FO77A8A - 2. 557 "7Z39B

Astron. Astrophys. 55, 239—243 (1977)

ASTRONOMY
AND
ASTROPHYSICS

Analytical Study of Magneto-acoustic Gravity Waves

N. Bel and B. Leroy

Département d’Astrophysique Fondamentale, Observatoire de Meudon, F-92190 Meudon, France

Received July 5, revised July 27, 1976

Summary. An analytical study of magneto-acoustic
gravity waves propagating in an isothermal atmosphere
along the gravity field has been done; we obtain the
equation giving the cut-off frequency and we establish
the conditions for the existence of a cross-over in the
dispersion equation.
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I. Introduction

The propagation of linear waves in an isothermal
atmosphere in which a constant magnetic field is
embedded (i.e. magneto-acoustic gravity waves = M.A.G.
waves) was recently received some attention in the
context of the physics of the solar atmosphere (Bel and
Mein, 1971; Chen and Lykoudis, 1972; Michalitsamos,
1973; Nakagawa et al,, 1973). As a consequence of the
complexity of the dispersion equation, all this work
has concerned either special case of the propagation
(work done numerically) or the existence of trapped
modes. Since the combined effect of magnetic pressure
gradient and gravity restoring forces could be of
importance in atmospheric heating, it would be of
interest to study the transfer of energy between gravity
waves and M.A.G. waves or between fast and slow
M.A.G. waves; an analytical form of the equation
relating the phase to the frequency will lead to con-
siderable simplification in these further studies. This
equation will be also a useful way to study the phase-lags
which have been observed in the solar atmosphere.
In this paper, we restrict ourselves to the propagation
of M.A.G. waves along the gravitational field and we
obtain the analytical form of the equation of the phase
propagation of such M.A.G. waves.

I1. Basic Equations

The notation is as used in Bel and Mein’s paper (referred
to as Paper I). The constant gravitational field is along the
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z-axis, g =(0,0, —g) with g>0 and the magnetic field
can take any angle with respect to the gravitational one,
B=(B,, 0, B,); the magnetic field is assumed uniform.

The local dispersion equation of M.A.G. waves
which propagate along the gravitational field is:

w* —(iyg k,+(@*+V) k) +a> k2 V2 +iygk2 VE=0. (1)

This is Equation (6) of Paper I with k, =0; k,, the
z-component of the wave vector is put in the form:

k,=a+if. @)
In dimensionless variables used in Paper I:
o=le a=X g

" H “H ' H

real and imaginary parts of Equation (1) can be written as:

o*+0?(y—1+P) x> —y?)+m? (x> —y?)? —4x?y?)
—m? y(3x*—y*)=0 &)

(L +2(1+2) y) 0% —4m? y(x2 — y?) —m?(x2 =3y =0.(4)

We recall that I=(V,/a) and m=(V,/a) cosf where V,
and a are respectively the Alfvén speed and the sound
speed; these equations are Equations (13) and (17) of
Paper L. '

The elimination of x> between Equations (3) and (4)
leads to Equation (18) of Paper I, which is the relation
between the frequency and the growth rate of the
amplitude of the wave. It is now necessary to eliminate y
from (3) and (4) in order to obtain the phase propagation
i.e. the relation between o’ and x. The tedious calcula-
tions involved are made in the Appendix.

ITI. Results

The relation between w’ and x is found to be:

0% (@? —(14+P)x?)+m? x*—v* (0> —m? x*)=0 5)
where v2=v?(l,m) is the square of the dimensionless

cut-off frequency and is the real solution of the cubic
equation:

Ao X3+ A4, X4+ 4,X+A4,=0 ©6)
[cf. Eq. (I1.14) of the Appendix]
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with:

Ap=16(4m? — (1 +12)?)?

A =—4[(A+P)?—4m?) (1 +P) 1 +m?»)—12m?)
+32m* (1+12) (P —m?)]

Ay=—m*[(m?*—1%) (1 +1)+27 (1 +m?))
+8((L+ 1) (1 +m*)—6m?)]

Ay=—dm? . %)

Using the dimensioned variables and parameters,
Equation (5) can be written as:

o* (0? —(@* +V?)a?)
+a? V2 cos?0 o* — wi (w? — V2 cosf a?)=0 ®)

where

a)o=ﬁv.

This is the phase propagation of the M.A.G. waves
along the gravitational field. It is easily seen that
Equation (8) reduces to the usual magneto-acoustic
wave equation as the scale height H tends to infinity
and to the usual internal gravity wave equation for
V,=0 (See below the limiting value of v for I=m=0).
w, is the cut-off frequency.

1. Cut-off Frequency

The dimensionless squared cut-off frequency v2(l, m) is
the real solution of Equation (6). The explicit solutions
of Equation (6) can be written easily but these expres-
sions are somewhat complicated and we have preferred
to find a numerical result; this is of no great importance
since v2 enters only as a parameter in Equation (8)
and it is rather the form of this equation which will be
useful for further studies.

The dimensionless cut-off frequency is plotted in
Figure 1 as a function of [, for =0 (I =m, the magnetic
n

0=

field is parallel to the gravitational field), §= % T

0= %, 0=% (m=0, the magnetic field is normal to
the gravitational field). It can be easily shown that for

I=m, Equation (6) can be written as:
16 (X— ‘—1‘) (P=1)2X2+12)?=0

ie. X=v2= %, wo= %: the Lamb frequency is not
affected by the magnetic field when it is parallel to the
gravitational field (in particular for l=m=0, w, is,

as expected, the usual Lamb frequency).
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Fig. 1. Cut-off frequency w, in units of a/H, as a function of , the
ratio between the Alfveén velocity and the velocity of sound. 6 is the
angle between the magnetic and gravitational fields.

For m=0 and any [ (0: g), Equation (6) can be
written as:

1
X2 — 1 =0"-
(X~ sem) =
the cut-off frequency is simply wo = —— ——2
R T (T
The Figure 1 shows the decrease of the cut-off
frequency due to the magnetic field when 6 +0.

2. Form of the Curve w(x)

It can be shown that the curve w(x) defined by Equation
(8) is the one drawn in Figure 1 of Paper I, i.e. one
positive root for a given @ smaller than the cut-off
frequency w, and two positive roots for a given w > w,,.
(w and x axes are, of course, still axes of symmetry.)
It is interesting to investigate when the curve w(«) has a
cross-over. This point exists if the discriminant 4 of
Equation (8) in term of «? vanishes, i.e.:

A=w*(1+1%)? —4m?)+2m* V2 (1 =1®)+v*m*=0.

The discriminant of this quadratic equation in w? is:
S=4m?*v*(m*—1?)

which is negative for m=1 (the particular case m=0 is

degenerate; see below).
If I=m, A writes:

lZ 2
A= (w’2(1 -+ Z)
A vanishes only when /> 1 for
_E _E
aPP-1) a* "

The abscissa of the cross-over is given by x2=
1

r-1)

wl=
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3. The Particular Case m=1(6=0)

The cross-over of the two branches of the curve w(x)
was found in Paper I for values of I which were, in
fact, greater than 1; however, m was slightly different
from I: this was probably due to the fact that the com-
putations were made in single precision. In dimensioned
variables and for V2 >qa? (I>1), the two modes defined
by Equation (8) can be represented in the (a, w) plane by
one hyperbola and two straight lines:
a2

o’=w?=a*?+ i
?=wi=V2a?.

For a?<a?, one mode is dominated by the restoring
of the pressure force; the gravity makes the mode
dispersive; it is the slow-mode. The other mode is
dominated by the magnetic forces and remains non-
dispersive; it is the fast-mode. For a?>aZ, the two
modes switch around. (For V2 <a?, the two modes are
the fast mode w? =w? and the slow mode w?=w3 and
they do not cross over; for V2=q? the two modes
w?=a?0?+(a?/4H?) and w? =a?a? become asymptoti-
cally identical).

4. The Particular Case m=0

For m=0 and any [(i.e. #=0, the magnetic field is
normal to the gravitational field and the wave vector),
Equation (8) is then degenerate and gives only one
mode, the usual acoustic mode which exists alone when
the magnetic field is normal to the wave vector and
for which the gravity introduces a cut-off frequency:

a a

4H? a®>+V?

2
w?=@*+V?3)a?—

[the same result appears in Chen and Lykoudis (1972)
for their k, tending to zero].

Conclusion

We have obtained an equation for the phase velocity
of a magneto-acoustic gravity wave propagating in an
isothermal atmosphere along the direction of the
gravitational field. We are in this way able to study
analytically problems which have been handled numeri-
cally in the past; our expression leads to a clearer picture
of the physical nature of the wave and of the interplay
between the pressure, gravitational and magnetic
restoring forces.

We have established the equation for the cut-off
frequency w, of the “slow mode”: this cut-off is due to the
presence of the gravitational field. The absolute value
of the magnetic field B and the angle 6 between it and
the gravitational field affect the decrease of the cut-off
frequency. For a given magnetic field (i.e. for a given
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value of the ratio of the Alfvén velocity and the velocity
of sound), the cut-off is lower the closer 0 is to 5: low
frequencies (w < wy,,, are propagated when the
magnetic field is nearly horizontal. For a given 0, the
cut-off frequency is lower the bigger the ratio V,/a.
When the magnetic field is vertical, we have shown
that the cut-off frequency is independent of the value
of the field.

In the case of sunspots, for which one can take
typically ax710°cms™!, H~10" cm, we find that
To=(2n/wy)=(4nH/a)=179 s: this result is to be com-
pared to observational work (Becker, 1975), from which
one has deduced that the period of the photospheric
oscillations can be as low as 180 s.

We have also established the necessary and suf-
ficient conditions for the appearance of a cross-over
point in the w(«) curve. For a wave propagating along
the gravitational field, this cross-over appears if B is
parallel to g and V,>a. This latter condition leads to a
linear coupling between the slow and fast modes, on
the one hand, and between the acoustic and Alfvén
modes, on the other. This generalizes the condition
already suggested by Pikel’'ner and Livshits (1965) for
the coupling in the neighbourhood of ¥V, q, and shows
that energy may be transferred from one mode to
another. In particular, as a consequence of the slow
mode, which is only slightly-dissipated and refracted, a
significant fraction of the chromospheric oscillations
can penetrate into the corona along B. The condition
V,~a is satisfied in the lower chromosphere (1300 km
above the photosphere). At the edges of the chromo-
spheric networks, B~100 Gauss, ax~7kms™!, V,~
30-500 km s !, which leads to periods of 200-300s.
These values are quite comparable to observation,
which renders the hypothesis of linear coupling highly
probable.

Acknowledgment. One of us (B.L) acknowledges the Deutsche
Forschung Gemeinschaft for financial support.

Appendix

The relation between the frequency w and the phase
of the M.A.G. waves.

The derivation is made with dimensionless variables
and parameters ', x, y, | and m. The equation relating
o’ to « is obtained by eliminating y between the real
and imaginary parts of the dispersion Equation (1), i.e.
between Equations (3) and (4) which (re-arranging terms
in decreasing powers of y) can be written as:
P___m2y4+m2y3 +y2((1 +12) (1)/2 __6m2 x2)

+(@?*=3m*x?) y+o?(@?—1+1?) x)+m?x*=0
, (LY
0=4m?y3 +3m?y? +2y(1+1*) 0> —2m?*x?)
+(w?—m?x?)=0. (1.2)
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If y can be eliminated from Equations (I.1) and (1.2), then
the polynomials P and Q share a root; consequently,
there are two polynomials p and g at degree 3 and 2
respectively such that:

P p

___F 1.3
0 p (L.3)
where

p=a,y’+a,y* +asy+a,
q=b,y*+b,y+b;
and thea;(i=1, 4)and the b;(j=1, 3)are to be determined.
Equation (1.3) is equivalent to a sixth order polynomial
in y whose coefficients must vanish. This leads to seven
linear and homogeneous equations which allow us to
find the a;and b;:

b, +4a,=0

by +b,+3a;+4a,=0
by + Bb, + Bbs+2Ba, +3Ba, +4Paz =0
¢b, +yb,+PBbs+Cay,+2Ba,+3pas+4fa,=0 (1.4)
tb; +¢&b, +yby+Ca,+2Bas+3pa, =0
th, +¢eby+Caz+2Ba, =0
b3+ Ca,=0
where

p=m?

y=1+1P) w?—6m*x>
e=w?-3m*x? .
t=0?(@?—(1 +12) x2)+m? x*
B=(1+P)w?-2m*x?

C=w?—m?x*.

15)

The first three equations in (1.4) allow us to express the
b;as functions of the a;:

bl = —4a1
b,=a, —4a, (L6)
by= 2L (4y—2B—p)+a,—4as.

B

Substituting these values of b; in the last four equations
of (I.4), we obtain four equations which are linear and
homogeneous in a; and these equations have a solu-

tion if:

Sy—2B—B+C—4¢ —4y+2B+p -1
Ble—4t)+y@dy—2B—pB) B(—4e+y+C) 2(B—2y)
Br—e(dy—2B—p) B(e—41) C—4¢
1(4y—2B—p) Bz —4z
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This is the relation we have been looking for. After some
straightforward but cumbersome algebra, we find that
(I.7) can be written as:

Ty+Ts+T,+T;=0 ‘ (L8)

where the T, are homogeneous polynomials in 2 and x?
of the i degree and

Ty =16 [0 (0> —(1 + ) x*)+m? x*]
[Am? ot — (1 +P) o —4m? x?)*]?
Ty=—dm* (@ —m*x%) (@2 —4m* x*)?;

T; and T, are much more complicated and in any case
we do not absolutely need them for what follows.

It is now necessary to factorise (1.8), since we require
the equation of propagation of two upward waves and
to downward waves, i.e. a second order equation in
'? and x?.

We recall now that Equation (20) of Paper I and
Equation (4) [from which ¢’ is eliminated using Equation
(20) of Paper I] are the parametric representation of
the curve o'(x). Now, o'=0 if y=0 or y=—13%; it
follows from Equation (3) that x is equal to zero only
when y=0; in the neighbourhood of this point, we
have:

@?—m?x*=0 (L9)

(this result is consistent with the numerical analysis of
Paper I). Since we know that the curve in question
passes through the origin, (I.8) has to be factorised in
the form:

T+ T+ T+ T,=(S,+81) (Ra+R3+R;) (L10)

where S; and R; are homogeneous polynomials of i
degree in w? and x%:S,+S;=0 will be the equation
o’ (x) =0 for which we are searching.

When g tends to zero and H to infinity (the product
Hg being kept constant), the equation S,+S;=0
written in dimensioned variables reduces to S,=0:
this equation must, of course, be the dispersion equation
of the magneto-acoustic waves:

0?(@0?*—(1+P) x2)+m?x*=0 (L.11)

which is precisely the first factor in the expression for
T;. S, is consequently proportional to the left-hand side
of Equation (1.11).

With the form found for T;, we see that the other
term S, is proportional either to w?—m?x? or to
w? —4m? x?; as it represents the tangents at the origin
of the curve w’(x), it must be proportional to the left-hand

4

3p
23 =0. L7)

C
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side of Equation (I.9). Finally, the equation for which
we are searching has the form:

w?(@?* =1+ x)+m? x* —v*(@?—m*x*)=0 (1.12)

where v? is a coefficient which depends on ! and m and
which is to be determined. '

If we put x? =0 in Equation (1.12), we find :
w?(w?—v?)=0. (L.13)

v? is the square of the dimensionless cut-off frequency
and must be identical with one of the solutions of the
equation obtained by putting x> =0 in Equation (1.8),i.e.:
(0?2 [Ao(@?)P +A4;(@?)P+4,(0H+A4;]1=0 (L14)
where
Ay =16(4m?—(1+12)%)?
A =—4[A+P)P—-4m*) (1 +P) (1 +m?*) —12m?)
+32m? (14 12) (I —m?)]
Ay = —m* [(m*—P) (L +P)+27 (L +m?)
+8((L+12) (1 +m*)—6m?)]

A3= —4m4 .
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Apart from the trivial solution w’?>=0, Equation (I.14)
is a cubic equation in w? whose solutions are easily
obtained but are tedious to write out; we verified
numerically that there is only one real and positive
solution; the two complex solutions are, of course, the
solutions of R, + R+ R, =0, which is of second order
in ™ with x2=0.

It was also verified numerically that Equation (1.8)
has only two positive solutions in x? for a given w2,
where v2 is the real positive solution of (I.14);
consequently, all the solutions of R,+ R;+R,=0 are
complex and so there is only one equation of the phase
propagation w’(x), which is as one would expect. This
last equation is Equation (I.12) where v? is the real
positive solution of (1.14).
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