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SUMMARY 

We discuss some dynamical and as trophy sical consequences of the presence 
of a massive black hole, of mass Mh in a dense stellar system, applying our 
results to the cores of globular clusters and to galactic nuclei. The black hole 
would dominate the dynamics of stars out to a radius>h — GMh/vc2, vc being 
the velocity dispersion in the core. Within ni, the stellar velocity dispersion is 
proportional to r“1/2 and the stellar density n(r) may be enhanced. A quasi- 
steady state can be established, involving a steady influx of stars which are 
swallowed or disrupted near the hole. We define and calculate a ‘ critical 
radius ’ rCrit such that most stars on orbits with r < rCrit diffuse into low- 
angular momentum ‘ loss-cone ’ orbits (and are swallowed) in the ‘ reference 
time ’ ír; whereas outside rCrit, loss-cone effects are negligible and atypical 
star diffuses inward into a more tightly-bound orbit on a time scale 
~tRl(r/rcrit)- The density profile in the cusp is n(r) oc r-7/4 for rCrit ^ ^h*, 
and somewhat flatter inside rCrit. Generally rCrit is larger than either the tidal 
radius tt of the hole or the ‘ collision radius * rCoii at which GMh/rCoii equals 
the binding energy per unit mass of a typical star: indeed, in some cases 
rCrit S;ni. 

The swallowing or disruption rate of stars varies as M4/3 when rCrit^^h, 
Met/2? when ni ;$rCrit 5rCoii and M3 when rcrit^f'coii. We discuss some 
consequences of stellar disruption and tidal capture by black holes of 103- 
io4M0 in globular clusters: X-ray emission, possible optical or ultraviolet 
‘ flares and the likelihood of there being a captured star in orbit near vt. 

Finally, we briefly apply our considerations to Hills’ quasar model, which 
invokes ^ 107 M0 black holes in galactic nuclei. 

I. INTRODUCTION 

Studies of dynamical evolution of dense stellar systems and the search for the 
mechanism powering galactic nuclei and QSOs have led many people to the idea 

that a massive black hole could be sitting at the centre of evolved stellar systems. 
Recent X-ray data (Clark, Markert & Li 1975) have prompted the suggestion that 
some globular clusters may contain central black holes of ~ 103 M0. We here 
discuss some dynamical and astrophysical consequences of this idea. Although we 
focus attention mainly on globular clusters, we conclude by applying our results to 
galactic nuclei, with particular reference to the recent model of Hills (1975). 

The stellar distribution in the cores of globular clusters (and perhaps galactic 
nuclei as well) can be described by a density nc and a ‘ core radius ’ rc. The virial 
theorem then tells us that the characteristic (one-dimensional) velocity dispersion 

is vc — (Gm%ncrc
2)1/2, being the stellar mass. If there is a central point mass 

Mr such that 7zcrc
3m# > Mh > then its potential well will affect the stellar 
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velocity field out to a distance 
GMh rh =  To-. 
^c2 

The effect on the density distribution is less straightforward. However, if the 
central mass has been present for a time comparable with the stellar relaxation 
time (or ‘ reference time ’) in the core, we expect some kind of stationary state to 
be established, involving a slow, inward drift of the stars. (In fact the whole core 
will evolve on a time scale ~ io£r, so the situation will never be an exactly stationary 
one.) The standard ‘ reference time ’ (Spitzer & Harm 1958) is 

_ \/2®c3 

R log (o-siV)’ 
where N = %iTm¿r<$. 

For the cores of some globular clusters, ¿r is only 108 yr, implying that a quasi- 
stationary stellar distribution could indeed have been established around a central 
mass. The low values of ír also suggest that a runaway process may already have 
occurred in some clusters, which lends support to the conjecture that massive, 
central black holes may indeed sometimes exist (Wyller 1970; Ostriker, Spitzer & 
Chevalier 1972). In galactic nuclei, £r is quite uncertain: Wolfe & Burbidge (1970) 
considered cases when it was >io10yr; but others have envisaged extremely 
concentrated regions in galactic nuclei where £R<io10yr (e.g. Spitzer 1971; 
Saslaw 1974; Hills 1975 and references cited therein). Note that £r is ~iV/logiV 
times the crossing time r>*j 

A central black hole provides an effective ‘ sink ’ for stars approaching too close 
to it—such stars will be swallowed or disrupted, by processes which we discuss 
later. There is therefore no possibility of establishing an 4 isothermal ’ distribution 
where the density n{r) rises exponentially within r^. This point was first empha- 
sized by Peebles (1972). He conjectured that the distribution of stars in bound 
orbits followed a power law N{E) oc E-v in binding energy E. There is then a 

tec; cusp in the stellar density: 

n(r) ~ nc (rh>r >rmin), with q = %+p, (i) 

and the velocity dispersion within the cusp scales as r-1/2. 
Peebles suggested, specifically, that n(r) should be such that n(r) r3(íR(r))-1 

was independent of r, and derived a law of form (1) with q = i- This solution 
would apparently correspond to a constant inflow of stars at a rate determined by 
the conditions at However, it is unacceptable since it does not yield an energy 
outflow rate independent of r; the correct solution ought also to yield a swallowing 
rate that depends on the inner-boundary condition, because the energy that has 
to be transported away per star swallowed is proportional to rmin-1. Bahcall & 
Wolf (1976) propose a law of form (1) with <7 = 0, which has the property that the 
outward energy flux ~ n(r) rsv2(t^)(r))~'1 is independent of r. They call this a ‘ zero 
flow solution ’ because, even though the stars in the cusp do move into more 
tightly-bound orbits as energy is carried away, the time scale for a star at radius r to 
drift inward is longer than ¿R(r) by a factor ~r/rmin. Bahcall & Wolf (1976) ex- 
haustively discuss the validity of the various approximations involved in their 
solution (isotropic velocity distribution, etc.) and we refer to their paper for the 
details. We follow earlier authors in assuming that the stars in the cusp have a more 
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or less isotropic distribution (except near rmin), and that the orbital energy of a 
typical star at radius r is ~ Each star moves in an elliptical orbit around 
the central hole, the orbital energy and angular momentum being gradually 
changed by encounters with other stars. Our primary aim is to estimate the rate 
at which stars in the cusp are swallowed or disrupted, and to consider probably 
observable manifestations of these processes. This involves estimating the approp- 
riate value of /min. 

For applications to real systems such as globular clusters, it will often prove 
convenient to work in terms of and rc, since these are better determined observa- 
tionally than (say) vG. We then have 

and 
10 km/s 

Hi 

" "76 

I pc 
i‘5 x 10-2 / Mh \ / nc W/ rc \~^ 

\io3 Mq) \5 x 104 pc-3/ \i pc/ 

The dynamical time scale is then 

laynW=I1,»yr(^_)(^_^P(M 
\io3 MrJ \5 x 104 pc-3/ \I pc/ 

8/a( rc \-3 f(>/Vh)3/2 r~rh 

\(rlrh), r>rh 
103 Mq/ \5 x 104 pc-3, 

or, in terms of a fixed distance unit, 

[5 x 105 yr (Mh/103 M'G)_1/2(r/i pc)3/2, r<rh 

[6 x xo4 yr (mc/5 x io4 pc-3)-1/2(rc/1 pc)~1(r/i pc), r >rb. 

The reference time in the core is 

~ 2 x io8 yr ^r>ril. 
\5xxo4pc_3/ \i pc/ 

^dyn(^) 

(*) 

(3) 

(4) 

(5) 

(6) 

If the r_7/4 cusp solution applies, the value of ¿r inside is shorter by a factor 

^(^h)174- The logarithmic term (which involves the ratio of the maximum and 
minimum relevant impact parameters) and a further correction resulting from the 
density gradient (Bahcall & Wolf 1976) introduces a slow additional r-dependence, 
but these refinements amount to less than a factor ~ 2 and are unimportant for our 
present purposes. 

The quantities ¿dyn, ¿r, and depend on the stellar-dynamics alone, and 
thus only on the assumption that the stars behave as gravitationally interacting 
point masses. However, the following radii, which depend more explicitly on the 
physical properties of the system, are also relevant to the problem: 

(i) The Schwarschild radius of the hole 

rS~ 3* io3 cm. (7) 

(ii) The tidal radius (or ‘ Roche radius ’) within which a star would be dis- 
rupted. This obviously depends on the type of star (and to some extent on the 

shape of its orbit around the hole) but for solar-type stars it is 

11 / Mh\1/3 /ox rT ~ I-4X io11 cm. (8) 
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For other types of stars it scales as There will be an inter- 
mediate range of radii around at which tidal effects would partially disrupt or 
merely distort the star rather than destroying it completely. These processes may 
still be able to reduce the orbital energy by an amount sufficient to remove stars 
from the cusp, and capture them into very tightly-bound orbits passing close to the 
tidal radius. 

(iii) The ‘ collision radius ’ rCoii at which the velocity dispersion ~ (GMhIr)112 

is comparable with the escape velocity from typical stars. This is significant 
because the stellar encounters responsible for the relaxation of the velocity distribu- 
tion, energy diffusion, etc., can be treated as elastic Coulomb-type encounters 
only outside icon: when r <rcoii, two stars cannot deflect each other’s velocities 

Fig. i. The different radii defined in the text are plotted as a function of the mass Mh 
of the hypothetical central black hole for parameters adequate for globular clusters and 
galactic nuclei. The Schwarzschild radius is denoted by rs. The tidal radius ?*r(ocM^1/3) 
and the collision radius rCoii (ccMh) are plotted for stars of solar type. The velocity cusp 
radius rn (ocM^, broken line), within which the gravitational potential is dominated by the 
central point mass, and the critical radius rCrit {dotted line), outside which angular diffusion 
is negligible, are plotted for two typical situations: globular clusters (nc = 5 x io4/>c~3, 
rc — i pc, Mn^io4 Mq); and galactic nuclei (nc — io7 pc~z, rc — ipc, Mä>io7M0). 
Two different situations arise depending on whether rCru>rh or rCrit < rn. In the first case 
rCrit oc MhA¡9 and the swallowing rate {SR) is vzMnAIZ; in the second case a density cusp 
exists, rCrit oc Mh7!21 and SR oc M*61/27. 
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through a large angle without coming so close that they actually collide. For solar- 
type stars, we have 

fcoii — 7x 1010 cm, (9) 

while for other types of stars rcoii scales as (r#/jR0)(m#/M0)“1. 
It is clear that a stellar-dynamical discussion of the cusp is only strictly applic- 

able at radii exceeding both ry and rcoii. Fig. 1 shows these quantities as a function 
of Mh, for parameters appropriate to globular cluster cores. Note that rCoii greatly 
exceeds for any interesting value of M^. 

We shall now argue, however, that other considerations severely limit the 
applicability of the Bahcall-Wolf (1976) ‘zero-flow’ solution, giving a value of 

rmin that can be much larger than either rcoii or 7^. This is because, even though 
stars may be changing their orbital energy on a time scale much slower than ¿r, 
they can still change their angular momentum on a time scale ~£r. A star may 
thus—^without changing its orbital energy—diffuse into a very eccentric (low 
angular momentum) orbit which allows it to pass so close to the hole that it gets 
captured or disrupted. Such a star is then, in effect, lost from the cusp. The Bahcall- 
Wolf solution would need modifying if this process removed stars faster than the 
time scale ~ (r/rmin) ¿n on which a star’s orbital binding energy can be significantly 
increased. 

2. THE CENTRAL CUSP AND THE SWALLOWING RATE 

2. i Loss-cone diffusion 

If a star at distance is in orbit of such low angular momentum that its 
peribothron* is <rT, it must be moving nearly radially, its velocity vector lying 
within a small ‘ loss-cone ’ of semi-angle 0ic given by: 

01 _ ,((2rT/3r)1/2 

The factor / takes account of the fact that stars with slightly larger impact para- 
meters can be lost from the cusp owing to tidal capture. We take / ^ 2 in the 
numerical estimates below. 

We assume that the stars have velocities ^^c(^/^h)“1/2 for r <7*h and for 

^ The numerical value, for solar-type stars, is 

e le 8*1 x I0~3 / Mh \~VS(  \1/2/ rc \ 
\io3M0/ \5 x 104 pc-3/ \i pc/ 

[(r/rh)-
1/2, r^rh 

r>rh 
(ii) 

and for other types of stars it scales as (r^/Rö)1/2(mJMö)~1/Q. 
The cumulative effect of distant encounters causes a star’s velocity to diffuse 

through a small angle in each dynamical time scale, where 

l *R / \I03 MqJ \5 X I04 pc“3/ \i pc/ pc, 

íWni)5/8, rsSrn 

[(r/rh)1/2, r>rh 

(12) 

* We are grateful to W. R. Stoeger for suggesting this word, derived from the Greek 
bothros, a pit. 
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(i.e. the orbital angular momentum would change by an amount ~ dj>rv in a time 

¿dyn)- This quantity is independent of m%. 
The ratio R = 0ic/0d decreases monotonically with r, and there is a critical 

radius rCrit at which it is unity. 
Inside rCrit (where i?> 1) we expect a deficit of stars on loss-cone orbits, since 

stars are removed on a time ¿dyn, but take ~ R2 longer to replenish by angular 
diffusion. (Repopulation by energy diffusion takes a time >£& which is longer by 
a further factor 0d“2)* The diffusion approximation can then be applied to estimate 
the rate at which stellar encounters repopulate the ‘ loss-cone ’ orbits by angular- 
momentum diffusion. 

The situation is analogous to a simple problem of heat conduction in a hemi- 
spherical shell, when the equator is maintained at one temperature 7i, and a small 
ring at co-latitude d is maintained at temperature T2 < T\. The heat conduction 
rate is then proportional to (7\—Ty/log (2/#). If we imagine the angle diffusion 
to be represented by the diffusion of the tips of the velocity vectors on a hemisphere 
until they disappear into the loss cone, we conclude that inside rCrit> the stars can 
be swallowed in a characteristic ‘ angular diffusion ’ time ~ log (2/0ic). Of course 
the diffusion is superposed on a basic elliptical rather than linear motion. It is 
therefore better (though this does not affect the conclusion) to visualize the process 
as diffusion of the vector representing the magnitude and orientation of the latus 
rectum of the orbit. Note that, provided the diffusion approximation applies (i.e. 
R> 1), the swallowing time only depends logarithmically on 0ic and is always of 
order ¿r. A more elaborate discussion by Lightman & Shapiro (1976), which takes 
explicit account of the distribution of eccentricities, etc., confirms these estimates. 

Outside rCrit (J?<i) the loss-cone loses its significance, because a given star 
can drift in and out of it within fdyn- The loss-cone orbits are therefore depleted 
only by a factor ~ (1 —i?2), and the heat conduction analogy then suggests that the 
diffusion rate into these orbits is reduced by a factor i?2. Thus a star whose orbit 
is initially entirely outside rCrit may have time to diffuse within ycrit by energy 
diffusion (i.e. reducing the size of its orbit), even if this takes > ¿r before it gets 
swallowed. 

2.2 Estimates of the swallowing rate 

The main characteristic feature of the ‘zero-flow’, q — 7/4 solution—that 
stars remain in the cusp for a time limited only by the slow energy-diffusion time 
scale ~ (r/rmin) t^—will strictly apply only at radii where the ‘ loss-cone ’ diffusion 
is less rapid than this. We must therefore, for consistency, take the appropriate 

rmin for this solution as 

^min — ^crit{log (2/0ic(^crit))}—1* (13) 

If this radius turns out to be smaller than max{>T, ?coii}, then the latter of course 

determines the actual value for rmin. 
IÎR < i at rh and we assume that the ‘ zero flow ’ {q = 7/4) solution applies in 

the range rCrit < ^ < ^h, then 

^ ^ , 7 Mh \ ~~20/27 / KC \4/3/ rc A32/9 
rh . \io3M0/ \5xio4pc~3/ \i pc/ 

rcritáni. (14) 

For other types of star this scales as (r#/i?0)4/9(m4i:/M0)~4/27. Under some con- 
ditions, R may be > 1 at rh, implying that rCrit>^h- The appropriate expression is 
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Fig. 2. A plot of all globular clusters with central densities larger than 5 x 103 pc~^ on a 
coordinate grid defined by two observable parameters : the core radius in parsecs and the 
central density in units 0/ 5 x 104 stars pc~3. Each globular cluster is represented by a full 
circle, except the four represented by open circles and labelled by their NGC number, with 
which X-ray emission has been associated. The relevant data for all of them are given in 
Table 7. The broken line with slope —8/3 separates the two different swallowing regimes 
with rn 5 rCriu A cusp with density as steep as r~7/4 is expected only when rent < rn. The line 
is plotted for the case when the hypothetical central black hole has a mass Mn — 103 M0. 
The full lines represent loci of constant swallowing rate, and are labelled in yr*1. These 
rates scale with Mn according to (i6<z) and (166). 

then 

T'crit 

rn 
^ 2*35 

Mh V-5/9/ nc \ / rc \ 8/3 

103 M0/ \5 x 104 pc-3/ \i pc/ (15) 

and scales as (rJRo)1/B(mJMe)-1/9. 
From Fig. 2 we see that the existence of a ‘ zero-flow ’ cusp (rmin<rh) in a 

globular cluster core is rather marginal for Mh = 103 M0. We also note, that, for 
all cases of interest, rCoii is very much smaller than rCrit> so that it is the con- 
ditions at rCrit which determine the swallowing rate. The swallowing rate (SR) 
due to diffusion into loss-cone orbits follows directly from the angle-diffusion 
time scale and star density at rCrit- If ^crit<^ii we estimate n(rCTit) from the q = 7/4 
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cusp solution matched on to the core at obtaining approximately (for solar-type 
stars) 

SR 
4*3 x 108 yr \io3 M{ 

/ Mh nc \-7/6/ rc \ ~49/9 

\io3 M0/ \5 x 104 pc-3/ \ipc/ * ( } 

In order to obtain a simple power-law solution we have taken the log term in (13) 
as -5. 

In the case when rCrit > we can use the same argument, taking n = nc. This 
gives 

Mh \4/3/ nc )1/2f rc 

103 M0/ \5 x 104 pc-3/ \i pc 
(16b) SR 

I 

2*i x 108 yr 

Note that, even though the loss-cone diffusion rate at a given r depends only 
logarithmically on 0ic (and therefore on ?*t), the swallowing rate is still sensitive to 

rT because rCrit (the maximum radius at which the diffusion approximation applies) 
itself depends on a power of 

The result (16a) can also be obtained in two alternative ways: (i) we can derive 
the appropriate rmin for the Bahcall-Wolf solution in terms of rCrit from (13) and 
assume that stars at rmin are drifting in on a time scale tn, or (ii) we can assume 
that the velocities are almost isotropic at rmin and estimate the inward flux of stars 
with orbits such that 6 < 0ic(rmin)> so that 

SR ^ rc(rmin) rmin2^(rmin) 7r0ic
2(rmin). (17) 

By substituting the value of 0ic from (10) into (17) we get 

SR ^ 7Tn(rmin) rmin
2v(rmin) x 

2rT 

rmin 

rmin^ 

(rmin ^rh) 

(rmin ^r^). 

This shows that for rmin > rh the swallowing rate reduces to 

(18) 

SR ^ 27mc^crTrh (rmin^rh), (19) 

which agrees with the value given by Hills (1975) from a straightforward ‘ nav ’ 
argument. It also shows that when rmin<rh the presence of the cusp enhances the 
swallowing rate by a factor (rh/rmin)5/4, be. 

/ rh \ 5/4 
SR ^ 2irncvcrTrh   . (20) 

Vmin/ 

As Mh increases, rh increases faster than rCrit (see equation 14) so the enhance- 
ment becomes progressively more important. This accounts for the difference 
between the Mh61/27 and Mhm dependence of the swallowing rates in (16a) and 
(16b) respectively. (Note that if Mh grows so large that rcrit eventually becomes 
less than rcoii, then rmin must be taken equal to rCoii. Equation (16a) then no 
longer holds, and the stellar inflow rate becomes ocM3. The stars would then 
suffer disruption or coalescence before getting into loss-cone orbits, and the 
subsequent fate of the debris seems quite uncertain.) 

In Fig. 2 we have plotted the loci of the most centrally-condensed clusters in 
terms of rc and nc, these being the most directly-observable quantities (see also 
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Table I 

Swallowing rates (SR) for globular clusters with central densities larger than 5000 pc~z 

if they contained a central black hole zvith Mu — iozM 0 (scaling laws discussed in text) 

We y'e r crit/ 
NGC (5Xio4pc~3) (pc) 

104 o*84Eoo o*7 
362 0’75Eoo o*6 

i85i(*) o*2oE 01 0-4 
2808 o*i2Eoi 0*7 
5824 o-iqEoi 0-3 

5904 o* 12E 00 i • I 
6093 o*66E 01 0*2 
6266 o*63Eoo 0'6 
6273 o*27Eoo 0-6 
6284 o* 11E 01 0*4 

6293 o*i2Eoi 0-3 
6304 o’isEoo 0*9 
6333 o-2iEoo o*8 
6341 o*4sEoo 0*6 
6356 o*i4Eoo i*3 

6397 o*3iEoo 0-4 
Ó44i(^) o*27Eoi o*6 
6522 o*25Eoi 0-3 
6528 o*64Eoo 0*4 
6541 o*52Eoo o*6 

6624(*) o-ioEoi 0-5 
6626 o-ioEoi 0*4 
6637 o*i2Eoo i*i 
6715 o*9oEoo 0-6 
6752 o-25Eoo 0-7 

6760 o-23Eoo o*7 
6864 o*4oEoo o*9 
joj8(*) 0’79Eoo o*7 
7089 o*i4Eoo i*4 
7099 o*i6Eoi 0*3 

rn 
o*4 
0-2 
0-2 
0-7 
0*0 

o-i 
0-07 
0*2 
0*05 
o*o8 

0*03 
o*o8 
o-1 
o* I 
o*3 

0*01 
I • I 
0*09 
0*04 
o-i 

0-2 
0-07 
0*1 
0*3 
0-08 

0*07 
0-4 
0-4 
0-4 
0-05 

-¿V (r crit) 

2-6 
3 *4 
4-6 
2-3 
7- 4 

2*5 
92 
3*6 
4-8 
5*7 

8- 7 
3*3 
3*3 
4*i 
1-8 

8-7 
1-8 
6-8 
6-8 
3*9 

4*i 
5*8 
2*5 
3*2 
3*9 

4*o 
2*2 
2-7 
i *6 
7-8 

N(rh) 

20-7 
65-1 

101 -7 
9-6 

669-7 

69-4 
606 • i 
91-2 

485-3 
346-7 

1727•i 
184-7 
141 *6 
181 -5 
17-0 

4432*4 
4*8 

379 * i 
1006-9 
133*7 

108-8 
382-2 
67-3 
45-0 

238-8 

282 - 9 
20*0 
23*3 
ii*5 

893-0 

SR 
(io~8 yr_1) 

2-0 
5*3 

15*0 
i*3 

78-9 

1- 7 
163-8 

6-4 
17-o 
30-7 

137*2 
4*4 
4*7 
96 
o*5 

135*8 
i*3 

56*6 
57*2 
8-0 

lo-i 
32*5 
i -6 
4*2 
8*3 

9-2 
I *2 
2- 1 
0-4 

93*3 

Notes 

Detected X-ray emission is indicated by (*). 
Data for central densities and core radii from Peterson & King (1975). 

Table I). We have also plotted curves representing different swallowing rates for 

Mh = 103 M0 and the division between clusters with rCrit<ni and rCrit>^h. 

2.3 The applicability of diffusion concepts 

The discussion in terms of the ‘ diffusion angle ’ 0d {cf. equation 12) is applic- 
able only if the total effect on a stellar orbit can be envisaged as the integrated 

effect of many small influences each contributing a deflection less than Outside 

rn, where the central mass does not dominate the dynamics, each of the N stars of 
the core at typical distances ~rc produces a deflection through an angle N-i 
in one crossing time, and therefore through a still smaller angle ^(r/rc) iV-1 in a 
time idyn(^). In the cusp, taYn is determined by the central mass, and the angular 

41 
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deflection which one star in the cusp can produce on another in ¿dyn is ~(m%IMh)- 
The fact that these are indeed smaller than the relevant values of 6ic reassures us 
that a diffusion treatment is approximately valid. 

However, the cumulative effect of distant encounters never dominates the time- 
averaged effect of occasional encounters by more than a logarithmic factor. No 
diffusive arguments—nor even a detailed Fokker-Planck analysis—can ever, 
therefore, be very exact. 

Another feature of the situation is the small total number 

N 'M3 ^ 
7c/ \5 x 104 pc~3 (21) 

of stars in the hypothetical cusp in globular clusters cores. For appropriate para- 
meters (cf. Fig. 2) this number would never be more than 5o(Mh/io* M0)s. If 

f'min < rhi the number of stars near rmin is lower by a further factor dmin/lh)3 ®, 
so the inner part of the cusp solution may be valid only in some ‘ ensemble- 
averaged ’ sense. This difficulty is somewhat eased if rm-in has the (larger) value 
given by (13): there are then several stars with r ~ rmln if Mh lies in the range 
io3-xo4 M0. 

The fact that the number of relevant stars in the cusp is small has, nevertheless, 
the gratifying corollary that iV-body experiments, properly incorporating the effects 
of close encounters, may be practicable (though there is the difficulty that, to be of 
interest, these computations would have to extend over very many dynamical time 
scales). One could then study other interesting effects which a diffusion treatment 

ignores. For instance, the occasional close encounters within the cusp would eject 
stars with velocities up to ~ (GM/rcrit)

1/2, which can exceed the escape velocity 
from the whole cluster. The rate at which stars in the cusp get flung out of the 
cluster should differ by only a logarithmic factor from the swallowing rate. One 
could also include a range of masses, calculating whether the proportion of stars 
with different masses depends on r, and study the effects of binary stars. The out- 
ward energy flux from the cusp constitutes a ‘ heat input ’ into the cluster core, 
although this will not be a dominant effect on the core’s overall evolution unless Mh 
becomes comparable with the total mass of the stars in the core. The inner part of 
the cusp may effectively reduce to a three-body system, and it is thus perhaps 
interesting that numerical studies of the effects of a third body orbiting around a 
binary system (Heggie 1975) do indeed show that the eccentricity (i.e. angular 
momentum) of the binary orbit changes more rapidly than its energy. 

2.4 Observable properties of the stellar cusp 

The above arguments do not enable us to determine the form of n(r) inside 

rcrit- To do this one requires to calculate the diffusion in both angular momentum 
and energy (Lightman & Shapiro 1976). However, we can immediately see that the 
fraction of stars in the cusp that diffuse into orbits of major axis r<^rcrii before 

being swallowed must be «S r/rCrit. Otherwise the corresponding energy outflow 
rate would be larger than can be transported between rcrit and rh. To maintain a 
steady state at r < rCrit, dynamical friction must drag stars inward on a time scale 
ÍR to replace those disappearing into the loss-cone. The energy outflow (which is 
independent of r for <7 = |) must therefore increase with r, implying that the cusp 
flattens off. 
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Although the observational consequences of stellar disruption and accretion 
on to a central black hole could (as we discuss in Section 3) be more conspicuous, 
it is interesting to consider the observability of the hole’s direct effects on the 
distribution and velocity of the ordinary stars in the globular cluster. The total 
angular extent of the expected cusp is only ~(Mi1/io

3 M0) arcsec for a typical 
globular cluster at distance ~ 10 kpc, and the enhancement in the stellar surface 

density at a projected distance from the centre is (rhlrc)(rlrh)-u* 
(this would be an overestimate inside rCrit> where q = 7/4). Thus it is only the 
inner part of the cusp which stands out as a significant surface-density enhancement. 
The prospects of observing either the higher velocity dispersion in the cusp or 
individual runaway stars would also seem dim (see Bahcall & Wolf 1976, for further 
discussion of these points). 

3. THE FATE OF STARS AND GAS 

3. i Stellar disruption on loss-cone orbits 

Any star whose orbit around the hole has such low angular momentum that it 
passes within ~ r^ will be tidally disrupted. The energy needed to unbind the star 
comes from its orbital kinetic energy, and therefore (as described by Hills 1975) 
the gaseous debris would never get out beyond ~7*coii even if the incoming star 
had an orbit of much larger major axis. The subsequent fate of the gas, and the 
associated observable effects, are difficult to estimate, and we shall restrict ourselves 
here to some general order-of-magnitude comments. (If rCrit>fcoii, disruption or 
coalescence due to stellar collisions within the cusp will be less frequent than 
loss-cone swallowing by a factor ~ rcoii/^crit-) 

Even if the debris were spread uniformly through a sphere or disc of radius 

~rcoii, the optical depth for electron scattering ^ io33/VCoii2 would still typically 
be > i, at least when Mh is in the range ~ 104 M0 appropriate to globular clusters. 
However, if its radius were as large as rCoii, it would have to be supported by radia- 
tion pressure, since its angular momentum would suffice to provide rotational 

support only at a radius ^/*t. 
If one could be sure that: (a) all the debris was eventually swallowed and (b) the 

radiative output per unit mass swallowed was as large as ~o*ic (this being the 
value typical of 4 standard ’ accretion discs), then we could immediately conclude 
that the resultant luminosity would, at least in a time-averaged sense, be important 
compared with the ordinary stellar luminosity of the cluster. Each disrupted star 
would then provide enough fuel to maintain a luminosity of ~ 1041 erg s_1 for 
~ 105 yr (or a lower luminosity for a correspondingly longer time); but it would 
still be unclear in what part of the electromagnetic spectrum this energy should 
emerge. However, we wish to emphasize that there is no good reason for believing 
either (a) or (b). 

The initial binding energy of the debris is only ~ (rslrcon) c2. Thus it is possible 
in principle for a fraction rs/rcoii(io“5) of the mass falling into the hole to liberate 
enough energy to blow the remainder away. The high optical depth would allow 
radiation pressure to be effective. This would mean that the energy output per star 
swallowed would be only ~ 1049 erg. Moreover, this energy would be partly trans- 
formed into kinetic energy of expelled material; and the emitted radiation, being 
effectively produced by a 4 photosphere ’ at r >rcoii, would be in the optical or 
ultraviolet rather than the X-ray band. 
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As regards (b), the expected densities (and hence the optical depths r) are much 
higher than in the steady-state accretion flows customarily considered. The photons 
emitted near the hole cannot diffuse relative to the plasma at a velocity greater than 
~ c/r. If this is less than the inward velocity of the bulk flow, the photons will them- 
selves be swallowed and cannot contribute to the luminosity observed. Thus the 
efficiency of accretion may automatically become low when the density is high 
(Pringle 1976 in preparation). 

3.2 Tidal capture 

There will be a range of impact parameters for which the tidal effects, though 
insufficient to disrupt the star, cause enough distortion and subsequent dissipation 
to reduce the orbital energy appreciably. This process (familiar in other branches of 
astronomy) has been proposed by Fabian, Pringle & Rees (1975) as a way of 
trapping compact stellar-mass bodies in close binary systems. A star originating 

at r>rmin, but with an eccentric orbit passing within some critical peribothron of 
(3-4) would dissipate enough to prevent it from again getting out to ~ rmin. It 
would then evolve independently of the rest of the cusp : further energy would be 
dissipated after each peribothron passage, and it could eventually settle into a 
circular orbit at ~rT.* This process is rather more probable than complete tidal 
disruption, because the appropriate cone angle is somewhat larger. 

The only circumstance capable of suddenly dislodging a star from such a small 
and tightly-bound orbit would be the tidal capture of a second star into a similar 
orbit. The two stars would then very quickly suffer a very high-velocity collision 
(since typically rT^rcoii) which would disrupt them both. The debris would then 
either go down the hole or leave the system. Because this debris is produced in a 

more tightly-bound orbit, the lower limit on the fraction swallowed is higher, i.e. 

~ rs/rT rather than ~ rs/rmin. 
The time scale for a solar-type star in a circular orbit at r ?*t to spiral inward 

owing to the effects of gravitational radiation is 

/ \~2/3 

T»E - 5 * 108 (¡OTíe) ^ ('2) 

For typical parameters tor-1 does not exceed the swallowing rate. Therefore, 

unless other dissipative effects (e.g. interaction with gas) cause a star in such an 
orbit to spiral inward in a much shorter time than tgr, we expect it to remain 
there until another star from the cusp is injected into the loss-cone. The interesting 
conclusion is then that, in any globular cluster containing a central black hole, 
there is a ~ 50 per cent chance that there will be a star in such an orbit. If this were 
an ordinary main-sequence star, its orbital period would be ~ 6 hr, and its orbital 
velocity ~6ooo(Mh/io3 M0)1/3 km s-1. A giant or horizontal branch star (for 
which is larger) would be in a somewhat bigger and slower orbit. If such a binary 
could be detected, it would provide gratifyingly unambiguous evidence for a 
massive black hole. 

* The total amount of energy that a star must dispose of during this process may be 
several times larger than its gravitational binding energy Gm*2//*. The later stages of 
circularization, occurring after the star had spun up to the orbital angular velocity at peri- 
bothron, would therefore have to occur on a time scale longer than the star’s thermal time 
scale (unless the star could reform again after being disrupted). 
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3.3 Prefere7itial capture of giants, etc. 

One or two per cent of the stars in globular clusters are giants with radii io-ioo 
times larger than the main sequence stars. The appropriate value of ry for a star of 
given mass scales with its radius and so 0ic also scales with r#. (Because such 
stars are more centrally condensed than main sequence stars, there will be a larger 
range of intermediate impact parameters for which the envelope would be torn off 
leaving the core intact.) If there is no cusp in the stellar distribution, the capture 
probability is proportional to ;'t, and therefore >20 per cent of capture stars 
might be giants. When the cusp exists, the situation is less straightforward: #ic 

has to be defined separately for each type of star, but each type interacts dynamically 
with all other types so that the diffusion of giants into their loss-cone is inhibited 
by the presence of the other stars; the effective rCrit is therefore the same as for 
main sequence stars. The net result is that there is still a tendency for preferential 
capture of horizontal branch or giant stars. The proportions of different types 
of stars that are swallowed would of course be affected by any mass-segregation 
that had occurred within the core, since this would cause the heavier stars to be 
over-represented near r^. 

White dwarfs (for which ;*t is comparable with rs) or neutron stars (which can 
be swallowed whole) are unlikely to be captured until they have drifted into very 
tightly-bound orbits. Energy-outflow argument then tells us that the swallowing 
rate for these compact objects is much less than that for ordinary stars. If these 
were numerically dominant in globular cluster cores, their presence would inhibit 
the loss-cone diffusion of ordinary stars and thus reduce our estimates in (16a) and 
(16b)—which were based on the assumption that all the stars were the same. 
However, if compact stars comprise only a small fraction x of the total, the swallow- 
ing rate for ordinary stars is reduced only by an extra factor (1 — #). This is because 
even when i?>i the loss-cone orbits are still populated # times as much as the 
other orbits, and the diffusion rate (from the ‘ temperature gradient ’ analogy) is 
lowered by a factor (1 — ,v). 

3.4 Origin of X-rays 

Even though the dominant supply of gas in globular-cluster cores may come 
from disrupted stars, this gas is produced in circumstances that make it unlikely 
to produce efficient X-ray emission. If the X-ray emission from some globular 
clusters does involve accretion on to massive black holes (Bahcall & Ostriker 1975; 
Silk & Arons 1975), a slower and steadier gas supply would be more efficient. Two 
such possibilities are: (i) gas supplied by conventional stellar mass-loss processes 
occurring throughout the core; or (ii) gradual Roche-lobe-overflow—perhaps 
at a rate controlled by the gravitational radiation time scale (22)—from a star in 
orbit near r^. 

It would be interesting to discover evidence (possibly by optical or ultraviolet 
observations) for non-stellar luminosity or flaring activity due to accretion of 
disrupted stars (interactions of stars and gas near the hole may also have observable 
effects). Our estimates suggest that such disruptions may occur as often as once 
every 107 yr. Even if the effects were short-lived, the chances of observing them 
would be greatly enhanced if they were conspicuous enough to be detected in 
globular clusters as far away as the Virgo Cluster. 
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4. APPLICATIONS TO GALACTIC NUCLEI AND QUASARS(?) 

Hills (1975) has proposed that galactic nuclei may contain a black hole of mass 
> io7 Mö surrounded by a region of high stellar density; and that tidal disruption 
of stars, and swallowing of the resultant gaseous debris, initiates a chain of events 
that may explain many properties of QSOs and Seyfert Nuclei. ‘ Typical ’ para- 
meters are nc ^ io7 pc~3, rc ^ i pc (vc ^ 225(rc/i pc)kms_1). He argues that 
a ‘ seed * black hole of ~ io3 Mö could have grown by accretion to io7-io8 Mö 

in the Hubble time, and that the resulting luminosity would be high enough to 
account for quasars. The Eddington limit for ~ io8 Mö is ~ io46 erg s_1, and Hills 
suggests that his model sets a natural upper limit of this order to quasar luminosi- 
ties. This is because, when Mh exceeds io8 M0, ordinary stars can be swallowed 
whole (i.e. rT<rs) and do not then generate a conspicuous outflow of gas or 
radiation. 

Our foregoing arguments impinge on Hills’ conclusions in several ways: 
(i) When Mh grows above a certain value, which for Hills’ choice of nc and rc 

turns out to be 3 x io7 M0, then starts to exceed rCrit, and a cusp forms. The 
accretion rate thereafter starts to rise as M oc M61/2 7 rather than as M4/3. (But 
note that the discussion in terms of and rc needs modification when the black- 
hole mass is larger than the whole core. Also, the formation of a cusp is rather 
sensitive to rc, and there are choices of parameters for which a cusp would never 
form.) 

(ii) The gas production rate due to swallowing of giant stars would continue 
even if Mh> io8 M0. (The critical mass for which rx — rs is 3 x io9 M0 for stars 
with r# = 10 Rö and io11 M0 for stars with r% = 100 i?0.) Since the swallowing 
rate varies as Mh4/3 until a cusp forms and as Mh61/27 thereafter, luminosities above 
io46 erg s”1 are possible. This may indeed be to the advantage of the model. 

(iii) If a cusp forms, (14) tells us that rCrit/^h varies as Mh“20/27. When rcrit 
becomes <rcoii (which is < 10 times smaller than if the core velocity dispersion 
is ^225 km s-1) it will actually be fcoii which sets the inner boundary of the cusp. 
The inflow rate of stars then rises as Mh3 and all the stars undergo collisions, 
leading to coalescence or disruption, at r ^ rcoii. The further consequences are 
very complex and speculative: it is unclear what fraction of the debris from stellar 
impacts eventually gets swallowed. However, it seems relatively clear that the 
violent activity would continue until the black hole had swallowed or disrupted all 
the stars in the original dense core, and was surrounded by less closely-packed 
stars for which ¿R>io10yr. The steady-state diffusion arguments would then no 
longer apply, and the swallowing rate would be limited by the inefficient relaxation. 
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