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Summary. A numerical solution of radiative transfer
equation has been obtained in spherically symmetric
homogeneous medium with Rayleigh’s phase function
in the frame work of discrete space theory of Grant and
Hunt (1968) and Peraiah and Grant (1973). The fast
doubling algorithm has been used in spherical cases
for large optical thicknesses and highly extended spher-
ical shells. Fluxes have been conserved to the machine
accuracy except in the case of large values of B/A (ratio

of outer to inner radius of the atmosphere) where
doubling algorithm has been used and flux is conserved
up to few units in the sixth decimal place. The linear
polarization is found to be about 15% for B/A=5 and
7 =5-10(where 7 is the total optical depth of the medium).
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1. Introduction

Chandrasekhar (1950) gave an explicit mathematical
formulation for the equation of transfer of linearly
polarized radiation in plane parallel atmospheres.
Further work on this problem was done by Code (1950),
Harrington (1969, 1970) and others all of whom assumed
plane parallel approximation.

The quasi-stellar object 3C446 showed a high degree of
polarization (Burbidge and Burbidge, 1967, p. 77) of
about 10%. In estimating fluxes from a “standard”
QSO, they found (p. 121) that the radius of the shell
to be about 10'° cm with a thickness of 10*”7 cm which
suggests the presence of extended atmospheres attached
to these objects (although the atmosphere is not highly
extended, the presence of scattering complicates the
calculation of the solution of radiative transfer equation).
Recently Serkowski (1970) found polarization in the
stars with extended atmospheres or spherical shells.
Polarization has also been found in late type stars
(Vardya, 1970 and see references given there). Polariza-
tion is caused by scattering by electrons in early type
stars and by molecules in late type stars and both types
of scatterings have the same angular distribution given
by the solution of transfer equation with Rayleigh’s
phase function. Consequently one must take scattering
into account in calculating the transfer -of linearly
polarized radiation. Whenever there is scattering in
transfering radiation, we may have to iterate for the
solution of the transfer equation. In problems dealing
with spherical symmetry, the ray continuously changes

its direction with the radius vector which amounts
again to some sort of scattering, which we shall call
curvature-scattering. This, taken together with the
scattering either by electrons or by molecules would
greatly complicate the process of emergence of radiation
from such atmospheres. There have been some attempts
towards these problems in the recent past (Cassinelli
and Hummer, 1971; Schmidt-Burgk, 1973, and others).
Peraiah and Grant (1973, henceforth called paper I)
developed a method to calculate a direct numerical
solution of radiative transfer equation in spherical
shells based on the discrete space theory of Grant and
Hunt (1969a,b). A slightly different version of this
approach was used by Plass et al. (1973) and was found
to be an extremely fast algorithm by which one can
calculate the radiation field at any given point inside
the medium directly.

We shall calculate the angular distribution of linear
polarization in extended homogeneous spherical me-
dium with Rayleigh’s phase function. The primary aim
of this paper is just to see how curvature affects the
emergent radiation field from a completely scattering
medium. However, one cannot compare these results
with those of observations as one observes fluxes from
either a distorted surface of a star or from one of the
components of a close binary system during eclipse
where as we calculate mainly the angular distribution
of the specific intensities. The polarization of distorted
stars with extended atmospheres will be treated in a
forthcoming paper.
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2. Discretization of Radiative Transfer Equation

The transfer equation in divergence form in spherical
symmetry is

1
LS )+ (= ) + 010
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where @ (r) is the albedo for single scattering, I(r, u) is
the specific intensity, r = radius, u = cosf, o(r) is the
absorption coefficient, b(r) is the source inside the
medium and p(r, 4, i') is the phase function.

If we write

Ulr,w)= I (r, [l) (2)

and setw (r)= 1, (as we are considering only scattering)
we can rewrite Eq. (1) as,

W L (UG ) + U
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for positive u e (0, 1).
And
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for the oppositely directed beam.
If the radiation field is represented by two perpendicul-
arly polarized intensity beams, then

UL (r’ H)
Un(r )’ ©

where U, and Uy, refer respectively to the states of polari-
zation in which the electric vector vibrates along and
perpendicular to the principle meridian. The phase
function is given by (see Grant and Hunt, 1968),
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Now the transfer equation for each component U, and
Uy can be written as,
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The equations for Uy are similar.

The discrete representation of Egs. (7) and (8) together
with the two similar equations for Uy is written following
paper I as,

M*[U\ - U ]+ [4% T, wts T AL U] +Tn+,}Ut-%

=31, (PR Uy + Py c* Ups ) ©)
and
M*[U;” - U5 ]—e A4t Uy +A* U J47,,, U5
=3T3 {Prrs¢* Ul + P c* Uy}, (10)
where
Ux(L
% = ym
(U, (L) U, -1(L)
U (1) = Un,?(L) and U~ ()= Un,—:z(L) .. (1)
U, D) Uy, (L)
Un+i(L)=Urlry, tu), j=1,2,...m

The vector U*(R) is similarly defined. And,

M . c - .
M*=[. M]’ M =Lu;05] ; c*:[' c]’
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k=1,2,...,m

where p}° and c}® are the roots and weights of a suitable

quadrature formula. Furthermore,
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with similar expressions for P, %, P 5, PLisn+3
represents the average of the cell bounded by r,
andr,;.

[A cell is defined as that which has it’s thickness less

. than or equal to the critical step size. See Eq. (18).] And,

n

Tn+§-= _" a(r)dr=an+%(rn_rn+l)'

Tn+1
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The curvature factor g, is defined as

g.=4r/r,

where Ar is the thickness of the cell (geometrical) and
7 is the mean radius of the cell. In all these calculations
we have taken 7 as the outer radius of the basic cell. And,
"

A

H*

4 i] |
where A , are curvature matrices (see paper I or Peraiah,

1973). The average intensities over the cell are expressed
as a weighted mean of the interface intensities. Thus,

(I—' nt%—)Un++ nt%Un++1= n-'-l--g-’ (12)

(I" n—-f-i—)Un—-f-l-i'Xn_-i-%Un_: n_-l-%s (13)

where X%, are 2mx 2m diagonal matrices with the
structure
Xo+3(L)

Xni+ 1= (1 4)

Xn+ %(R)
where X, ., are diagonal m x m matrices. Usually, we
choose X, ., =7 I (I is the identity matrix) for diamond
scheme and X, . ; =1 for “step” scheme (Carlson, 1963).
Other choices of intermediate character are available
(Grant, 1968).

It is now straight-forward to calculate the transmission
and reflection matrices for a given shell of thickness ©
from Egs. (9) and (10) following paper I [see Eqgs. (2.13)
and (2.14) and the Appendix].

Flux conservation is ensured by satisfying the necessary
condition [see the last of Eq. (3.6) of paper I] that

IS, n+ 1) =1

which, in terms of transmission and reflection matrices
(see Appendix of paper I) becomes,

ITr+1,n)+R(n+1,n) =1
ITn,n+1)+Rn,n+1)|=1.
And this leads to the two relations [Eq. (4.3) of paper I]

(13)

(1) Y cjdf;—A;)=0 forallk (16)
j=1

and [from Eq. (3.9) of Grant and Hunt, 1969b]

m

23 Z ;[P 1 (15 ) + Po 1 (15 1)
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+ Py (—pp )+ Py (—py pd]=1 forallk,

and

3 Y 0Py (> i) + Pay (o i) + Pra(— pjs 1)
i=1

+ Pyy(—pj m)]=1 forallk,

and two other similar equations for P,.; and P,,‘E,;.

The right hand side of Eq. (17) need not be exactly 1
because the calculation of the p matrices depend upon
u; which are taken from any quadrature formula
depending upon the requirement of the problem. If
this is not satisfied exactly, renormalization of the
elements of these matrices is necessary (see Plass et al.,
1973). We have used the zeroes and weights of Gauss-
Legendre quadrature on [0, 1] and the relations (17) are
satisfied to the machine accuracy.

The emergent radiation field can be calculated either
by the internal field algorithm or by the external field
algorithm (Grant and Hunt, 1968). The former calculates
the radiation field at any point inside the medium at the
expense of large machine storage space and the latter
calculates only the emergent radiation without any need
of storage space, to the same accuracy. We have used
both algorithms depending upon the result that is
sought.

3. Results and Discussion

Calculations have been made for optical depths up to
10 and the ratio B/A (ratio of outer to inner radius of
the spherical medium) has been taken from 1 to 5.
Fifty discrete points along the radial direction are
choosen (N = 50). The step size At is choosen so that

;T304
M —wpjic)
to ensure non-negativity and hence stability of the

algorithm. The curvature factor of the outermost
shell is

_ B-4
Qout = NB

At < At

crit — m}n

(18)

(19)

and in terms of g,,,, we can calculate g, for any shell n as

Qout i
1 —(n'“ 1)Qout

To maintain stability and non-negativity of the solution,
we must obtain non-negative transmission and reflec-
tion matrices (for simplicity we write ¢t and r matrices)
which satisfy the relation (15) [see Section (3) of paper I]
and their calculation involves the stepsize restriction
given by the inequality (18) containing the curvature
factor ¢ as defined in (19) and (20). This forces us to"
select small ¢’s in consequence of which we have to
employ a large number of shells. Therefore we have to
use a proportionately large machine storage space as
the diffuse transmission and reflection matrices are to
be stored at the boundary of each shell.

We divide the medium of interest into N shells (where N
depends mostly on the machine capacity) and if in any
shell, A7 > At,,, then subdivide it into smaller shells
until, in each shell the condition 41 < A7, is satisfied.
Now, the t & r matrices for each subshell with its ¢ are

o= (20)
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calculated and they are added by star algorithm [see
Egs. (3.7) and (3.8), paper I]to obtain the ¢t & r matrices
for the original shell. However, from Egs. (19) and (20),
we see that ¢ increases from the surface (n=1) to the
bottom (n = N) of the atmosphere and hence the number
of subshells in each shell increases and so does the num-
ber of star additions—a time consuming process. So,
instead of calculating the ¢t & r matrices for each of the
subshells with different ¢’s, we can calculate them by
using an average ¢ of all subshells and add them by
star product, doubling the shells everytime we use the
star algorithm which we shall call doubling process. By
this process, we can save about 50% on the computing
time but with some loss of accuracy. The flux could be
conserved up to few units in the sixth decimal place.
The system seems to be quite stable even when we use
quite large optical thicknesses and highly extended
spherical shells.

After we calculate the t & r matrices, the radiation field

can be computed by means of either internal field or
external field algorithms with the boundary conditions
given below. _

No incident radiation has been given at T=0(n=1).
U1+ (L) = 0 .

Uz (R)=0 for all y;

and an unpolarized
t=Tm=N+1)

Un+1(D)=1
Uy+1(R)=1

radiation is incident at

for all p;

so that the flux ) Uy, (L or R)ujc;=1.
i=1

1

-

101

-0

-005 L
-1 Y +1

Fig. 1. The angular distribution of specific intensities (I, = U,/r?
and I = Ug/r?) for the radial coordinate r, (1=1 to 50) for B/4 =1
and 7 = 10. Dashed curves represent I, and continuous curves repre-
sent Iz. Resolution between I, and I can be found only from n<5.
Numbers represent n

1.

.001

Fig. 2. Same as in Fig. { except that B/4 =5, i.e., spherical case. Notice
that I; and I are resolved all along the radius except deep inside the
medium. Notice also that at u~ +1 or —1, I, = Iz which is true for

. B/A=1 in Fig. 1 also. Numbers refer to n

Fig. 3. Angular distribution of the emergent radiation for the indicated
values of B/A. Dashed curves represent I; and continuous curves
represent Ip. Notice that at ux~1,I; =1y
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Fig. 4. The angular distribution of polarization along the radius
vector (n=1 to 50) for =10 is given. Continuous curves represent
spherical case for B/4 =5 and dashed curves represent plane parallel
case for B/A=1. At n=50, for B/A=1 the polarization is too small
to be shown here. Numbers refer to n

.001

0 K 1

Fig. 5. Angular distribution of polarization of the emergent radiation
for 7= 10 and for the indicated parameters of B/A (=1 to 5)

The degree of polarization P, of radiation from any shell

n is calculated by the relation

Pi — Un:t (R) - Uni (L)
"R+ UL

The results are presented in Figs. 1—6. In Figs. 1 and 2
we have shown the angular distribution of specific

1)

Fig.6. Polarization is plotted for each angle g;(j=1 to 4)
(cos™p, ~86° cos lu,~71° cos lus=x47°, cos”'p,=22°) for
=10 against B/4

intensities Iz and I (=(Ug, U)/r?) along the radial
direction for plane parallel and spherical cases respec-
tively, for the indicated parameters of t and B/4. One
can notice that the differences between I and I, are
larger in spherical system than in plane parallel systems
and hence larger polarization in the former systems.
This is due to the fact that curvature scattering enhances
the effects of Rayleigh’s scattering. In Fig. 3 we have
given the angular distribution of the emergent radiation
for B/JA=1,3,5 and t=>5 which is quite similar in its
nature of variation to that in Fig. 4 of paper 1. We notice
that the difference between I, and I diminishes as we
go from u~0 to u= 1, that is, the polarization increases
towards the limb. In Fig. 4 the radial distribution of
polarization defined by Eq. (21) is plotted against
uel[—1, +1]. Here n=50 and n=1 correspond respec-
tively to the bottom and surface of the atmosphere.
One can notice that both in plane parallel and spherical
cases there is a progressive increase in polarization
towards the surface. In plane parallel case the polariza-
tion is less than that in spherical case at a given point in
the atmosphere. However, the maximum of polarization
occurs around u =~ 0 more towards into the atmosphere.
This is more so in plane parallel than in spherical case.
So, one should generally be able to observe polarization
in stars with extended atmospheres which explains the
fact that Serkowski (1970) found polarization only in
the stars with extended shells or atmospheres. The
emergent angular distribution of polarization given in
Eq. (21) is plotted for B/4=1,3 and 5 in Fig. 5. There
is a substantial difference between polarization for
B/A=1 and that for B/A=3 and a further increase in
B/A from 3 to 5 does not significantly increase the
polarization as fast as it was from that at B/A=1 to
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that at B/4 = 3. Figure 6 gives the trend of polarization
with respect to B/A for each ray. Again, in spherical
case we find more polarization than in plane parallel
case. From these results we notice that the polarization
could be as large as 15 %. One must however investigate
the polarization of radiation from the distorted surface
of a star which is under consideration.
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