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ABSTRACT 

Bodies in orbit around Kerr black holes will experience tidal gravitational forces. A study of 
the equation of geodesic deviation, referred to reference frames fixed in such bodies, reveals the 
nature of these forces. We here perform this analysis for all circular, equatorial, geodesic orbits 
of the Kerr metric whose mass parameter M and angular-momentum parameter Ma satisfy a < M 
(geometrical units). Free-particle motion, which the deviation equation describes, is simple harmonic 
in the direction perpendicular to the equatorial plane, and we demonstrate the relation between the 
angular frequency of this simple harmonic motion and the circular orbit frequency. 

The equation for free-particle motion leads to a generalized Euler equation that describes fluid 
flow in the orbiting reference frames. We employ the latter to study the conditions for equilibrium 
of infinitesimal, incompressible, homogeneous, self-gravitating fluid bodies in circular, equatorial, 
geodesic motion. Because the potential in the equation depends only quadratically on the local 
coordinates, ellipsoidal figures of equilibrium are possible. For each possible orbit determined by 
the Kerr angular momentum Ma and the orbit radius r, a family of ellipsoids parametrized by the 
fluid density p is in equilibrium. A minimum possible density characterizes each family; this is the 
Roche-limiting density for the orbit. 

For fluid bodies in stable circular orbits, the Roche limit is qualitatively like that in Newtonian 
situations; at the last stable, circular, equatorial orbit of each Kerr metric, where r is a specified 
function of M and of a, equilibrium bodies must satisfy [M/(7r/>r3)] < 0.0664. For fluid bodies in 
the highly energetic, unstable circular orbits near the photon orbits, the fluid density required for 
the existence of a body in equilibrium is magnified by the square of its energy-at-infinity per unit 
mass. 
Subject headings: binaries — black holes — gravitation — hydrodynamics — relativity 

I. INTRODUCTION AND SUMMARY 

Since black holes are nonluminous, they can only be detected by their interaction 
with luminous matter. They may appear as X-ray sources in binary star systems 
(Tananbaum et al. 1972), which are amenable to detailed analysis, and in galactic 
centers (Lynden-Bell 1969, 1971; Lynden-Bell and Rees 1971), sources of prodigious 
amounts of energy. Peebles (1972a) has recently reviewed the situation. 

As a guide to such searches, one needs an understanding of the way in which a 
black hole would interact with nearby matter and fields. Thus, Peebles (19726) has 
examined the distribution of stars which might exist outside of a large black hole and 
has studied star clusters for evidence of such configurations. Test particles in orbit 
near a black hole radiate gravitationally. The most novel model involves a synchrotron 
mechanism; particles in astrophysically implausible, unstable, high-energy orbits 
radiate predominantly in the plane of their orbit (Misner et al 1972; see also Bardeen, 
Press, and Teukolsky 1972; Breuer et al. 1973; Breuer and Vishveshwara 1973; Chitre 

* This paper formed part of a Ph.D. thesis presented to the Faculty of the University of Mary- 
land. 
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44 LESLIE G. FISHBONE Vol. 185 

and Price 1972; Chrzanowski and Misner 1973; and Davis et al. 1972). Certainly the 
most tantalizing interaction is the energy extraction process of Penrose (1969; see also 
Christodoulou 1970; and Christodoulou and Ruifini 1971); here particle decays in 
the ergosphere of a Kerr (1963) black hole can be arranged to extract energy from the 
rotation of the black hole. Recent calculations, however, suggest that this process 
cannot be efficiently employed in realistic breakups of astronomical bodies (Bardeen 
et al 1972). 

In each of these situations, the coupling with the black hole is via a pointlike 
particle. But the effects of finite size are certainly important for some mechanisms which 
exploit the exotic environment near the horizon of black holes. The most obvious 
effect is the tidal deformation of an extended, orbiting body. Though the complete 
two-body problem is intractable, the influence of a large black hole on a nearby, small 
fluid body is calculable. 

The classical study of such effects was made by Roche (1847-1850), who did the 
analysis for a fluid body in Newtonian orbit with a rigid sphere. Chandrasekhar (1969 
and the references therein) conducted the definitive modern treatment of this situation. 

These analyses, and the one given here, all deal with the equilibrium shape of an 
infinitesimal, homogeneous, incompressible fluid body subject to its own gravity and 
to the tidal gravitational field of another body. Nduka (1971) recently performed the 
dynamical Newtonian analysis for the situation of a small satellite which orbits so 
close to a larger body that no equilibrium solution exists for the shape of the small 
satellite. He found that catastrophic disruption of the small satellite occurs, with 
obvious implications for the theory of the origin of the rings of Saturn. Mashhoon 
(1972) has performed a similar analysis using the gravitational field characterized by 
the Kerr metric. 

We will here calculate the equilibrium configurations appropriate for a body in 
orbit around a Kerr black hole. As in the Newtonian analysis, a minimum distance 
of approach exists for an equilibrium body of given density—the Roche limit. 

Thus imagine an observer in equatorial, circular, geodesic orbit in a space described 
by the Kerr metric: 

ds2 = -[a/»]2 + [oj^f + [a>(0)]2 + [a>^f 

rAl/2Vl/2 ~] 2 fyi/2 “12 

, \B1Í2 sin 9 / 2aMr , \12 

(1-1) 

Here A = r2 - 2Mr + a2, S s r2 + a2 cos2 6, and B = (r2 + a2)2 - Aa2 sin2 0; the 
parameters M and Ma give the mass and angular momentum of the black hole, and, 
until § V, we employ the units G = c = 1. The coordinates are those of Boyer and 
Lindquist (1967), and may be considered spherical polar in regions far from the black 
hole. We describe further the Kerr metric and its geodesics in § II. 

The orbiting observer can describe the motion of particles in his vicinity in terms 
of a local coordinate system x\ proper time r, and basis vectors the vectors ^ 
appear in figure 1. Free particles move along geodesics, so their motion with respect 
to the observer’s geodesic is given by the equation of geodesic deviation (see Misner 
1969). In terms of the observer’s coordinates, this equation is (with all x* dependence 
explicit) 

d2xl 

dr2 (^) 
(x3)2 

± 2ejyg 
/m\ 1i2 dx1 

\r7 ¿7 
(1-2) 
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Fig. 1.—The two sets of unit vectors used by an observer in equatorial, circular, geodesic orbit 
around a Kerr black hole. er and ee are unit vectors associated with the locally nonrotating frame, 
while e# is the unit vector tangent to the direction of the orbital motion. The vectors, eu e2, and 
e3 correspond to those used in the Newtonian analysis of Chandrasekhar (1969). With respect to 
an observer at infinity, the two sets of unit vectors orbit around the black hole at the coordinate 
angular velocity associated with equatorial, circular geodesics : ücoord = ±(Mr)1/2/[r2 ± a(Mr)112]. 

where eijk is the totally antisymmetric matrix and the polynomial P = P(r, a) = r2 — 
3Mr ± 2a(Mr)112 vanishes at the photon orbit, the innermost circular geodesic. Also, 
the sign ambiguity refers to prograde or retrograde motion of the observer with respect 
to the rotation of the black hole. As it must, the equation (1-2) reduces explicitly to the 
analogous Newtonian equation in the limit of large r. Moreover, the free particle 
motion it describes is governed by tidal, centrifugal, and Coriolis effects. A derivation 
of the equation appears in § III. 

In a straightforward way, equation (1-2) leads to an equation for the flow of a self- 
gravitating fluid. This derivation and the limits on the validity of the result are the 
subject of § IV. Note here that the resulting fluid bodies must be small in mass and in 
linear extent if the geodesic assumption for their motion is to be valid. 

The equilibrium problem of Roche is then the determination of the characteristics of 
incompressible, homogeneous fluid bodies which are in hydrostatic equilibrium in the 
coordinates of the orbiting observer. With p the pressure of the fluid, p its constant 
density, and ^(x*) its self-gravitational potential, such bodies are in equilibrium if 
the quantity 

is constant on their surfaces. Because 0G(xf) is quadratic in the coordinates xl (see 
Chandrasekhar 1969), ellipsoidal figures of equilibrium are possible. 

For a given equatorial, circular orbit, i.e., for given r and a, the possible ellipsoids 
form a one-parameter family of different shapes, of which one has a minimum density. 
The most important orbits are the last stable orbits and the high-energy orbits near 
the photon orbit; figures 2 and 3 respectively give the minimum densities that equilib- 
rium bodies require. Only in the latter case are the results qualitatively different from 
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Fig. 2.—Roche limits for infinitesimal, homogeneous, fluid bodies of density p in the last stable 
orbits of the Kerr geometries. Here, is the black-hole mass in solar units and Mac is the 
angular momentum of the black hole. For each a > 0, two orbits are possible: one corotating with 
the black hole and one counterrotating. Counterrotating orbits are labeled by a < 0, though they 
occur in the Kerr geometry parametrized by |ö|. In each orbit, a sequence of ellipsoids with varying 
density may be in equilibrium. The Roche-limiting configuration is the one with minimum density. 

the results of the analysis for Newtonian orbits. Further results of this type appear in 
§ V; some have already been published (Fishbone 1912a). 

In a subsequent paper, we will investigate the stability of the relativistic Roche 
ellipsoids with respect to small perturbations, as has already been done in the Newton- 
ian limit (Chandrasekhar 1969). 

Finally, let us give some additional conventions which we subsequently employ. 

[(&)(!')]— 

Fig. 3.—Roche limits for infinitesimal, homogeneous, fluid bodies of density p near the circular 
photon orbits of the Kerr geometries. Here y is the energy-at-infinity per unit mass characteristic 
of the orbit; all other notation is explained in the caption of fig. 2. 
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Repeated indices imply a sum, with Latin letters ranging over spatial indices (which 
may mean r, 9, and O or one to three) and Greek indices over spacetime indices. The 
symbols a/ and co(r) are radial one-forms in different reference frames. We also employ 
the term “Roche limit” either to denote the minimum density of an equilibrium 
configuration consistent with a given orbit or simply to characterize that configuration. 
The meaning will emerge from the context of any given discussion. 

II. THE KERR METRIC, ITS GEODESICS, AND FRAMES 

In Boyer-Lindquist (1967) coordinates, the Kerr (1963) metric appears (Bardeen 
1970a) as equation (1-1). The metric is stationary and invariant with respect to transla- 
tions in the <h- and ¿-directions. For the case a = 0, the metric describes the static, 
spherically symmetric Schwarzschild geometry; while if M = 0, it describes flat space 
in peculiar coordinates (Boyer and Lindquist 1967). The constants M and a are param- 
eters subject to 0 < a2 < M2 in order that causality not be violated (Carter 1968). 
The former is the mass of the black hole while Ma is its angular momentum (Boyer 
and Price 1965; Cohen 1968). With no loss of generality, we will take a > 0; the 
black hole then rotates in the positive O-direction. 

As one approaches a rotating black hole from afar, he will be dragged around by its 
rotation unless he accelerates otherwise. At the so-called static limit, no amount of 
acceleration can prevent a timelike (physical) observer from being dragged around. 
Alternatively, inside the static limit, the world lines of constant r, 6, and O are not 
those of any physical particles. This limit occurs at (Vishveshwara 1968) radius re = 
M + (M2 — a2 cos2 9)112. Between the static limit and the horizon, located at radius 

rh = M+(M2 - a2)112 , (II-l) 

is the ergosphere. 
Since the world lines of constant r, 0, and ® are not always those of physical 

observers and since there is indeed no physical reason for this choice of world lines, 
a different choice of observers (i.e., frames of reference) is desirable. Bardeen (1970c) 
and Bardeen et al. (1972) have shown that the “locally nonrotating frames” satisfy 
the requirements of physical identifiability and global utility. Their world lines are 
orthogonal to the constant-^ hypersurfaces. They are the frames implicit in the 
orthonormal description (1-1) of the metric. 

Whereas the locally nonrotating frames are accelerated reference frames, the frames 
of geodesic observers are not. The latter form the other set selected by physical reasons, 
and it is in these that we wish to understand local physics. Thus we must now review 
some aspects of geodesic motion. 

The Kerr metric leads to four geodesic equations for the motion of test particles 
(Carter 1968; see also de Felice 1968 and Wilkins 1972). These equations show that the 
energy-at-infinity per unit rest mass, y, and the angular momentum per unit rest mass 
about the symmetry axis, /, are conserved quantities. For orbits in the equatorial 
plane, 6 = tt/2, the effective potential equation 

S2(r ^ = [y(r2 + a2) - la]2 - A[r2 + (/ - ay)2] (II-2) 

governs the motion of test particles; f is an affine path parameter and = dr/dg. 
For the case of circular orbits in the equatorial plane, one obtains (Bardeen et al. 
1972) 

- r2 - 2Mr ± a(Mr)112 m .. y — y± — r[r2 _ + 2a(Mr)112]112 ^ ' 

Here and subsequently, the upper sign refers to prograde orbits corotating with the 
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black hole, while the lower sign refers to retrograde orbits. (The signs must be chosen 
consistently.) 

The parameter y becomes infinite when the denominator in equation (II-3) vanishes. 
This defines the photon orbits, the prograde and retrograde circular orbits respectively 
closest to the black hole. Thus, at a photon orbit (Bardeen et al. 1972), 

P(r, a) = r2 — 3Mr ± 2a(Mr)112 = 0 , (H-4) 

an equation with explicit solutions rY = rY±(M, a). The last radially stable orbit in 
the equatorial plane occurs when (Bardeen et al. 1972) 

S(r, a) = r2 - 6Mr ± Sa(Mr)112 - 3a2 = 0, (II-5) 

an equation with explicit solutions rs — rs±(M, a). Note too that the last stable orbit 
is also the circular orbit of minimum energy, as can be verified by solving the equation 
dy(r)ldr == 0. The high-energy orbits between the last stable orbit and the photon 
orbit seem astrophysically implausible, but can in principle be achieved (Boyer and 
Lindquist 1967). 

If one examines prograde or retrograde orbits only, then rs > ry > rh always holds. 
The three prograde radii all approach the value M as the parameter a approaches M\ 
a more careful consideration of this limit (Bardeen et al. 1972) shows that for a = 
M{\ — e) with e « 1, 

^ - M[\ + (2e)1'2], (II-6a) 

ry+ - M{\ + 2(2e/3)1'2 + f(2e/3)], (II-6b) 

and 
rs+ - M[l + (4e)1'3]. (II-6c) 

Another necessary result is the velocity of a circular orbit as a function of its radius. 
The appropriate velocity is that of a particle in geodesic orbit with respect to the 
locally nonrotating frame. Thus, from the metric (1-1), for any equatorial, circular 
orbit, an observer in that frame says 

_ ¿/(proper azimuthal distance moved by the particle) 
— ¿/(proper time for that movement) 

(5 sin2 eß)ll2[d^ - i2aMr¡B)dt] 
(AS/5)1'^ 

which, with the geodesic equations, yields (Bardeen et al. 1972) 

±(Mr)1/2[r2 + 2a(Mr)112 + ¿z2] 
v ~ A1/2[>2 ± a(Mr)1'2] 

A useful relation which follows from this is 

(II-7) 

(II-8) 

(1 - u2)-1'2  A1/2[r(Mr)l;2 + Ma]  
Mi,2[r3 + ra2 + 2Ma2]1/2[r2 — 3Mr ± 2a(Mr)1/2]1/2 

/ rA1,2[r(Mr)1/a + Ma\ \ 
y\M1,2[>3 + ra2 + 2Ma2]1!2[r2 — 2Mr + a(Mr)ll2]j ’ '■ ' 

where the proportionality factor between (1 — v2)~112 and y is finite for all possible 
circular geodesics. Note that the symbol y represents (1 — v2)112 in the paper of Bardeen 
et al. (1972). 
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The coordinate angular velocity also follows from the geodesic equations (Bardeen 
et al 1972): 

d<& ±(Mr)11* 
^coord — ’ — (II-10) 

dt — r2 ± a(Mr)112 

Finally, to an observer in the orbiting, geodesic frame, the proper angular velocity is 

M w 
Q prop = ^= J  

dr í I/3 - 3Mr2 ± 2ra(Mr)112 (ii-ii) 

where r is his proper time. 

III. EQUATION OF MOTION FOR AN ORBITING OBSERVER 

a) Equation of Geodesic Deviation 

In order to study the structure of a fluid body in geodesic orbit, we seek the general- 
ization of Newton’s second law in a frame of reference fixed in the body. The equation 
of geodesic deviation (see Misner 1969) is this generalization: 

V2n 4- R(n,u)u = 0. (III-l) 

Here u is the vector tangent to the geodesic orbit, n is a vector from the orbit path 
to nearby geodesics, Vw is the covariant derivative along the orbit, and R(n, u) is the 
curvature tensor. Equation (III-l) is independent of coordinate system. 

Consider the term Vw
2#i in equation (III-l). The deviation vector is /i = with 

ea a set of basis vectors for the orbiting observer and na components. Choose 

(III-2) 
geodesic 

d 
U = e^Tr 

where r is proper time along the geodesic. The first term in the deviation equation is 
then d2(naea)ldr2

9 which, when expanded, has terms corresponding to derivatives of 
the components na and of the basis vectors ea. 

Let us now specify the coordinate system of a circularly orbiting observer. Since 
eQ = «, Vw£0 = Vuu = 0 by definition of a geodesic. We demand that the basis vectors 
Ca be orthonormal and retain an unchanging orientation with respect to the radial 
direction from the center of the black hole (see fig. 1). Thus 

/x - / X de* , 0 = —_{e0>el) = e0-^ + 
£ 
dr 

deQ 

dr 
dex 

eo‘d^ 

so the spatial basis vectors ^ change according to dejdr = aje^ with a? some 3x3 
transformation matrix. This matrix = an is antisymmetric as a consequence of 
ek'el ^ &kl\ 

0 = JT 

dCj dex 

Tr+d^ 

— Oj + Oi = Oji + %. 

The basis vectors thus undergo a pure spatial rotation (see Goldstein 1950); we write 
aik — €m^cj Rüd 

i , (m-3) 
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where em is the totally antisymmetric matrix and Q.cj is the yet to be determined, 
constant, angular velocity vector of magnitude Qc. The subscript c means “centri- 
fugal.” We finally compute: 

[dnß 1 
Vu

2« = Vu|-£- eß + 

dr2 + Zdï '■iki^ck + nmQ.Cjilclemjkçkn Ci + 
d2n° 
dr2 e° 

(m-4) 

The second and third terms on the right side of equation (III-4) correspond to Coriolis 
and centrifugal forces, respectively. 

b) Lorentz Transformation to the Orbiting Frame 

We must specify the basis of the orbiting frame. From equation (1-1), an ortho- 
normal basis of one-forms for the locally nonrotating frame in the Kerr geometry is 
the set 

A1/2£1/2 

=z
l±J^dt; a/r) = 

B112 

S1/2 

Ä372 dr\ 

a,«» = 21/2¿0 ; sin e{d<S> - dt} ■ (III-5) 

The basis for an observer in circular orbit is obtained from the basis forms (III-5) by a 
Lorentz transformation A(^)

a. Then the a>a basis, also orthonormal, follows from 
o>a = and is 

coi1 — (1 — v2)~ll2a)(t) — v(l — t;2) "■ 1/2cü(<z>) ; 

^ = -t;(l - ^-1/2^) + (1 - ^-1/2^) (in-6) 

The ordinary velocity v is that of the orbiter, circularly moving at constant 9, as 
measured by an observer fixed in the locally nonrotating frame. For the case of interest 
here, the orbit is an equatorial geodesic, so v is given by equation (II-8). 

Note too that we have given meaning to this Lorentz transformation only at 
0 = tt/2. If the transformation is to bear physical meaning oif the equator also, then 
the velocity v would have to assume appropriate values there that would match 
smoothly onto the equatorial values. Here, however, we are interested only in the 
equatorial values of tensor quantities and hence need not worry about nonequatorial 
values for the transformation velocity.1 

c) Derivation of the Angular Velocity 

In the frame of basis vectors ea (dual to the basis forms <oa), we will evaluate equa- 
tion (III-4). These basis vectors are those associated with the reference frame in the 
orbiting body. 

The relation between the orbiting observer’s basis forms oa and connection forms 
ü>a

ß contains the information needed to specify Qcy. This follows because the basis 

1 Questions by Alfred Schild at a University of Texas Seminar caused the author to think more 
carefully about this point. 
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vectors eß are related by (see Misner 1963, 1969; also Flanders 1963) 

= evT\a , (III-7) 

with rv
Ma the connection coefficients referred to the orthonormal frame. The connec- 

tion forms in turn follow from exterior differentiation of the basis forms by 

dœv = -a>\/\œ» = - rv«/* a ; (ni-8) 

the wedge A is the symbol for an antisymmetrized product. Thus the manner of 
change of the basis vectors will be apparent after we perform this last calculation 
in the frame of the orbiting body. Alternatively, one can obtain equations (III-8) in 
the locally nonrotating frame and then transform the results to the frame of the orbit- 
ing body; we will proceed in this latter fashion. 

The basis forms œa and basis vectors eß transform via a Lorentz transformation. 
For the connection forms M(<x\ß), equation (III-8) and the inverse Lorentz transforma- 
tion (A(fi)

vAv
ia) = Sß

a) give 

= A^/A^VV + A(v)
ßdAß

(v). (III-9) 

Equatorial, circular geodesics do not cross, so dA^ is well defined. The procedure 
is thus to calculate ^(/i)(V) in the locally nonrotating frame, calculate dAß

iv) and express 
the result in terms of the same basis forms (III-5), apply the transformation (III-9), 
and finally, reexpress the basis forms (111-5) in terms of those of the orbiting observer 
(III-6). 

Rewrite (III-5) as 

co^ = ev~a~Ádt, co(r) = eÁdr , 

o)(e) = evd6 , a)((p) — ea sin 6(d<& — £ldt), 

where A, v, or, and Ü each depend on r and 0. The notation will be that = (dv/dr) 
and vt6 = (dv/dd). Then, the known solution to equation (III-8) (Bardeen et al 1972) 
leads to the results 

a)z
r = coT{(l — ^2)_1[(v r — A>r — a r — tf2<r r) sin 0 e2<7-v]} 

+ ^{(1 - - Ar - 2ar) + (1 + v2)^fr sin 9 e2*-']} , 

(III-10a) 
0)ze = œx{(l - ^2)_1[(v>0 - A>0 - a>0) e~v - V2(a>e + cot d) e~v 

+ vQ.te sine e2a + A-2v]} 

+ ^{(l — ^2)_1[y(v 0 — A>0 — 2cr>0 — cot 0) e~v 

+ (1 + v2)^e sin 6 e2° + Á-2v]} , (IH-lOb) 

aA, = cor{iQ>r sin 6 e2°-v} + cvd{}Qtd sin ß e2ff~2v + Ä} + (1 - v2)'^ , (III-lOc) 

= o)r{A>0 + aA-V e~A} , (IH-lOd) 

co^ = coT{(l — i;2)-1^! + ^2)i^,r sin 6 e2(T~v + v(v9r — X>r — 2atr) e~Á]} 

+ cü0{(1 — v2)~1[víl9r sin 0 e2o~v — a r e~x + v2(vir — A r — or>r) e~x]}, 

(III-10e) 
and 

cd9# = a>z{(l — 2;2)"'1[(1 + v2)%Q.te sin d e
2<T~2v + x + v(yfd — A 0 — 2crj0 — cot d) e~v]} 

-f C0^{(1 — sin 0 e2a~2v + x — (at6 + cot ^) ^_v 

+ v2(yte-\te-ate)e-v]}. (IlI-lOf) 
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In our particular case, where the velocity v is given by the geodesic formula (II-8), 
the third term in the expansion of becomes a/[(l — v2)~1(dvldr) e~x). In Appendix 
A is the complete list of as functions of coy for the case of a frame in a geodesic, 
circular orbit around a Schwarzschild black hole at arbitrary radius r; in this list, all 
coefficients appear explicitly as functions of r. 

By equations (IÏI-2), (HI-3), and (III-7), we need only those connection coefficients 
of the form 1%; we can hence limit our attention to the connection forms cor

0, co^, 
and 0)%. But the relation (III-8) and the result (III-10d) specify Tr

dz — 0, so we only 
need to examine cor

0 and a>%, from which we extract and In the latter, each 
derivative with respect to 6 introduces a factor of cos 6, so for equatorial orbits, 
Vefa will not contribute. 

Using equation (II-8), we find after much algebra that 

rvU/2 = m/r3)1'2, (in-ii) 

independent of the parameter <z! The angular velocity vector in equation (III-3) is thus 

Dcy = (0, ± [M/r3]112, 0) . (Ill-12) 

The cross product erX ee = e# defines a right-handed coordinate system. 

d) Transformation of the Curvature 

The curvature term in equation (III-l) is (see Misner 1969) 

R{n, u)u = naRßoa0eß 

= rtR^oe,. (Ill-13) 

The components of the Riemann curvature in the orbiting frame follow from a four- 
fold Lorentz transformation of those in the locally nonrotating frame: = 
Aa

(a)A^(^)Ay(y)A(5
(<5)R(a)()3)(y)((5). The R(axßxyxö) curvature components have been computed 

via the Newman-Penrose formalism (Newman and Penrose 1962; see also Kinnersley 
1969a, b). Stewart and Walker (1973) display a general formula for computing the 
tidal acceleration (curvature) in that tetrad formalism, while Bardeen et al. (1972) dis- 
play a list of the curvature components in the locally nonrotating frame. The details 
of the calculation of these components appear in the author’s thesis (Fishbone 1912b). 

Thus, the curvature components in the orbiting frame are 

Ririr == (1 ^2) ^{.R(tXrXtXr) "h V2R^xrXvXr) "b ^^(iXOC^Xr)} > (III-14a) 

R-iexe = (1 — ^2) + ^27?(<pX0x<pX0) + 2rR(ix0x<px0)} > (III-14b) 

R-Ktnö — R(tX(PXtX(P) 5 (III-14c) 

and 

Rrzdz = (I — v2) 1{(1 + v2)Rim)mt) + v(RirXtxeX(p) + R(rX(pXext))} . (III-14d) 

We are here interested only in these components evaluated on the equatorial plane, 
where RrT0T vanishes. A further simplification occurs if we substitute the formulae 
(II-8) and (II-9) for geodesic orbits; of course, equations (III-14) apply for any velocity 
in the O direction at any value of colatitude 9. The final forms for equatorial, circular 
geodesics are, using the expressions of equations (II-3) and (II-4), 
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_ -M f3A - P(r, a)! 
mr “ r3 \ P(r, a) f 

-My2 f r2[3A - P(r, a)] } 
r3 \[r2 - 2Mr ± a(Mr)112]2) ’ 

M f3A - 2P(r, a)) 
zM r3\ P(r, a) J 

My2 f r2[3A - 2P(r, a)] ^ 
r3 "^[i-2 — 2Mr ± a(Mr)1,2]2J ’ 

and 

Atm = M/r3. 

53 

(m-15a) 

(in-15b) 

(in-15c) 

(III-15d) 

(m-15e) 

For more details of the algebra, see the author’s thesis (Fishbone 1912b). In the forms 
(III-15b, d), any divergence in the curvature occurs purely in the y2 factors, which 
would diverge for photon orbits. The bracketed factors in those expressions are finite 
for all circular orbits, even when a = M2 

e) Equation of Motion for an Orbiting Observer 

We can now put the pieces (III-12), and (III-15) into the equation of geodesic 
deviation (III-l) via the forms (III-4) and (III-13) to obtain 

(III-16) 

We set n° — 0 to coordinate the clocks on the various geodesics. 
For easier comparison with existing results (Chandrasekhar 1969), we change the 

coordinate labels to (1, 2, 3) by xl = —nr, x2 = — n0, and x3 = —ne. Figure 1 depicts 
the relation of these coordinate systems. Incorporating these changes, we rewrite the 
vector equation (III-16) as three scalar equations: 

rf2*1 

dr2 
_ -/M\112 dx2 /M\(3A\ x n 

d2x2 i(M_Y2<bd 
dr2 ± ¿\r3j í/t — ’ 

^2JC3 

dr2 

(III-17a) 

(III-17b) 

(III-17c) 

These are the equations governing force-free motion from the viewpoint of the 
orbiting observer. Note that the centifugal and tidal effects cancel identically in the x2 

2 In this connection, the two “ curvature factors ” in figure 2 of an earlier Letter (Fishbone 1972a) 
have the finite value 3 for the case of prograde orbits when a = M. 
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direction. Also, the motion in the x3 direction is simple harmonie. We postpone for a 
moment a discussion of the latter. Gowdy (1972) noted the significance of the former. 
Imagine a swarm of particles moving along the same circular orbit but distributed 
throughout it. Because the angular velocities of the particles would be equal, the inter- 
particle distances would remain constant. Thus, from the viewpoint of an observer 
moving with any such particle, the component of force along the orbit direction must 
vanish identically. But this is just the meaning of equation (III-17b), where no term 
proportional to x2 appears. 

Equations (III-17) can also be combined into the useful form (1-2), where the 
expression. 

(ILL 18) 

is the potential for (tidal and centrifugal) noninertial effects; it plays a key role 
subsequently. 

/) Force-free Motion 

With the constraint of small motions, equation (III-17c) governs simple harmonic 
motion perpendicular to the equatorial plane. Thus, slightly nonplanar orbits (Wilkins 
1972) can be built from equatorial circular orbits, upon which equations (III-17) are 
based, and this motion perpendicular to the plane. The angular frequency character- 
istic of the latter is ü2perp = (M/r3)([3A — 2P]/P). We compare this to the proper 
angular velocity for the equatorial circular orbit: 

Qprop = [ ^  
^perp I/2 + + 4a(Mr)1/2 

(III-19) 

Note immediately that in the limit r -> oo, or for the case a = 0 at any r, the ratio is 
unity. This means that the nonequatorial orbits are in fact planar—just what we 
demand in the Schwarzschild and Newtonian limits. When the ratio is an integer, the 
motion is periodic. For ajM very near unity, such nonplanar orbits, built from either 
the last stable or photon orbit, look like tightly wound helices around the 0 = 0 axis. 

Observe also that this simple harmonic motion guarantees the stability of all 
equatorial, circular geodesics with respect to perturbations out of the equatorial plane 
(Bardeen 1970&), a necessity if beaming mechanisms associated with the preferred 
equatorial plane (Misner 1972) are to be plausible. 

IV. THE EULER EQUATION AND ITS LIMITATIONS 

We wish to study the behavior of a fluid body in orbit, so we must find the general- 
ized Euler equation which will govern fluid flow in the frame of an orbiting observer. 
Such an equation arises from the equation of geodesic deviation (1-2) by the weak 
equivalence principle, i.e., the fundamental principle that freely falling particles move 
along geodesics of a metric (see Thorne, Will, and Ni 1971). 

First let us discuss the limits of validity of the assumption of circular geodesics, 
the orbits we assume for the fluid body. This assumption is true only if the energy of 
the body in orbit is so small that the body does not significantly perturb the background 
metric and that it does not radiate sufficiently to change orbits quickly. Both of these 
conditions require ym « M, where m is the mass of the orbiting fluid body. 

Because the body will be fixed in a noninertial reference system, it will have a 
nonzero spin angular momentum. Such bodies obey more complicated equations of 
motion than the simple geodesic laws (Papapetrou 1951), but, to a good approxima- 
tion, geodesic motion will hold if the linear size of the body is much less than the 
radius of curvature of the Kerr gravitational field (Mashhoon 1972). This requirement 
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also limits the validity of the equation of geodesic deviation itself, so we shall discuss 
it in that context. 

The maximum extent that a spatial deviation vector «V* can have and still obey 
equation (III-l) well is one much less than that length associated with spatial changes 
in the curvature. The latter is the inverse square root of the curvature, i.e., the radius 
of curvature. With respect to temporal limits on particle motions ^(r), the deviation 
equation will hold for as long a time as the particles remain in the spatial domain 
of validity. For a situation of hydrostatic equilibrium, as will concern us, this require- 
ment is met forever or not at all. 

Thus let L be the linear “size” of a fluid body. From equations (III-15), the spatial 
requirement becomes 

This condition guarantees that no part of the fluid body extends through the 
horizon or to a place where its velocity exceeds the local light velocity. We demonstrate 
this explicitly for high-energy orbits in the Schwarzschild geometry (a = 0). With the 
orbit at r = (3 + S)Mand 8 « 1, limit (IV-1) becomes L « 3MS1/2. The proper radial 
distance As from the horizon at r = 2M to the orbit radius satisfies 

f(3 + ô)M 

* 2M 

dr 
(1 - 2M/r)112 > - 2 x 21I2M » 3Mb112. (IV-2) 

Thus, the restriction (IV-1) on the maximum linear size L of the body does not allow 
it to extend through the horizon. Second, the coordinate angular velocity from equa- 
tion (11-10) is (M/r3)1/2 = [M2(3 4- S)3]-1/2. To find the radius of the null (photon), 
nongeodesic orbit with the same angular velocity, let ds2 = 0 in the metric (1-1). Then 
(d^ldt)y = ±[(r — 2M)/r3]li2. If we use the ansatz r = (3 + a)M, then a second- 
order expansion of 

M\i/2 1 (1 + cc)112 (d^\ 

r3 / M(3 + 8)3/2 (3 + afl2M \dt)Y 
(IV-3) 

yields a = (3S)1/2. Thus, the circular, geodesic, timelike orbit at r = (3 + b)M has 
the same coordinate angular velocity as the circular, nongeodesic, photon orbit at 
r = [3 + (3S)1/2]M. The proper radial distance As between these two orbits satisfies 

As 
/»[3 + (3(5)l/2]M 

•1(3 + <5)M 

dr r[1+(3<S)1,2lM(x + 2M)1,2& 

(1 - 2M/r)^ - J(1+¿)M 
3M8112. (IV-4) 

Hence, the limitation L « 3MS112 precludes any extension of the body to a place 
where its velocity equals the local light velocity. In short, equation (IV-1) summarizes 
all length restrictions on the validity of the equation of geodesic deviation for situations 
of interest here. 

To explain better the transition from the free-particle equation (1-2) to an equation 
for fluid flow, we split the potential <&t+c into a tidal part and a centrifugal part <PC: 

and 

Oc= ^^[(x1)2 + (x2)2]; 

(IV-5a) 

(IV-5b) 
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here Qc = ±(M/r3)1/2, and a particular choice of sign implies the same choice 
throughout a given equation. Then the free-particle, geodesic deviation equation 
takes the form 

d2xf 

dr2 = ¿ {iiVK*1)2 + (*2)2] - i>t} ± % • (IV-6) 

This equation is identical in form to the equation in Newtonian physics which de- 
scribes, from the viewpoint of a rotating observer, particle motion in a potential 
In that case, the transition to the appropriate Euler equation of fluid flow is straight- 
forward. We will proceed similarly and simply impose on the result the limitations of 
Newtonian physics. In a more sophisticated approach, one could perhaps exploit the 
post-Newtonian equations of hydrodynamics (Chandrasekhar 1965a, b)\ this would 
aljeviate problems due to high densities in the orbiting body, but not those due to the 
limitation (IV-1) inherent in the use of the equation of geodesic deviation. 

By analogy then, the Euler equation governing fluid flow in the orbiting frame, 
where equation (IV-6) governs free-particle motion, is (see Feynman, Leighton, and 
Sands 1964; and Chandrasekhar 1969) 

PTt = “1?+ tt^K*1)2 + (*2)2] - ^ ^ ± • (IV-7) 

Here, is the self-gravitational potential of the fluid, p is its (constant) density, and 
p its pressure. The time derivative is the total time derivative of a fluid element 

d d t , d 
dr~ 8t + U 8xl ’ 

and ul is the velocity field of the fluid. 
The Newtonian limit is the one of small masses and low velocities. The mass require- 

ment must be imposed directly on the final results of any calculations. The most 
obvious velocity effects are those due to the rotation. Thus, with L characterizing the 
linear size of the fluid body, we demand that LQC « 1. But if condition (IV-1) is 
satisfied, so also is this. High particle velocities could also result from acceleration by 
the potentials. Since |0G| ^ \®t\ > |Oc|, the condition is |0G|1/2« 1. But from 
equations (III-19), 

(IV-8) 

If we choose x1 = L to correspond to the maximum possible acceleration, then 
the condition |0¿| « 1 is satisfied if (IV-1) is. The only other velocity would be the 
sound velocity of the fluid resulting from a large |0G|. For the constant-density 
situations of interest to us, low sound velocities correspond to low pressure-density 
ratios; these depend in detail upon the mass m and size L of the final equilibrium 
configurations. 

In summary, equation (IV-1) is the chief constraint on final solutions of the Euler 
equation. 

V. THE ROCHE PROBLEM 

The equilibrium problem of Roche is to determine how an incompressible fluid can 
maintain itself given equation (IV-7). At this point we can proceed via the elaborate 
and powerful virial method developed by Chandrasekhar and Lebovitz (Chandrasekhar 
1969 and the references therein) or via a simpler method (see Jeans 1929). We choose 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
7 

3A
pJ

. 
. .

18
5.

 . 
.4

3F
 

No. 1, 1973 RELATIVISTIC ROCHE PROBLEM 57 

the latter because it requires less formalism for an attack on the equilibrium problem. 
Consider the situation with no fluid motions in the orbiting frame. Equation (IV-4) 

is then integrable and yields 

- = ^i+c + + constant. (V-l) 
P 

The fluid body will be an equilibrium configuration if <S>t+c + 0G is constant on the 
surface. Because this potential is quadratic in the coordinates, ellipsoidal figures are 
possible. 

The potential 0G is given by (see Chandrasekhar 1969, p. 43) 

where 

and 

G1CI2G3 
du 

Ä 

, C du 
Ai -aM J0 m

2 + u) ’ 

(V-2) 

(V-3) 

(V-4) 

with = [(fli2 + u)(a2
2 4- w)(a3

2 + w)]1/2 and with «i, a2, and a3 the three semiaxes 
of the ellipsoid whose surface satisfies 

(x1)2 . (*2)2 . (x3)2 ; 
O I 2 * O A • 

dl a2 a3 
(V-5) 

The potential satisfies, as it must, the inhomogeneous Poisson equation (Chandra- 
sekhar 1969), V2Og = AirGp, where 

3 
v2 = 2 [ô'/ôOcO2]. 

i=l 

We can simplify the problem of determining the shapes of the equilibrium ellipsoids 
by proceeding as follows. If <hi+c + <PG is a constant on the surface, then the function 
T satisfying 

W = ®t+c + CnGp 
(x1)2 (x2)2 

o I o 
Cli a2 

(V-6) 

is the same constant on the surface if C is constant. Now demand that C be chosen 
so that V2VP = 0; this is always possible since p is constant. Then, the boundary con- 
dition that T be constant on the surface of the ellipsoid requires, by uniqueness, that 
T* be constant everywhere inside the ellipsoid too (see Morse and Feshbach 1953, p. 
706). But if this is true, the coefficient (in the expression for T) of the square of each 
independently variable interior coordinate must vanish. We thus get, from equations 
(III-18), (V-2), and (V-6), 

-bai2 

Gttp 

2A2a2
2 = 2C, (V-8) 

3A 

P 
+ 2^1a1

2 = 2C, (V-7) 
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and 

Gît p 

where p, = GM/r3. After we eliminate C, these yield 

3A - 2P 
+ 2A3a3

2 = 2C, 

and 

P 
Gnp 

aï 
/3A\ , 2/3A — 2P\ 

It) + ^2(—P-) 
= 2[a1

3^l1 - a3
2A3] 

P 
Gnp 

aï = 2[a2
2A2 - a3

2A3] 

Vol. 185 

(V-9) 

(V-lOa) 

(V-lOb) 

Finally, we take the ratio of equations (V-10) to obtain the “polarization equation” 
(so called because it is independent of the tidal intensity, proportional to p, and depends 
only on the ratio of the intensities in different directions) 

[3A/(3A - 2P)] + <x3
2 = A, ~ cc3

2A3 

a3
2 cc2

2A2 — a3
2A3 ’ ^ ^ 

where a2 = a^cix and a3 = As will be shown in Appendix B, Au A2, and A3 

depend only on a2 and a3. 
Note that 

3A 3(r2 — 2Mr + a2) 6A 
3A - 2P(r, a) r2 + 3a2 + Aa{Mr)112 3A - S(r, a) ’ ( 1 } 

where, from equation (II-5), A(r, a) vanishes at the last stable orbit. Thus, the term 
3A/(3A — 2P) in the polarization equation is unity for the photon orbits, 2 for the 
last stable orbits, and 3 for orbits characteristic of the Newtonian limit (r -> oo). A 
single series of ellipsoids will suffice for every orbit in a given class above. 

The method of solution of the Roche problem is to specify values for r and a\ the 
polarization equation then determines a one-parameter family of ellipsoids (a set of 
pairs [a2, a3]) which are in equilibrium at the given r and a. Substitution of this set of 
pairs (a2, a3), along with the same r and a, into the “density equation” (V-lOb), 
results in a set of values for the “density function” D(a2, a3) = 2{A2a2

2!a3
2 — AQ)9 

and thence of the density. Appendix B contains a discussion of techniques used in 
solving the system. Table 1 lists the results for the photon and last stable orbits. 

Recall from equations (III-15a, b) that the function (3A — 2P)/P in the density 
equation can be rewritten as 

3A -2P r2 + 3a2 + Aa(Mr)112 

P ~ r2 - 3Mr ± 2a(Mr)112 

2(r2[r2 + 3a2 + 4a(Mr)ll2]\ 
y\[r2-2Mr± a(Mr)1/2]2 / ' 

(V-13a) 

(V-13b) 

We now introduce the dimensionless radius r0, defined by r = GMrJc2, into the 
expression for p and obtain for the density equation (in conventional units, with M0 

the mass of the Sun) 

P 

Mn 
M nG3 M{ ? ' 

r0
3[r2 — 2Mr ± a(Mr)ll2Y 

r2[r2 + 3a2 + Aa{Mr)112] 
D{a2,a3), (V-14) 
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TABLE 1 
Characteristics of the Relativistic Roche Ellipsoids in Kerr-Metric Orbits 

«2 «3 D(a2, a3) («2 «3) -1/3 -1/3 -1/3 

Ellipsoids Near the Photon Orbits 

0.250. 
0.300. 
0.350. 
0.400. 
0.460. 
0.470. 
0.480. 
0.490. 
0.500. 
0.510. 
0.520, 
0.530. 
0.540. 
0.600, 
0.650 
0.700 
0.750 
0.800 
0.850 
0.900 
0.950 

0.22850 
0.26976 
0.31038 
0.35073 
0.39927 
0.40741 
0.41558 
0.42377 
0.43199 
0.44024 
0.44853 
0.45685 
0.46521 
0.51645 
0.56094 
0.60764 
0.65725 
0.71069 
0.76923 
0.83469 
0.90997 

0.17340 
0.20159 
0.22370 
0.23965 
0.25084 
0.25188 
0.25268 
0.25326 
0.25361 
0.25373 
0.25363 
0.25330 
0.25275 
0.24489 
0.23249 
0.21492 
0.19227 
0.16457 
0.13174 
0.09364 
0.04992 

2.5965 
2.3119 
2.0958 
1.9245 
1.7592 
1.7350 
1.7115 
1.6887 
1.6667 
1.6453 
1.6246 
1.6044 
1.5848 
1.4778 
1.3998 
1.3297 
1.2659 
1.2071 
1.1521 
1.1000 
1.0497 

0.6491 
0.6936 
0.7335 
0.7698 
0.8093 
0.8154 
0.8215 
0.8275 
0.8333 
0.8391 
0.8448 
0.8503 
0.8558 
0.8867 
0.9099 
0.9308 
0.9494 
0.9657 
0.9793 
0.9900 
0.9973 

0.5933 
0.6237 
0.6505 
0.6750 
0.7024 
0.7068 
0.7112 
0.7156 
0.7200 
0.7243 
0.7287 
0.7330 
0.7373 
0.7632 
0.7852 
0.8080 
0.8320 
0.8579 
0.8863 
0.9182 
0.9552 

Ellipsoids in the Last Stable Orbits 

0.250. 
0.300. 
0.350. 
0.400. 
0.460. 
0.470, 
0.480, 
0.490, 
0.500 
0.510 
0.520, 
0.530, 
0.540 
0.600 
0.650 
0.700 
0.750 
0.800 
0.850 
0.900 
0.950 

0.23815 
0.28307 
0.32753 
0.37176 
0.42487 
0.43375 
0.44265 
0.45156 
0.46050 
0.46945 
0.47842 
0.48742 
0.49645 
0.55131 
0.59821 
0.64657 
0.69680 
0.74942 
0.80505 
0.86453 
0.92899 

0.08958 
0.10461 
0.11648 
0.12511 
0.13119 
0.13176 
0.13221 
0.13253 
0.13272 
0.13280 
0.13275 
0.13258 
0.13229 
0.12808 
0.12141 
0.11198 
0.09986 
0.08511 
0.06776 
0.04783 
0.02527 

2.5610 
2.2751 
2.0586 
1.8875 
1.7232 
1.6991 
1.6758 
1.6533 
1.6316 
1.6105 
1.5900 
1.5701 
1.5509 
1.4459 
1.3701 
1.3025 
1.2415 
1.1859 
1.1348 
1.0872 
1.0425 

0.6402 
0.6825 
0.7205 
0.7550 
0.7927 
0.7986 
0.8044 
0.8101 
0.8158 
0.8213 
0.8268 
0.8322 
0.8375 
0.8676 
0.8905 
0.9117 
0.9311 
0.9487 
0.9646 
0.9785 
0.9904 

0.6099 
0.6440 
0.6742 
0.7017 
0.7321 
0.7370 
0.7418 
0.7466 
0.7513 
0.7560 
0.7607 
0.7653 
0.7699 
0.7972 
0.8196 
0.8421 
0.8651 
0.8888 
0.9136 
0.9400 
0.9685 

a form especially useful for unstable, high-energy orbits, and 

V0
3[r2 - 3Mr ± 2a(Mr)112] i \M°\2\ 

p[m\ [ ttG3 Me? r2 + 3a? + 4a(Mr)112 D(a2, a3) , (V-15) 

a form useful for all other orbits. 
The constant c6/(ttG3 MQ

2) has the value 1.969 x 1017gcm-3; its precision is 
limited by that of the gravitational constant. 
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Consider the photon orbits. Since P(r, a) = 0 then holds, the right side of (V-14) 
simplifies via ±a{Mry)

m = —%(ry
2 — 3Mry), and the equation becomes (with roy = 

GMrvlc
2) 

roy
3(ry - M)2 

I2(ry
2 — 2Mry + a2) 

(V-16) 

In the limit when a = M(1 — e), equation (II-6b) gives the radius, so the limiting 
density relation is 

7 [t]‘[^4?] “ + “*> • <v-17) 

Similarly, since S(r, a) = 0 holds for the last stable orbits, the right side of (V-15) 
reduces to yield the equation (r0s = GMrJc2) 

1 

P [ M ] [nG3 M0
2] “ ^os3£,(“2’ “3) ’ 

(V-18) 

with a limiting form via (II-6c) of 

~f [t] [isw] = i 1‘ + ww««, «.). (V-19) 

Notice from equation (V-18) that the requisite equilibrium density is finite for bodies 
in the last stable orbit of the Kerr metric for any value of the parameter a of interest 
here. This important conclusion has been demonstrated independently by Stewart and 
Walker (1973). 

Tables 2 and 3 respectively list the density of an equilibrium ellipsoid with the 
specified shape for the photon and last stable orbits. 

Jeans (see 1929) used the parameters = ai(a1a2a3)~
113 to characterize the shapes 

of triaxial ellipsoids. Figure 4 shows the families of ellipsoids characteristic of the 
photon, last stable, and Newtonian orbits (see Chandrasekhar 1969, for the last family). 
In the original Newtonian calculation, the equation analogous to equation (V-ll) is 

(3 + p) ~f~ 0C32 _ Ai — <xq
2Aq 

P0^2 a32 &22A2 — cc32Aq 

while the density equation is 

/x _ 2(a2A2 — ccq2A3) ' 
TTpG pof2

2 + «a2 

Here, p is the freely variable ratio of the mass of the fluid body to that of a rigid 
sphere with which it is in orbit. 

Use of the equation of geodesic deviation in the relativistic situation, where p = 0 
is assumed, forbids this degree of freedom there. A more elaborate treatment of the 
two-body problem, currently nonexistent, is needed to incorporate this variability 
into the relativistic domain. 

Note from tables 2 and 3 that the columns exhibit minima along the sequences of 
ellipsoids. These minima are the Roche limits for the cases in question. They represent 
the minimum density required for the existence of an ellipsoidal fluid body in equilib- 
rium in the particular orbit. The Roche limits for bodies in the last stable orbits and 
near the photon orbits (Fishbone 1972a) appear in figures 2 and 3, respectively. 
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Fig. 4.—Families of triaxial ellipsoids labeled by their Jeans parameters äx = 
and «2 = tf2(tfitf2ß3)-1/3, where ^ are the semiaxes of an ellipsoid. The parameter p = — 1, 0, 20, 
or oo below a curve is the ratio of the mass of a deformable fluid body to that of a rigid sphere with 
which the former is in orbit; the families represented by these curves are realized in Newtonian 
theory. The p = oo sequence begins at «i = 02 = 1, follows the Maclaurin sequence to its con- 
junction with the Jacobi sequence, and continues along the latter. The long, dashed line connects 
the Roche-limit configurations of these families. Three dark curves labeled by (POL) = 3, 2, 1 
depict the families of relativistic Roche ellipsoids. These families are characteristic of infinitesimal 
bodies in, respectively, the Newtonian, last stable, and photon orbits in Kerr geometries with 
0 < a < M. The short, dashed line segment connects the Roche-limit configurations for the 
relativistic families. 

We finally show the Roche limits for general Kerr equatorial, circular, geodesics 
in figure 5. The difference between the values in the graph and 0.0901, the Newtonian 
value, is a manifestation of general relativitity. The additional numerical results from 
which this last figure is derived appear in the author’s thesis (Fishbone 19726). 

For a complete understanding of the applicability of the Roche-limit analysis, a 
study of the stability properties of the ellipsoids is necessary. In the Newtonian limit, 
the following holds for stability with respect to small perturbations from equilibrium: 
only those equilibrium configurations slightly more deformed than the Roche-limiting 
one are unstable (Chandrasekhar 1969). Whether this plausible fact also holds for the 
relativistic ellipsoids will be the subject of a future paper. 
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Fig. 5.—Roche limits for incompressible fluid ellipsoids in equatorial, circular, geodesic orbit 
in several Kerr geometries. The maximum value of the function Ml(jrpr3) for a given orbit defines 
a minimum density for the ellipsoidal body. In the Newtonian limit, r -> oo, the maximum value 
is 0.0901. At the last stable orbit the maximum value is 0.0664. 
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APPENDIX A 

THE SCHWARZSCHILD CIRCULAR GEODESIC FRAME 

Consider a Lorentz transformation from the standard, orthonormal Schwarzschild 
basis to one in circular, geodesic orbit, moving in the direction of increasing <P on the 
equator, 6 = 77/2. With the velocity relation (II-8) implicit, the new basis is 

œ 

CD' 

CD' 

-i1 

1/2 
r sin 0d<5), 

= rdd 

(Ala) 

(Alb) 

(Ale) 

^ -- s¡n ^ _ 3^ - V 

(Aid) 

This basis has no particular significance off the equator. (This is the 0 = 0 form of 
equations [III-6].) In terms of this basis, the connection forms determined via equation 
(III-9) are 

(jd\ = -(M/r3)1^0 , (A2a) 

CD 
-1/2 

CD 

CD' 

CD 

cd9# = — cot 6 
* r 

2M\-w 

(A2b) 

(A2c) 

(A2d) 

(A2e) 

(A2f) 
The components of the Riemann tensor in this basis follow from a fourfold Lorentz 

transformation Raßyö = Aa
{a)Aß

{ß)Ky
{y)A0

{0)R{a)^y){0) of the components in the standard 
basis. The nonzero ones are 

2M 

;) 
CD 

-1/2 
CD1 

R (A3a) 

Rérér Riñrñ — (A3b) 
r j 

Rrere = - Rzèli, = -M/r3 , (A3c) 

» _ p _ 3M /3M\-i Rze<t>9 Rzr0r M r \ M r \ * (A3d) 
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APPENDIX B 

REMARKS ON THE NUMERICAL METHODS EMPLOYED 

For automated computation, we use a form for the gravitational potentials different 
from that of equations (V-4). For example, 

T du 

1 ~ 010203 Jo [(«i2 + «)(ö2
2 + m)(ö3

2 + «)]1,2(öi2 + u) 

p dz 
a2“3 Jo Kl + ^)(«22 + z)(«32 + z)]1/2(l + z) ’ 

where z = uja^. Now let z = tan2 x\ then 

j _ 9 [nl2 sin x cos2 xdx  
1 0Í2°£3 Jo [(a22 cos2 x + sin2 x){a3

2 cos2 x + sin2 x)]112 

Simpson’s J-rule was the scheme employed to evaluate the integrals. A solution for 
the polarization equation was then found via the Newton-Raphson method of iteration. 
The University of Maryland Univac 1108 computer performed the calculations; the 
aforementioned numerical methods are part of its “Math-Pack” library (University 
of Maryland Computer Science Center 1970). In all cases, the integrals were evaluated 
with an absolute accuracy of 10 “6 ; the subsequent solution of the polarization equation 
was carried out with an absolute accuracy of 10 “5. 

REFERENCES 
Bardeen, J. M. 1970a, Nature, 226, 64. 
 . 19706, Ap. /., 161, 103. 
 . 1970c, ibid., 162, 71. 
Bardeen, J. M., Press, W. H., and Teykolsky, S. 1972, Ap. J., 178, 347. 
Boyer, R. H., and Lindquist, R. W. 1967, J. Math. Phys., 8, 265. 
Boyer, R. H., and Price, T. G. 1965, Proc. Cambridge Phil. Soc., 61, 531. 
Breuer, R. A., Ruffini, R., Tiomno, J., and Yishveshwara, C. V. 1973, Phys. Rev. D, 1, 1002. 
Breuer, R. A., and Yishveshwara, C. Y. 1973, Phys. Rev. D, 1, 1008. 
Carter, B. 1968, Phys. Rev., 174, 1559. 
Chandrasekhar, S. 1965a, Ap. J., 142, 1488. 
 . 19656, ibid., p. 1513. 
 . 1969, Ellipsoidal Figures of Equilibrium (New Haven: Yale University Press); also, the 

references therein 
Chitre, D. M., and Price, R. H. 1972, Phys. Rev. Letters, 29, 185. 
Christodoulou, D. 1970, Phys. Rev. Letters, 25, 1596. 
Christodoulou, D., and Ruffini, R. 1971, Phys. Rev. D, 4, 3552. 
Chrzanowski, P. L., and Misner, C. W. 1973 (to be published). 
Cohen, J. M. 1968, /. Math. Phys., 9, 905. 
Davis, M., Ruffini, R., Tiomno, J., and Zerilli, F. 1972, Phys. Rev. Letters, 28, 1352. 
de Felice, F. 1968, Nuovo Cimento, 57B, 351. 
Feynman, R. P., Leighton, R. B., and Sands, M. 1964, The Feynman Lectures on Physics, Yol. 2 

(Reading, Mass.: Addison-Wesley), chap. 40. 
Fishbone, L. G. 1972a, Ap. J. {Letters), 175, LI55. 
 . 19726, Ph.D. thesis, University of Maryland (unpublished). 
Flanders, H. 1963, Differential Forms (New York: Academic Press). 
Goldstein, H. 1950, Classical Mechanics (Reading, Mass.: Addison-Wesley). 
Gowdy, R. 1972 (private communication). 
Jeans, J. 1929, Astronomy and Cosmogony (2d ed; republication 1961; New York: Dover). 
Kerr, R. P. 1963, Phys. Rev. Letters, 11, 237. 
Kinnersley, W. M. 1969a, Ph.D. thesis, California Institute of Technology (unpublished). 
 . 19696, J. Math. Phys., 10, 1195. 
Lynden-Bell, D. 1969, Nature, 223, 690. 
 . 1971, in Nuclei of Galaxies, ed. D. J. K. O’Connell (Amsterdam: North-Holland); pro- 

ceedings of the Study Week on the Nuclei of Galaxies, Yatican City, 1970 April. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



No. 1, 1973 RELATIVISTIC ROCHE PROBLEM 67 

Lynden-Bell, D., and Rees, M. J. 1971, M.N.R.A.S., 152, 461. 
Mashhoon, B. 1972, Ph.D. thesis, Princeton University (unpublished). 
Misner, C. W. 1963, J. Math. Phys., 4, 924; esp. Appendix A. 
 . 1969, in Astrophysics and General Relativity, ed. M. Chretien, S. Deser, and J. Goldstein, 

Vol. 1 (New York: Gordon & Breach); proceedings of the 1968 Brandéis University Summer 
Institute in Theoretical Physics. Also see C. W. Misner, K. S. Thorne, and J. A. Wheeler, 1972, 
Gravitation (San Francisco: W. H. Freeman), in press. 
 . 1972, Phys. Rev. Letters, 28, 994. 
Misner, C. W., Breuer, R. A., Brill, D. R., Chrzanowski, P. L., Hughes, H. G., Ill, and Pereira, 

C. M. 1972, Phys. Rev. Letters, 28, 998. 
Morse, P. M., and Feshbach, H. 1953, Methods of Theoretical Physics (New York: McGraw-Hill), 

chap. 6. 
Nduka, A. 1971, Ap. J., 170, 131. 
Newman, E. T., and Penrose, R. 1962, J. Math. Phys., 3, 566. 
Papapetrou, A. 1951, Proc. Roy. Soc. {London), A209, 248. 
Peebles, P. J. E. 1972<z, Gen. Rel. and Grav., 3, 63. 
 . 19726, 4?./., 178, 371. 
Penrose, R. 1969, Rev. Nuovo Cimento, 1, Numero Spéciale, 252. 
Peters, P. C. 1964, Phys. Rev., 136, 1224. 
Roche, M. Ed. 1847-1850, Acad, des Sei. et Let. de Montpellier, Mem. Sec. des Sei., 1, 243 and 333. 
Stewart, J., and Walker, M. 1973, Comm. Math. Phys., 29, 43. 
Tananbaum, H., Gursky, H., Kellogg, E. M., Levinson, R., Schreier, E., and Giacconi, R. 1972, 

Ap. J. {Letters), 174, L143. 
Thorne, K. S., Will, C. M., and Ni, W.-T. 1971, in Proceedings of the Conference on Experimental 

Tests of Gravitational Theories, ed. R. W. Davies (Pasadena, California: Jet Propulsion 
Laboratory). 

University of Maryland Computer Science Center. 1970, University of Maryland Univac 1108 
Exec 8 Math-Pack User's Guide (unpublished). 

Vishveshwara, C. V. 1968, /. Math. Phys., 9, 1319. 
Wilkins, D. C. 1972, Phys. Rev. D, 5, 814. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
73

A
pJ

. 
. .

18
5.

 . 
.4

3F
 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 


	Record in ADS

