REDSHIFTS FOR SOUTHERN QUASARS

I. W. A. Browne

Nuffield Radio Astronomy Laboratories, Jodrell Bank

Ann Savage*

Royal Greenwich Observatory, Hailsham, Sussex

and J. G. Bolton

Division of Radiophysics CSIRO, PO Box 76, Epping, NSW 2121

(Received 1975 September 24)

SUMMARY

Spectroscopic observations of 21 quasi-stellar objects have been made with the Anglo-Australian 3.9-m telescope. Redshifts have been determined for 15 of the QSOs. Two other objects may have a single emission line while four show no features at all.

Redshifts for 15 southern QSOs have been obtained using an image-tube scanner (Robinson & Wampler 1972) at the Cassegrain focus of the Anglo-Australian 3.9-m telescope. Slit dimensions of 3×3 arcsec were used to match the

		· · · ~					
Parkes	Optical pos	sition (1950.0)	~ / ``	~ ()		Red-	_
source	RA	Dec.	S(2700)	S (5000)	Magni-	shift	Foot-
number	hm s	o / //	(Jy)	(Jy)	tude	2	note
0122-00	01 22 55.15	-00 21 31.2	1.41	1 · 24	17 · 1	1.08	I
1302 – 102	13 02 55.83	-10 17 16·7	1.53	1 · 28	16.1	o·286	2
1352 - 104	13 52 07.8	- 10 26 26	o·79	o·79	18.6	0.335	2
1451 - 375	14 51 18.25	-37 35 22.9	1.21	1 · 84	16.2	0.351	3
1954 – 388	19 54 39.01	-38 53 12.6	2.00	2.00	17.2	0.63	4
1958 — 179	19 58 04·64	-17 57 16.8	1.11	1.12	18.2	0.62	2
2021 - 330	20 21 26.9	-33 03 25	0.79	0.90	19.9	1.42	5
2044 – 168	20 44 30.78	-16 50 09.4	0.77	o·80	16.9	1.943	2
2204 — 54	22 0 4 26·15	-54 OI 14·3	2.20	2.82	18.0	0.21	6
2227 – 399	22 27 45 2	-39 58 24	I •02	1.05	18.2	0.353	5
2243 - 123	22 43 39.76	-12 22 41·I	2.74	2.38	17.3	0.63	2
2255 – 282	22 55 22.45	-28 14 25.2	1.38	1.23	16.2	0.93	2
2310-322	23 10 27.5	-32 14 07	۰49	0.30	16.6	0.340	5
2320 - 035	23 20 57.51	-03 33 33.3	0.45	o·39	18.6	1.41	5
2320-035W	23 20 52.04	-03 33 30.6			20.6	2.04	5

TABLE I

List of OSOs with redshifts

References to finding charts

- 1. Bolton & Ekers (1966).
- 2. Peterson et al. (1973).
- 3. Peterson & Bolton (1972).
- 4. Shimmins et al. (1971).
- 5. Peterson & Bolton (1973).
- 6. Savage, Bolton & Wright (in preparation).

* Present address: ANRAO, PO Box 276, Parkes, NSW 2870.

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System

			TAF	BLE II				
			Details of inc	dividual spectro	a			
r) Irce	(2) Adopted	(3)	1	(4) Expected	(5) Measured	(6) Line	(7) Line/	(8) Wavelen <i>o</i> th
aber	redshift (z)	Line identifica	ation (Å)	wavelength $(Å)$	wavelength $(Å)$	width (Å)	continuum ratio	range (Å)
8	80·1	С III] Мg II	1909 2798	3971 5820	3968 5848	125 115	4.0 6.0	3573-6133
- 102	0.286	Mg II O III H2 II	2798 3133	3598 4029	3601 4011	50	8.0	3301-5861
		$\begin{bmatrix} 0 & \Pi \end{bmatrix}$ $\begin{bmatrix} Ne & \Pi \end{bmatrix}$ $H\alpha$	3203 3727 3869 4340	4119 4793 5581	4130 4788 4981 5586	NR	7 0	
- 104	0.332	Mg II [Ne V]	2798 3426	3727 4563	3728 4566	40	1.2	3301-5861
375	125.0	Mg II [Ne v] [O II] [Ne III] Hy+[O III]	2798 3426 3727 3869 4355	3696 4526 4923 5111 5753	3691 4528 4928 5111 5753	50 NR NR NR blend	0.0	3578-6138
.388	0.63	Mg 11	2798	4571	4571	60	0.4	3578-6138
179	59.0	Мд п [Ne v] [О п]	2798 3426 3727	4617 5653 61 50	4632 5653 6153			3297 — 7329
330	74.1	C IV C III]	1549 1909	3826 4715	3828 4732	So	0.0	3301-5861

1975MNRAS.173P..87B

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System

2044 — 168	I · 943	Lya N v Si Iv+O Iv] C Iv C III]	1216 1240 1400 1549 1909	3579 3649 4120 4559 5618	3576 3651 4123 4538 5608	30 50 blend 50 35	4 н о н о 0 · · 0 7 · 4	3301–6138
2204 - 54	0.51	Mg II	2798	4223	4223	40	۲.0	3578-6138
2227 339	0.353	Мg п [Ne v] [0 п] [Ne 11] [Ne 111]	2798 3426 3869 3968	3702 4533 4931 5119 5250	3690 4533 4933 5123 5265	100 25 NR 15 NR	и и и и о 9 и о и и о 1 и о и и о	3572-6133
2243 — 123	0.63	Mg II He II	2798 3202	4561 5219	4570 5213	50 50	1.I	3285-7329
2255 - 282	6.0	С ш] Мg п	1909 2798	3684 5400	3678 5423	100 50	0. I	3578-6138
2310-322	0.340	Mg II [Ne v] [O u] H8 H <i>y</i>	2798 3426 3727 3869 4101 4340	3749 4591 4994 5184 5816	3753 4580 5188 5508 5833	85 NR NR NR NR	00000 20000 00000	3572-7329
		Hβ [0 II] [0 II]	4861 4959 5007	6514 6645 6709	6512 6644 6709	150 15 15	0.0 9.0 1.8	
2320 - 035	1.41	С IV С III]	1549 1909	3733 4601	3743 4593	75 75	л.5 0.5	3578-6138
2320 – 035W	2.04	Lyœ Si iv+O iv] C iv	1216 1400 1549	3697 4256 4709	3693 4258 4711	125 blend	0	3578-6138

89p

 \circledcirc Royal Astronomical Society $\, \bullet \,$ Provided by the NASA Astrophysics Data System

1975MNRAS.173P..87B

NOTES ON INDIVIDUAL OBJECTS

- This object was observed by Lynds (1967) who gives a redshift of 1.070. 0122 - 00Our measured wavelengths for the lines identified as C III] and Mg II are higher than his by 20 and 50 Å respectively. The Mg II line appears to be asymmetric, suggesting self-absorption in the blue wing. This absorption may have developed since Lynds' observation.
- The redshift for this object is doubtful. It depends on the identification of 2021 - 330 a weak and broad feature at λ 4732 Å with C III] (λ 1909).
- This object has a strong emission-line spectrum similar to that of PKS 2044 - 168 0237 – 23. He II (λ 1640) is probably also present and the N v (λ 1240) is unusually prominent. There is a sharp absorption feature in the C IV emission line with a redshift of 1.928 and a corresponding feature in the Ly- α line at the same redshift. Further study of this object with higher resolution would probably be of interest.

Fifty arcsec north of 2044-168 lies a second object with ultraviolet excess. This was found to be an 18 mag white dwarf with the Balmer lines in absorption near zero redshift.

- The Mg II line appears to have a narrow emission core ≈ 25 Å wide super-2243 - 123 posed on a wider feature \approx 150 Å wide.
- The redshifts deduced individually from the C III] and Mg II lines are 2255 - 2820.926 and 0.938. The discrepancy is clearly due to self-absorption in the blue wing of the Mg II line as in the case of 0122 - 00.
- The H β line has a narrow emission core ≈ 15 Å wide superposed on a 2310-322 wider feature \approx 150 Å wide.
- This is one of a number of ' pairs ' of quasars found by Bolton & Peterson (see Wall 1974). This pair had previously been observed by Wills & Wills (see Wills 1974) who suggest a redshift for 2320-035W (the radio-quiet 2320 – 035 W member of the pair) of 2.04 on the basis of lines at λ 3700 ± 20 Å and λ 4700 ± 20 Å, in good agreement with our result. They found one line at λ 3735 ± 10 Å in the spectrum of 2320 – 035 but failed to detect the second which clearly establishes our redshift of 1.41. At the time of their observations (1974 August), Wills & Wills (private communication) reported that both objects were ≈ 19 mag; however, our observations suggested that 2320-035W is now 2 mag fainter than 2320-035 which is probably 18.6 mag.

ITS resolution of 7 Å. Twenty-one quasars were observed in a total of 17 observing hours during 1975 August 6 to 10. Integration times varied between 16 and 100 min.

The objects for which redshifts were determined are listed in Table I. The coordinates given to the nearest arcsec were estimated from the Palomar Sky Survey prints with the aid of transparent overlays. The more precise positions were measured at Parkes except for 0122-00 of which the position is taken from Argue, Kenworthy & Stewart (1973). Also given in Table I are radio flux densities recently measured at 6 and 11 cm with the Parkes 64-m telescope. The magnitudes are estimated directly from the count rate of the ITS.

Apart from the QSOs listed in Table I, six others were observed, five in the wavelength range $\lambda\lambda$ 3580 to 6080 Å and one (1424 – 11) in the range $\lambda\lambda$ 3300 to 5800 Å. No definite lines were found in the spectra of 2012-017, 2131-021, 2240-260 and 2312-319. The spectrum of 1424-11 shows one broad line at λ 5076 Å which is possibly Mg II at a redshift of 0.81, while 1452-217 may have an emission feature at λ 4998 Å.

2320 - 035
and
2220 02 rW

Redshifts for southern quasars

Table II lists the wavelengths of the lines seen in the spectra of the QSOs, their identifications, and the expected wavelengths of these lines at the adopted redshifts. Whenever possible, redshifts were calculated from the narrow forbidden lines in preference to other broader emission features. Also given are half-power widths for lines with high signal-to-noise ratios (NR—not resolved—indicates a width approximately equal to the instrumental profile width of 7 Å), and the ratios of the line strengths to those of the interpolated continuum.

ACKNOWLEDGMENTS

We thank Dr R. A. E. Fosbury for assistance in obtaining some of the spectra and the staff of the Anglo-Australian Observatory for their cooperation. The spectrograph was kindly loaned by Professor D. E. Osterbrock of Lick Observatory.

REFERENCES

Argue, A. N., Kenworthy, C. M. & Stewart, P. M., 1973. Astrophys. Lett., 14, 99.

- Bolton, J. G. & Ekers, Jennifer, 1966. Aust. J. Phys., 19, 559.
- Lynds, C. R., 1967. Astrophys. J., 147, 837.

Peterson, B. A. & Bolton, J. G., 1972. Astrophys. Lett., 10, 105.

Peterson, B. A. & Bolton, J. G., 1973. Astrophys. Lett., 13, 187.

Peterson, B. A., Bolton, J. G. & Shimmins, A. J., 1973. Astrophys. Lett., 15, 109.

Robinson, L. B. & Wampler, E. J., 1972. Publ. astr. Soc. Pacific, 84, 161.

Shimmins, A. J., Bolton, J. G., Peterson, B. A. & Wall, J. V., 1971. Astrophys. Lett., 8, 139. Wall, J. V., 1974. In Proc. ESO/SRC/CERN Conference on Research Programmes for the

New Large Telescopes, 265, ed. A. Reiz, Geneva.

Wills, D., 1974. HEAD-AAS discussion. QSOs-Recent Developments, Gainesville, Florida.