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STABILITY OF GENERAL-RELATIVISTIC POLYTROPES 
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ABSTRACT 
Tooper’s calculations of the parameters of the Lane-Emden functions for polytropes in general- 

relativistic hydrostatic equilibrium are extended, particularly in the direction of greater incom- 
pressibility of the equation of state. The contraction of the nonrelativistic homology group when 
general relativity enters in is discussed. The stability limits for general-relativistic polytropes are 
obtained. Letting a = (Plpc2)c measure the effects of general relativity, for y — f ^ 1.73cr the 
polytrope P = Kpy will be unstable against radial collapse. Particularly if neutronic matter is stiff, 
these results directly determine the maximum mass and radius of massive neutron stars to 5-10 
percent and 10-20 percent accuracy, respectively. 
Subject headings: equation of state — interiors, stellar — neutron stars — relativity 

I. introduction: polytropic equations of state 

In this paper we present some calculations of the mass, radius, and stability of fluid 
spheres obeying the polytropic equation of state 

P = Kpv, (1.1) 

and subject to the Tolman-Oppenheimer-Volkoff (TOY) equation for hydrostatic 
equilibrium in general relativity, 

dP _ r (m + Airr^Pjc2) / P\ 
dr ” U r2(l - 2Gm/c2r) \p + ’ 

m(r) == p47rr2dr. 

(1.2) 

(1.3) 

Here p is the total mass density and m(r) the gravitational mass interior to radius r. 
The calculations extend to higher incompressibilities and central pressures than 

earlier calculations (Tooper 1964). Since, at the densities obtaining in the most massive 
neutron stars, neutronic matter is probably fairly incompressible, one of our purposes 
is to show how incompressible matter is obtained as the y -> oo limit of a polytrope. 
Another purpose is to discuss the stability against radial collapse of stars obeying such 
an equation of state; our conclusions in this regard, differ from those of Tooper. 
Finally, we present a curve (fig. 3) of the limiting central density and mass beyond 
which superdense stars (white dwarfs or neutron stars) will be unstable against gravita- 
tion collapse. As shown in the following paper (Bludman 1973), this curve practically 
determines the limits of stability of stiff neutron stars obeying more realistic equations 
of state than equation (1.1). 

Any equation of state (including that of incompressible matter) can be written in 
the form (1.1) by defining 

y(p) = 
pdP 
Pdp ' (1.4) 

* Supported in part by the U.S. AEG. 
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638 S. A. BLUDMAN Vol. 183 

Over a limited domain of densities, y ^ constant so that the polytropic approximation 
(1.1) will apply, with some exponent y = 1 + 1/« or polytropic index n in that density 
domain. Polytropes are characterized by exactly constant y or n and are important as 
approximations to realistic equations of state, historically, and because nonrelativistic 
polytropes obey a homology or scaling law. We will also discuss the place of homology 
when dealing with relativistic polytropes. 

In terms of the energy density e = pc2, 

d{z\n) = „fe 
d(\lñ) n dñ 

(1.5) 

where ñ is the number density of particles of mass so that m^ñ is the proper mass 
density. In terms of the chemical potential 

de P + € 

^ dñ ñ 

the TOY equation (1.3) reads 

where 

v{r) ^ Í 
J ( 

-dp/ix = d(v/2), 

_ CT G(m + 4nr3Plc2) 
r\\ - 2Gm/c2r) 

The TOV equation therefore has the integral form 

dr. 

/xev<r)/2 = constant = mNc2{\ — 2^^ 
\ 1/2 

(1.6) 

(1.7) 

(1.8) 

(1.9) 

where mnc2 is the value of /x(V) at the stellar radius R where the total mass is M = 
m(R). This equation determines the metric goo = <?v<r) in terms of the local values of 
the chemical potential, which is itself determined by local state variables in equation 
(1.6). 

The polytropic form (1.1) or 

XiP = (P/pT , K^K', 

corresponds to the equation of state 

P = p(ñ) — mNñ[l — {K1ml,ñ)llnlc2]~n 

for equation (1.5) gives 

(1.10) 

(1.11) 

or 

o 2~2 d T, (^r1m«)1,n]-n 

p avivïi1"- 
1 — {K1m1tñ)llnlc4 = (*!¿>1/n 

The chemical potential 

mNc- 
= -^- = (i + —V+n 

í/(mNñ) \ + pc2) 
(1.12) 
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In the nonrelativistic limit 

P x mNñ + = mNñ + ^ (1-13) 
c c 

fjL — mNc2 # (1 + *0 ~~ == yeint » (1.14) 

where €lQt/ñ = —§Pd(l/ñ) is the internal energy per particle and €lnt = nP = 
(y — 1)_;LP is the internal energy per unit volume. 

The exact equations (1.10)-(1.12) show that in the limit « 0 

p = constant = 1/^ , (1.15) 

P 
mNc2 (1.16) 

This describes constant density matter which is incompressible. Note that in this 
limit, € = pc2 = mNñ = constant, but the chemical potential p, = de/dñ still varies 
with the pressure. 

One might also define polytropes by the equation of state 

P = Bñr . (1.17) 

Since y = pdP/Pdp and T = ñdP/Pdñ, the speed squared of low-frequency sound 

c2 = dPjdp = c2yv = c2rcr/(l + o-), (1-18) 

where a = Pipe2. The two exponents are related by 

y = 17(1+*), 

so that while they agree nonrelativistically, they disagree where * is appreciable. In 
particular, y{p) and r(«) cannot both be constant. 

If we had used equation (1.17), then 

P = ^ • (1.19) 

This agrees with equation (1.13) nonrelativistically and gives 

P = {V - l)(p - m^n)c2 . (1.20) 

One cannot, however, explicitly invert (1.19) to eliminate ñ(p) and obtain P — P(p) 
for use in the TOY equation. Equation (1.20), if it holds in the relativistic region 
p » mn, leads to an equation of state P x (T — l)pc2 which is always too soft for 
stability. For these reasons, at least in degenerate matter, equation (1.17) is not a 
suitable relativistic generalization of a polytrope, and we use equation (1.1) through 
the remainder of this paper. 

II. RELATIVISTIC LANE-EMDEN EQUATION 

We begin by defining dimensionless radial, mass, and density coordinates 

£ = Ar, 

V(i) = 4^c 
m(r) ’ 

no = pIpc , 

(2.1) 

(2.2) 

(2.3) 
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where 

S. A. BLUDMAN Vol. 183 

,4= (í^ > ä) 
\ c2 n + l ac2] 

1/2 

er = (P/pC2)c , 
ac2 

= (ï)v-’ 

(2.4) 

(2.5) 

and subscript c refers to central (r = 0) values. Then equations (1.1), (1.2), and (1.3) 
take the form 

-L = k lln = (re 
pC2 C2 r 

£ree». 

,2 dd (v + <j6£dv/dO(\ + o6) 
* d£ 1 - 2o(n + \)vt£ 

(2.6) 

(2.7) 

(2.8) 

The Lane-Emden functions are the solutions of equations (2.7) and (2.8) satisfying 
the condition 0 = 1 at £ = 0 and 0 = 0 at £ = 

The polytropic and general-relativity features appear only in equation (2.8). The 
index a is an index of the role of general relativity since for a->0, equation (1.3) 
reduces to 

— dP/dr = Gmp/r2 , (2.9) 

and equation (2.8) to 

— £2dO/d£ = v , (2.10) 

which together with equation (2.7) reproduces the ordinary (nonrelativistic) Lane- 
Emden equation 

(2.11) 

a) Homology Transformations 

The nonrelativistic Lane-Emden equation admits the homology or scale trans- 
formation 

, 0 À20 , v —> A3i; , (2.12) 

provided 

i.e., provided 

A3 — ^i3^2n > AiA2 — A3 , 

A2 = A^, a3 = \1
VT + 1 (2.13) 

where w = Iftn — 1) (Chandrasekhar 1939). This homology theorem asserts that 
any solution 0(£) of the Lane-Emden equation of fixed index n generates a whole 
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equivalence class of solutions which correspond to different values of K and 
distributions of mass m(r). It determines the evolution of stars of fixed y or polytropic 
index. 

Now the relativistic Lane-Emden equations (2.8), (2.7) depend on the general- 
relativity index a as well as the polytropic index n. Under the scale transformations 
(2.12) a solution of the relativistic Lane-Emden equation of indices n, a transforms 
generally into a solution with different indices n, À2cr. Only for m = 0 (« = oo or 
isothermal equation of state P = Kp) is the restricted scale transformation A-> 
v -> Ait; admitted.1 

b) Incompressible Matter 

For example, when « = 0 (incompressible matter of constant density />), the TOY 
equations (2.7), (2.8) have the solutions 

where 

P__ (1 + 3<t)(1 - X2)1'2 - (1 + q) 

pc2 3(1 + a) - (1 + 3a)(l - x2) 

X2 = !<t|2 = 
8Tr Gpr2 

3 c2 

(2.14) 

(2.15) 

(2.16) 

The central pressure is given by 

(PlpC2)c = a, 

and the value of r for which P = 0 determines the stellar radius 

2 _ 877 GpR2 . 1+2(7 
3 c2 ~ (1 + 3a)2 ' 

From equation (2.14) the total energy or gravitational mass is 

The baryon number A or proper mass is 

C mNMirr2dr 
N J [1 - 2Gm(r)¡c2r]112 

(2.17) 

(2.18) 

= 3/2[sin-1 X- X(\ - X2)112]. (2.19) 

There is no homology group. Instead, if P AP, M -> AM so that 2GMIc2R = X2 

stays invariant, then according to equations (2.17), p-> Á~2p, ñÁ~2ñ, and accord- 
ing to equation (2.19) A -> XA, i.e., the star is transformed into one of different baryon 
number. 

1 Cf. Harrison et al. (1965), who discuss the scale invariance of the TOY equation but apparently 
fail to emphasize that the general-relativity homology group is restricted (to n = oo) as compared 
with the nonrelativistic homology group (all ri). Their reduction of the TOY equation to a single 
first-order equation between the “Bondi invariants” m(r)lr and Anr2? is applicable only to the 
F-law equation of state P = (F — \)pc2. Since for this equation y = 1, such stars will always be 
unstable unless surrounded by an envelope of much stiffer material such that the average 
<y> > ye» > j. 
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642 S. A. BLUDMAN 

III. NUMERICAL CALCULATION OF RELATIVISTIC LANE-EMDEN PARAMETERS 

The relativistic Lane-Emden functions 0(£), v{^) depend on two indicial parameters 
n and a. For ct->0 these reduce to the nonrelativistic Lane-Emden functions 
(Chandrasekhar 1939) and for « -> 0 to the case of incompressible matter, for which 
analytic solutions are possible in both the nonrelativistic and relativistic cases. While 
the nonrelativistic Lane-Emden equation can also be solved analytically for «=1,5, 
this is not true relativistically, and recourse must be had to numerical integration. 
This has been done by Tooper (1964) for n = 3.0, 2.5, 2.0, 1.5, 1.0 and for o- < 1/y = 
«/(« + 1). 

The speed of low-frequency sound waves is cs
2 = dP/dp = yPjp — c2y(Plpc2), so 

that at the star’s center, where Pjpc2 has its maximum value o-, c2 = c2y°'- If cr > 1/y, 
the sound speed so calculated would exceed that of light. Especially because such a 
superluminal core would in any case be surrounded by ordinary subluminal matter, 
it is not clear that any such occurrence would have serious consequences except for 
the maximum MjR and surface redshift which it would permit (Bludman and Ruder- 
man 1968). 

TABLE 1 
Parameters of the Relativistic Lane-Emden Functions 

Kli) M 

n — 3.0, <7cr ==: 0 

0.. 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

6.8999 
6.8289 
7.9525 

10.830 
17.799 
37.104 
90.749 

162.34 
187.27 
187.17 

2.0182 
1.0787 
0.7133 
0.5388 
0.4517 
0.4214 
0.4490 
0.5260 
0.5964 
0.6372 

2.0182 
1.0787 
0.7133 
0.5388 
0.4517 
0.4214 
0.4490 
0.5260 
0.5964 
0.6372 

n — 2.5, ccr — 0.039 

0... 
0.1, 
0.2, 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

5.3570 
4.7838 
4.7223 
4.9868 
5.5453 
6.4325 
7.7234 
9.5149 

11.884 
14.825 

2.1869 
1.1694 
0.7608 
0.5558 
0.4387 
0.3665 
0.3203 
0.2905 
0.2721 
0.2618 

0 
0.6576 
0.5088 
0.4113 
0.3489 
0.3082 
0.2819 
0.2657 
0.2573 
0.2550 

n — 2.0, ccr — 0.097 

0.. 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

4.3538 
3.7002 
3.3993 
3.3721 
3.2489 
3.2970 
3.3996 
3.5468 
3.7329 
3.9524 

2.4105 
1.2987 
0.8404 
0.6056 
0.4681 
0.3801 
0.3202 
0.2774 
0.2457 
0.2217 

0 
0.4107 
0.3758 
0.3317 
0.2961 
0.2688 
0.2480 
0.2321 
0.2198 
0.2103 
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TABLE 1—Continued 

Kfi) M 

n — 1.5, (Tcr — 0.20 

0.. 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

3.6541 
3.0390 
2.7000 
2.4937 
2.3617 
2.2755 
2.2198 
2.1853 
2.1663 
2.1589 

2.7131 
1.4821 
0.9604 
0.6884 
0.5271 
0.4227 
0.3506 
0.2985 
0.2594 
0.2292 

0 
0.2636 
0.2872 
0.2790 
0.2651 
0.2513 
0.2390 
0.2285 
0.2195 
0.2118 

n = 1.0, ctCr = 0.42 

0.. 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

3.1416 
2.5993 
2.2773 
2.0645 
1.9135 
1.8012 
1.7146 
1.6461 
1.5906 
1.5450 

3.1402 
1.7510 
1.1425 
0.8191 
0.6249 
0.4981 
0.4101 
0.3461 
0.2979 
0.2605 

0 
0.1751 
0.2285 
0.2457 
0.2500 
0.2491 
0.2461 
0.2423 
0.2383 
0.2345 

n — 0.9, <7cr — 0.50 

0... 
0.1 
0.2, 
0.3 
0.4, 
0.5, 
0.6, 
0.7. 
0.8, 
0.9 

3.0553 
2.5289 
2.2129 
2.0018 
1.8507 
1.7371 
1.6486 
1.5777 
1.5198 
1.4715 

3.2473 
1.8199 
1.1899 
0.8537 
0.6512 
0.5187 
0.4267 
0.3597 
0.3092 
0.2700 

0 
0.1622 
0.2196 
0.2411 
0.2488 
0.2505 
0.2495 
0.2473 
0.2446 
0.2417 

= 0.8, ocr == 0.61 

0.. 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

2.9736 
2.4631 
2.1534 
1.9447 
1.7940 
1.6798 
1.5901 
1.5177 
1.4580 
1.4078 

3.3640 
1.8955 
1.2423 
0.8920 
0.6804 
0.5418 
0.4453 
0.3750 
0.3219 
0.2807 

0 
0.1506 
0.2115 
0.2372 
0.2483 
0.2527 
0.2539 
0.2533 
0.2519 
0.2500 

n — 0.7, <7cr — 0.75 

0.. 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

2.8960 
2.4016 
2.0986 
1.8927 
1.7429 
1.6285 
1.5382 
1.4647 
1.4037 
1.3522 

3.4916 
1.9784 
1.3003 
0.9347 
0.7131 
0.5676 
0.4662 
0.3922 
0.3364 
0.2930 

0 
0.1401 
0.2043 
0.2341 
0.2486 
0.2558 
0.2591 
0.2603 
0.2603 
0.2596 
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TABLE 1—Continued 

v(ti) M 

n — 0.6, <tor — 0.97 

0.. 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

2.8224 
2.3439 
2.0478 
1.8450 
1.6965 
1.5824 
1.4918 
1.4177 
1.3559 
1.3034 

3.6316 
2.0709 
1.3648 
0.9823 
0.7497 
0.5966 
0.4898 
0.4118 
0.3529 
0.3071 

0 
0.1307 
0.1978 
0.2316 
0.2497 
0.2597 
0.2653 
0.2684 
0.2700 
0.2706 

n = 0.5, <tor — 1.24 

0.. 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

2.7523 
2.2898 
2.0008 
1.8013 
1.6544 
1.5409 
1.4503 
1.3759 
1.3136 
1.2604 

3.7860 
2.1735 
1.4358 
1.0350 
0.7910 
0.6295 
0.5164 
0.4340 
0.3717 
0.3231 

0 
0.1222 
0.1920 
0.2298 
0.2516 
0.2647 
0.2727 
0.2779 
0.2812 
0.2833 

n = 0.4 

0... 
0.1 
0.2. 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

2.6857 
2.2389 
1.9572 
1.7613 
1.6160 
1.5034 
1.4130 
1.3385 
1.2759 
1.2224 

3.9582 
2.2882 
1.5182 
1.0963 
0.8378 
0.6664 
0.5471 
0.4596 
0.3932 
0.3416 

0 
0.1147 
0.1874 
0.2292 
0.2546 
0.2707 
0.2816 
0.2891 
0.2942 
0.2979 

n = 0.3 

0.. 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

2.6222 
2.1911 
1.9166 
1.7244 
1.5811 
1.4695 
1.3795 
1.3050 
1.2424 
1.1886 

4.1498 
2.4178 
1.6102 
1.1653 
0.8916 
0.7099 
0.5824 
0.4885 
0.4182 
0.3631 

0 
0.1080 
0.1833 
0.2294 
0.2588 
0.2785 
0.2922 
0.3018 
0.3094 
0.3150 

n = 0.2 

0.. 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

2.5617 
2.1461 
1.8789 
1.6905 
1.5493 
1.4387 
1.3493 
1.2751 
1.2124 
1.1585 

4.3664 
2.5648 
1.7160 
1.2447 
0.9535 
0.7596 
0.6233 
0.5228 
0.4470 
0.3881 

0 
0.1021 
0.1803 
0.2307 
0.2644 
0.2878 
0.3049 
0.3173 
0.3271 
0.3349 
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TABLE 1—Continued 

o ¿i i^i) M 

n = 0.1 

0  2.5040 4.6089 0 
0.1  2.1037 2.7308 0.09689 
0.2  1.8438 1.8377 0.1781 
0.3  1.6593 1.3367 0.2333 
0.4  1.5202 1.0254 0.2716 
0.5  1.4108 0.8172 0.2991 
0.6  1.3220 0.6710 0.3199 
0.7  1.2482 0.5634 0.3359 
0.8  1.1856 0.4816 0.3485 
0.9  1.1317 0.4176 0.3585 

« = 0, <7ob = oo 

0  2.449 4.898 0 
0.1  2.064 2.931 0.0926 
0.2  1.811 1.980 0.1770 
0.3  1.63 1.45 0.2382 
0.4  1.493 1.110 0.2808 
0.5  1.39 0.890 0.3146 
0.6  1.30 0.728 0.3384 
0.7  1.22 0.610 0.3573 
0.8  1.161 0.522 0.3735 
0.9  1.108 0.453 0.3868 
1.0  1.061 0.398 0.3977 

We have extended Tooper’s calculations to smaller n (stiffer matter) and larger a. 
The results, calculated by Mr. Richard Adams using the classical Runge-Kutta 
method, are given in table 1. Here èi is the first zero of the Lane-Emden function 
0(|) so that the stellar radius is 

and the stellar mass 

$1=0*-^^). (3.3) 

The tabulated values for ^ and agree with the nonrelativistic (n = 0) and Tooper 
values [for « = 1.0 and a < n/(n + 1)] to better than 1 percent. 

Other useful functions that we do not tabulate are GM/c2R = a(n + 1M£i)/£i, 
which determines the surface redshift, and pjp = i£i3M£i)> which expresses how 
much central compression of density takes place. 

In figures 1 and 2 we plot *;(£i) and Ñ as functions of n and cr. Ñ and M increase 
with a = Kpc

lln up to some maximum value C7CR. Since a necessary condition of 
stability is dMjdpc > 0, c7CR marks the onset of the first mode of radial instability.2 

2 Tooper (1964) considers the case n = 3.0 and observes the minimum in = Mat cr = 0.5, 
implying that the « = 3 relativistic polytrope is stable for a < 0.5. This is misleading since the 
« = 3 polytrope is already marginally^unstable nonrelativistically and is rendered unstable by the 
smallest effects of general relativity. M has a maximum at a = 0; the minimum at a = 0.5 marks 
the onset of the next mode of nonradial instability. 
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Fig. 1.—Relativistic Lane-Emden function determining the stellar mass plotted as a 
function of polytropic index n and general-relativity index o. The curve for <7 = 0 reduces to the 
nonrelativistic Lane-Emden function and for a = 0 to incompressible matter for which an analytic 
solution is possible. The function r(£i) decreases with increasing n as the equation of state softens 
and with increasing a as the effects of general relativity become more important. 

Fig. 2.—The function Ñ = a(3~ n)/Mfi) which determines the stellar mass by equation (3.2). 
The maxima in M as a function of a determine the values of a and n or y plotted in fig. 3. Except 
for large n and small a, M shows a broad maximum value about 0.25. 
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GENERAL-RELATIVISTIC POLYTROPES 647 

The maxima in M were located by using a finer mesh than the 0.1 intervals in a 
appearing in table 1 and are plotted in figure 3. The stability curve plotted is, for 
<7 < 1, 

y - f - 1.73a - 0.31a2 (3.4) 

to within a few percent. Since a ~ GM/c2R, this implies the adequacy of a first post- 
Newtonian approximation. Equation (3.4) shows how, for a given value of a, the 
minimum value of y necessary for stability is raised above the value f which would be 
sufficient for stability in Newtonian theory. Conversely, a polytrope of given exponent 
y or polytropic index n becomes unstable when the dimensionless general-relativity 
index a exceeds aCR. The numerical value of the central density pc at which this happens 
is then determined by the dimensional parameter K through a = Kpc

lln. 
Also drawn on figure 3 is the “causality limit” curve a < 1/y. This intersects the 

aCR curve at aCR = 0.48, where y = 2.084, n = 0.926. The region of high y and low a 
for which the equation of state is causal and the star is stable is marked. The maximum 
value of a is set by general relativity for y < 2.084 and by causality for y > 2.084. 
As discussed in the following paper, in a massive neutron star, most of the mass is 
contained in the core region, for which, especially if the equation of state is stiff, a 
polytropic approximation applies. Hence, in dealing with stiff equations of state, the 
maximum neutron-star mass will obtain at that central density pc ~ 4 x 1015 gem"3 

for which a = aCR in figure 3. 

IV. CONCLUSIONS 

We have extended to smaller n and larger a Tooper’s calculations of the parameters 
of the Lane-Emden functions for polytropes in general-relativistic hydrostatic 

GENERAL RELATIVITY INDEX o- = (-^) /9CZ c 

Fig. 3.—Critical value of the general-relativity index a = (Plpc2)c above which a polytrope is 
destabilized by general relativity effects. (Calculated by Mr. Richard Adams.) Also shown is the 
curve a = 1/y above which the sound speed at the center of the star cs

2 — dPjdp = yP/p will 
exceed that of light. The two curves intersect at a = 0.48, y = 2.084. Regions in which the equation 
of state at the star’s center is causal and noncausal and for which the star is stable or unstable are 
indicated. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
73

A
pJ

. 
. .

18
3.

 .
63

7B
 

648 S. A. BLUDMAN 

equilibrium. Given in table 1 are f1? the zero of 0(£) which determines the stellar 
radius R by equation (3.1), and i^) and M, which determine the jtellar mass M by 
equations (3.2) and (3.3). Figures 1 and 2, showing i^) and M, respectively, as 
functions of n and a, illustrate how the stellar mass increases with stiffness of equation 
of state and decreases with the effects of general relativity. 

For given o- = (P/pc2)c there is a minimum y > f, or for given y a maximum a, 
beyond which instability against radial collapse takes place. These critical values of 
<t or y are plotted in figure 3 and are approximately related by y — f = 1.73c7. 

If neutronic matter is fairly stiff at transnuclear densities then, especially for neutron 
stars of nearly maximum mass, most of the mass is contributed by a central volume 
over which the equation of state is approximately polytropic. The results of this paper 
are therefore applicable to the determination of the maximum mass of such stiff 
neutron stars (Bludman 1973). 

I am indebted to Mr. Richard Adams for the careful numerical calculations, 
particularly of table 1 and figure 3. 
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