
19
7 

6A
pJ

. 
. .

2 
0 8

L.
 . 

.IW
 

The Astrophysical Journal, 208:L1-L3, 1976 August 15 
© 1976. The American Astronomical Society. All rights reserved. Printed in U.S.A. 

APPARENT LUMINOSITIES IN A LOCALLY INHOMOGENEOUS UNIVERSE 

Steven Weinberg 
Center for Astrophysics, Harvard College Observatory and Smithsonian Astrophysical Observatory; and 

Department of Physics, Harvard University 
Received 1976 April 6; revised 1976 May 20 

ABSTRACT 

Apparent luminosities are considered in a locally inhomogeneous universe, with gravitational 
deflection by individual clumps of matter taken into account. It is shown that as long as the clump 
radii are sufficiently small, gravitational deflection by the clumps will produce the same average 
effect as would be produced if the mass were spread out homogeneously. The conventional formulae 
for luminosity distance as a function of redshift consequently remain valid, despite the presence 
of any local inhomogeneities of less than galactic dimensions. For clumps of galactic size, the validity 
of the conventional formulae depends on the selection procedure used and the redshift of the object 
studied. 
Subject headings: cosmology — galaxies : redshifts — gravitation 

The observed relation between redshifts and apparent magnitudes continues to play a central role in cosmology. 
Most often, these measurements have been analyzed under the assumption that the matter of the Universe consists 
of a homogeneous transparent fluid. For a matter-dominated Friedmann model with zero cosmological constant, this 
assumption leads to the well-known formula for luminosity distance di as a function of redshift z (see, e.g., Weinberg 
1972): 

dL{z) = tf(TV2[^o + (</o - 1)(-1 + (1 + 2g0z)1/2)] , (1) 

where Hq and qo are the usual Hubble constant and deceleration parameter. 
Several authors have argued that this analysis requires modification if the Universe is locally inhomogeneous 

(Zel’dovich 1964; Bertotti 1965; Dyer and Roeder 1972, 1973, 1974; Roeder 1975). In particular, if all the mass of 
the Universe is in the form of concentrated clumps, then the lines of sight to distant objects are likely to travel through 
strictly empty space, and the Ricci tensor term in the optical scalar equations is therefore absent. Dyer and Roeder 
(1972) find in this case that the expression for luminosity distance becomes 

dL,{z) = + *)2X (* + 2')-3(l + 2qoz')-ll2dzf . (2) 

The expansions of equations (1) and (2) in powers of z agree up to order z2, and only begin to differ in order z3. How- 
ever, if q0 is not too small, the differences between (1) and (2) might be significant even for observed galaxies (Roeder 
1975), and become quite important for quasars with z > 1. 

The purpose of this Letter is to point out that in a locally inhomogeneous universe with sufficiently small clump 
radii, the average apparent luminosity (determined by observing objects in various directions) is given by equation 
(1) rather than by equation (2). The limitation in equation (2) is that (as recognized by Dyer and Roeder) it leaves 
out the gravitational deflections caused by occasional close encounters with clumps near the line of sight. These 
gravitational deflections produce a shear which on the average has the same effect in the optical scalar equation as 
would be produced in a homogeneous universe by the Ricci tensor term in this equation. Thus, as long as the clumps 
have sufficiently small radii (see below for how small is sufficiently small) the measured redshift-magnitude relation 
ought to be interpreted in terms of the conventional formula, equation (1), rather than the Dyer-Roeder formula, 
equation (2). 

Before giving a general argument for this conclusion, let us see how it works in one interesting special case. We 
suppose that all the matter of the Universe is concentrated in clumps. For the moment we neglect the size of these 
clumps; the effects of a finite clump radius are considered below. We will also suppose that 1, and calculate 
apparent luminosities only to first order in qQ. Under these assumptions, the average number of clumps close enough 
to the line of sight to produce appreciable deflection effects (such as image splitting) is small, of order for z of order 
unity (Press and Gunn 1973). We can therefore consider the deflection produced by just a single clump, and avoid 
complicated multipath problems. It is in this case, where multiple scattering is unimportant, that the validity of 
equation (1) is perhaps the most surprising. 

Suppose we observe a luminous object with redshift z, and that a small clump of mass m and redshift zr < z lies 
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at a proper distance Z<3C Ho~l from the line of sight. There will be two ray paths from the object to us, which pass 
the clump at proper distances b± given by 

¿± = ¿[±/ + (¿2 + 4/2)1/2], (3) 
where 

p ^ 4(1 + 2')\(s')[X(z) _ \(z')]mG/\{z) . (4) 

Here \(z) is the affine parameter corresponding to redshift z: 

\(z) = + 2')-
3(l + 2qoz')~wdz' , (5) 

and likewise for X(2'). Press and Gunn (1973) give the intensities of these two rays as 

i± = ±/o[i -/7V]-1, (6) 

where 7o is the intensity calculated if gravitational deflection is ignored. Also, the probability that there is a clump in 
a range dl dz’ of l and s' is (for « 1 ) 

2irldlp0(\ + z')dz' , 
^„(1 + 2?„0')1/2 ’ ^ > 

where po is the present cosmic mass density. If we do not attempt to resolve the split image, then the average ob- 
served intensity is increased by the fractional amount 

m/i. . /dpa,+1. - ¡.vu - ^ 7 •n/Mi. <«) 

where 

/</)-x"'4(-^r-i)" + (i--£r)'‘-i]. (9) 

It is straightforward to see that /(/) simply equals /2, so that the clump mass m cancels out of our calculation. 
The factor may be replaced with 3g0/2; and since we are taking ço<3C 1, we can neglect <70 everywhere 
else in the z'-integral. We then find, to first order in ç0, 

A///o = 
2q0z

3 

2z + z2 ' 
(10) 

Equivalently, the luminosity distance is decreased by the fractional amount 

Adz/dio 
-qoz3 

2z + 22 * 

But to first order in ç0, the luminosity distance (2) is 

dLo = Ho-'lz + |z2 - ètfos2] . 

(H) 

(12) 

Therefore, the luminosity distance, corrected to take account of gravitational deflection, is now 

dL = dLo + AdL = Ho~l[z + èz2 - è<7o(22 + z3)] . (13) 

This is precisely the same as the conventional result (1) for a homogeneous universe, evaluated to first order in qo. 
We can easily see that the same sort of result will hold for arbitrary <70, and for models with transparent inter- 

galactic matter as well as clumps. Suppose we observe a number of luminous bodies with Robertson-Walker coordi- 
nate ri and redshift z, lying in various different directions. Draw a sphere around each object, which passes through 
our observatory. Even though there may be focusing or defocusing for individual observations, there is nothing 
special about the location of our telescope, so on the average the fraction of all photons intercepted by our telescope 
mirror is simply the ratio of the mirror area A to the sphere area 47rri2R2(/0). The gravitational deflection of light 
conserves photon energies, so the total power passing through each sphere is the object’s luminosity L divided by a 
frequency redshift factor (1 + z) and an emission-rate redshift factor (1 + z). The average radiant power reaching 
the telescope mirror is therefore 

L A 
(1 + z)2 47rn2K2(/o) * 

By definition, this is LAl^ndj}, and solving for dL gives equation (1). 
Of course, if the Universe is filled with large opaque clumps, then when we observe a distant luminous object there 
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is something special about our location—we are on a line of sight that happens to miss the clumps. For instance, if we 
suppose that the clumps are opaque spheres of radius R, then the quantity /(/) in equation (8) becomes 

J{f)=P-hR2 (/>*) 

= P/2R2 (f < R) . (14) 

Clearly we approach the conventional result (1) or the Dyer-Roeder result (2) according to whether R is much less 
or much greater than a critical value Rc(z), equal to the average value of /(¡s') for 0 < z' < z. From equation (4), we 
see that the critical radius is 

Rc(z) « (mG/Ho)112 (z > 1) 

« z(tnG/Ho)112 (2 < 1). (15) 

If the clumps are dark stars with m « Me and R « RQ, then the zero-radius approximation is very good: R is much 
less than Rc for z > 10~5. If the clumps are galaxies themselves, the zero-radius approximation is marginal. In general, 
R should be taken as the “radius of avoidance,” the minimum distance between ah intervening galaxy and the line of 
sight, that would not cause observers to miss a more distant object. As a definite lower bound on R, we might take the 
typical size of a galaxy nucleus, R « 2 kpc (Dyer and Roeder 1972). In this case, for a clump mass of 1011 M0, we 
find that R < Rc for z > J, so the Dyer-Roeder result (2) would hold for small redshifts, while the conventional 
result (1) would apply for large redshifts, say z > 0.5. It may be that we should use for R an average projected galaxy 
radius of order 10 kpc, in which case the Dyer-Roeder result (1) would apply for all z. Also, Dyer and Roeder (1974) 
suggest that galaxies selected for measurements of redshifts and magnitudes tend to be those for which the line of 
sight is well away from any intervening galaxy, in which case the radius of avoidance may be even larger than a 
galactic radius. (In this case, we should really use an angular rather than a linear radius of avoidance, and eq. [14] 
needs modification.) On the other hand, it is possible that the effective radius of avoidance may be reduced, if we tend 
to select objects that are made unusually bright by the gravitational focusing produced by invisible galaxies lying 
near the line of sight (e.g., Barnothy 1965). A proper assessment of all these effects would require that we take into 
account the detailed selection procedures actually followed by observers. 

The Dyer-Roeder result (2) may be useful even for the case of small clumps, in setting a lower limit to the apparent 
luminosity at a given redshift. This lower limit is attained when we observe a distant object which happens to lie 
along a line of sight near which the number of clumps is anomalously low. In general, there is a statistical spread in 
luminosity distances, comparable to the difference between equations (1) and (2), caused by differences in the popula- 
tions of clumps lying near the various lines of sight. (See also Bertotti 1966.) Because of these fluctuations in dL{z), 
it is important to note that equation (1) should be used to calculate the mean inverse-square luminosity distance, 
not the mean luminosity distance itself. It is possible that this spread in luminosity distance at a given redshift 
accounts for at least part of the observed spread in the apparent luminosities of quasars with similar redshifts. 

I am grateful for helpful conversations with G. Field, R. Glauber, W. Press, R. C. Roeder, and I. Wasserman. 
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