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ON THE COMPUTATION OF THE SPHERICAL HARMONIC
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Abstract. A method is presented for the accurate and efficient computation of the forces and their
first derivatives arising from any number of zonal and tesseral terms in the Earth’s gravitational
potential. The basic formulae are recurrence relations between some solid spherical harmonics,
Vn,m, associated with the standard polynomial ones.

The Earth’s gravitational potential, — V, can be written

Pm
2 Z ,,Sslm ?) (Cp, mcosmd + S, ,, sinml) (1)

n=0 m=0

where Rg is the radius of the Earth; r is the geocentric distance of a point in the
potential field, ¢ is its latitude, and A is its geocentric longitude measured eastward
from the meridian of Greenwich; C, , and S, ,, are physical constants; and P, are
associated Legendre polynomials.

Define
P (sin @) (cos mA + i sin mi)
I/", m = n+1 (2)
r
Then
V = Real Z Z R (Cp — iSu.m) Vo - 3)
n=0 m=0

For all zonal terms (m=0) we have

Sn,0=0a Cn,0=—']

ns

where J, is the traditional notation used for a zonal coefficient. The V, ,, are solid
spherical harmonics of degree —(n+1) and order m. They have properties useful to
the problem at hand.

Let
X =Fr COSQ CoS A
y=rcosesini )]
zZ=rsing
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be body-fixed coordinates of a point in the potential field.

Then
v P"'(sm o) (x +iy)" 5
n,m rn+m+1 COS QD * ( )
Define
r"""P"(sin
z, =" Liing) ©)
cos™ @
Then
(x+iy)"Z, m
Voom= "1 @)

r

The explicit expression for an associated Legendre polynomial in sin ¢ is

I((n—m)/2)

where I denotes ‘integral part of”. It follows that the explicit expression for Z, ,, is

((n—m)/2) ( 2k)
n 2"- ! n—m-—2k_ 2k
Z (- ()(n—m m—m—at- o ®

This can also be written in the form

(zr

I((n—m)/2)

z, .(z, 0_2) _ (n+ m)! (_2}()" m + 2k n 2 2k 2k
’ 2"n! 2 k m + 2k
k=0 (9)

where
o2 =x2 + y2.

The V,, ,, can be computed from Equations (7) and (8) or (9). Explicit expressions
for a few small n and m are given in Table I. When the numerical values of several
V,.m are required, it is simpler and more efficient to use the recurrence relations
below, which produce accurate results.

The advantages gained by introducing the V, ,, arise from the simple recurrence
relations derived below, and from the fact that any derivative of V, , is a simple

linear combination of other V, .

1. Two Recurrence Relations

Now
Hy = (x+ )" Zy (10)
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TABLE I
Va,m
(62=x2+4y?)
r Voo=1

r Vie=1z
r3 Viji=x+iy

2r5 Va0 = 222 — g2
rd Va, 1= 3z(x+1iy)
r®> Va2 = 3(x+iy)?

27 V3,0 = z(2z2 — 302)

2r7 Vs,1=30@z2—02) (x+1iy)
¥ Vs,2 = 15z(x +iy)?

r? V3, 3 = 15(x + iy)3

8r? Va0 = 8z%— 242202 4 3¢¢
2r® Va4, 1= 5z(4z2 —302) (x +iy)
2r9 Vs e = 15(622 —g?) (x +iy)?
r® Vi s = 105z(x+iy)®

r® Vi a=105(x+iy)*

8ril Vs 0 = z(8z% — 402202 + 1509)
8rll V5 1= 15(8z%4— 122202 +g%)
2r1l V5 9 = 105z(222 — 02) (x + iy)2
2ril V5 3 = 105(822 — ¢2)(x + iy)?
rit Vs 4= 945z(x +iy)t

ril Vs 5 = 945(x +iy)s

16r13 Vs, 0 = 1628 — 902402 + 902264 — 5¢®
8r13 Vi 1 = 21z(8z% — 202262 4 5¢%) (x + iy)
8r13 Vg o = 105(1624 — 162202 + ¢%) (x + iy)?
2r13 Ve, 3 = 315z(822 — 302) (x + iy)3

2r13 Vs, 4 = 945(10z2 —g2) (x + iy)4

r3 Ve s = 10395z(x + iy)>

ri3 Vg, 6 = 10395(x + iy)8

is a standard solid spherical harmonic of degree n and order m, and is a homogeneous
polynomial in x, y and z. It can be written in the operator form

H — (—1)” omt1 0 o\ /o /1
oo (1) (&) G)
N L A A A .
"’m—<——n—m>z(é;“a—y) (a?) <;)' )
For m=n,

0 o\ /1
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Successive differentiations of 1/r yield

0o _o\"/1 . ‘ (x + iy)
(é;-l-la—}]) <—)=(— 1)1'3-5-7---(2n—1)—r2n~+1 .

r
Hence

(2n)! (x + iy)’ -
Vaon=+ T (13)

r

This leads immediately to the first recurrence relation

(x +iy)
) Vn—l,n—l (14)

Vow=(2n—-1) 5
r

which needs only the single starting value
Vo, 0 =1/r. , (15)

This formula was programmed using both single and double precision floating-point
arithmetic, and was applied successively to build up tables of V, , through n=28.
Comparison of the two results shows that no more than one significant decimal was
lost.

A well-known recurrence formula for the associated Legendre polynomials is
(n—m) P (sing) =(2n — 1) sing P;"  (sinp) — (n + m — 1) P;_,(sin ¢).

Using Equation (5) this gives the second recurrence relation for V, ,,

z n+m-—1
(n_m) Vn,mz(zn_l);—z Vn—l,m_(—rz—) n—2,m-* (16)
From Equation (11)
-0
Vm+1,m = E Vm,ms
and from Equation (13)
av, z
B = (2m 4+ 1) 5 V-
aZ ( m )r2 s
Hence for n=m +1,
Lz
(1= m) Ve = (20 = 1) 5V, a7

which is precisely Equation (16) with the second term on the right-hand side set to
zero. Thus the starting values needed for the second recurrence formula Equation (16)
are given by Equations (14) and (17). These formulae were also programmed using
both single and double precision floating-point arithmetic, and were applied succes-
sively to build up tables of V, ,, through n=m=28. Comparison of the two results
shows that no more than one significant decimal was lost. -
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2. Derivatives of V,, ,,

Successive differentiations of Equation (11) with respect to z give

0" (n—m+y)! :
— V.  =(—1)Y Vi - 18
oz’ " (=D (n-— m)! o (18)
Applying the operator
,— p= 4 a
= —+1—
0x dy
successively to Equation (11) gives
0 AN
— +i— Vn,m = (_ 1)s Vn+s,m+s’ (19)
ox  0dy ‘ y
which holds for all non-negative values of n, m and s. Applying the operator
0 0
=— —i—
0x oy
to Equation (11), and using Laplace’s equation in the form
0? 0* 0>
~ 2 ) I/n m= " 1 : I/n m»
<6x2 + ayz) ’ oz> " »
gives
0 0 ' (n—m+2)! :
A S | /A RSN 7S 0 , (20
<ax lay) n,m (n_m)' +1, 1 (n/l;’é ) ) ( )

which does not hold for m=0 since ¥, ,, has not been defined for negative m.
Successive applications of M yield

<a .a)qV _(n—m +2g)!

—_— = ] — (n_m)‘ n+q,m—q>

x5y (m = q) (21)

provided m > ¢q. If m< ¢, we can write

0 _6qV_5 _6)‘1_"’5 .a’"V
0x lay mme\ox lay 0x la—y e
L)oo\
() (~—i—) Vemo- (22)

Now for any differentiable function F(x +iy)

o .0 F( ) = 0
(3x+l6y x+1iy)=0.
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It follows that

a a p p
(gc + i 5}) f(Z, rz) =2°(x + iy)p a(rf)p =g(z, r2)_
Similarly
0 0
<a—x — i ) f(z, r?) = 2°(x — iy) a( ];)p =g*(z, %),

where the asterisk denotes the complex conjugate. Formula (7) shows that V,,,,, 0
is a function only of z and r. Also, from Equation (19)

o o\ N
(6x+16_y> Vn+m,0=(_ 1)(1 V+qq m-

Hence
o 0\ m(n—l— m)!
(6—36_1_) _(— 1)q )'Vn+qq m (q>m)

If we define for non-negative m

(n—m)!
n -m —1)" V ms 23
then
0 AN (n—m + 2q)!
——j =Yy, = 77 B 24
(ax 1 ay) n,m (n _ m)! n+gq,m—q ( )

holds for all non-negative values of n, m and g, provided that the definition (23) is
used whenever g > m.

From the definitions of P and M it follows that

0 0
2—=P+ M, 2—=—1i(P—M).
3 + 5 i( )

X
Hence
pxth ot = i\f a B
sy = (- PP+ MY (P — MY,
or
atp a+ﬂ — \8 v atB=jpfi
2 P 6yﬁ =(—1i) jgo Ca, 5, iP M/, (25)
where
,EZ(—l)"(.OC ><ﬁ> (26)
. j—k) \k
in which
Max(0; j—o) < k < Min(B; j). 27)
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Apply operator (25) to (18):

atB
atB Axtp+
2__i_y Vyom=(—=1F*if w C, 5 M/P**E-iy .
ox* oy o7 ™" (n — m)! “h
j=o0

From Equation (19),

+ +p—
Pa £ JI/;l+ym_(— ]‘)a JI/n+at+ﬁ+)' ~jmtatpf—j-

From Equation (24),
. . . (n—m+y+ 2j)!
MPHEIY = (= 1) A (n—m+ ) ntatBty, mratf—2j"
Finally,
a+p
aa+ﬂ+yV ( 1)a+y Jj
ox* 8yP oz’ 62y 2 L

(n—m+y+2j)!
(n_ m)’ C“’ﬂ,jVn+a+ﬁ+y,m+a+ﬂ—2ja (28)

where C, ; ; is given by Equations (26) and (27).

3. Differential Equations

Let Q denote the rotation matrix that transforms body-fixed coordinates into space-
fixed coordinates. Then the differential equations of motion for a particle in the
Earth’s field are

CEANNNEGE A
de? Fox
d?y ov
st i 29
i szy (29)
d2 ov
—— H R
Ldt U 0z y

where p is the gravitation constant, and x;, y,, z, are the coordinates of the particle
referred to space-fixed axes.
From Equation (3)

oV,
ki (30)

aV L n
7=Real Y, Y Re(C,m—iS,

n=0m=0

Let E denote an initial coordinate, velocity or other quantity not contained in Q.

© Kluwer Academic Publishers ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1970CeMec...2..207C

BC..o27.207T)

SVBC ..

214 LELAND E. CUNNINGHAM

Then ‘ ..
(d*  ox, ) ([ 0*V +_azv' ax_Jr % ay_+ vV 6z
dt* OE | \OE ox ox? 0E 0x0dy OE 0x0z OE
42 ay, 0%V . 0%V 6x.+_82P’ ay_; 0’V oz
a2 £ |~ \eEay) T oxay T8 ETHE aE
d* oz, o’V o’V ax+a%' @+a%f 0z
a2 oe) \\eEaz) Toxo: aET ayor oE wZa%)

31

where the parentheses denote derivatives with respect to E only as it appears explicitly
in V. From (30) '

aZV © n 62Vn " -

= Real Z Z R’é (Cn m lSn m) ——2—’—. (32)
0 "=0 m=0 ’ R ,
Equations (29) and (31) can be used numerically to integrate the orbital motion
and the partial derivatives of x,, y, and z; with respect to any number of parameters.
Explicit expressions for the derivatives of V, , needed in (30) and (32) can easily be
written out from (28). :

4. Summary of Formulae

The above formulae are applied as follows:

(1) The zonal terms through the largest n required are first computed from
Equations (15), (16) and (17). There are no imaginary parts to these terms.

(2) The sectorial term V; ; is computed from Equations (14) and (15).

(3) All other terms required for m=1 are computed from Equations (16) and (17).

(4) Then V, , is computed from Equation (14), and the V,. , are computed from
Equations (16) and (17).

(5) Item 4 is repeated for m = 3,4, ... through the highest m required.

It is to be noted that except for the zonal terms each V, , has distinct real and
imaginary parts. Note also that one second derivative of V, ;, can be computed from
Laplace’s equation, e.g.,

aZI/n,m 62I/n,m ann,m
dy? 0z> ox*

(33)

Explicit expressions for the first and second partial derivatives of V, ,, follow as an
aid to analysis and checking. They should not be used for programming, which
should always be based on formulae (14), (15) and (16).

aI/n,m___ I/’n+1,m+1 (n_m+2)’

_ >0
0x 2 2(n—m)t TTEmTE "
I/n+1,1 I/',*+1 1
T T T m=0
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aI/n,m lV+1 m+1 l(n_m+2)’

= Viii. m— m>0
oy A * 2(n — m)! Frmd
_ +l_I/n?-’i-1,1 _iVnZl-l,l ) . . m=0
— ! } : ’
6V,,,m=__(n m+1).Vn+1’m "m0
0z - (n—m)! 7
Vom Vieom n—m+2)! n—m+4)!
2’— = ALA _( ) n+2,m + (———_) n+2,m—2 m>1
ox 4 2(n — m)! 4(n —m)! . :
Vina_ (n4 1) (s -
=" 2(n—1)! n+2,1 4(n—1)’ 2,1
v, 2)! | 28 '
_ n-:lz,z_(nz‘;') 20 ;2 2 m-_=0
0%V, % i(n—m + 4)! :
n,Ln; _l n+2,m+2 .l(n m ) I/n+2,m—2 . m>1
0x dy 4 4(n—m)'
__; | ‘iVn+2,3 l(n + 1)' | . . v -1
T4 a(n-1) o : "=l
_ iVn4+2,2 4 an“"I'Z 2 m=0
3V m Vito.msz (m—m+2)! (n—=m+4)!
S= s vtom— i Vasamey m>1
oy* .4 2(n—m)! r2m, 4(n — m)! ntzm-2z T
Viess (n+1)! m+1)!
- 4 _2(n_.1)!Vn+2,1+mVn+2,’y ' . m=1
Vara, 2 (n+2)! Vn+2 2 _0
T T4 T o Ty "o
G"V,,,m (n—m+1) - (n=m+3)! 0
ax 02 ‘ 2 n+2,m+1 2(n _ m)' nt+2,m—1 m‘>
(n+1) ) (n+1)
5 I’n+2 1+t —F— 5 Vn+2 1 ' m=20
oV, i(n—m+1) i(n—m+3)!
bR = - v, — Vits me m>0
dy 0z ) nEzmEl 2(n—m)! T2med
i(n+1 | i(n+1)
2_‘—'2 ) n+2,1 Va1 m=0
aZVnm (n_m+2)'
m_ . >0
aZZ (n _ m)’ nt+2,m m
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5. Possible Programming for a Large Calculator

The practical value of the above method for computing the accelerations and partial
derivatives depends strongly on how well it lends itself to actual programming. This
question was studied at some length, and several possible procedures were considered.
On the one hand the greatest speed is attained by first computing all of the required
V,,m» after which the individual accelerations and derivatives are obtained and
summed. There are several efficient ways of doing this. However, the relatively large
space required to store all of the V, ,, will ordinarily present a serious problem. On
the other hand the least amount of storage space is expended by computing and
recomputing each ¥, , as it is needed. This latter procedure is too inefficient for
general use. Thus a compromise somewhere between the two extremes is clearly
necessary.

A procedure that is simple, easy to program, quite efficient and with no excessive
space requirement has been written and tested. The basic idea is the use of a storage
containing all of the V, ,, for five adjacent values of m. As soon as the terms in the
accelerations and partial derivatives have been computed and summed for the middle
m of the five, the V, ,, are moved to the locations they must have in the storage for
m+1, and then the values of V, ., are computed and stored. The only complication
arises from the slightly different formulae that must be used for m=0 and m=1.

6. Remarks

Recurrence formulae exist for each derivative separately, but their forms are not in
general attractive for computation. It appears best to express each derivative in terms
of the V,, .., as is done above.

While this method was being tested my attention was called to a similar method
proposed by DeWitt (1962).
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