has a different physical origin in the two
classes of stars: in the CE stars, the dissipation is caused
by turbulent friction in the convective envelope,
whereas in the CC stars, it is due to radiative damping
in the non-adiabatic layers located near the surface.
As we have already noticed, these two physical processes
have different efficiencies, and one should expect CE
stars in binary systems to display more signs of tidal
friction than CC stars.

The observations fully confirm this dissimilar be-
havior. Take the detached systems listed in the Kopal
and Shapley (1956) catalogue of eclipsing binaries:
with only one exception to be discussed later, all
systems that contain a CE star have circular orbits, and
the systems which have eccentric orbits all involve two
CC stars. This property is so striking that one is tempted
to use such eccentricity determinations to locate the
boundary between the CE and CC stars. An upper
limit for the mass of the CE stars seems to be 1.6M
(Zahn, 1966¢), and this agrees well with stellar structure
calculations: according to Baker and Temesvary (1966),
main sequence stars with masses smaller than about
1.5M  have extensive outer convection zones (assuming
a standard chemical composition and a ratio of 2
between mixing length and pressure scale height).

We shall now proceed with a more quantitative
comparison between the observationsand our theoretical
predictions; we shall first consider systems with CE
stars, and thereafter with CC stars.

a) Stars with Convective Envelopes

We have given in §4 the tidal time-scales that apply to
CE stars. Let us emphasize again that, due to the
uncertainties of the eddy-viscosity treatment, the nu-
merical coefficients in expressions (4.12) and (4.13) must
not be taken literally. Suitable approximations for
these formulae, probably well within the error margin,
are therefore

tyne~4q ™ 2(a/R)°~10%((1 +q)/29* P*  years (6.1)
for the synchronization time, and

tere~(q(1+9)/2)” *(@/R)®
~10%g™ (1 +q)/2)°** P*"® years 6.2)

for the circularization time, the orbital period P being
expressed in days. According to those estimates, a
binary component of the age of the Sun should be in
nearly synchronous rotation if the fractional separation
(a/R) is less than about 40. Likewise, its orbit should be
circular by this time if the separation is less than 15.
This limiting separation for synchronization seems
to be confirmed by the observations. One of Levato’s
(1975) conclusions is that binary stars around the
spectral type F5, which possess a convective envelope,
are found in synchronism in systems which have a
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period of up to 17 days. This period corresponds to a
separation of (a/R)=35 in this mass range (assuming
equal components, i.e. ¢ =1), which is in good agreement
with the predicted separation of 40 mentioned previously.
Further substantiation that the limiting period for
synchronization should be around 17 days is provided
by the system aCrB: with its period of 17.36 days, it
contains a CE star (of spectral type G6) which is not
yet synchronized since Kron and Gordon (1953) find
it to be in rapid rotation. It is this eclipsing binary
which does not obey the rule mentioned earlier that
systems with CE stars have circular orbits: «CrB has an
eccentricity of 0.37. But due to its extremely long period
(for an eclipsing binary), the characteristic time is of the
order of 10'2 years, according to our estimate (6.2).
(Furthermore, the eccentricity probably increases at
this very slow rate, since the ratio of rotational to
orbital velocities Q/w very likely exceeds the critical
value 18/11 found by Darwin.)

b) Stars with Convective Cores and Radiative Envelopes

With the CC stars, the discussion is somewhat more
delicate, and this for two reasons. First, the rotation
of the surface layers of such stars is less strongly coupled
to that of the interior than in the CE stars which have a
turbulent envelope; the rotation observed at the
surface of the CC stars could well be a poor indicator
of the total angular momentum IQ stored in those
stars. But let us suppose again that these stars do not
deviate much from uniform rotation; we will check
later if this simple assumption is not contradicted by
the observations.

Second, the tidal coefficient E,, which plays such a
crucial role in the expression of the tidal torque, is much
more sensitive to the structure of the CC stars than the
apsidal constant is to that of the CE stars. As the star
evolves off the main sequence, its convective core
shrinks and the coefficient E, decreases considerably.
To illustrate this, we have evaluated E, for a 15M
star, using an evolutionary sequence calculated by
Stothers and Chin (1975) (which is based on the Ledoux
criterion for convection). We find that in these models
the coefficient E, drops from 1.46 10~ to only 4.31 10~ ®
at half life, and further to 6.53 101! at the end of the
main sequence phase. This decrease of E, is only
partly compensated by the parallel increase in radius:
the synchronization time ¢, in expression (5.7) varies
as (I/MR?)/E,R", and this function is multiplied by a
factor of 6 at half life and by a factor of 50 at the end of
the main sequence stage. For the circularization time
teire» Which scales as (E,R°)™!, these factors are re-
spectively 4.5 and 20.

We may thus conclude that most of the tidal braking
actually occurs during a rather short period at the
beginning of the main sequence phase. To illustrate
this further, we have performed a few time integrations
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Fig. 3. Synchronization of a 15M, star. The variation with time of the
ratio Q/w is shown for three values of the initial separation, (a/R)=4,
6 and 8. The mass ratio is assumed to be unity and the orbital ec-
centricity zero. The curve labelled co displays the decrease of Q/w
in the absence of tidal braking; this results simply from the conserva-
tion of angular momentum in the expanding star. With our definition
(see caption of Table 2), this star has a synchronization time t,y,.=6.54
days

Table 2. Limiting separations and periods for the dynamical tide.
This table gives the parameters which describe the dynamical tide
damped by radiative dissipation in stars possessing a convective
core and a radiative envelope. The limiting separations (a/R)sy,. and
(a/R),. are the fractional separations at which respectively the
synchronization time t,,, and the circularization time ¢, are
equal to 1/4 of the main sequence life span; P, and P, are the
corresponding periods. These parameters have been calculated for a
mass ratio of unity. For a different mass ratio g, the correction factor
to be applied t0 (a/R)ync is q**"[(1+4)/21°%"; to (a/R)gye it is
(@/2)***[(1 +q)/2]*/%3, taking then onmly the contribution of one
star into account. There are two entries for 15Mg, corresponding
respectively to the model of Aizenman (see Zahn, 1975b) and to that
of Stothers and Chin (1975)

Mass (M) Synchronization Circularization
(a/ R)sync P, circ (days) (a/ R)circ P, circ (days)

1.6 6.11 121 4.44 0.75

2 7.05 1.59 4.99 095

33 6.81 1.92 4385 1.10
5 6.52 2.19 4.68 133

7 6.72 2.69 4.80 1.62

10 6.67 3.30 4.77 2.00
CI5A° 7.04 3.98 499 2.38
158C 6.54 3.62 4.69 2.20

of Equations (3.6) and (3.8), using the same models for
this 15M, star; the variation of the ratio Q/w between
the, rotational and orbital velocities is shown in Figure 3.
The small contribution of the equilibrium tide is
included in the calculations; we have assumed that the
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eccentricity is zero and the mass ratio unity. The initial
conditions are Q/w=3 and (a/R)=4, 6 and 8. For
reference we have added the variation of Q/w in the
absence of tidal braking; the corresponding curve is
labelled (a/R)= co. These integrations confirm that the
tidal torque operates only at the beginning of the main
sequence life; thereafter the rotational velocity of the
star continues to decrease, but this is just a consequence
of the conservation of angular momentum as the star
expands.

We are therefore led to define the limiting separa-
tions for synchronization and circularization as the
initial separations (a/R)sy,. and (a/R);. for which the
corresponding characteristic times are equal, say, to
one quarter of the main sequence life span. Numerical
values of these limiting separations, together with the
corresponding periods, are given in Table 2 for the
same stars. These values are calculated for a mass ratio
of unity; the corrections to be applied for other values
of g are given in the caption of the table.

Let us emphasize here that the limiting periods
P, and P are much more model-dependent than
the limiting separations from which they are derived,
since for a given (a/R) they vary as R3/2. There are some
indications that the radii of our theoretical models
(computed by Aizenman, see Zahn, 1975b) are some-
what smaller than the observed ones. For instance, the
radius of our SMy model is R=2.35R,, whereas the
observations give about 3R, (Popper, 1974); the limiting
period for synchronization P, should thus lie around
3.15 days, instead of 2.19 quoted in Table 2. It is therefore
safer, when comparing observations and theory, to use
the fractional separation (a/R) whenever this parameter

is directly measurable, as it is in eclipsing binaries.

The observations of rotational velocities in close
binaries have been presented and discussed in several
articles during the past decade (Olson, 1968; Plavec,
1970; Nariai, 1971; Stothers, 1973; Levato, 1975):
one finds that the stars are synchronized up to a separa-
tion (a/R) of 7 or 8. This limiting separation seems
quite independent of the mass of the star; however, it
should be mentioned that the observational material
available is very scarce for masses greater than 10M.
Levato quotes somewhat higher limiting periods than
the others, but his criterion for synchronization,
namely that Q/w <2, is less severe than those adopted
elsewhere.

The observational values for the limiting separation
are in satisfactory agreement with the theoretical
values of Table 2, which range from 6.52 to 7.05 (with

‘the exception of the model of lowest mass, 1.6M).

However, if further observations confirm this average
limiting separation of about 7.5, one would have to
conclude that the tidal coefficients E, exceed by a
factor 2 or 3 those computed from current models.
This in turn could lead to a revision of these models:
for instance, an increase of 15% in the mass of their
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convective core could make up for the observed dif-
ference. It is tempting to see in this further evidence for
substantial overshooting from convective cores (cf.
Maeder, 1976), even though it is certainly too early to
jump to this conclusion.

‘The reasonable agreement between the observations
and our predictions is an indirect confirmation of the
assumption made for the rotation: we may conclude
that the interior rotation of the CC stars is fairly
uniform and thus that the mechanisms which re-
distribute the angular momentum in those stars operate
on a time scale which is short compared with the
synchronization time.

However a few stars present a considerable excess
of rotational velocity. Two well known examples are
AR Cas and UCep, in which the primary rotates
respectively with four and five times the speed required
for synchronism (Olson, 1968); the separation in both
binaries lies around (a/R)=5 (Koch et al., 1970), which
is well below our theoretical limit of about 7. In most
cases, the surface layers are probably accelerated by
matter coming from the companion star. The secondary
of U Cep, for instance, seems to fill its Roche lobe and
transfer of mass has been observed in late 1974 (Batten
et al, 1975; Plavec and Polidan, 1975; Olson, 1976).
The case of AR Cas is more puzzling, since there is no
indication for mass exchange; the only explanation
we can offer is that the system be very young.

The observed orbital eccentricities provide another
verification for the tidal theory in those CC stars.
Koch (1976) has thoroughly analyzed the data contained
in Batten’s Sixth Catalogue and in the two lists of the
Toulouse Observatory. He finds that in the spectral
range B7—F0 (2 to 6M) the systems with a period
shorter than 1.5 day all have circular orbits. The
situation is less clear at higher masses: some very close
pairs have such a large eccentricity that they cannot
avoid encounter at periastron. It remains to be verified
however whether what one measures there is a genuine
eccentricity: by shifting the brightness distribution at
the surface of the stars, the dynamical tide modifies the
light- and velocity curves in the same way as would an
orbital eccentricity (Zahn, 1975b).

Let us come back to the limiting period of 1.5 day
revealed by Koch’s investigation. This is higher than
our theoretical periods of Table 2 which, for the same
mass range, lie between 0.95 and 1.33 day. Part of the
discrepancy is certainly due to the underestimated
radii of our models: if one takes 3R as the radius of
the SM, star, instead of 2.35R as in our model, one
increases its limiting period from 1.33 to 1.90 day. It
would thus be desirable to calibrate the observed
eccentricities versus the separation (a/R) of the most
massive component: we have already mentioned that
this parameter is much less model-sensitive than the
period. Also, the theory predicts that the limiting
separation is almost independent of the mass of the

393

star, whereas the period increases with mass as the
inverse square-root of the mean density.

“7. Application to X-ray Binaries

The current interpretation of the X-ray binaries is that
the X-ray source be the neutron star remnant of a
supernova explosion. If this is true, one has to explain
why these binaries now have circular orbits, since the
sudden mass loss would have produced a sizeable
eccentricity.

It is natural again to invoke tidal braking as the
circularization mechanism, and this has been done by
several authors (cf. Chevalier, 1975; Wheeler et al., 1975;
Lecar et al.,, 1976). Let us verify whether the theoretical
predictions presented here confirm such a hypothesis.

This would be the case if the fractional separation
(a/R) characterizing the primary component of a
particular X-ray binary is less than the limiting separa-
tion given by expression (6.2) for the CE stars or in
Table 2 for the CC stars. However, the separation which
must be used for this comparison is the initial one,
achieved just after the explosion; that which is presently
observed has been generally inflated by the expansion
of the star accompanying its evolution, and we know
that the tidal torque is efficient only during the first
part of the main sequence phase.

It must also be stressed that the circularization time
has been evaluated under the assumption of corotation,
which is not necessarily fulfilled : the mass ratio of X-ray
binaries can be so small as to render the circularization
time shorter than the synchronization time. Thus
numerical time integrations may be required to solve
some dubious cases.

But we shall be content here with simple comparisons
between actual and limiting separations. We choose as
examples the binaries Her X-1 and Cen X-3, which have
also been considered by Lecar et al. (1976).

a) Her X-1

Following these authors, we take for that binary the
parameters:

M=20Mg,, M,=10M,, a=864R,.

We may assume that the primary started with an
initial radius of 1.5Ry; the initial separation thus was
(a/R)~5.75, if we further neglect a probable increase of
the semi-major axis. This is substantially larger than the
limiting separation of 4.12, which is the value of Table 2
corrected by the factor (g/2)%** [(1+¢)/2]*1/63 to allow
for the mass ratio differing from unity. We thus conclude
that the dynamical tide was not efficient enough to
circularize the orbit.

One must therefore rely upon the equilibrium tide,
which can operate here on the subphotospheric convec-
tion zone. It is difficult to assess how efficient the tidal
braking will be in this rather shallow convection zone,
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and one can hardly do better than Lecar et al. (1976)
who estimate that the circularization time is of the
order of 107 years. It should also be mentioned that the
energy flux must vary considerably on the surface of
this highly distorted star (it fills the Roche lobe!), and
that the thickness of the convection zone, and thus the
efficiency of tidal braking, may be underestimated
when taking a mean effective temperature.

b) CenX-3
We assume that this binary is characterized by
M=1TM,, 4¢q=1/20, a=17R,,

and that the initial radius was R=7.5R,. Neglecting
again the variation of a, we get for the initial separation
(a/R)~2.25, which is appreciably less than the limiting
separation (a/R)y,.=3.15 drawn from Table 2, after
correction for the small mass ratio. We may therefore
conclude that the dynamical tide was indeed capable of
circularizing the orbit.

It has been conjectured that this system should be
unstable due to the very small mass ratio, and that the
compact star should be spiraling into the primary
(Chevalier, 1975; Wheeler et al, 1975). To decide if
this is true, one needs to know the rotational velocity
of the primary; only if Q is smaller than w, the orbital
velocity, does the semi-major axis decrease secularily.
This result has been established by Counselman (1973)
for circular orbits; it also holds for moderate ec-
centricities, according to Equation (3.6). In the case of
Cen X-3, the rotational velocity is not known. If the
primary was corotating before the explosion, then
Q> immediately thereafter, but this inequality may
well be reversed by now due to the star’s expansion.

8. Conclusion

It appears that the two principal mechanisms which are
at the origin of the tidal torque in close binaries have
now been identified. These are the turbulent friction
acting on the equilibrium tide in stars possessing a
convective envelope, and the radiative damping retard-
ing the dynamical tide in stars with radiative envelopes.
The agreement between the observations and the
theoretical predictions based on these physical processes
is quite satisfactory; it can possibly be improved by
further refinements of the theory.

Among such refinements, a more realistic treatment
of the coupling between convective motions and tidal
oscillations should be given the highest priority. It
would be desirable also to verify whether the effects of
rotation, which have been neglected in our description
of the dynamical tide, are negligible or not. We hope
that future work will bring these problems to a suc-
cessful conclusion.

J.-P. Zahn: Tidal Friction in Close Binaries

The dynamical tide provides us with yet another
mean to probe the interior of stars with radiative
envelopes. The tidal coefficients E, are much more
sensitive than the apsidal constants to the structure
of those stars, and we anticipate that they too will
eventually be used to check the accuracy of theoretical
models.
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