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ABSTRACT 

This paper derives linear equations that describe dynamical gravitational, electromagnetic, and 
neutrino-field perturbations of a rotating black hole. The equations decouple into a single gravita- 
tional equation, a single electromagnetic equation, and a single neutrino equation. Each of these 
equations is completely separable into ordinary differential equations. The paper lays the mathe- 
matical groundwork for later papers in this series, which will deal with astrophysical applications : 
stability of the hole, tidal friction effects, superradiant scattering of electromagnetic waves, and 
gravitational-wave processes. 
Subject headings: black holes — gravitation — neutrinos — relativity — rotation 

I. INTRODUCTION 

This is the first in a series of papers which will deal with dynamical processes near a 
rotating black hole. The underlying mathematical technique throughout the series is 
to linearize the Einstein or Maxwell-Einstein equations around a known stationary 
black-hole solution, in this case the Kerr (1963) metric. This technique goes beyond 
previous work in which a rotating black hole has been treated as a fixed geometrical 
background for physical processes: the linearized equations give the hole the full 
dynamical freedom of small perturbations, including the possibility of gravitational 
and electromagnetic waves, secular changes in its mass and angular momentum, 
interaction with accreting test matter or distant massive objects, and so on. 

The fundamental perturbation equations which will be used throughout the series 
are derived in this paper; in form, the equations are separable partial differential 
equations whose independent variables are certain decoupled components of the Weyl 
or Riemann tensor, or of the electromagnetic field tensor. Some of the applications to 
be treated in subsequent papers make direct use of only these decoupled components. 
Other applications require that one consider all components of the electromagnetic 
or gravitational field. Here, a concentration of attention on only the decoupled com- 
ponents would not a priori seem to be justified. However, for both gravitational and 
electromagnetic perturbations, it can be proved that the decoupled components con- 
tain complete information about all nontrivial features of the full perturbing field; 
this completeness will be discussed in a subsequent paper. For the electromagnetic 
case the result is due to Fackerell and Ipser (1972); for the gravitational case it is due 
to Wald (1973). 

How does one obtain linearized perturbation equations, say for gravitational 
perturbations? A straightforward way is to start with the Einstein equations for a 
metric and to let gMV = + /zMV

ß, where the superscripts A and B denote back- 
ground and perturbation quantities, respectively. The field equations are then expanded 
to first order in /^V

B, yielding a set of linear equations for the perturbations. 

* Supported in part by the National Science Foundation [GP-36687X, GP-28027]. 
f United States Steel Foundation Fellow. 
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636 SAUL A. TEUKOLSKY Vol. 185 

This method has already been applied to the Schwarzschild metric (Regge and 
Wheeler 1957; Vishveshwara 1970; Zerilli 1970). In this case, the background metric 
is static and spherically symmetric, so the time and angular dependence can easily be 
separated out of the equations. The resulting coupled radial equations can then be 
reduced to two decoupled equations, one governing odd-parity perturbations (Regge 
and Wheeler 1957) and the other governing even-parity perturbations (Zerilli 1970). 

Even in the Schwarzschild case, this procedure involves considerable algebraic 
complexity. In the Kerr case, where the background metric is much more complicated, 
nobody has carried out a similar program. Moreover, the replacement of spherical 
symmetry by axial symmetry means that a separation into spherical harmonics is no 
longer possible; one expects to end up with partial differential equations in r and 6 
instead of ordinary differential equations in r. 

Fortunately, there is an alternative approach to the problem. This is provided by the 
Newman-Penrose (NP) formalism. We shall use the notation of Newman and Penrose 
(1962), and equations from that paper will be cited as NP 2.1 and so forth. The NP 
formalism arises naturally from the introduction of. spinor calculus into general 
relativity. It can also be regarded as a special type of tetrad calculus. Four null vectors, 
conventionally called /, n, m, and hi*, are chosen at every point of spacetime. (An 
asterisk denotes complex conjugation. The vectors / and n are real.) All tensors are 
projected onto the null tetrad. The full set of NP equations is a system of coupled 
first-order differential equations linking the tetrad, the spin coefficients (essentially 
Ricci rotation coefficients), the Weyl tensor, the Ricci tensor, and the scalar curvature. 
To do perturbation theory in this formalism, one specifies the perturbed geometry by 
/ = Z"4 + /B, n — nA nB, etc. All the NP quantities can then be written in this form: 
iff2 = $2A + D = Da+ Db, etc. The complete set of perturbation equations is 
obtained from the NP equations by keeping B terms only to first order. 

In the Schwarzschild case, this program has been carried out by Price (1972) and 
extended by Bardeen and Press (1973). The most important result of this approach is a 
decoupled equation for each of two components of the Weyl tensor, 0O

B and 04
B. 

As mentioned, it turns out that each of these quantities alone contains complete 
information about all nontrivial perturbations. 

The Schwarzschild and Kerr metrics are very similar from the NP point of view. 
This similarity allows us, in this paper, to derive decoupled Kerr-metric equations for 
</r0

B and i¡j±b. Moreover, we shall demonstrate the unexpected result that these equa- 
tions, like those for Schwarzschild, are separable. 

Some of the results in this paper have been reported without proof in a short letter 
(Teukolsky 1972). The purpose of this paper is to present the results in greater detail, 
with full derivations, and in a form which will lay the foundation for the applications 
to be discussed in subsequent papers of this series. 

The plan of the paper is as follows : In § II the decoupled gravitational perturbations 
equations are derived using the NP formalism. Section III derives decoupled equations 
for electromagnetic test fields. In § IV the equations are separated and written as a 
single master equation. Section V discusses the physical boundary conditions associ- 
ated with the equations, and how to calculate the energy flux and polarization of 
gravitational and electromagnetic waves. Section VI previews applications of the equa- 
tions to astrophysical problems. Appendix B treats the neutrino equation in the Kerr 
background. Readers unfamiliar with the NP formalism may skip §§ II and III and 
treat the first few equations of § IV as definitions of the NP quantities in terms of more 
familiar tensor quantities. 

For reference, we give the definitions of the NP quantities on which attention will 
be focused in this paper. The electromagnetic field is characterized by the three com- 
plex quantities 

¿o = FJW, + m*"mv), <f>2 = , (1.1) 
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637 No. 2, 1973 PERTURBATIONS OF ROTATING BLACK HOLE 

where FßV is the electromagnetic field tensor. Equivalently, 

= 2[^1(«[/i/v] + + ^o^*^]] + c.c., (1.2) 

where square brackets on subscripts denote antisymmetrization, and where “c.c.” 
denotes “complex conjugate of the preceding terms.” The gravitational quantities of 
interest will be 

$0 = -Caßy0l
amßlYm0, = -Cttßy0n

arn*ßnym*0 y (1.3) 

where Ca/3y<5 is the Weyl tensor, which is equal to the Riemann tensor in vacuum. 

II. DECOUPLED GRAVITATIONAL EQUATIONS 

The derivation in this section applies to any Type D vacuum background metric. 
(The Schwarzschild and Kerr solutions are both of this type.) Choose the l and /i 
vectors of the unperturbed tetrad along the repeated principal null directions of the 
Weyl tensor. Then 

^0A = 'f>lA = ^3A = 04^ = 0 , 

K
A = aA = vA — Xa = 0 . (2.1) 

Now consider the following three nonvacuum NP equations, taken from Pirani 
(1964): 

(8* — 4a + 7r)«/fo — (D — 4p — 2e)i/f1 — 3ki/j2 = (5 + tt* — 2a* — 2jS)O00 

— (D — 2c — 2p*)O01 + 2<7®10 — 2/c01]L - /c*<D02, (2.2) 

(A - 4y + Mo - (S - 4r - Iß)^ - 3oif,2 = (S + 2** - 2jS)O01 

— (/) — 2e + 2e* P*)(I)o2 A*(Doo 4 2a^^i — 2/c012 ? (2*3) 

(Z) — p — />* — 3c 4 e*)a — (8 — T 4 7T* — a* — 3jS)/c — i/j0 = 0 . (2.4) 

The Ricci tensor terms on the right-hand sides of equations (2.2) and (2.3) are given 
by the Einstein field equations: 

$oo = = ^TßVM
v = IttTu , (2.5) 

and so on, where Ruv is the Ricci tensor and TßV the stress-energy tensor. 
Since ifi0

A, 0!^, oA, ka, and all the $>A vanish, the perturbation equations corre- 
sponding to equations (2.2)-(2.4) are 

(8* - 4a 4 7r)^0
ß - (D - 4p- 2€)aiIj1

b - 3kbi/,2
a = 47t[(8 4 tt* - 2a* - 2ß)ATn

B 

— (D — 2e — 2p*)ATlm
B], (2.6) 

(A — 4y 4 /x)^0
B - (8 - 4r - 2ß)A^1

B - 3M2
A = 4tt[(8 4 2^* - 2ß)ATlm

B 

- (2) - 2e 4 2c* - p*)^^], (2.7) 

(2) - p - p* - 3e 4 €*)AaB - (8 - t 4 77* - a* - 3ß)AKB - ^ = 0 . (2.8) 

To simplify the notation, the labels A will now be dropped from all unperturbed 
quantities. 
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The background satisfies 

Dip2 = 3pip2 , 8>p2 = 3ti/j2 . (2.9) 

Hence equation (2.8) gives 

(D - 3e + <■*-4p - p*)4>2o
b — (8 + tt* — a* — 3ß — 4t)^2kb - ^2 = 0 . 

(2.10) 

The key step in-the derivation is to eliminate from equations (2.6) and (2.7). This 
is most easily effected by using the following commutation relation : 

[D - (p + l)e + €* + qp - P*](8 - pß + qr) 

-[8-(p+ l)ß -a* + TT* + qr](D - pe + qp) = 0, (2.11) 

where p and q are any two constants. This relation holds in any Type D metric, where 
equations (2.1) hold, and can be proved using equations (NP 4.4), (NP 4.2c), (NP 
4.2e), and (NP 4.2k). 

Operate with (Z> - 2>e + e* - 4p - P*) on equation (2.7) and with (8 + tt* - «* 
3/3 — 4x) on equation (2.6), and subtract one equation from the other. The terms 

in i/1]ß then vanish by equation (2.11) with p = 2 and q = —4. The combination of 
aB and kb remaining is exactly that in equation (2.10), and so both of these quantities 
can be eliminated in favor of The resulting equation is : 

[(£> - 3e + e* - 4p - p*)(A — 4y + p) 

- (8 + TT* - a* - 3ß - 4r)(8* + TT - 4«) - 3i/j2]ijj0
B = 4ttT0 , (2.12) 

where 

T0 = (8 + TT* - a* - 3ß - 4t)[(D -le- 2p*)Tlm
B - (8 + TT* - 2a* - 2ß)Tn

B] 

+ (D - 3e + e* - 4p - P*)[(8 + 2tt* - 2/3)7’,m
B - {D - 2e + 2e* - p*)Tmm

B]. 

(2.13) 

This is the decoupled equation for i(i0
B. The full set of NP equations is invariant 

under the interchange l<r+n,m^ m* (Geroch, Held, and Penrose 1972). This sym- 
metry is not destroyed by the choice of / and n which gave equations (2.1). We can 
therefore derive an equation for >/>4

B by applying this transformation to equations (2.12) 
and (2.13): 

[(A + 3y — y* + 4¿t + p.*)(D + 4e — p) 

- (8* -r* +ß* + 3a + 4tt)(8 - T + 4/3) - 3^2]^b = 47r7’1, (2.14) 

where 

r4 = (A + 3y - y* + 4/x + /x*)[(8* - 2r* + 2a)Tnmif - (A + 2y - 2y* + 

+ {8* - T* + ß* + 3a + 4t7)[(A + 2y + 2p.*)Tnmi, - (8* - r* + 2ß* + 2a)Tnn] . 

(2.15) 
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No. 2, 1973 PERTURBATIONS OF ROTATING BLACK HOLE 639 

For those readers familiar with the Geroch-Held-Penrose (1972) version of the NP 
formalism, the derivation in this section is even simpler in that formalism. An equiva- 
lent derivation in that formalism has been given by Stewart (1972). 

Appendix A proves that ip0
B and are invariant under gauge transformations and 

infinitesimal tetrad rotations, and are therefore completely measurable physical 
quantities. 

III. DECOUPLED ELECTROMAGNETIC EQUATIONS 

Many realistic problems involving electromagnetic interactions near uncharged 
black holes can be treated in the “test field” approximation. Since the amplitude of 
the electromagnetic stress-energy is second order in the electromagnetic field, the 
change in the background geometry caused by the electromagnetic perturbation is also 
second order. Thus in Maxwell’s equations this change in the geometry can be 
neglected to first order. 

When equations (2.1) are satisfied, Maxwell’s equations are 

(Z> — 2/3)0! — (S* + 7T — 2a)0o = ZttJí , (3.1) 

(8 - 2t)0! - (A + /X - 2y)0o = 27r/m, (3.2) 

(D - P + 2e)02 - (8* + 277)0! = 2uJm^ , (3.3) 

(8 — r + 2/5)02 — (A + 2/x)0! = 2ttJu , (3.4) 

where the 0’s are the first-order test fields and /z = etc., with Ju the 4-current 
density. 

Operate on equation (3.1) with (8 — ß — a* — 2t- + tt*) and on equation (3.2) 
with (Z) — € + e* — 2p — /o*), and subtract one equation from the other. The identity 
(2.11) with p — 0 and q = —2 shows that the terms in 0i disappear, leaving a de- 
coupled equation for 0O: 

[{D — € + €* — 2/0 — /o*)(A + /x — 2y) 

— (8 — ß — a* — 2t + 7T*)(8* + 77 — 2a)]0O = 277Jq , (3.5) 

J0 = (8 - ß - a* - 2r + 77*)/z - (Z) - e + £* - 2/0 - p*)Jm . (3.6) 

By interchanging / and n, and m and m*, we obtain the equation for 02 (which is 
also derivable directly from eqs. [3.3] and [3.4]): 

[(A + y — y* + 2/x + p*)(D — /o + 2e) 

- (8* + <* + /3* + 2t7 - t*)(8 - t + 2/S)]02 = 277/2, (3.7) 

/2 = (^ + y — y* + 2/x + p*)Jm* — (8* + a + + 2t7 — r*)/n. (3.8) 

Fackerell and Ipser (1972) derived an analogous decoupled equation for 0i, but this 
equation does not appear to be separable in the Kerr case. 

IV. SEPARATION OF THE EQUATIONS 

The next step is to write out the equations in a particular coordinate system. In 
Boyer-Lindquist (1967) coordinates, and in units such that c = G = 1, the Kerr metric 
is 

ds2 = (1 - 2Mrß)dt2 + (AMar sin2 (d^dtdcp - (X/A)dr2 - 'Ldd2 

— sin2 (0)(r2 + a2 -1- 2Ma2r sin2 (6)IH)d(p2 . (4.1) 
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640 SAUL A. TEUKOLSKY Vol. 185 

Here Mis the mass of the black hole, aM its angular momentum, X = r2 + a2 cos2 9, 
and1 A = r2 — 2Mr + a2. When a = 0, the metric reduces to the Schwarzschild 
metric, a nonrotating black hole. 

Any NP tetrad must satisfy the following orthogonality relations: 

/•h = 1 , /ifw* = — 1, all other dot products zero , (4.2) 

so the metric is 

= l»nv + nHv - m"m*v - m^mv. (4.3) 

The relations (4.2) are preserved under the 6-parameter group of Lorentz transforma- 
tions at each point of spacetime. A convenient decomposition of these six degrees of 
freedom is described in Appendix A. Choosing the directions of / and n so that equa- 
tions (2.1) hold uses up four degrees of freedom (eqs. [Al] and [A2]). We choose to 
follow Kinnersley (1969) and use up the remaining freedom by making a “null rota- 
tion” (eq. [A3]) to set the spin coefficient e = 0. The resulting tetrad has [f, r, 9, <p] 
components : 

I» = [(r2 + a2)/A5 ^ o, a/A], n* = [r2 + a2, —A, 0, a]/(2X) , 

nf = [ia sin 0, 0, 1, //sin 0]/[21/2(r + ia cos 0)] . (4.4) 

The nonvanishing spin coefficients are 

/> = — 1 /(r — ia cos 0) , ß = —p* cot 0/(2 V2) , tt = iap2 sin 9/V2 , 

r = —iapp* sin 0/V2 , pu = p2p*A/2 9 y — pu pp*(r — M)/2 , a = tt — ß* , (4.5) 

while 

Í2 = M/>3 . (4.6) 

We use these expressions, and the fact that2 D = lßd/dxß, A = nßd/dxß, and 8 = 
mßd/dxß, to write equations (2.12), (2.14), (3.5), and (3.7) as a single master equation— 
valid equally well for a test scalar field in the Kerr background (s = 0, not derived 
here), a test neutrino field (s = ± 1/2, derived in Appendix B), a test electromagnetic 
field (s = ±1, derived in § III), or a gravitational perturbation (s = ±2, derived in 
§H): 

(r2 + a2) 2\2 
e) W’ + 

4Mar d2ifj 
A dtd(p 

+ 
1 ]a20 

sin2 0J dcp2 

- i"s (*"■ f) - ¿«á (sin "Is) - 4 
a(r — M) i cos 01 3$ 

A sin2 9] 3(p 

— 2s[ 
M(r2 - a2) ÀdA 

J 8t 
— r — ia cos 9\-£- + (s2 cot2 0 — s)ifs — 47rXr. (4.7) 

Here s is a, parameter called the “spin weight” of the field. Table 1 specifies the field 
quantities ÿ which satisfy this equation, the corresponding values of s, and the source 
terms T. 

^ In §§ II and III, A denoted the NP operator nudldxß. In the remainder of the paper A is used 
in its other conventional sense, to denote the function r2 — 2Mr + a2 unless otherwise noted. 

2 See n. 1. 
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TABLE 1 
Field Quantities Spin-Weight s, and Source 

Terms T for Equation (4.7) 

t s T 

í> 0 DO = 47rr 

Xo-1 J See references in Appendix B 
P Xi -i 

to 1 Jo (eq. [3.6]) 
p-2t2 -1 />-V2 (eq. [3.8]) 

toB 2 27*0 (eq. [2.13]) 
P"4<A4B “2 2p-4r4 (eq. [2.15]) 

Consider first the vacuum case (T = 0). Then the master equation (4.7) can be 
separated by writing 

xjj = e-i(ùtém<i,S(d)R(r). (4.8) 

The equations for R and S are 

ia2o)2 cos2 9 ~ Zciajs cos 9 — ^mS g0? ^ — s2 cot2 ö + ^ + ^Nj*S' = 0, 
\ sm2 9 sin2 9 ) 

(4.10) 

where K={r2 + a2)œ — am and \ = A + a2o)2 — 2amw. Equation (4.10), together 
with boundary conditions of regularity at 0 = 0 and tt, constitutes a Sturm-Liouville 
eigenvalue problem for the separation constant A — sA

mi(a<o). For fixed s, m, and aœ, 
we label the eigenvalues by /. The smallest eigenvalue has / = max (|m|, |^|). From 
Sturm-Liouville theory, the eigenfunctions sS

mi are complete and orthogonal on 
0 < 0 < tt- for each m, s, and aoi. When ^ = 0, the eigenfunctions are the spheroidal 
wave functions Sm¿( —a2cu2, cos 0) (cf. Flammer 1957). When aœ — 0, the eigenfunc- 
tions are the spin-weighted spherical harmonics s7

m
z = and A = 

(/ — s){l + ^ + 1) (cf. Goldberg et al 1967). In the general case, we shall refer to the 
eigenfunctions as “spin-weighted spheroidal harmonics.” The numerical calculation 
of these functions and the corresponding eigenvalues is described in Paper II of this 
series. 

When sources are present (T ^ 0), we can use the eigenfunctions of equation (4.10) 
to separate equation (4.7) by expanding 

4ttY,T = í Jcü 2 G(r)sS
mi(8)eim,t’e~iat, 

J Urn 

ip = Í i/to 2 R(r)sSm
l(d)eim'pe~iot. (4.11) 

J Um 
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Then R(r) satisfies equation (4.9) with G(r) as source term on the right-hand side. 
Equation (4.7) is also separable in Kerr coordinates (cf. eq. [5.7]), or any other 

coordinates related to Boyer-Lindquist by í = ¿ + f^r) + /2(0), 9 = 9 + gTr) + 
g2(d\ F = h(r\ d = j(0). 

The reason for the factors p 2 and p-4 in front of and to achieve separable 
equations (cf. table 1) is related to the null rotation used to set e = 0. Had we made 
some other choice, there would in general be different factors in front of each of 
<£()> ^2» to8, and 04

s, but the master perturbation equation (4.7) would be left un- 
changed. (See Appendix A for the transformation properties of these quantities under 
null rotations.) 

V. BOUNDARY CONDITIONS ENERGY, AND POLARIZATION 

To discuss the boundary conditions for the separated radial equation (4.9), it is 
useful to make the transformation 

Y = As/2(r2 + a2)ll2R , dr*/dr = (r2 + a2)/A . (5.1) 

Then 

Y,r*r* + {[K2 - 2is(r - M)K + A(4*>w - A)]/(r2 + a2)2 - G2 - G rîj:} 7 = 0, 
(5.2) 

where G = s(r — M)/(r2 + a2) + rA/(r2 + <z2)2 and a comma denotes partial differ- 
entiation. As r -> 00 (r* 00), equation (5.2) becomes 

7 r*r* + (o)2 + 2icos/r) 7^0, (5.3) 

with asymptotic solutions 7 ~ r ±seTiCúr*, i.e., R ~ e-^r^jr an(j eicor^r(2s + d 
corresponds to 

<l>2, t8 ~ ei(ûr*lr , <f>0 ~ e
iœr*/r3 , to8 ~ ei(ûr*/r5 (outgoing waves) ; 

to, to8 ~ e~i(or*lr , (¡>2 ~ e~iü3r*¡r* , t^8 ~ e~i(or*/r5 (ingoing waves) . (5.4) 

The different power-law fall-offs are dictated by the “peeling theorem” (cf. Newman 
and Penrose 1962). They necessitate special care in numerical integration of the equa- 
tions to avoid losing the small solution in the roundoff error of the large solution. Such 
an integration is described in Paper II. 

The event horizon is at r = r+(r* -> —00), the larger root of A = 0. Near the event 
horizon the transformed radial equation (5.2) becomes 

+ [k2 - 2is(r+ - M)k/(2Mr+) - s2(r+ - M)2/(2Mr+)2]Y x 0 , (5.5) 

where k = œ — mœ+9 œ+ = a/(2Mr+). The asymptotic solutions are 

Y ~ £±i[fc-is(r+-M)/(2Mr + )]r* ^ ^±s¡2e±ikr* 

i.e., R - eikr* or R - A-Se"i;cr*. (5.6) 

The correct boundary condition at the horizon3 can be formulated in a number of 
equivalent ways. For example, way (i) : require that a physically well-behaved observer 
at the horizon see nonspecial fields. (Nonspecial means neither singular nor identically 
zero.) Equivalently, way (ii) : demand that the radial group velocity of a wave packet, 

3 We discuss here only the future horizon; the past horizon need not even exist if the black hole 
was formed by collapse. 
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as measured by a physically well-behaved observer, be negative (i.e., signals can travel 
into the hole, but cannot come out). 

Every physical observer with 4-velocity u has associated with him an orthonormal 
tetrad, his local rest-frame with basis vectors {e¡ = n, e§, e$,}. Corresponding to this 
is a null tetrad: l = et — n = (e*t + ^)/2, m = (^ + ie$)l2112. Conversely, given a 
nonsingular null tetrad, there is a corresponding physical observer. Thus condition (i) 
can be reformulated as: NP field quantities on the horizon should be nonspecial for 
nonsingular null tetrads. 

To examine the tetrad (4.4) on the horizon, we cannot use Boyer-Lindquist co- 
ordinates since they themselves are singular on the horizon. Hence, we transform to 
Kerr “ingoing” coordinates (cf. Misner, Thorne, and Wheeler 1973): 

dv = dt + dr* , 

d<p = dq> + a(r2 + a2)~1dr* . (5.7) 

The tetrad (4.4) is still singular at A = 0 when expressed in these well-behaved co- 
ordinates, but if we perform a null rotation with A = A/2(r2 + a2) (cf. Appendix A), 
the resulting tetrad has [v, r, 6, p] components 

I» = [1, iA/(r2 + a% 0, a/(r2 + a2)], ^ = [0, -(r2 + a2)ß, 0, 0], 

mf1 — [ia sin 0, 0, 1, //sin 0]/[21/2(r + ia cos 0)] , (5.8) 

which show that it is well behaved at A = 0. Under this null rotation, the NP quantities 
of interest transform as follows (cf. Appendix A) : 

P -> 0New [1^2 + . (5.9) 

On the horizon, the asymptotic solutions (5.6) have the forms 0New ~ e-i<*teim<pe-ikr* 
and [s*. Clearly the first solution is the nonspecial one, as can be seen by 
writing it in the form e~iCÛVeim^. The correct boundary condition is therefore 

R - A-se-ikr* (5.10) 

The group and phase velocities of this solution are 

^group dkfdo) —— 1 , ^phase =: k¡(x) — 1 ~f" fTÍCO_j_ /ct) . (5.11) 

The group velocity agrees with condition (ii) above. Note that if maj+lœ > 1, then 

*Wse positive. It turns out that the energy flow down the hole, while always inward 
as seen locally, is determined by ^phase for an observer at infinity. If mto+l<o > 1, energy 
flows out of the hole and the corresponding scattering wave mode is amplified, or 
“superradiantly scattered” (cf. Press and Teukolsky 1972, Misner 1972, and 
Zel’dovich 1972). A detailed discussion of electromagnetic and gravitational super- 
radiance, including numerical values, will be given in a later paper in this series. 

Turn now to the problem of extracting information from solutions of the perturba- 
tion equations. For scalar and electromagnetic fields, there is a well-defined energy- 
momentum tensor at every point of spacetime: 

47r7;v
(scalar> = , 

47r7;v
(em) = {<l>o<f>o*nßnv + 2<¿1<¿1*[/(„«v) + + <t>2<l>2*hh 

- 4<¿o*<£i«(^v) - 4<£1*<£2/0imv) + l^pQ^rn^} + c.c., (5.12) 

where parentheses on subscripts denote symmetrization. Note that when one has 
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solved equation (4.7) for <¡>2, say, fa and fa can be found from equations (3.1)-(3.4) 
which are then integrable Pfaffian equations in r and 6 (cf. Fackerell and Ipser 1972). 
The only arbitrariness in the solution is the freedom to add Qp2 to which corresponds 
to adding a constant charge Q to the hole. 

Often one is interested only in the energy carried off by outgoing waves at infinity. 
Using equations (5.4) and (5.12), we find that the total energy flux per unit solid angle 
can be found from fa alone: 

d2E 
dtdQ 

lim r2Tr
t = 

r-* co 
lim 
r-+ oo Z7T 

(5.13) 

For outgoing waves at infinity, the components of the electric and magnetic fields 
satisfy E§ = £$ = —B§, so from equation(1.1) we find face E§ — iE^. Thus the 
squares of the real and imaginary parts of <£2 are proportional to the amounts of energy 
in the two linear polarization states along the directions and respectively. 

For gravitational waves, one could in principle proceed as follows: Having solved 
equation (4.7) for faB, say, solve the complete set of (nonseparable) NP equations for 
the perturbations in the metric. Then use the Isaacson (1968) stress-energy tensor to 
determine the energy-momentum flux at any point in spacetime. Unfortunately the 
equations are so complicated that this is an impractical task. One can, however, find 
the energy flux in the two most important cases : at infinity and on the horizon. 

At infinity, one can use the standard equations of linearized theory (cf. Misner et al. 
1973) to find the energy flux. For outgoing waves with frequency co, 

Therefore, 

-OR2 tete — — o)2(hB§§ — ihBQ$)¡2 . 

d2Eiont) 

dtd£l 
r r2oi2 

■i” -Î6Ï KW + (AW1 - Km 4770) 1^1 (5.14) 

The squares of the real and imaginary parts of are proportional to the amounts 
of energy in the linear polarization states along e& and and ee ± respectively. 
Similar results hold for \¡j0

b and ingoing waves: 

d2E^> 

dtd£l ^6W liAoT (5.15) 

The extra factor of 1/16 comes from the 1/2 in the definition of n as opposed to /. 
Some problems require one to be able to find the ingoing energy at infinity from 

04
b (or the outgoing energy from 0O

B). The method for doing this will be given in Paper 
II. 

To calculate the gravitational wave energy flux on the horizon, one can use the 
results of Hartle and Hawking (1972). From faB on the horizon one can find the shear 
aB of the horizon. The shear gives the rate of change of the area of the horizon, dA/dt. 
The quantity dA/dt contains two terms: dM/dt and da/dt. (See Hartle and Hawking 
1972 for details.) In our case, d(aM)/dt = (m/co)dM/dt, thus enabling us to find both 
dM/dt and da/dt from i/jq

b on the horizon. 
For a stationary, nonaxisymmetric perturbation (co = 0, dM/dt = 0, m #= 0, 

da/dt 0), the radial wave equation (4.9) can be solved in terms of hypergeometric 
functions. This enables one to calculate the spin-down (loss of angular momentum) 
of a rotating black hole caused by such a perturbation. [See analyses by Press 1972 
(scalar perturbation) and Hartle 1973 (gravitational perturbation with a « M).] The 
calculation for arbitrary a will be published in a later paper in this series. 
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VI. DISCUSSION 

The important result presented in this paper is that there exists a tractable method 
of treating perturbations of a rotating black hole. One has to solve a relatively simple 
ordinary differential equation, the radial wave equation (4.9), subject to boundary 
conditions described in § V. The solution lends itself to direct physical interpretation, 
and can be related at infinity to the energy flux of gravitational or electromagnetic 
waves. A subsequent paper in this series will discuss and apply to this work the stronger 
result (due to Fackerell and Ipser 1972 for the electromagnetic case, and due to Wald 
1973 for the gravitational case) that the solution of equation (4.9) in fact determines all 
nontrivial details of the full perturbation, at all radii outside the horizon. 

Later papers in this series will deal primarily with applications of the equations in 
astrophysical contexts, including the dynamical stability of the Kerr metric (Paper II), 
the superradiant scattering of electromagnetic and gravitational waves by an astro- 
physical black hole, the spin-down of an arbitrarily rotating hole which is perturbed 
non-axisymmetrically by a distant massive object, and calculations of the gravitational 
waves emitted by accretion processes. 

I thank William H. Press for many fruitful discussions, and Kip S. Thorne for 
helpful advice. 

APPENDIX A 

The 6-parameter group of homogeneous Lorentz transformations, which preserves 
the tetrad orthogonality relations (4.2), can be decomposed into three Abelian sub- 
groups (Janis and Newman 1965): 

i) / -> /, 

m->m + dl, 

n —> n + dm* + d*m + dd*l ; (Al) 

ii) n —> n , 

m->m + en, 

/ -> / + em* + e*m + ee*n ; (A2) 

iii) /-> A/, 

m exp (id)m ; (A3) 

where d and e are complex numbers and A and 6 are real. Under transformations of 
type (i). 

>Po->tlJo > + 4d*<p3 + 67*2i/>2 + 4d*3>fi1 + ¿PVo, 

(¡>o $0 > ^2 <i>2 H" 2d*<f>i + ¿*2<¿0 • 

For type (ii), 

+ 4eiAi + 6e2t/i2 + 4e3tp3 + e V* , 

<£o -$0 F + £2<f>2 , 4*2 -4*2 • 

(A4) 

(A5) 
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For type (iii), 

i/jq -> A2 exp (2/0)i/ro , A“2 exp (— 2/0)04 , 

0o -> A exp (z0)0o , 02 -> A“1 exp ( — z0)02 . (A6) 

The above relations can be used to prove that 0O
B and 04

ß are invariant under 
infinitesimal tetrad transformations; for, suppose d9e9 A — 1, and 0 are infinitesimal. 
Then 

0oB -> 0oB , 04B -> 04B + 4d*i¡jQ
A [type (i)], 

0oB -> 0oB + 4^0/ , 04B -> 04
b [type (ii)], 

0OB -> 0oB + 2[(A - 1) + iO]i/j0
A , 04B -> 04B - 2[(A - 1) + Z0]04^ [type (iii)]. 

(A?) 

Since i/j0
a = 0!^ = 03^ = 04^ = 0, 0O

B and 04
ß are invariant. 

The quantities 0o
ß and 04

ß are also invariant under gauge transformations (i.e., 
infinitesimal changes of coordinates which leave the tetrad unchanged at each point 
of spacetime). Locally, these transformations are the inhomogeneous part of the 
Lorentz group : 

^ (A8) 

where ^ is infinitesimal. Since the 0’s are scalars, they change as a function of co- 
ordinate location by 

0->0-0.^. (A9) 

Therefore, 

0B->0B - 0V* = ^ (A10) 

since 04^ = 0o"4 = 0. 

APPENDIX B 

In this Appendix we shall show that the neutrino equation, in two-component form, 
also leads to a separable wave equation. We shall not give any discussion of the source 
terms here, nor of the physical interpretation of the solutions. For these, the interested 
reader may refer to Hartle (1970), and Wainwright (1971) and references therein. 

The sourceless neutrino equation (no coupling to electrons or muons) is 

Vaa'<S>a = 0 , (Bl) 

where Q)A is a two-component spinor. fOur notation follows Pirani 1964.) This equation 
can be written in NP form by letting xo and xi denote the components of <¡>A along 
the dyad legs o and i, respectively. Then 

(S* — a + tt)xo = (D - p + e)xi , (B2) 

(A + p, — y)xo = (8 + ß - T)xi • (B3) 

Now consider as a test field on the Kerr background. Operate on equation (B3) 
with (Z> + €* — /> — p*) and on equation (B2) with (8 — a* — r + tt*), and subtract 
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one equation from the other. The identity (2.11) with /? = — 1 and # = — 1 shows that 
the terms in xi disappear, leaving 

[(D + e* — p — iO*)(A — y -f /x) — (8 — a* — T + 77*)(8* — a + 7t)]xo = 0 . (B4) 

The interchange gives 

[(A - y* + ¿X + /x*)(Z) + e - p) - (S* + ^ + 7T - T*)(S +ß - r)]Xl = 0. (B5) 

When written out in Boyer-Lindquist coordinates, these equations are of the same 
form as the master equation (4.7), with = Xo (*? = i) and ^ = p~1Xi (s ^ — i)- 
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