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ABSTRACT 

A new model of Jupiter is constructed by means of an improved equation of state, derived in this paper, 
which includes the effects of electron screening on the vibrational modes of the metallic-hydrogen fluid. 
The proposed model has a hydrogen mass fraction of approximately 0.6 and a central temperature of the 
order of 7500° K. The observationally determined luminosity is then used to investigate the time-de- 
pendent properties of the model, on the assumption that the planet remains in complete convective equi- 
librium and rotates as a solid body. We find that, as a function of time, the radius and rotation period de- 
crease, whereas the gravitational moments J and K and the rotational kinetic energy increase. Only a 
small fraction of the total energy release due to cooling goes into rotational kinetic energy, but the total 
energy reservoir is only just adequate to explain the observed excess flux of energy. The time rate of 
change of the rotation period and the gravitational moments appears to be unobservably small. 

I. INTRODUCTION 

The decametric rotation period of Jupiter is now known to within one part in a 
million (Donivanand Carr 1969), and a fairly definite value has now been assigned to 
the net Jovian luminosity (Aumann, Gillespie, and Low 1969). The hydrogen-to-helium 
ratio for Jupiter is still highly uncertain, although planned space experiments may 
yield improved results in the near future. With the present observational constraints, 
the purpose of this paper is {a) to construct thermally expanded model planets by means 
of an improved equation of state and {b) to study the time dependence of the planetary 
structure. 

In Paper I (Hubbard 1968) it was shown that completely convective structure for 
Jupiter is implied by the observed, net luminosity, and in Paper II (Hubbard 1969) 
adiabatic model planets were constructed. However, in Paper II it was assumed that 
the effect of electron screening on the thermal properties of metallic hydrogen at Jovian 
densities is negligible. In other words, the normal modes of vibration of the proton fluid 
were assumed to be represented by the normal modes of a one-component plasma on a 
uniform negative background. It now appears that this assumption is somewhat crude 
for Jovian densities, since it is necessary to include the effects of ííyield,, in the electron 
fluid to calculate accurate model planets. Inclusion of electron-screening effects can be 
expected to have an influence on the H/He ratio and the internal temperature distribu- 
tion. In addition, the contraction of the planet is governed by the thermal terms in the 
equations of state, which are in turn influenced by electron screening. 

In this paper, we calculate the effect of electron screening on the finite-temperature 
thermodynamics of metallic hydrogen (§ II), use the improved equations of state to 
construct a model of Jupiter (§ III), and study the time-dependent structure of the 
planet (§ IV). In regard to the latter, it should be noted that the model planets of Papers 
I and II actually imply a secular contraction, although the contraction rate was not 
explicitly calculated. Evidently, contraction implies a change in the moment of inertia, 
and therefore secular changes in the rotation period and gravitational moments J and K 
are to be expected. The rate of change of these quantities is calculated in § IV. 
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II. EFFECT OF ELECTRON SCREENING ON THE THERMODYNAMICS 
OF A HIGH-PRESSURE COULOMB FLUID 

a) Introduction 

The effect of electron screening on the vibrational modes of a Coulomb solid at high 
pressure has been considered by Kopyshev (1965), Trubitsyn (1966), and Ashcroft 
(1969). Kopyshev^ calculation uses the Thomas-Fermi model, while Ashcroft employs 
the electron dielectric function. Trubitsyn^ calculation considers the effect of local 
changes of the electron correlation energy and appears to omit the most dominant 
effects of the polarization of the electron fluid. Since the probable state of the Jovian 
interior is that of a dense fluid rather than a solid, we will consider this case in the 
following calculations, using a dielectric-function approach similar to that of Ashcroft. 

b) Model of the Coulomb Fluid 

We will assume that the Jovian matter consists of a densely packed fluid in which 
there exists short-range order but no long-range order. We focus attention on one ion 
of charge +Ze located at the center of a Wigner-Seitz cell of radius 

a = (3/47t^)1/3 , (1) 

where Ui is the number density of ions. The remainder of the fluid is assumed to be de- 
scribed by a distribution of positive charge of density Zn# spread uniformly in space 
except within the Wigner-Seitz cell, where the density is zero. To this we add a dis- 
tribution of electrons which consists of a uniform background density together with a 
self-consistent polarization charge induced by the presence of the Wigner-Seitz cell and 
the point charge. We then displace the ion by an infinitesimal amount Ç from the center 
of the Wigner-Seitz cell and again calculate the self-consistent electron-charge distri- 
bution. The difference in energy between the perturbed and unperturbed states gives 
the restoring force and thus the vibrational frequency of the ion. The calculation is a 
routine exercise in linear-response theory, and leads to the result for the difference in 
energy: 

bE = f7T^tZVf (1 - Id) . (2) 
Here 

where 

and 

h = {WZnt)-
1 f^kHkQuf , 

0 

fk = 47rZ^(sin ka — ka cos ka)/kz 

= l + Qk=l+-—^S xdx In , 

(3) 

(4) 

(5) 

the usual static dielectric function of a zero-temperature electron gas. Here a0 is the 
Bohr radius and k? is the electron Fermi wavenumber. 

The above calculation does not use antisymmetrized electron wave functions, and 
therefore it is necessary to add an exchange correction to the energy difference. This can 
be done in two ways: one can use a dielectric function with an approximate exchange 
correction included (J. Hubbard 1957), or one can calculate the exchange interaction 
between the perturbed electron clouds resulting from the displacement of the ion, 
following the method of Wigner and Huntington (1935). In this discussion we have 
chosen to use the latter method, with the result 

ÔE = (27r/3)ttiZV£2(l - /; - Ix) , (6) 
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where 
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Here 

and 

h 
2 Zdx Qx

2 

7T / X (1 + Qx)2 g(x) (sin ax — ax cos ax) . 

= k/kF , a = (fTrZ)1/3 , 

oc 
g(x) = 9j'dy sin ^[sin {y/x) — {y/x) cos {y/oc)}2{y/xy . 

o 

(7) 

(8) 

The exchange interaction between the perturbed and unperturbed electron clouds can 
be shown to vanish identically. 

For completeness, one should perhaps include the change in energy due to the change 
of electron correlation energy. Trubitsyn has estimated this (the only screening effect 
he has taken into account) and has shown it to be negligibly small, and therefore we will 
not include it. 

The vibrational frequency of the ion in its unit cell thus becomes 

a) = - Id- Ix)m , (9) 

where cop is the ion plasma frequency. Since Id and Ix are both positive, the effect of 
electron screening is of course to reduce the vibrational frequency. If the sum of Id and Ix 

were to become greater than unity, an imaginary frequency would result, implying 
instability of the unit cell and the fluid metallic phase. The present calculations do not 
indicate that this occurs at densities where metallic hydrogen is thought from other 
considerations to be stable (De Marcus 1958). 

c) Expansion in Powers of rs 

It is possible to expand expression (9) for the vibrational frequency in powers of 
r8 = a/ao, in a manner analogous to the expansion obtained by Salpeter (1961) for the 
pressure of a zero-temperature plasma. We find 

where 
1 -/<*-/*= 1 - r8/r* + 0(r*3'2) , 

1A,° 
2 p dx V. sin 2axl . 1 + # 
Í2 / x? L1 2ax 1 ln |1 - * 

(10) 

(11) 

In Figure 1 we have plotted rs° as a function of Z. At densities of the order of and less 
than the density corresponding to rs°, the effect of electron screening on ion vibration 
can be expected to be dominant. The effect does not appear to be important at white- 
dwarf densities, except possibly for the case of very high Z. 

The expansion (10) is not particularly useful except as a criterion, due to its extremely 
slow convergence (in contrast to Salpeter^ pressure expansion). 

d) Thermodynamics 

We will assume that the thermodynamics of the fluid metallic hydrogen can be de- 
scribed by the high-temperature {T > 0) Debye theory, with the characteristic Debye 
temperature 

0 = (h/kB)Ceo>. (12) 

Here &b is Boltzmann’s constant and Ce is a dimensionless constant of order unity. 
The density dependence of 0 is of prime importance for the convective Jovian models 
and the precise value of Ce is necessary only for determining the absolute value of 
the entropy corresponding to a particular adiabat. We set C* = 1 hereafter. 
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For a mixture of hydrogen and helium, the entropy per heavy particle is assumed, 
following Debye theory, to be given by 

S/NkB = 3 In (kBT/hœ) , (13) 

where N is the total number of heavy particles, T is the absolute temperature, 

In co = In o>h + 0He In WHe , 

and <£h, <tee are the number fractions of hydrogen and helium, respectively. Thus, we 
assume that the protons and a-particles vibrate independently, each with the frequency 
of its own Wigner-Seitz cell. We have coh = coh(*Vh), cone = coHe(^,He) through equa- 
tion (9). 

Fig. 1.—Density parameter^0 as a function of the atomic number Z. Electron screening strongly af- 
fects the ion vibrations for r8 > r8°. 

Under these assumptions, the course of an adiabat in the temperature-density plane 
is given by 

In T = ln C + In pH + In pne + <£h In qn + <¿>He In gne, (14) 
where 

<ZH,He = (1 - /d - /*)H,He1/2 , (IS) 

PH,He is the partial density in grams per cm3, and C is a constant which labels the adiabat. 
There is at present no theoretical guide to the effect of a chemical mixture on adiabais 

under the temperature and pressure conditions encountered in the interior of Jupiter; 
therefore, we have considered an alternative adiabatic law to test the sensitivity to the 
assumed multicomponent adiabais. The alternative form is 

ln 71 = In C + J In p + <£h In #h + #He In #He • , (16) 

Here p is the total mass density. In the absence of screening, the alternative form re- 
duces to the adiabatic law used in Paper II. For a single-component system, e.g., pure 
hydrogen, forms (14) and (16) are of course identical. 

The pressure in this model, for either adiabatic law, is given by 

P = Po + Pr, (17) 
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where Po is the pressure at zero temperature, given in Paper II, and 

Pt = Sytiik&T , (18) 

where 7 is the well-known Grüneisen parameter: 

y = din co/d In p . (19) 

In the absence of screening, 7 = 0.5. The effect of screening is to increase 7. 
The internal energy is unaffected by screening and is given by 

JE = Eq “b SriikBT , (20) 

where Eo is the internal energy at zero temperature. 

Fig. 2.—The Grüneisen parameter, 7, and correction factor to the ion frequency, q, as a function of 
the density parameter r8. Range of rs for hydrogen and helium in Jovian models is indicated by the bars. 

In Figure 2 are presented the results of the present calculations for hydrogen and 
helium, together with Kopyshev’s result for a hydrogen lattice. Since Kopyshev’s 
calculation uses Thomas-Fermi theory without exchange, there exists a simple scaling 
law, such that Kopyshev’s curves for any other Z should be displaced horizontally 
to the left by an amount ^ logio Z. Our results have been normalized to Kopyshev’s by 
assuming that Co is the same in the lattice and dense-liquid phase; this assumption does 
not affect the position of the curves for 7. 

e) Transport Coefficients 

The calculation of thermal conductivity for the high-pressure solid state given by 
Hubbard and Lampe (1969) can be easily modified to include electron screening. We 
will assume that this result is also approximately correct for the dense liquid. Screening 
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modifies the mean square amplitude of an ion about its equilibrium position and also 
modifies the cross-section for electron-ion collisions. The result of the calculation is that 
the thermal conductivities given by Hubbard and Lampe must be multiplied by a cor- 
rection factor 

G/Go = 2q2 / fxdxfT^ax) . (21) 

The correction factors for hydrogen and helium are plotted in Figure 3 and are seen to 
be of order unity for the densities of interest. This agrees with the estimate given in 
Paper I for the thermal conductivity of metallic hydrogen. 

To the extent that inelastic electron scattering is unimportant, the electrical con- 
ductivity (given in Paper I) and the shear viscosity (calculated by Hubbard 1966) must 
be multiplied by approximately the same factor G/Go. 

Fig. 3.—Correction factor for the thermal conductivity of metallic hydrogen and helium 

/) Net Effect of Electron Screening 

Electron screening should not have an extreme effect on static Jovian models. The 
adiabats become steeper in the (T, p)-plane, but the adiabatic (P, p)-relations are not 
so greatly affected since the increase of the Grüneisen parameter with decreasing density 
tends to offset the more rapid temperature drop. One conclusion reached in Paper I 
seems to be vitiated: it was concluded there that the adiabatic gradient Vs = din T/ 
d ln P becomes smaller than 0.3 with decreasing density. This conclusion was based upon 
the assumption of 7 = 0.5 at all densities. In the present calculation, we find that V« — 
0.3 at all densities. This result does not affect the general conclusion of Paper I, that 
Jupiter must be completely convective with the observed energy flux. 

III. JUPITER MODELS 

In order to facilitate comparison, we have calculated models of Jupiter under the 
same assumptions as in Paper II, except that the effect of electron screening is included 
in the thermal-perturbation terms for the metallic core. A zero-temperature equation of 
state can be readily calculated from the physics presented in § II and can be shown to 
agree with the equation of state of De Marcus (1958) and Salpeter and Zapolsky (1967) 
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No. 2, 1970 STRUCTURE OF JUPITER 693 

to order r*2. However, we will continue to use the Salpeter-Zapolsky equation of state, 
both for convenience and because of their very careful evaluation of the correlation 
pressures. The input to the present models is thus identical to the input of model J7 
in Paper II, except for the inclusion of electron screening. In addition, the present models 
are calculated on the basis of the radio rotation period of Donivan and Carr, which is 
0.7 percent smaller than the mean optical rotation period used in Paper II. 

If the adiabatic constant C and the hydrogen abundance by mass X are chosen as 
the only free parameters, the best fit to the observed mass, radius, and gravitational 
moments J and K is obtained for X = 0.66, C = 4600. This model (model J8) is 
computed on the basis of equation (16). To check its sensitivity to the adiabatic law, we 
have constructed model J9 using equation (15). Model J9 has a hydrogen abundance 
of 0.59, and C = 5130. Other properties of models J8 and J9 are given in Table 1 and 
Figure 4. 

TABLE 1 

Jupiter Models J8 and J9 

Parameter J8 J9 

Central density (g cm-3)  4.23 4.25 
Central temperature (° K)  7300 7500 
Mass (1030 g)    1.902 1.902 
Equatorial radius (109 cm).. 7.14 7.14 
J    0.02203 0.02206 
K     0.00250 0.00250 
X  0.66 0.59 
Y    0.34 0.41 
Total angular momentum (1046 g cm2 

sec“1)  4.53 4.52 
Rotation kinetic energy ( 1041 ergs)  3.98 3.97 
Thermal energy (1041 ergs)   10.2 9.7 

Note.—X and Y are the hydrogen and helium abundances by mass; negligible 
heavy-element content is assumed. These models are chemically homogeneous and 
do not possess a high-density core. 

Fig. 4.—Run of temperature T, density p, and thermal pressure perturbation Pt/P as a function of 
radius for model J8. Here Tc and pc are the central values. 
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694 W. B. HUBBARD Vol. 162 

Thus we find that, as expected, the inclusion of electron screening does not greatly 
change the hydrogen abundance of Jupiter. However, the models are still somewhat 
underabundant in hydrogen compared with the Sun (X ~ 0.75). 

The important effect of electron screening is that the central temperature is lower by 
nearly a factor of 2 than in the models without screening. This has an important effect 
on the thermal-energy reservoir, since it reduces it by essentially a factor of 2. 

IV. CONTRACTION AND ROTATION 

Ultimately, when the constituent relations become better known, it will be desirable 
to follow the evolution of a Jovian-mass object by means of a Henyey-type program of 
stellar evolution. As a preliminary step, we consider the current evolution of Jupiter 
under the assumption of completely adiabatic structure. To this end, we calculate 
adiabatic models J8+ with C = 5000 and J8— with C = 4200. The moment of inertia 
I of the model is calculated to second order in the oblateness by means of the formula 

M 
I = ! - €2 + ||62

2 - |5€2') , (22) 

where dm is the increment of mass ^irs^pds, s is the mean radius of a surface of constant 
density, and €2 is the oblateness coefficient defined by Peebles (1964). We then assume 
that the model J8 ± rotates rigidly and calculate a new period of rotation which gives 
the model the same angular momentum as the model J8. Using the new period of rota- 
tion, we calculate a new model J8 ±, and the iterations proceed until angular momentum 
is conserved to within one part in ICP-5. 

Next, we evaluate the difference in energy between J8 and J8 + . The difference in 
total energy is given by 

M 
á£totai = fdmm - PSp/p2) + SEnt, (23) 

0 

where (£ is the internal energy per gram and Erot is the rotational kinetic energy. Now 
we have assumed that ® = ©o + @r and P = P0 + Pt, where the first term is the 
zero-temperature part and the second term is the temperature-dependent part. For 
small density changes ôp, we have 

ô&o = foôp/p2, (24) 

so 

where 
total = ÔEt + SEo + SErot , 

M 
ôEt = J*dmb ©T , 

o 
the change in thermal energy, and 

bEo = 
M 

— f dmEv^plp2, 
o 

(25) 

(26) 

(27) 

the change in the available gravitational energy. 
The time rate of change of Jovian structure is obtained by averaging the energy 

difference between J8 and J8±, or similarly for J9 and J9±, and dividing by the ob- 
served luminosity of Aumann et al. The luminosity contributions by the three terms in 
equation (25) are in the ratio (thermal energy output/gravitational energy output/ro- 
tational energy output) = 1.00/0.07/—0.01 for model J8 and 1.00/0.28/—0.05 for 
model J9. Thermal energy, as defined by equation (26), is therefore the dominant source 
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of Jupiter’s luminosity. The distribution of energy production in model J8 is plotted 
in Figure 5; it is quite similar to that of a highly degenerate white dwarf. However, the 
contribution due to the release of gravitational energy, as defined by equation (27), 
appears to be nonnegligible. Its exact proportion depends rather sensitively on the 
adiabatic relation. 

In Table 2 we list the predicted e-folding times for several quantities. The e-folding 
time is defined as the present value of the quantity divided by its first derivative with 
respect to time, evaluated at present. Evidently, the time rate of change of observable 
quantities is too small to be detected with present techniques. 

Fig. 5.—Production of energy per gram in the Jovian interior for cooling (upper curve) and gravita- 
tional-energy release (lower curve). Dashed line corresponds to the molecular envelope where energy 
release is relatively uncertain. 

TABLE 2 

Predicted ¿-Folding Times* for Jupiter 
Models J8 and J9 

Parameter J8 J9 

Rotation period  — 100X109 — 20X109 

J  + 40X109 +20X109 

K  + 2X109 + 9X109 

Thermal energy  — 4X109 — 4X109 

* In years. Rigid-body rotation is assumed, and the observed 
net luminosity of Aumann et al. is used. 
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Tn Figure 6 is plotted the contraction velocity for model J8 as a function of mass 
shell m{r) which is approximately a Lagrangian variable. The dashed curve shows the 
contraction velocity for homologous contraction, where the contraction velocity is 
assumed to be proportional to the radius of the mass shell. The homologous-contraction 
curve is normalized to the same contraction velocity as the true curve at the surface. 
Since the Jovian contraction is decidedly nonhomologous, angular momentum must be 
transferred from the outer mass shells to the inner mass shells for rigid-body rotation 
to be maintained. It seems doubtful that any significant differential rotation could be 
set up by the contraction, due to the combined inhibiting effects of the magnetic field 
and convection. However, the tendency to differential rotation may, along with the 
convective motions, play a role in the maintenence of the Jovian magnetic field. 

v. SUMMARY 

The introduction of electron screening in the finite-temperature equation of state of 
dense hydrogen revises the Jovian hydrogen abundance upward slightly from 54 percent 

Fig. 6.—Contraction velocity in the Jovian interior as a function of mass shell m(r). Dashed curve, 
contraction velocity for homologous contraction. 

to about 60 percent by mass. More important, the average internal temperature is 
reduced by almost a factor of 2, which reduces the available energy by essentially the 
same factor. The Kelvin-Helmholtz time for the present Jovian model, if rotation and 
the available reservoir of gravitational energy are taken into account, is about 4 X 109 

years, which is close to the accepted age of the solar system. If electron screening were 
not taken into account, the Kelvin-Helmholtz time would be roughly 8 X 109 years. 
Thus the present model of Jupiter and the most recent determination of the net Jovian 
energy flux are consistent, but only marginally so. A revision upward of the net flux might 
necessitate a search for an additional source of energy, or admit the possibility that 
Jupiter was not formed as early as other solar-system objects. 

The calculations of this paper indicate that the rotation period of Jupiter should be 
essentially constant, with only an undetectable secular decrease. Any observable in- 
trinsic change in the radio rotation period would therefore not be due to a gross change 
in planetary structure, but would more probably be due to a migration of the magnetic- 
field geometry with respect to the corotating frame. If the Jovian magnetic field is at 
all analogous to the terrestrial magnetic field, such migrations should occur and should 
be nearly detectable at present. 
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