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Summary. The initial conditions for 800 triple star
systems are created and the evolution is followed,
usually until the escape of one member. It is found that
the angular momentum of the system is the quantity
most influential in determining the following distribu-
tions: the time of disintegration, the velocity and mass

of the escaping particle, the semi-major axis, eccentri-
city and angular momentum of the remaining binary.
These quantities are displayed graphically and dis-
cussed.
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I. Introduction

This is a numerical study of the gravitational problem
of three bodies. Eight different sets of initial conditions
with 100 examples in each are selected to represent
possible conditions at the birth of triple-star systems.
The evolution is then followed numerically, and the
results are analysed with respect to the probability and
the average time of escape of one star, the mass and
velocity of the escaper, and the semi-major axis,
eccentricity and angular momentum of the remnant
binary star system.

Previous numerical works of a similar nature include
the following investigations: encounters of a binary by
a passing star (Yabushita, 1966; Harrington, 1970);
capture and binary formation from triple encounters
(Agekyan et al., 1970; Agekyan and Anosova, 1971);
escape times (Agekyan and Anosova, 1967; 1968 and
Anosova, 1969a, b); escape times and velocities of
escapers (Worrall, 1967); and the effects of the mass
distributions on many quantities (Szebehely, 1972).
Also, Szebehely (1971) has classified the types of motion
exhibited by three bodies in a plane.

This study advances the previous knowledge by analy-
sing more quantities; in particular, ones more pertinent
to astronomical questions. Furthermore, this study
uses initial conditions which seem more realistic when
the examples are related to triple star systems. In hind-
sight, it is seen that the inclusion of non-zero angular
momentum is most significant.

Only two-dimensional motion is considered. It may be
shown that if a three-body system has zero angular
momentum, the motion of the system is confined to a
plane. Since some of the examples computed in this
study have zero angular momentum and are there-
fore two-dimensional, it was felt that the effect of non-
zero angular momentum could best be observed by
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confining all of the examples to a plane. Three-di-
mensional effects will be investigated in a later study.
Section II introduces the notation used in this study,
the choice of units and some relations between different
parameters. Section III describes two features of the
computer program. Section IV defines the different
sets of initial conditions. Section V presents the numeri-
cal results. Section VI contains the conclusions.

II. Choice of Units and Notation

The choice of units used in this study has been defined
previously by the author (Standish, 1968). Briefly, the
following equations hold for a cluster in equilibrium:

E=T+V,

2T=-7V,
.1
T=7Mufms3
V=—GM?2R*,
tcr = 2R*/vrms’

where E is the total energy; T, the kinetic energy;
V, the potential energy; M, the total mass; v, the
root-mean-squared velocity; G, the gravitational con-
stant; R*, a characteristic radius of the cluster; and
t.., the crossing time.

The units of distance, mass and time are defined as
R*=1, M =1, and ¢, = 1. This uniquely determines the
rest: E= =2, T=2,V=—4, Vrms =2, and G=8.

With these units, the angular momentum of a lagran-
gian triangular equilibrium configuration is L* =0.777.
The crossing time defined here is equal to 3 time units
used by Agekyan and Anosova (1967).
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The following formulae are useful for converting the
present units into physical ones:

t. [yrs] = 0.45]/R"‘3 [A.U]J/M[Ms],
and

Uems [km/s] = 21)/M[M o ]1/R*[A.U.],

remembering that v,,,; =2 in the model units.
When the distance between two particles is much smaller
than the distance of either to the third, the motion
resembles two keplerian orbits. This motion occurs in
Classes No. 2—4, proposed by Szebehely (1971). In all
three cases (“Ejection without Escape”, “Escape”, and
“Revolution) the subsripts, 3g and B, may be used to
denote, respectively, the orbit of the remote body,
_ mas, relative to the center of mass of the remaining
binary, m, and m,; and the relative orbit of the binary
itself.
For energy and angular momentum, the following rela-
tions hold:

1 .2 Ma M bl o 1 2
Fag 2¢ GM[Qsa * Q3p 2 GMle.

and

1
Ep= 5 2 — G(m, +my)/r ;

hy,=ex@, and hg=rxi;
where ¢ and r are illustrated in Fig. 1, and where
M,=m,/(m,+m,) and M, =m,/(m,+m,).

ms

Mgq m
r b

Fig. 1. The vector, g, denotes the position of the remote body, ms,
with respect to the center of mass of the closer two, m, and m,

For the system as a whole,

m,m my(m, + my)
E=—-2= a'''p 3\ b E ,
m,+m, ° M 3
and
m,m, ms(m, +my)
a b

It may be seen that after escape (E3,>0), the semi-
major axis, ag, and the angular momentum, hg, are
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bounded above by the relations

m,m
< gt—(CG_ab
ag<a*=G 20E|
=2/9 when m,=m,=1/3
<1/2 when m,+m,

hi = G(m, +m,) ag (1 — €2) < G(m, +m,) a* = h*

=32/27 for m,=m,=1/3
<4 form,+m, ’

II1. Computer Program

Once the inital conditions are specified, the equations
of motion may be integrated numerically. The computer
program used here takes advantage of a regularizing
transformation developed by Peters (1968), whereby
close encounters between two particles present no
difficulties whatsoever.

A second feature of the computer program is the
double-binary approximation. It often happens during
the evolution of a three-body system that one of the
particles nearly escapes (“Ejection without Escape”),
traveling for a long time on an extended orbit, far
away from the remaining pair. During this time, the
motion of the third particle relative to the pair and
the motion of the pair itself, both closely resemble
keplerian orbits. Instead of integrating such motion
numerically, the computer program approximates the
motion with the aid of two-body formulae: the third
body is advanced in its keplerian orbit to the point
where it returns to the vicinity of the pair; the time for
this advance is computed; and the binary pair is up-
dated accordingly. Though such a method is admitted-
ly an approximation to the true motion, it is felt that,
statistically, it could not influence the results of the
present study. Furthermore, the numerical integration
of such a long stage of evolution would probably in-
troduce more numerical error through round-off, etc.,
than that introduced by the double-binary approxima-
tion. The deciding factor is the enormous saving of
computing time gained by use of the approximation.
Even with the double-binary approximation, the change
of the energy constant rarely exceeded 0.05%.

IV. Initial Conditions

The different sets of initial conditions used in this study
are denoted by a number and a letter. The letter, E
or U, denotes equal or unequal masses, respectively.
For the cases with unequal masses, three random
numbers were generated and then normalized so that
their sum, M, is equal to unity.

The initial positions were created, in all sets but the
last (26U), by scattering three points at random inside
a unit circle.
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The center of mass for all cases is transferred to the
origin. The initial conditions are always scaled so that
the total energy is E= —2. This, with the choices of
M =1 and G =8, ensures the system of units described
in Section II.

21E,21U

Zero initial velocities for all three particles.

22E,22U

“Rigid-body” rotation, about the center of mass, so
that the angular momentum, L = L*/3.

23U

“Rigid-body” rotation such that the initial value of
the virial ratio, 2 T/|V,| = 1/2.

24U

The closest pair of particles are given velocities so
that they are in circular orbits about their common
center of mass. The remote particle has zero initial
velocity.

25U

Random velocities, scaled and rotated so that, initially,
the virial ratio, 2T,/|V,| =1, and the angular momen-
tum, L =0.

26U

Each particle is placed at random inside a circle of
radius 0.2, centered at the apex of an equilateral
triangle of unit sides. The configuration is scaled and
rotated so that 2 T,/|V,| = 1.

V. Results of the Numerical Study

For each of the eight sets of initial conditions described
above, 100 examples were computed and the evolution
was followed until either 10000 integration steps had
been taken or one of the particles had escaped. This
latter event was determined when the conditions,
2>2.5 and E;, >0, were fulfilled (i.e., hyperbolic ejec-
tion). Rigorous sufficient conditions for escape have
been derived by the author (Standish, 1971), but these
have not been used here since they were found after
part of this study had been completed.

Time of Escape

The time of escape, t,, is defined here as the instant
of time when the perimeter of the whole system attains
its last local minimum before E;, becomes positive.
This time agrees in all cases with the time of pericenter
passage of the escaper’s hyperbolic orbit. However,
the time of escape as defined, is not a true measure
of how long all three bodies remain in proximity to
each other. It often happens that “ejection without
escape” occurs which lasts for an abnormally long time,
during which one body remains widely separated. It
becomes more meaningful, therefore, to define “nomi-
nal escape” as occuring when the condition, ¢ > 10,
is fulfilled. The associated “nominal escape time”, t¥,
is then a more realistic measure of the duration of
“interplay” (Class No. 1 of Szebehely, 1971). This defini-

The Dynamical Evolution of Triple Star Systems . 187

Table 1. Escape data

Set Full escape No escape Nominal or
t,<1 t,>1 Stable Unstable Full escape

21E 5 94 0 1 99

21U 18 82 0 0 100

22E 4 95 0 1 100

22U 8 89 1 2 99

23U 15 59 26 0 78

24U 13 87 0 0 100

250 26 70 0 4 100

26 U 4 93 0 3 99

Total 93 669 27 11 775

tion of nominal escape time is the same as that used
by Agekyan and Anosova (1967, 1968).

Table 1 presents the general results of the numerical
study. In 93 cases, the ejection of the escaping particle
occurred immediately as a result of the initial condi-
tions or as a result of the initial collapse of the system.
In these cases, t, < 1. In 669 cases, escape occurred after
the evolution had shown some period(s) of “interplay”
(usually short-lived), often separated by more extended
periods of “ejection without escape”. Of the 38 cases
where escape never did occur, 13 had a nominal
escape. 27 of the 38 cases showed motion which was
judged (somewhat arbitrarily) to be stable. The other
11 showed unstable motion and it is likely that these
cases would eventually lead to escape. The 38 cases
roughly validate the finding by Harrington (1968) that
a system is stable if one body remains widely separated
from the other two (i.e., o/r must be large). For this
separation to remain large, the angular momentum, L,
must also be large. Set 23 U is the only set of initial
conditions likely to produce both such conditions.

The contributions of the different sets of initial condi-
tions to the types of motion are evident from Table 1.
In 682 cases, either full escape or nominal escape occur-
red after one crossing time (t, > 1). Figures 2a—h show
histograms of these cases for the 8 sets of initial condi-
tions. The mean value of ¢} and the deviation of the
mean (o/}/n) are given in Table 2.

The initial conditions of set 21 E are the same type as
those used by Agekyan and Anosova. The values of
t¥ agree well when the factor of 3 difference in units is
applied:

(21 E) x 3=87.1+86,
F(A+A) =954+69.

Mass of the Escaper

In order to illustrate the mass of the escaping particle,
a scatter-diagram is presented in Fig. 3 for the 480
unequal-mass cases where full escape occurred after at
least one crossing time. The mass of the escaper, m,,
is plotted on the horizontal axis. On the vertical axis
is the mass of the smaller of the remaining two
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Fig. 2a—h. The distributions of the nominal escape times, ¢¥, for the systems wheré t¥ > 1.

Table 2. Means and deviations. There were n cases of either full or nominal escape after one crossing time. There were m cases of full escape
after one crossing time

SET n (54 m eg agla* hg/h* L

21E 94 29.03 +2.85 94 0.742 + 024 0.697 + 024 0.466 + 027 0.000 + 000
21U 82 13.10+1.83 82 901 +018 768 + 022 258 + 024 000 + 000
22E 96 24.60 +2.58 95 8514016 7254021 3624023 256 + 000
22U 91 18.63+5.53 89 806 + 022 774 +£021 413 4026 256 + 000
23U 63 2575+ 4.5 59 593 +029 905 +012 713+ 024 5451017
24U 87 18.62+2.17 87 769 + 029 792 + 021 4374030 2474014
25U 74 26.10+5.32 70 829 + 025 741 +028 362+ 031 000 + 000
26U 95 2551 +4.11 93 553 +029 933 + 006 734 +021 627+ 015
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Fig. 3. The mass of the escaper is m;. The smaller of the remaining
two masses is m,

particles, m,. The three sectioned areas correspond to
the situations,

my<m, <m, (385 members),
m, <ms <m, (66 members), and
m, <m, <m; (29 members).

Points near to the upper (sloping line) indicate that
m,~m,. Although the heaviest mass escaped in 29
cases, there was never a case where m; > 0.5. ’
Velocity of the Escaper

It is often asked whether the disruption of triple star
systems can account for the presence of high-velocity
“runaway” stars. Figure 4 is a scatter-diagram, plotting
v3 VS. m3, where v; is the velocity of the escaper with
respect to the center of mass of the whole system.
Therefore, v; would correspond to the space velocity
of the escaping star. The values of v; in km/s depend, of
course, on the choices of M and R*. For example, using
the formula in Section II and choosing the values
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Fig. 4. The velocity of the escaper, v, versus its mass, ms.

v;=10(=5v,,), M =30My, and R*=100A.U,, one
finds a result of v; =58 km/s. This is a relatively high
velocity for a star from a reasonable choice of units.
Eccentricity of the Binary

The distribution of the eccentricity of the remaining
binary is illustrated in Figs. Sa—h by means of histograms.
It is evident that the choice of equal masses tends to
decrease the number of highly eccentric binaries at
least for the cases of low angular momentum. More
striking, however, is the effect of the initial amount
of angular momentum in the system. As seen in Table
2, the sets 23 U and 26 U are the ones which have high
angular momentum and consequently, less eccentric
remnant binaries.

It is tempting to compare the distribtuion of eccentricity
as found in this study with those derived from the
observations of optical binary stars. Couteau (1960)
finds a distribution function of the form,

SO~ (e—e?)*.

2l E % 21 U % 22 E % 22 U

50- 50- 501 50-
a b c d

o eg o eg o eg [ 0 es |
% 23 U % 24 U % 25 U o 26 U
50 50 50+ 50
© o [ f 0 1 85 [ h o_\_[—|_r_r_‘_‘__'_l—ll

e eg eg eg

Fig. 5a—h. The distributions of the eccentricities of the remnant binaries after full escape has occurred

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1972A%26A....21..185S

35S!

FIO72RGA 22200 T

190 E. Myles Standish, Jr. Astron. & Astrophys.
1 eg=0 T o | 0
/4 174 174
. 21 E “ ) » 21U 172 2 22 E 172
B g B . 8
3/4 ~ 3/4 e 34
.' eg 4 ‘..':' eg
a .:. M b ; . c : 3 ¢ .
0% e of 5 °g ol
11 [o) | (o]
1/4 7z
22 U g 23 U
2 o 1/2 172
B
2 -
S ﬁ ..
3/4 ~ 3/4
S C8 " . eg
d ‘~ f\ e :.. .
0 e e
(o] a | ! oo \ I
1 0 | £0
su 174 174
2 . 26 U 7
2 1’72 2 s 172
B B e
- 3/4 5 a4
. ;
.- ©s . es
4 Tt
g o Tt h
% . T g !

Fig. 6a-h. Scatter diagrams where ¢ = az/a* and f = hy/h*, the ratios of the semi-major axes, ap, and angular momenta, hg, to their upper bounds,

a* and h*, respectively. Lines of constant eccentricity, e, are drawn

To match such a function, the present study would
indicate a high amount of angular momentum,

3 . .
L~ 7 L*. Caution is necessary on both sides, however.

Selection effects would seem to exclude highly eccentric
binaries from Couteaw’s data, while the point-mass
approximation in the present study could tend to favor
such cases. The comparison must therefore be taken
lightly.

Semi-major Axis, Angular Momentum

The distribution of the semi-major axis, ag, is relatively
non-descript as such. Suffice it to say that it is rarely
the case that ap<0.1. In other words, the dynamical
disruption of triple stars does not produce tightly-
bound binary stars.

More notable, however, are the distributions of the
ratio, ag/a*, where a* is the upper bound of ap as
discussed in Section II.

Similarly, for the angular momentum, the ratio of
hg/h* is a more meaningful quantity than the value of
hg alone.

The distributions of ag/a* and of (hp/h*)> may be in-
ferred from Figs. 6a—h which are scatter-diagrams
plotting these two quantities on the horizontal and
vertical axes, respectively. The diagonal lines show the
loci for equal values of the eccentricity, eg, since

(hg/h*)> = (1 — €?) (ag/a®).

It seems evident from the diagrams that the angular
momentum of three-body systems is the major deter-
mining factor with respect to the description of the
remnant binary. The difference between equal and un-
equal masses is also important but the effect is less
clearly understood. For the cases with high angular
momentum, the escaper is required to carry away a
certain amount of angular momentum, since there is
a bound on the amount which may be absorbed by the
binary. In these cases, however, the binary tends to
relieve the escaper by absorbing a relatively higher
amount (hg/h* tends to be higher). In order to accom-
plish this, it must be the case that ag/a* is relatively
large and that ey is relatively small, as seen from the
above equation.
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VI. Conclusions

The results of this paper may be summarized as follows:
1) Nearly all if not all triple star systems which contain
some “interplay” during their evolution are dynami-
cally unstable. The time of disruption may be delayed
for a long time, however, by an “ejection without
escape”. The only systems known to be stable are the
“revolution” cases.

2) “Interplay” is short-lived. Ejection, with or without
escape, usually occurs after only a few crossing times.
3) The lightest mass usually escapes, though not al-
ways. The probability of a mass escaping which is
heavier than the other two combined is extremely
low, if not zero.

4) High velocity escapers do occur, but they are usually
the lighter mass stars.

5) Tightly-bound remnant binaries are rare. The dis-
ruption of triple stars certainly can not account for
spectroscopic binaries, unless extreme initial conditions
are used.

6) The distribution of eccentricity of the remnant
binaries seems to be influenced most by the amount
of angular momentum in the system. High angular
momentum tends to produce less eccentric binaries.

7) Angular momentum seems to be the most influential

factor in the initial conditions.
a) The Sundman inequality (see Pollard, p. 43),

L?><Imr? Tm;i?,

indicates in some fashion that the amount of sustained
“interplay” is limited by the amount of angular momen-
tum. This was seen in the present study. The “revolu-
tion” cases had high angular momentum; those with
“interplay” had relatively little.

b) The different mechanisms for escape, not yet studied
very closely, would seem to depend on certain ranges of
angular momentum.

¢) Since it is known that zero angular momentum
implies two-dimensional motion, it seems likely that

The Dynamical Evolution of Triple Star Systems 191

small angular momentum would somewhow limit the
extent of motion out of the plane.

Further study of a similar nature would most profi-
tably include a more systematic choice of initial condi-
tions designed to illustrate specifically the effect of
angular momentum. Inclusion of three-dimensional
system would seem to be important also, since the third
dimension is closely allied with the amount of angular
momentum.
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