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ABSTRACT 

A new analytic approximation for the luminosity function for galaxies is proposed, which shows 
good agreement with both a luminosity distribution for bright nearby galaxies and a composite 
luminosity distribution for cluster galaxies. The analytic expression is proportional to L“5/4e“L/L*, 
where L* is a characteristic luminosity corresponding to a characteristic absolute magnitude 

= —20.6. For an individual cluster, the characteristic magnitude may be determined 
with an accuracy of ~0.25 mag, suggesting its use as a standard candle. The analytic expression 
is used to compute an expected richness-absolute magnitude correlation for first ranked cluster 
galaxies and an expected dispersion, which are compared with the data of Sandage and Hardy. 
Subject headings: galaxies: clusters of — galaxies: photometry 

I. INTRODUCTION 
For a wide range of extragalactic problems one 

needs to know the luminosity function for galaxies. 
For example, the spatial covariance function for 
galaxies can be obtained from the projected angular 
covariance function only if one specifies the lumin- 
osity function (Peebles and Hauser 1974). Likewise, 
it is necessary to the determination of evolutionary and 
cosmological corrections to the number-magnitude 
relation for galaxies (Brown and Tinsley 1974). If one 
specifies the dependence of mass on luminosity, one 
can use it to determine the local mass density (Shapiro 
1971), or the mean binding energy in pairs of galaxies 
in a magnitude-limited sample (Geller and Peebles 
1973). The luminosity function allows one to estimate 
the frequency of absorption lines in QSOs due to 
intervening galaxies (Bahcall 1975) and to estimate the 
available parent population for exotic objects such as 
Markarian (Huchra and Sargent 1972) or radio 
galaxies (Schmidt 1966). It may be used to extrapolate 
observed luminosities in clusters of galaxies to total 
luminosities (Oemler 1974) and can be used to deter- 
mine the distances to clusters (Abell 1962; Schechter 
and Press 1975). Most of these problems require 
integration of the luminosity function over a range of 
volumes and luminosities. While such integration can 
always be carried out numerically by using the ob- 
served luminosity function, the calculation is time 
consuming, and one frequently adopts an analytic 
expression which is taken to be a reasonable approxi- 
mation to the luminosity function. 

We propose here a new analytic approximation for 
the luminosity function for galaxies. Letting <p(L)dL 
be number of galaxies per unit volume in the lumin- 
osity interval from L to L + dL, we investigate the 
expression 

<p(L)dL = <p*(L/L*)a exp (-L/L*)d(LIL*) (1) 

* Supported in part by the National Science Foundation, 
GP-36687X and GP-40768X. 

where 9*, L*, and a are parameters to be determined 
from the data. The parameter 9?* is a number per 
unit volume, and L* is a “characteristic luminosity” 
(with an equivalent “characteristic absolute mag- 
nitude,” M*) at which the luminosity function 
exhibits a rapid change in the slope in the (log 9, log L)- 
plane. The existence of such a characteristic magnitude 
has long been stressed by Abell (1962, 1965), and his 
notation M* has been pirated for the present dis- 
cussion. The dimensionless parameter a gives the 
slope of the luminosity function in the (log 93, log L)- 
plane when L « L*. 

The proposed representation derives from a self- 
similar stochastic model for the origin of galaxies 
(Press and Schechter 1974) but differs in that we allow 
ourselves the latitude of adjusting the “faint-end 
slope parameter” a to fit the available data. The 
thrust of this work is not therefore to argue the merits 
of the stochastic model, but only the merits of the 
expression as a good approximation to the luminosity 
function. 

Equation (1) differs from previous analytic ex- 
pressions proposed by Zwicky (1957), Kiang (1961), 
Abell (1962, 1965), and Arakelyan and Kalloglyan 
(1968) in that the luminosity appears in an exponential 
as well as in a power law. Expressed in terms of 
absolute magnitude, equation (1) exhibits a double 
exponential. This rapid cutoff at brighter absolute 
magnitudes is consistent with the statistical interpre- 
tation (Peebles 1968) of the narrow range of absolute 
magnitudes found for the brightest members of rich 
clusters of galaxies (e.g., Sandage 1968). 

Our first job is to demonstrate that the proposed 
expression is, in fact, a good approximation to the 
luminosity function for galaxies. To this end, we con- 
struct, in § II, a general luminosity distribution for 
galaxies using data taken primarily from the Reference 
Catalogue of Bright Galaxies (de Vaucouleurs and de 
Vaucouleurs 1964). A composite luminosity distri- 
bution of cluster galaxies is also constructed, using 
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Oemler’s (1974) data. In § III we fit the proposed 
expression to these data, showing that equation (1) 
fits both luminosity distributions well in a sense made 
precise in § l\d. We find that the parameters a and 
L* for field and cluster galaxies show no significant 
difference. In § IV, we test the proposed expression 
against data for individual clusters and examine the 
accuracy with which L* can be determined for a rich 
cluster of galaxies. The expected correlation of the 
absolute magnitude of brightest cluster member with 
richness is treated in § V. 

II. OBSERVED LUMINOSITY DISTRIBUTIONS 

d) Luminosity Distributions and Luminosity 
Functions 

It is helpful to distinguish between the terms 
“luminosity distribution” and “luminosity function.” 
For the present discussion a luminosity distribution 
ns(L) has the units of number of galaxies per 
unit luminosity and refers to a specific sample of 
galaxies S. Thus if one has a sample S 

(the number of galaxies contained \ 
in S in the luminosity interval of I. (2) 
width ÀL centered on L / 

For a specific sample S the volume sampled at 
luminosity L is given by F^L). The “luminosity 
function” <ps(L) of a sample of galaxies S has the 
units of number of galaxies per unit luminosity per 
unit volume and is defined by 

= 2W ' (3) 

If one is willing to assume that the Universe is homo- 
geneous on large scales, then in the limit of large, 
randomly chosen sample volumes, all luminosity 
functions approach a universal limit <p(L) defined by 

<p{L) = lim <ps(L). (4) Vs(L)-*oo 

We shall henceforth assume that the Universe is 
homogeneous on large scales and refer to this limit as 
the luminosity function for galaxies. In practice, one 
can only determine the luminosity function for finite 
samples, and sample luminosity functions will show 
deviations from the universal luminosity function 
which decrease as sample volumes increase. The size 
of these deviations depends upon the nature of the 
processes giving rise to the distribution of galaxies in 
space and luminosity. For a randomly chosen sample 
volume, the luminosity function yields an expected 
luminosity distribution 

ne(L) = y{L)Vs(L) . (5) 

Luminosity functions (and distributions) may be 
obtained for any subclass of galaxies which can be 
identified by criteria other than luminosity. Hence it is 
possible to find luminosity functions for elliptical 

galaxies (Shapiro 1971), Markarian galaxies (Huchra 
and Sargent 1972), and cluster galaxies. The luminosity 
function for all galaxies will be called the “general” 
luminosity function. 

b) A General Luminosity Distribution 

We present here a general luminosity distribution, 
obtained using galaxies listed in de Vaucouleurs and 
de Vaucouleurs (1964). The sample is much the same 
as that used by Shapiro (1971) and Christiensen (1975). 
The redshift data for the present sample are somewhat 
more complete, and the use of redshift as the sole 
distance indicator for the present sample (cf. Christien- 
sen) allows easy application of the Eddington correc- 
tion for the uncertainties in the derived absolute 
magnitudes. 

The sample includes all galaxies brighter than 
^ß(0)iim = 11.75 listed in the Reference Catalogue with 
new galactic latitude greater than 30° from the galactic 
plane, but (following Shapiro) excluding all galaxies 
within 6° of the center of the Virgo cluster at a = 12h27m 

and 6 = 13?5 (de Vaucouleurs 1961). The large 
velocity dispersion of galaxies in the direction of the 
Virgo cluster makes redshift a poor distance indicator 
in this region. Absolute magnitudes were computed 
as follows: 

= Mb{Q) 25 5 log (cz/Hq) Aq esc b . 

(6) 

A Hubble constant of 50 km s-1 Mpc1 and an ab- 
sorption coefficient AB of 0.12 mag (Peterson 1970a) 
were used. The sample volume at Mß(0) is given by 

PT^bco)] == f77 dex[0.6(mfî(0)iim — MB(0) — 25)] 

/»90° 
x ¿(sin b) dex(—0.6;4B esc b) . 

(7) 

After a change of variables the integral on the right- 
hand side becomes an incomplete gamma function. 
For = 30° and AB = 0.12 its value is 0.3978. 
Had we assumed no absorption, its value would have 
been one-half. 

Redshifts were taken from the Reference Catalogue 
with the following exceptions: (1) Neutral hydrogen 
velocities of Lewis and Robinson (1973) were used for 
members of the South Polar Group of galaxies; (2) 
radial velocities published after 1964 were found for 
12 of the 20 galaxies in the sample without cataloged 
velocities (see Table 1); (3) of the remaining eight 
galaxies, five have been identified as members of 
groups by de Vaucouleurs (1976) and have been 
assigned the mean group radial velocities; (4) NGC 
5054 was assumed to be associated with NGC 5049 
and assigned the corresponding redshift. All velocities 
were corrected for solar motion according to de 
Vaucouleurs and de Vaucouleurs (1964), 
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No. 2, 1976 LUMINOSITY FUNCTION FOR GALAXIES 299 

TABLE 1 
Reference Catalog Galaxies Brighter 
THAN Wb(o) = 11.75 AND WITH |Z>n| > 30° 
without Catalogued Radial Velocities 

A. 

ID Velocity Reference 

NGC 1326. ... 1233 (a) 
NGC 1532. ... 1587 (b) 
NGC 1559.... 1284 (b) 
NGC 1672.... 1034 (b) 
NGC 1792.... 1035 (c) 
NGC 4096.... 540 (a) 
NGC 4145.... 1035 (d) 
NGC 4236.... 186 (e) 
NGC 4651.... 685 (c) 
NGC 4654.... 960 (c) 
NGC 4939.... 2862 (c) 
NGC 5247.... 1530 (/) 

B. 

Group Group 
ID Velocity Identification 

NGC 1448.... 665 G21 
NGC 1617.... 999 G16 
NGC 4395.... 342 G3 
NGC 5054. . .. 2597 NGC 5049 
NGC 7424.... 1561 G27 
IC 5332  142 G1 
IC 5201  None 
A58  Local 

References.—{à) Bottinnelli et al. 1970; 
(b) Carranza 1967; (c) de Vaucouleurs and 
de Vaucouleurs 1967; (d) Chincarini and 
Rood 1972; (e) Rogstad et al. 1967; (/) 
Balkowski et al. 1973. 

LUMINOSITY (£/«£*) 

ABSOLUTE MAGNITUDE MB(0) 

Fig. 1.—Best fit of analytic expression to observed general 
luminosity distribution. Broken line shows the effect of 
deleting the Eddington correction. 

The resulting luminosity distribution is shown in 
Figure 1, where, for convenience, we have presented 
«(Mb(o)) rather than n(L). In all, 184 galaxies are 
included in Figure 1. Of the eight galaxies in the 
sample not shown, two had no redshift, one was 
fainter than Mm) = —16, and five had blueshifts. 

The observation of blueshifts implies the presence 
of non-Hubble components in the observed radial 
velocities. These components introduce uncertainties 
in the computed absolute magnitudes, particularly 
at the faint end of the distribution. The problem is 
analogous to that encountered in stellar astronomy in 
determining luminosity distributions for stars with 
uncertain parallaxes. The Eddington method can be 
used to correct the distribution for this effect, but we 
shall postpone our discussion of the problem until 
§IH. 

The sample luminosity function ^(L) may be cal- 
culated from the luminosity distribution of Figure 1. 
The resulting luminosity function does not differ 
substantially from that of van den Bergh (1961), 
Shapiro (1971), or Christiensen (1975). We shall leave 
the data in the form of a luminosity distribution to 
facilitate the application of the Eddington method. 

c) A Cluster Galaxy Luminosity 
Distribution 

A composite luminosity distribution for cluster 
galaxies is constructed here from Oemler’s (1974) 
individual luminosity distributions. For observations 
of clusters the volume sampled is the same at all 
luminosities, and the luminosity distribution will have 
the same shape as the luminosity function. Indeed 
the terms are used interchangeably in the literature on 
clusters of galaxies, but as defined here a luminosity 
function should have the units of density. 

The composite luminosity distribution has been 
constructed using the luminosity distributions for 
13 of the 15 rich clusters studied by Oemler (1974). 
Two of the clusters, Abell 2670 and Zw Cl 
1545.1+2104 have not been included. Since both 
clusters were studied at extremely faint apparent 
magnitudes (nij > 20), background corrections were 
substantially larger for these clusters than for the 
other clusters studied. At the faintest magnitudes 
sampled in Abell 2670 the background subtracted was 
twice as large as the number of cluster galaxies 
(Oemler 1973). Oemler has noted that the cluster 
Abell 2670 is substantially flatter at the faint end than 
the other clusters studied (Oemler 1974). This cluster 
received a somewhat different treatment from the 
others studied in two additional respects: (a) the core 
region studied was only 0.4 Abell radii, compared 
with ~1 Abell radius for the others; (b) the seeing 
was so poor on the plate studied that faint stars and 
galaxies could not be distinguished (Oemler 1973), 
and a correction for foreground stars was therefore 
necessary. The exclusion of Abell 2670 is nonetheless 
post hoc. 

The construction of the composite distribution 
proceeded as follows: The luminosity distributions 
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LUMINOSITY (*/:£*) 

Fig. 2.—Best fit of analytic expression to observed com- 
posite cluster galaxy luminosity distribution. Filled circles 
show the effect of including cD galaxies in composite. 

for the 13 clusters were ranked by the depth of the 
distribution, with the cluster containing the galaxy 
with the faintest absolute magnitude ranked first. 
The data for the second ranked cluster was “rebinned” 
so that the bins matched the bins of the first and were 
then added to the first. Data in the first cluster 
beyond the limiting magnitude of the first cluster 
were scaled by the ratio of the total number of galaxies 
brighter than this limiting magnitude in both clusters 
to the corresponding total for the second cluster. 
The procedure was then repeated, adding the third 
through thirteenth clusters. 

The resulting composite luminosity distribution is 
plotted in Figure 2. The open circles indicate the 
composite constructed excluding four possible cD 
galaxies (two in Coma and one each in Abell 1413 and 
Abell 2199), and the filled circles show the effect of 
including these galaxies. 

d) Uncertainties 

In the following section we shall show that the 
proposed analytic expression fits the observed 
luminosity distributions “within the observational un- 
certainties.” The data shown in Figures 1 and 2 are 
uncertain due to uncertainty in the completeness of 
the sample and, in Figure 2, uncertainty in the amount 
of subtracted background. In addition, if one assumes 
that the distribution of galaxies is governed by a 
stochastic process, there will be “random” uncer- 
tainties in the observed numbers of galaxies in each 

magnitude interval. In particular, if we assume that the 
distribution is governed by a Poisson process, we 
expect uncertainties of the order of 's/N where N 
is the number of galaxies in a given bin (before scaling). 
While the adoption of “square root of A” uncer- 
tainties appears harmless enough the “Poisson 
hypothesis” leads inevitably to “Scott effects” (see 
§ V). The error bars in Figures 1 and 2 were computed 
assuming only ^/N uncertainties. Thus we shall be 
testing whether the proposed analytic expression fits 
the observed distributions on the assumption that the 
number of galaxies per magnitude bin is governed 
by a Poisson process. Since the process governing 
galaxy luminosity may not be a Poisson process, it 
should be noted that the assumption of uncertainties 
proportional to N° and N1 yield values for the 
parameters close to those obtained by assuming N112 

uncertainties. 

in. x2 fits of analytic expression to general 
AND COMPOSITE LUMINOSITY DISTRIBUTIONS 

a) General Luminosity Function 

The proposed analytic expression and the observed 
local luminosity distribution are related by equations 
(5) and (7). Substituting, we find 

ne(L)dL = <p*V*(LIL*y+312 exp (-L/L*)rf(L/L*) (8) 

where V* = V(L*). This expression may now be 
corrected for uncertainties in the luminosities due to 
non-Hubble components in the redshifts. If a(L) is the 
r.m.s. uncertainty at luminosity L, then according to 
the modified Eddington method (cf. Trumpler and 
Weaver 1953), 

nel(L) = ne[l + a'2 + a'a] + In/a'a + He"(72/2 H , 

(9) 

where primes indicate derivatives with respect to 
luminosity. We must of course specify or(L). If <A*;2)1/2 

is the rms non-Hubble velocity and / is the limiting 
flux of the sample, then 

a(L) = (10) 

where the first factor in parentheses comes from 
averaging over galactic latitude with AB — 0.12 and 
the second factor in parentheses comes from averaging 
over all velocities in a given luminosity bin. 

The rms deviation of line-of-sight velocities from 
the Hubble flow {àv2}112 is a difficult quantity to 
determine. Sandage and Tammann (1975) give an 
upper limit of 50 km s-1, but this quantity refers to 
the average deviation of groups of galaxies. Geller 
and Peebles (1973) give rms differences for pairs of 
galaxies ranging from 150 to 300kms_1 depending 
upon separation and the correction for measurement 
errors. The corresponding value of <Ai;2>1/2 would be 
\/2 smaller. Humason et al. (1956) suggest a value of 
<Ai;2>1/2 of 200-300 km s_1 while de Vaucouleurs 
(1958) suggests an upper limit of 100 km s_1. For the 
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present work we adopt the (perhaps somewhat high) 
value of 200 km s ~1. 

The data in Figure 1 have been binned in rather 
large (1 mag) intervals to assure a substantial number 
of counts per bin. Since nel(M) changes substantially 
over a magnitude, we must correct for such variation 
according to 

ne2{M) = Hel + nel"(AM)2/24 , (11) 

where primes denote derivatives with respect to 
absolute magnitude. 

Values of the parameters a, L*, and <p*F* were 
obtained by minimizing the quantity x2 defined by 

x2 _ y [njMj) - ^ 

where ^ is the uncertainty in the zth data bin. The 
values of the parameters which minimize x2 are 

9>*F* = 216 ± 6, 

APV) = -20.60 ± 0.11 , (13) 

« = -1.24 ± 0.19, 

giving a minimum x2 of 0.53 with 4 degrees of freedom. 
The uncertainties in equation (11) (and all subsequent 
uncertainties obtained from x2 fits) are “unbiased 
estimates,” obtained by scaling the matrix (d2x2/ 
dXidXjY1 by the quantity x2!v and taking the square 
roots of the diagonal elements (Wolberg 1967). The 
poorer the fit, the larger the uncertainties. The correla- 
tion coefficients are given by 

P(p*v*,m* = 0.240; P<p*v*,a — 0.231; 

PM*,a = 0.973 . (14) 

The solid line in Figure 1 shows the solution for 
ne2(M). The broken line plots ne2(M) using the same 
values for the parameters but letting <Az;2>1/2 = 0. 
The difference between the two curves demonstrates 
the effect of the Eddington correction. A second way 
to gauge the importance of the correction is to fit 
the observed luminosity distribution using values for 
the non-Hubble component other than our assumed 
value of 200 km s-1. Using values of 150 and 100 
km s_1, we obtain values for a of —1.35 and —1.43, 
respectively. It should be noted that the first-order 
Eddington correction is barely adequate to our task 
since the assumed non-Hubble velocity components 
are of roughly the same size as the mean velocity in the 
faintest bin. 

The sample and expected luminosity distributions, 
ns(L) and ne(L) will be nearly identical if the Universe 
is homogeneous on the scales sampled. But Hauser 
and Peebles (1974) have shown that inhomogeneities 
exist on scales at least as large as 40 Mpc. Worse yet, 
our sample volume has not been chosen randomly: 
our observatories are located in a galaxy, and there is 
likely to be an excess of galaxies in our vicinity. One 
might use the covariance function for galaxies (Peebles 

1974) to subtract off a mean expected excess, but the 
fluctuations about this mean may well be large. These 
effects and the non-Hubble velocities combine to make 
the faint end slope very uncertain. 

b) The Cluster Galaxy Luminosity 
Distribution 

The composite luminosity distribution (without 
cD galaxies) has been fitted in a similar manner to 
obtain values of a and L* for cluster galaxies. Since 
we have no way of estimating the volume being 
sampled, we can only obtain the parameter such 
that the expected luminosity distribution is given by 

neÇL)dL = «*(L/L*)a exp (-L/L*)¿(L/Z*) . (15) 

The data of Figure 2 have been binned twice: once 
by Oemler in his Figure 5 (Oemler 1974), and again 
here, in Figure 2. If we assume that the location 
of the second set of bins is independent of the first, 
we find (cf. eq. [11]) 

nez{M) = ne + ne"{&MYß , (16) 

where primes denote derivatives with respect to 
magnitude. 

The best fit was obtained for the following values 
of the parameters : 

«* = 910 ± 120, 

M%24.1) = -21.41 ± 0.10, (17) 

a =-1.24 ± 0.05, 

with a x2 of 16.4 for 11 degrees of freedom. Since we 
are unable to estimate uncertainties in the amount of 
subtracted background, this is a reasonable fit given 
our estimated uncertainties. The correlation coefficients 
are 

Pn*,M* ~ 0.928; Pn*,a = 0.939; 

Pm*,a — 0.823 . (18) 

The solid curve in Figure 2 shows ne3(M) computed 
using the above values of the parameters. Note that 
the cD galaxies have luminosities of up to 10 L* when 
the above values of the parameters are used. Galaxies 
as luminous as this are exceedingly improbable if one 
accepts the proposed analytic expression. The ex- 
pression therefore gives a good approximation only 
to the non-cD cluster galaxy luminosity function. This 
presents no problem if cD galaxies can be identified by 
morphological rather than luminosity criteria (Mat- 
thews et al. 1964; Morgan and Lesh 1965). If they 
cannot, our reasoning is circular: we are throwing them 
out because they do not fit a curve obtained by excluding 
them! 

c) Comparison of Parameters for General and 
Cluster Luminosity Distributions 

The apparent magnitudes used to construct the 
general and cluster luminosity distributions were 
based on two different photometric systems: the 
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de Vaucouleurs’ 1?(0) system (de Vaucouleurs and de 
Vaucouleurs 1964) and Oemler’s /(24.1) system 
(Oemler 1974). Ideally to compare the two luminosity 
distributions, one would transform the individual 
apparent magnitudes from one system to the other, 
construct a new luminosity distribution, fit the two 
distributions, and compare values of the characteristic 
absolute magnitude and faint-end slope parameter. A 
cruder comparison is obtained by correcting the 
parameters after fitting the data, but such a compari- 
son is less reliable. The comparison presented here 
is yet cruder : we correct the characteristic magnitudes 
to a common system but not the faint end slopes. 

Oemler (1974) gives a correction of roughly 0.20 
mag from his /(24.1) magnitudes to total magnitude 
at M/(24.i)) ä —21.5. Adding to this another 0.11 mag 
for absorption at the galactic poles, we have 

M*jT = - 0.31 . (19) 

The de Vaucouleurs’s £(0) magnitudes require roughly 
a 0.5 mag correction to total magnitude (de Vau- 
couleurs and de Vaucouleurs 1964) and a correction 
of 0.65 (B - V) to the / band (Oemler 1974). Using 
the mean (B — V) for our bright-galaxy sample of 
0.75,we obtain a correction 

M*jt = M*ß(0) — 0.99 . (20) 

The curves in Figure 3 show 50 percent confidence 
ellipses in the (a, M*/r)-plane, obtained using the 
formal uncertainties and correlation coefficients of the 
X2 fits. The parameters for the two distributions agree 
fairly well, consistent with the hypothesis that the 
general luminosity function and the cluster-galaxy 
luminosity function differ only by a multiplicative 
factor. This similarity of the two distributions has 
been noted before by Peebles (1971). 

The theoretician’s job is made a little easier if he 
can remember a few round numbers. We do no great 
injustice to the data if we adopt a working value of 

Fig. 3.—Formal 50 percent confidence intervals for 
parameters a and M*JT. See text for reduction to JT mag- 
nitude system. 

et = —5/4 and use values of M*Bi0)9 and 
9* appropriate to this value : 

a =-5/4, 

M*b(0) = -20.6 + 5 log (Ho/50) , 
^%24.i)=-21.4 + 51og(H0/50), 1 } 

9* = 0.005(Ho/50)3Mpc-3. 

The uncertainties in these values are of the same order 
as those given in equations (13) and (17). By way of 
comparison, we note that for a magnitude-limited 
sample of galaxies, the luminosity distribution peaks 
at 5L*/4 (see Fig. 1). For rich clusters of galaxies, 
the first ranked cluster member is likely to be a 
magnitude brighter than M* (see §V). If we adopt a 
distance modulus for M31 of (m — M) = 24.72 
(Sandage and Tammann 1971) and an apparent 
magnitude mB{0) = 4.61 (de Vaucouleurs and de 
Vaucouleurs 1964), we obtain an absolute magnitude 
of Mm) = —20.11. This gives M31 a luminosity of 
roughly |L*. Figure 2 shows that cD galaxies have 
luminosities of the order of 5-10 L*. 

IV. LUMINOSITY DISTRIBUTIONS FOR 
INDIVIDUAL CLUSTERS 

a) Test of the Proposed Expression 

It remains to be seen whether the proposed analytic 
expression gives a good approximation to the observed 
luminosity distributions for individual clusters of 
galaxies, again assuming that “square root of A” 
uncertainties dominate the uncertainties. The data 
for individual clusters are so uncertain as to guarantee 
that we can obtain a good fit for some values of a 
and L*. More interesting is a test of whether universal 
values of a and L* are valid for all clusters. If universal 
values are appropriate, then only will vary from 
cluster to cluster. 

We have fitted the proposed expression to Oemler’s 
(1974) luminosity distributions for individual clusters, 
fixing a and L* at the working values and letting 
vary. The results of these fits are shown in Table 2. 
While the expression does fit many of the clusters well, 
it fits others rather poorly, as evidenced by values of 
X2 per degree of freedom v much larger than unity. 
The quality of these fits might have been better had it 
been possible to include estimates of uncertainties 
due to background subtraction. It should be noted that 
the two clusters giving the worst fits are those with 
flat faint ends noted by Oemler (1974): Abell 2670 
and Abell 665. For the remaining discussion we shall 
adopt the hypothesis that universal values of a and 
L* apply to all individual clusters, although further 
careful observational work is required to check this 
important assumption. 

b) n* as a Measure of Cluster Richness (one-parameter 
fits) 

If equation (15) does give a good approximation to 
the luminosity distributions for clusters of galaxies, 
and if a and L* are given by the working values, then 
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TABLE 2 
Parameters for Fourteen Clusters (a = — 5/4) 

303 

One-Parameter Fits 
(M* = 21.43) Two-Parameter Fits 

Cluster n* a(«*) x2!v M* <t(M*) 

A194  19 3 
A400.    33 6 
A539  41 3 
A665  109 25 
A1228  39 4 
A1314  45 2 
A1367  46 5 
A1413  113 11 
A1656  107 8 
A1904  78 6 
A2151  60 11 
A2197  46 11 
A2199  75 6 
A2670  55 7 

1.8 —22.32 0.64 
0.4 -21.41 0.33 
0.7 -21.26 0.22 
6.2 -22.52 0.66 
0.7 -21.32 0.25 
0.2 -21.41 0.11 
1.8 -21.30 0.37 
1.0 -21.36 0.24 
2.8 -21.26 0.20 
0.4 -21.50 0.17 
0.5 -21.52 0.17 
3.1 -20.63 0.44 
1.3 -21.06 0.16 
4.5 -22.09 0.53 

h* will be proportional to the cluster luminosity, and 
is a measure of cluster richness. Integrating over all 
luminosities, we obtain 

¿cius = Í ^Ln(L)dL = n*r(a + 2)Z* . (22) 
Jo 

For the working value a = — 5/4, the gamma function 
takes the value r(f) = 1.225. Using the working 
value = —21.4, we obtain from equation 
(22) the total luminosity inside the J(24.1) isophote. 
Listed in Table 2 are values of obtained from one- 
parameter fits to Oemler’s data using the working 
values of a and L*. The uncertainties given are un- 
biased estimates: clusters for which the working 
values fit the data poorly have larger uncertainties. 

The poorest of the clusters studied by Oemler have 
a value of of order 20 while the richest three 
clusters all have values of order 115. If Oemler’s 
sample is typical of rich clusters, a reasonable range 
of values of «* appears to be 

20 ^ ^ 115. (23) 

The reader is cautioned that the value of depends 
upon how one determines the limits of a cluster. 
Oemler counted galaxies out to two or three Abell 
radii (Abell 1958). One would therefore expect smaller 
values of within one Abell radius. 

c) L* as a Standard Candle {two-parameter fits) 
If the working values of a and L* are universally 

appropriate to individual clusters, one can use M* 
as a synthetic standard candle to determine distance 
moduli to clusters. The potential of such a synthetic 
standard candle has been stressed by Abell (1962, 
1965). Abell found that the integrated luminosity 
distributions N{>L) for individual clusters could be 
approximated by two power laws of luminosity. 
If we let La* be Abell’s characteristic luminosity, then 

N{>L) = N*{LILk*)1+I}a {L > La*) 

= N*(L/LA*y+“A (L < LA*) , (24) 

with aA and ßA taking the values —1.62 and —2.95, 
respectively (Abell 1965). Differentiating equation 
(24) with respect to luminosity and fitting to the data 
of Figure 2, we obtain values aA = —1.72, ßA = 
—2.84, and MA* = —20.45 with a x2 °f 120 for 10 
degrees of freedom. 

The measures of a standard candle are the intrinsic 
dispersion in its absolute magnitude and the accuracy 
with which its apparent magnitude can be measured. 
To judge M* as a standard candle, we fix a at the 
working value and fit individual clusters for m* and 
«*. (Similarly, one can fix aA and ßA and fit for raA* 
and A*.) We then use the known redshifts to obtain 
observed values of M*. The smaller the dispersion in 
these observed values, the better M* is as a standard 
candle. 

The results of such two-parameter fits of equation 
(15) to Oemler’s data are shown in Table 2. The rms 
dispersion in M* about the mean value <M*> is given 
by 

<(M* — <M*»2>1/2 = 0.50 mag . (25) 

By comparison the rms dispersion in MA* obtained 
for similar fits to the same data yield 

<(Ma* - <Ma*»2>1/2 = 0.42 mag (26) 

(cf. Bautz and Abell 1973). 
Root-mean-squared dispersion makes no use of the 

uncertainty in the value of m* obtained from a x2 

fit. For some purposes (such as determination of 
second order corrections to the Hubble law) these 
uncertainties may be used to weight individual points. 
Those clusters which fit equation (15) poorly have 
larger uncertainties and hence lower weights. By way 
of example, the weighted mean value M* obtained 
from the results of Table 2 is —21.36 ± 0.06 mag. 
Comparable accuracy would be obtained from 14 
unweighted values only if the rms dispersion were as 
small as 0.22 mag. 

Much of the dispersion in equation (23) is due to 
low-weight clusters. If we ignore the three clusters 
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for which the values of Af* are most uncertain, we 
obtain an rnis dispersion of only 0.25 mag. It should 
be noted that if one is willing to sacrifice the goodness- 
of-fit information which x2 fitting provides, one can 
obtain ra* using a simple maximum-likelihood pro- 
cedure which requires only that one average the 
luminosity of the N brightest cluster members 
(Schechter and Press 1975). 

V. EXPECTED ABSOLUTE MAGNITUDES OF THE 
BRIGHTEST CLUSTER MEMBERS 

There has been considerable discussion as to 
whether the absolute magnitudes of the first ranked 
members are governed by a special process or whether 
they are determined by a stochastic process which also 
governs the absolute magnitudes of the second through 
Nth. ranked cluster members (Scott 1957; Peebles 
1968, 1969; Peach 1969; Peterson 19706, c; Sandage 
1972; Sandage and Hardy 1973; Geller 1974). By 
taking the uncertainties in the luminosity distributions 
of § II to be given by the square root of the number 
of galaxies in a given bin, we have implicitly adopted a 
“Poisson hypothesis.” We shall investigate some of the 
implications of the Poisson hypothesis under the 
assumption that the proposed analytic expression 
is a good approximation to the cluster-galaxy lumin- 
osity function. For a more extensive treatment 
(using an Abell-type luminosity function) the reader 
is referred to Geller’s (1974) work. 

We assume that the individual luminosity distribu- 
tions for clusters are fair samples of a universal 
luminosity function. Clusters differ only by the rich- 
ness parameter n*, which indicates how large a sample 
of this universal distribution has been taken. We adopt 
the working value of a. Letting Ne(>L) be the expected 
number of galaxies brighter than L, then 

Ne{>L) = J ne(L')dL' = + l,L/L*)n*, 

(27) 

where r(ß, A) is the incomplete gamma function. The 
probability that the yth brightest cluster member has 
absolute magnitude M is given by 

P,(M)dM = exp [-Ne(<M)]ne(M)dM 

(28) 

(Peebles 1968). A most probable value of the absolute 
magnitude of the yth brightest galaxy is found by 
setting the first derivative of the natural logarithm of 
P3 equal to zero. The inverse of the second derivative 
of the natural log gives a good estimate of the variance 
of My about its most probable value. The use of most 
probable rather than mean value makes a difference 
of only a few hundredths of a magnitude and simplifies 
computation. Since Ne is a function of «*, the most 
probable values of will be functions of «*. 

The solid, dashed, and dotted curves in Figure 4 
present the differences Afy — (using most probable 

Fig. 4.—Expected magnitude differences between first 
ranked and yth ranked cluster galaxies computed from analytic 
expression. Points show mean differences observed by 
Humason et al. (1956). 

values) for values of of 25, 50, and 100, respectively. 
The points plotted are the mean values of — nix 
found by Humason et al. (1956) for 18 rich clusters of 
galaxies. The data agree well with the curve obtained 
for = 25. While the results of Table 2 indicate that 
larger values of «* are appropriate to the clusters 
studied by Oemler, perhaps a smaller fraction of each 
cluster was sampled by Humason et al. 

We can use equation (28) to compute a richness 
appropriate to any value of «*. Abell (1958) defines 
the richness of a cluster to be the number of galaxies 
in the two magnitude interval following the third 
brightest galaxy in a circle of radius 1.72z-1 arcmin. 
We can therefore compute a richness estimate appro- 
priate to by computing a most probable value of Af3 
and then integrating the luminosity distribution from 
that value of M3 to Af3 + 2. In a similar manner, one 
can estimate the “population” of a cluster Ac

48, 
defined by Sandage and Hardy (1973) to be the number 
of galaxies in the 2^ magnitude interval following the 
third brightest galaxy in a circle of diameter 137 
(1 + z)2z_1 arcsec. 

An inevitable consequence of the statistical hy- 
pothesis is an expected correlation of the absolute 
magnitude of the brightest cluster galaxy with «* (or 
Abell richness or Sandage-Hardy population). This 
expected correlation, combined with a bias toward 
selecting bright galaxies and rich clusters at great 
distance, has come to be known as the Scott effect 
(Scott 1957). We have computed most probable 
absolute magnitudes for brightest cluster galaxies as 
a function of using the proposed analytic expression. 
We expect a correlation of Mx with as shown by 
the solid line in Figure 5. 

The available data show little or no such correlation. 
Sandage and Hardy (1973) present standard metric 
absolute magnitudes and population estimates for a 
great number of rich clusters. The filled circles of 
Figure 5 show absolute magnitudes and populations 
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ABELL RICHNESS (R) 
10 20 30 50 80 130 200 300 

\ 1 \ 1 1 1 1 1 

POPULATION (Nç8) 
15 30 50 100 150 300 500 

Fig. 5.—Expected correlation of absolute magnitude of brightest cluster galaxy with cluster richness. Broken lines show expected 
rms dispersion. Filled circles show data of Sandage and Hardy (1973). 

for a homogeneous subset of their data; Peterson’s 
(1970a) data have not been plotted since a sub- 
stantially different aperture was used in his photo- 
metry (see Sandage and Hardy for a similar plot 
including these data). The absolute magnitude scale 
was calibrated by assuming M* — <M1> = 1, a value 
appropriate to a cluster with n* ^ 44. While there 
appears to be some correlation for poorer clusters 
(n* ^ 20), there is little correlation for richer clusters. 

The absence of a richness-absolute magnitude 
correlation is extremely surprising. Geller (1974) has 
offered a possible explanation: the richer clusters in 
the Sandage-Hardy sample lie at greater redshifts than 
the poorer clusters. The amplitude and direction of the 
richness-magnitude correlation therefore depends 
upon the value of the deceleration parameter used in 
the analysis. 

Another possible explanation lies in the fact that 
the value a used in predicting the richness-magnitude 
correlation was obtained using isophotal magnitudes. 
But the prediction is compared with Sandage and 
Hardy’s standard metric magnitudes. Only under 
very special circumstances will the amplitude of the 
correlation be the same in both magnitude systems. 
In general, standard metric magnitudes may vary either 
more or less rapidly than isophotal magnitudes. In 
this respect it is interesting to note that while Sandage’s 
data, obtained with an 86 kpc aperture, exhibit a 
marginal richness-magnitude correlation, Peterson’s 
data, using a 41 kpc aperture, show a marginal anti- 
correlation (see Table 6 in Sandage 1972). A precise 
understanding of the relation between isophototal 
and standard metric magnitudes is required before 
the Sandage-Hardy data rule out the use of the present 
analytic expression at the extreme bright end. 

Peebles (1968) has noted that the narrow dispersion 

in absolute magnitudes of the first ranked cluster 
galaxies can be understood in large part on the basis 
of the statistical hypothesis. The broken lines in Figure 
5 show the expected rms fluctuations of about its 
most probable value. The data of Sandage and Hardy 
appear to show reasonable agreement with this ex- 
pected dispersion. Geller (1974) has found that for a 
reasonable distribution of richness, one can also 
reproduce the narrow dispersion using an Abell- 
type analytic expression. 

VI. CONCLUSIONS AND SHORTCOMINGS 

The proposed analytic expression gives a good 
approximation to the general luminosity function and 
the cluster-galaxy luminosity function over a range of 
6 magnitudes. Moreover, the two luminosity functions 
are identical, except for a multiplicative constant. 
However, the prediction of a weak correlation of 
absolute magnitude of first ranked cluster galaxies 
with cluster richness is not borne out by the data of 
Sandage and Hardy. The proposed expression may 
therefore fail at the extreme bright end of the lumin- 
osity function, but the agreement is otherwise excellent. 

The apparent magnitude ra* may be determined 
with an accuracy of order 0.25 mag for most clusters 
if one assumes that the parameter a has a universal 
value. The data for most clusters suggest that a and 
M* are constant from cluster to cluster, although at 
least two clusters appear to have substantially dif- 
ferent luminosity distributions. Further observations 
would be helpful in confirming or resolving the ap- 
parent discrepancy. 

It is my pleasure to acknowledge helpful discussions 
with Drs. J. Bahcall, J. Gunn, A. Oemler, W. Press, 
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