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The Evolution of a Vibrationally Unstable Main-sequence Star of 130 M*
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Nonlinear pulsation calculations have been carried out for a 130 M ; main-sequence star. For this purpose
the dynamical equations of stellar structure were solved numerically using an implicit difference method. The
main results are: during the first 20000 years (after the beginning of central hydrogen burning) the pulsation
amplitude is too small to have any influence on the evolution of the star. After about 23000 years periodically
recurring shock waves in the outer layers of the star result in the forming of an optically thick, continuously
expanding shell around the star. Eventually the outermost layers of the shell reach the escape velocity and
the star starts to loose mass at a maximum rate of about 4 x 10-% M , per year. At this evolutionary stage the
damping of the pulsations due to the loss of mechanical energy in the outer layers of the star becomes so large
that the pulsation amplitude cannot increase any more. Thus, such a star is not destroyed rapidly by its vibra-
tional instability (as suggested by earlier investigators), but a quasi-stationary state is reached, where the
interior of the star is pulsating while the observable surface layers are expanding continuously. A comparison
of the model calculations with the observed properties of the peculiar shell star P Cyg supports the hypothesis

that P Cyg is a vibrationally unstable main-sequence star of M > 100 M.
Key words: stellar evolution — nonlinear pulsation — mass loss — P Cyg stars

1. Introduction

Because of the temperature dependence of the
nuclear reaction rates mechanical energy is generated
in the cores of pulsating main-sequence stars. In most
main-sequence stars this gain of mechanical energy
in the core is compensated by a much stronger loss
of mechanical energy in the outer layers. Only in
stars which are more massive than about 60 M, is
more mechanical energy generated than is lost
(Ledoux, 1941; Schwarzschild and Héarm, 1959).
Thus, these very massive main-sequence stars are
vibrationally unstable. Since the instability increases
strongly with increasing mass, Schwarzschild and
Hirm (1959) suggested that stars with M > 100 M
are destroyed by radial oscillations of rapidly increas-
ing amplitude as soon as they reach the zero-age
main-sequence phase of their evolution. However,
this suggestion was based on the linear pulsation
theory which is not valid for the large amplitude
oscillations that are necessary to destroy such a star.
Therefore, the fate of a very massive main-sequence
star was reinvestigated using the exact nonlinear
theory. As an example a 130 M, star was chosen.
This mass is large enough to make the star strongly
vibrationally unstable. On the other hand this seems
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still close enough to the largest stellar mass that has
been determined directly so far (64 M, according to
Sahade, 1962) to make it likely that stars of this mass
do form occasionally. The scope of the new calcula-
tions was to find out if such a star will indeed be de-
stroyed by rapid mass loss during its main-sequence
evolution, or if the growth of the pulsation amplitude
is halted by nonlinear effects before the star starts to
eject large amounts of mass. In addition, it has been
tried to determine how the observable properties of
such a very massive main-sequence star are changed
by the vibrational instability in order to make
possible the identification of massive main-sequence
stars from observations without determining directly
their mass.

II. Basic Equations

The 130 M, star was assumed to be spherically
symmetric and not rotating. Furthermore, since the
pulsation amplitude is growing on a much shorter
time scale than the nuclear time scale of the star, the
chemical composition was assumed to be constant
and equal to that of the zero-age main-sequence. For
the relative mass fractions of hydrogen (X), helium
(Y), and the heavier elements (Z) the values X =0.70,
Y = 0.27, and Z = 0.03 were chosen. Then, using the
independent variables M, (the mass contained
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within a sphere of radius » around the stellar center)
and time ¢, and the dependent variables pressure
P(M,,t), temperature 7T (M,,?), luminosity L,
(M,,t), radius r (M,, ) and the known functions
internal energy per gram U (P, T'), specific volume
V (P, T), the nuclear energy generation per gram
and second ey (P, T'), and the opacity #, a radially
pulsating star can be described by the following four
differential equations:
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(equation of motion, G is the gravitational constant),
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(energy balance equation),
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(equation of continuity),
64ntacrtT® oT
Lr =- 3% oM, + Ly, (4)

(energy transport equation; @ is the radiation density
constant, ¢ the velocity of light).

The convective energy flux L., in Eq. (4) was
assumed to be time independent and a function of
M, only. In a 130 M, star this is a good approxima-
tion, since the convective time scale is much larger
than the pulsation period (Schwarzschild and Harm,
1959) and since in addition the periodic change of the
acceleration of the convective elements due to the
pulsation is small everywhere in the convective
interior of the star, even when the velocity amplitude
at the surface reaches the escape velocity. Thus, the
absolute periodic variation of L,, is always much
smaller than the periodic variation of the radiative
energy flux. Since in the convective core the mean
values of P, T, L,, and r averaged over one pulsation
period depend only slightly on the pulsation ampli-
tude and since the boundary of the central convective
zone does not change, the numerical values of the
function L, (M,) were taken from a hydrostatic
130 M ., main-sequence stellar model. This model was
derived using the standard stellar evolution computer
program of Hofmeister, Kippenhahn and Weigert
(1964). It was found to fit very well into the sequence

. of massive main-sequence stellar models of different
mass computed by Stothers (1966). The basic prop-
erties of the hydrostatic 130 M, model are listed
in the Table.
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Table. Bastc properties of the hydrostatic 130 M  zero-age-main-
sequence stellar model

Radius B 1.083 x 107km = 14.9 R
Luminosity L 8.15 x 10® erg s~ = 2.09 x 105L
Effective temperature 7', 57 100 °K

Central Pressure P, 1.602 x 106 dyn cm—2
Central Temperature 7', 4.269 x 107 °K
Boundary of the convective core Mr/M = 0.878

At large pulsation amplitudes thin convective
zones develop at the boundaries of shock fronts.
However, shock waves occur only in the outermost
layers of the star where, because of the extremely
low density, convective energy transport is very
ineffective. Therefore the convective contribution to
the energy transport in these zones was neglected.

In a 130 M , main-sequence star the gas pressure
and the radiation pressure contribute about equal
parts to the total pressure P. Thus the functions U
and V become

_22T  ap
U 3 4 + 2 T (5)
and
_2T (5 @ m\7t
V= 'u (P 3 T) (6)

where Z is the gas constant, u is the mean molecular
weight, and ¢ = V- is the density.

The opacity was assumed to be due to electron
scattering alone, or

=019 (1 + X)cm2g-t. (7)

In the core of a 130 M, main-sequence star all
contributions to ¢y of nuclear reactions other than
the CNO-cycle are negligible. Therefore for ey in
Eq. (2) the expression for goyg given by Hofmeister,
Kippenhahn and Weigert [1964, Eq. (47)] was used.

III. Boundary Conditions

In the center of the star, at M, = 0, the proper
boundary conditions are obviously L, = 0, » = 0, and
0r/dt = 0. At the surface the correct boundary con-
dition would be, to fit the values of P, T', and L, at
the bottom of a properly chosen stellar atmosphere
to the solution of Egs. (1) to (4). Since the atmosphere
depends on the interior solution and vice versa the
fitting usually requires an iterative procedure. In
order to avoid time consuming iterative procedures
and since the solutions do not depend critically on
the outer boundary conditions rather approximate
outer boundary conditions were used: at a value M,
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corresponding to the optical depth 7= 2/3 the
following two conditions were added to the basic
differential equations:

L=4nr*cT* (8)
(where ¢ is the Stefan-Boltzmann constant) and

2 GM o2

= 3%t (S 5) 50812, (9)
Equation (8) simply says that the temperature 7' at
T = 2/3 is equal to the effective temperature. Equa-
tion (9) is derived by integrating analytically the
equation of motion of the atmosphere

aP (GM 3’r) (10)

Can o T
using the simplifying assumption that the right-hand
side of Eq. (10) is independent of T and that

2

P=0)=3T@=0=5 (08127 (r=3))".

(11)

[The relation between 7' (7 =0) and T (t = 2/3) is
taken from the theory of gray atmospheres.]

As a further simplification of the calculations it
was assumed that the value M, corresponding to
T =2/3 stays constant during the pulsations and
equal to the value of the hydrostatic stellar model.
For the quasi-periodic pulsations of the 130 M star
this is a sufficiently good approximation since
according to Eq. (7) » is a constant, since only about
107° of the stellar mass are outside 7= 2/3, and
since the relative radius variation dR/R is always
smaller than unity. When mass is ejected from the
star, however, the simplified boundary conditions
result in inaccurate or erroneous atmospheric prop-
erties. Even then, the dynamics of the star is, at
first, influenced only very little. Only when the
surface radius of the star grows to values much larger
than the initial radius, does the error eventually
become serious since then the approximate boundary
conditions simulate a star with an atmosphere to
which mass is added at a rapidly increasing rate.
In this phase, however, other assumptions (like those
made for x) become invalid too.

IV. The Numerical Integration Procedure
The nonlinear pulsation equations [Eqgs. (1) to (4)]
have been solved before for the outer layers of

RR-Lyrae and §-Cep stars using difference equations
with explicit difference schemes (see e.g. Christy,
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1964; Cox et al., 1966). Since the relative pulsation
amplitude in the deep interior of a 130 M, main-
sequence star is not negligible as in an RR-Lyr star
and since, furthermore, the energizing mechanism
for the pulsations of very massive main-sequence
stars is located in the hydrogen burning core, the
pulsation equations in the present case have to be
solved for the whole star. Thus, an explicit difference
method is not suited for the present problem since
the Courant-Friedrichs condition and the extremely
high velocity of sound in the stellar core would
require extremely short time steps. Therefore, an
implicit difference method, the so called Henyey-
method (Henyey ef al., 1958), was chosen for the
numerical integration procedure. This method is
used frequently for the numerical integration of the
hydrostatic equations of stellar structure. Recently
Bodenheimer (1968) has shown, that this method
can also be applied to dynamical stellar collapse
calculations. A main advantage of the Henyey
method over other implicit methods is that a rela-
tively small amount of computer storage space is
needed. This was important for the present work
since for most of the time only a medium size
computer (IBM 7040) was available for the numerical
calculations. An extensive description of the Henyey-
method has been given by Kippenhahn, Weigert and
Hofmeister (1967). This description was followed as
closely as possible. Therefore, only those details of
the calculations will be described here where the
method had to be modified because of the different
character of the basic equations.

Before the differential equations were replaced by
finite difference equations two important modifica-
tions were made:

first, the second order time derivative in Eq. (1)
was eliminated by adding a fifth differential equation

v (12)
and a fifth dependent variable v (M,, t) as defined by
Eq. (12). Furthermore, an artificial viscous pressure
Q (M,,t) was added to the pressure in Eq. (1) in
order to avoid the well known numerical difficulties
which are encountered when finite difference equa-
tions are applied to hydrodynamic problems where
shock waves occur (Richtmyer, 1957). With these
two modifications, Eq. (1) takes the form:

o(P+ GM, 0
42D _EL 2 )

In order to avoid a spurious damping of the pulsa-
tions, @ was only used for the large amplitude
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pulsations and only in the outermost layers of the
star (containing about 10-3 of the total stellar mass)
where the shock waves occurred. In order to provide
a smooth transition between the outer layers with
@ 3+ 0 and the interior with @ = 0, the artificial
viscosity @ in the outer layers was defined in the
following way:
v 1 3p\2
Q=re3 7+ %)
it 0<0 and (37+

190
?Ye)>0, (14a)

if v>0 and 20,

2 (14b)

Q@ =0 in all other cases. (14c)

In (14a) and (14b) ! is an arbitrary constant,
having the dimension of a length and being of the
same order of magnitude as the thickness of the mass
shells near the shock fronts. In the computer pro-
gram ! was an input parameter which was adjusted
so that the shock fronts were smoothed out to about
to 2 to 4 mass steps.

(14 a) is equivalent to

Q=1por (-’i(a"rﬂ)2 : (15)

The artificial viscosity as defined above is therefore a
minor modification of the formulation suggested by
von Neumann and Richtmyer (Richtmyer, 1957).
For the present problem the formulation given by
Eq. (14) has the advantage that towards the interior
of the star @ becomes automatically very small or
zero, since in the interior of a pulsating massive main-
sequence star v/r depends very little on » (cf. eg.
Fig. 1). This, however, obviously is necessary in order
to obtain a smooth transition into the interior region
of the star where we have @ = 0.

Because of numerical reasons which are described
in the Appendix the artificial viscous pressure was
not included in the mechanical work term (the third
term on the right hand side) of Eq. (2). Neglecting
the dissipation of mechanical energy by the artificial
viscosity, on the other hand, would violate the law
of energy conservation and result in wrong velocities
of the shock fronts and thus in wrong results. Test
calculations with @ included in Eq. (2) showed that
during one time step almost all mechanical energy
dissipated by the artificial viscosity is transformed
into internal energy within the shock front (and not
radiated away). Therefore the viscous energy dis-
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sipation was taken into account by the following
method: for each time step A+, first the five Egs. (13),
(2), (3), (4) and (12) were solved numerically. Then
for each mass shell the viscous energy dissipation
per gram stellar matter AE, was computed from

ABg—— Q% At (16)

A E, was then added to the specific internal energy
of the corresponding mass shells by properly increas-
ing the values of the dependent variables P and 7'
The stellar parameters resulting from this procedure
now satisfy the correct energy conservation law. If
the time step is chosen properly 4 E is always only
a very small fraction of the specific internal energy
and thus the new stellar parameters are still rather
accurate numerical solutions of the other basic
equations. The small deviations that are present are
corrected again at the next time step. It should be
noted, perhaps, that this method is similar to the
usual treatment of the changes of the chemical com-
position with time in ordinary stellar evolution
calculations.

Again following the description by Kippenhahn,
Weigert and Hofmeister (1967) the independent
variable M, and the dependent variables P, 7', L., r,
and v were replaced by an equal number of correspond-
ing transformed variables when the difference equa-
tions were formulated. Several different versions of
the difference equations were tested. While almost no
differences in the numerical solutions could be
detected, the number of iterations that were needed
to reach a given accuracy was found to depend
strongly on how the difference equations were
formulated. The formulation that was used eventually
is given in the Appendix.

As noted before by other authors, the convergence
of the Henyey method sometimes depends critically
on how well the starting model for the iterations at
time ¢ + At is pre-estimated from the stellar para-
meters and time derivatives at time f. For hydro-
static stellar evolution calculations often a linear
extrapolation with time of all dependent variables
is sufficient. An attempt to use such a simple linear
extrapolation for the pulsation calculations, however,
resulted in rather slow convergence or no con-
vergence at all. Therefore, the extrapolation proce-
dure was modified in the following way : all dependent
variables except of the temperature 7' were extra-
polated linearly. Since (possibly with exception of
the surface layers) the periodic changes of P and T'
in a pulsating star are always very nearly adiabatic,
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the temperature was extrapolated in such a way
that the pre-estimated change with time of P and T'
became adiabatic. Be TP, ,, the pre-estimated
temperature at time ¢ + A¢ (the superseript 0 indicat-
ing that these values of T' are not the solution but
only the zero order approximation to start the
iterations at time ¢+ At) and be PP, 4, the cor-
responding linearly extrapolated variable P, then
an adiabatic change of P and 7T' at time ¢ + A¢ means
that for any value M, the variable TP, ,, satisfies
either

In 79, 4~ In Ty=Vyq (In P9y 4 — lnPy)  (17)

when backward time differences are used
or

1
lnTto+At_]-nTt=’§'Vad(]nP?+At" In P;)
oT\ 4t
+ (%) T (18)
when centered time differences are used (the sub-

script ¢ means that the values at time ¢ of the sub-
scripted quantities are to be taken). V4 is

olnT
oln P

for a strictly adiabatic change of P and T.
Because of Eq. (6) V4 can also be expressed by

Via=[(¢-58)+60-p@pr-3]" a9

where § is the ratio of gas pressure and total pressure,
or

T4
B=1-S%. (20)

Since V,4 is a nonlinear algebraic function of T both
(17) and (18) are nonlinear equations for 79, 4,
which can be solved, however, easily by the following
fast converging iteration procedure: a first approx-
imation for 77, 4, is derived by extrapolating T
linearly with time. From this values a first approx-
imation for V4,4 4, is calculated from Eq. (19).
Using this approximation of V,4 and either Eq. (18) or
Eq. (19)animproved 79, ,,isderived. These values are
used to derive a better /4, and so on. Usually it takes
not more than three iterations to satisfy (18) or (19)
within the computer accuracy.

With the “adiabatic” extrapolation described
above the Henyey method was converging very well,
usually requiring between two and five iterations.
With the star divided into 138 mass shells, each
iteration took about 0.6 seconds on an IBM 360/91
computer. The non-equidistant mass steps 4,
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were chosen according to the same criteria as used
in hydrostatic stellar evolution calculations. With
backward time differences usually a time step of
200 seconds was chosen. This corresponds to about
173 time steps per pulsation period. Only at certain
phases of the high amplitude pulsations, e.g. when
strong shock waves reached the stellar surface, much
shorter time steps (down to 20 seconds) and more
iterations per time step were necessary.

V. The Initial Value Problem

In principle the most logical way to calculate the
main-sequence evolution of a 130 M, star would be
to solve numerically the dynamical equations of
stellar structure [Eqgs. (1) to (4)], using as initial
values the parameters of a 130 M, star that is just
completing its pre-main-sequence contraction phase.
But, if we assume that the initial velocity amplitude
is equal to the final pre-main-sequence contraction
velocity (about 10 cm s~ at the surface) and if we calcu-
late the amplitude increase with time according to the
linear pulsation theory, we can estimate that a
130 M, main-sequence star survives without mass
loss for at least 20000 years or more than 107 pulsa-
tion periods. For accuracy reasons, at least 100 time
steps are necessary for each period. Thus, an unwork-
able amount of computing time would be required
by such a straight forward computation. In order
to avoid this the following numerical procedure was
used: the rate of energy gain of the pulsations was
increased artificially by multiplying after each time
step the values of the velocity v(M,, t) by a factor
slightly larger than unity. Thus the pulsation ampli-
tude is growing more rapidly than it would when
the nuclear reactions were the only source of mechan-
ical energy. There are, however, unwelcome by-
effects of such an artificial energizing mechanism:
1) introducing an artificial energizing mechanism is
equivalent to solving a set of modified basic equa-
tions. This will result in slightly different or distorted
solutions; 2) spurious higher harmonics which are
not energized by the nuclear reactions may be
energized by the artificial mechanism; 3) since the
energy law is violated deliberately, a time sequence
calculated with such an artificial mechanism does
not give direct information on the rate of energy
gain (or loss) of the real stellar pulsations.

Test calculations with and without the artificial
energizing showed that the distortion by an artificial
amplitude increase of 3 per cent per pulsation period
is only a few per cent and therefore negligible. A
more serious problem is the energizing of spurious
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harmonics. In a real 130 M , star the overtones are
always damped and not energized by the nuclear
reactions since the ratio of the pulsation amplitudes
in the stellar core (where the mechanical energy is
generated) and near the surface (where mechanical
energy is transformed into radiation and thus lost)
is much smaller for the harmonics than for the
fundamental mode. However, since the amplitude
decrease of the first harmonic due to the radiation
effect is less than 10-2 per cent, this effect is not
sufficient to suppress spurious overtones if the
artificial energizing mechanism with an amplitude
increase of 3 per cent per period is used. Therefore,
such an artificial energizing mechanism has to be
supplemented by an artificial selective damping
mechanism which like the radiation effect is more
effective on the harmonics than on the fundamental
mode. Such an effect was introduced by the use of
backward time differences in the difference equations.
Backward time differences (for an exact definition
see the Appendix) mean that there is a systematic
phase shift of A¢/2 between the arguments of the
dependent variables and the arguments of their
time derivatives. In the case of the pulsation equa-
tions this phase shift results in damped oscillations.
(For the basic mathematical properties of such
‘“time-laged” differential equations see e.g. Myschkis,
1955.) Since the phase shift expressed in units of the
pulsation periods is larger for the higher modes, the
harmonics are damped stronger than the fundamental
mode. Thus the use of backward differences indeed
has qualitatively the same selective damping effect
as the radiative heat transfer in the outer layers of
the star. But with a time step of 4¢ = 200 seconds
the selective damping by backward differences is
strong enough to make it possible that the amplitude
of the fundamental mode is increased by several per
cent without energizing spurious overtones. Another
important advantage of backward time differences
is the high numerical stability of the resulting differ-
ence equations (Richtmyer, 1957). Because of this
reason they are used in most hydrodynamic initial
value calculations. A disadvantage of backward
differences is, for the present problem, that strongly
nonlinear pulsations are distorted since the higher
order Fourier components of the fundamental mode
are more strongly damped than the lower order com-
ponents. This distortion effect is actually much
stronger than that of the artificial energizing mech-
anism itself. In order to determine this distortion
parts of the time sequence calculated with the
artificial energizing mechanism and backward dif-
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ferences were repeated with centered time differences
and without artificial energizing. Since the results
of these calculations were energetically correct
solutions, they were also used to derive the true
values of the gain of mechanical energy and the
amplitude increase as a function of the pulsation
amplitude. For this purpose the mechanical energy W
gained or lost during one pulsation period was
calculated by means of the mechanical work integral
W+ M

W= f f P%l—:—dM,dt. 1)
te 0

Here IT is the pulsation period. Because of numerical
reasons, which are described below, W was not
actually calculated by direct integration but derived
by a numerically more accurate indirect method.

VI. The Mechanical Work Integral

In a pulsating 130 M, main-sequence star the
gain of pulsation energy during one pulsation period
is always only a small fraction (in the order of 10-5)
of the total pulsation energy. The pulsation is
therefore very nearly adiabatic. In such a case much
more accurate numerical results are obtained if the
work integral [Eq. (21)] is not evaluated by direct
integration but by the following indirect method:

the pressure P (M,,?) in the pulsating star can
be written as

P(MT’ t)= PO (Mﬂ t) + Pl (-Mr’ t) (22)

where P, (M,, t) is defined as the pressure that would
be observed in the star during a hypothetical
periodic change of volume with the specific volume
V (M,, t) as a function of time being exactly like the
one observed in the real pulsating star, but where
at any time and at any mass shell the condition

3L,
H, = &N (23)

is fulfilled. The condition obviously means that the
change of volume is exactly adiabatic. Since in the
presence of viscosity no adiabatic and strictly
periodic function P, can be defined (because the
internal energy would increase with time), it will be
assumed for the following that no shock waves and
thus no artificial viscosity are present.

Using the above definition of P, the work
integral Eq. (21) becomes

L+ M

w= [ [ (P,,%+P1%)dM,dt. 24)
to (1]
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Since no mechanical energy is lost or gained in a
periodic adiabatic process, we have

tor T M
J [

Thus Eq. (24) becomes

dM,dt = (25)

dM dt. (26)

Since the star pulsates very nearly adiabatic, in most
layers of the star, P, is always much smaller then P.
Therefore, in order to calculate W within given
accuracy limits, a smaller relative accuracy is needed
for P, if Eq. (26) is used than is necessary for P if
Eq. (22) is used. In order to derive an expression
for P,, we define U, and f, by the two equations

U (Mn t) = UO (Mﬂ t) + Ul (Mr’ t) ’ (27)
ﬁ (Mﬂ t) = ﬁo (Mn t) + ﬂl (Mr’ t) > (28)

where U, and 8, are defined as the specific internal
energy and the ratio of gas and total pressure, which
would be observed together with P, in the hypo-
thetical adiabatic change of volume. With these
definitions, the energy balance equation for the
pulsating star [Eq. (2)] becomes

9L, aU, U, 14 v

P, — P

v, o o Poar P =0-

(29)
The same equation for the hypothetical adiabatic
change of volume reads

oU,
S at_o. (30)

Equations (29) and (30) combined give

aU, oL,
3t ~ °N T oM, Pl at (31)

or
t

U, (M, 1) = [ (sN—;’TLI") dt

to
-

Another relation for U, is derived from Egs. (5), (6)
and (20):

—dt + U, (M, t) - (32)

U=Up+ U= (Po+ P)(3-56)7  (33)
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or since

Up= Py V (3~ 5 o) (34)

we also have

Uy=U — U.,_Vp(s——ﬂ) S VP (35)

Since the pulsation is nearly adiabatic, we have
B1 < B. Thus, because of the definition of 8 [Eq. (20)]
B, becomes with good approximation

P,

Bi=3r (6= B) (36)
where
d=4p1-3. (37)
From Egs. (35) and (36) we obtain
U,=3P,V(1-(2d)) (38)

and finally by combining the Egs. (38) and (32)

3P,V (1- (287 = ft(sN --%f-l'—') di
to

fP1

Provided, U, (M,,t,) is known, P, (M,, t) can now
be calculated easily by solving numerically the
integral Eq. (39) for discrete values of M,. In order
to simplify the calculations, the constant ¢, was
always chosen to correspond approximately to the
phase of maximum contraction, where U, (M,, ?) is
zero. Although in nonlinear pulsations the values of
U, (M,,t) for different M, do not quite simultane-
ously change their sign, always U (M,, %) = 0 was
assumed. From Egs. (26) and (39) follows that the
error that is introduced in W by this inaccuracy is in
the order of

dt + Uy (M, t,) . (39)

to+ IT

M
AW~f%Ul 1) [
0

ty
-1-@o )22 dran,. (40)

If § is independent of time (like in an ideal gas
without radiation pressure), the time integral in
Eq. (40) can be evaluated analytically and is always
equal to zero. In the general case at least the order
of magnitude of A W can be determined numerically
if U, (M,,t,) is known approximately. In this way
AW was always found to be much less than 1 per cent
of W and thus negligible.
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In principle, W could also be calculated in a much
simpler way from the formula

Mt +I
w=[ [ (sN—:—ﬂI}'T)dth, (41)
o i

which follows from Egs. (39) and (26), since for a
strictly periodic pulsation we have

Ul (Mra to) = Ul (Mﬂ to +II) . (42)

But numerically Eq. (41) is hardly more accurate
than a direct integration in Eq. (21) since this
formula is very sensitive to small deviations from
periodicity in the numerical solutions of the pulsation
equations. There are three sources for such deviations
from periodicity: 1) in a vibrationally unstable star
the pulsations cannot be exactly periodic, since the
amplitude is increasing slowly. 2) the truncation
errors at each time step tend to accumulate with
time and thus to introduce additional spurious
deviations from strictly periodic solutions; 3) as
noted before, the mean values of the dependent
variables, averaged over one pulsation period, depend
slightly on the pulsation amplitude. Especially when
the artificial energizing mechanism is used, the
amplitude increase is too fast to leave time for a
complete thermal adjustment of these mean stellar
parameters. This results in a slow nonperiodic drift
of U (M,,t). If W is calculated according to Eq. (41)
such a drift may produce erroneous results. E.g. with
a pulsation amplitude of §R/R = 5 x 10~* and with
a spurious drift of the temperature in the stellar core
of 2° K per pulsation period, W derived from Eq. (41)
will be wrong by about a factor of 10. If Egs. (26) and
(39) are used, the error will be less than one tenth of
a per cent. Thus Eq. (41) cannot be used to derive W
accurately. But, since the integrand in Eq. (41) is
part of Eq. (39), a comparison of the inaccurate
value of W derived from Eq. (41) with the “correct”
value derived from Egs. (26) and (39) can be used
to estimate the accuracy of the more accurate second
value of W. By this method the error of W was found
to be not larger than 4 per cent.

As stated above, the definitions of P, and P; and
Eq. (26) are not compatible with the presence of an
artificial viscosity. Therefore, at large amplitudes
the star was divided into an inner region (containing
about 99.99 per cent of the stellar mass) where no
shock waves occurred and where no artificial viscosity
was used, and an outer region where the shock waves
occurred and where consequently a @ + 0 had to be
used. Then the work integral W; for the inner region

Astron. & Astrophys.

alone was calculated using the indirect method
described above. In addition the mechanical energy
W, transferred by the inner region to the outer region
during one pulsation period was calculated from

ty+ 1T o
Wo= [ Po) 2% as (43)

t

where ¥;(t) is the volume of the inner region, or
Mp

7.0 = [ Vi, 0dH, (44)
; |

Py is the pressure at the boundary between the inner
and the outer region and M p is the mass of the inner
region. The difference W; — W, is obviously the net
amount of mechanical energy that is actually gained
by the interior region during one pulsation period.
Because such a small fraction of the stellar mass is
contained in the outer region, the mechanical energy
gained by the interior region is with good approxima-
tion equal to the mechanical energy gained by the
star. Thus we have with good approximation

W=W;—W,. (45)

In principle, the numerical evaluation of Eq. (43)
involves the same difficulties as a direct integration
of the work integral in Eq. (21). However, since the
pressure Py at M, = Mg is smaller by several orders
of magnitude than the mean pressure in the interior
region, W, can be calculated with about the same
absolute accuracy by direct integration as W; by the
indirect method.

Although even near the center of the star the
solutions eventually deviate considerably from the
solutions of the linear theory, the relative amplitude
increase with time stays with good approximation
independent of M, throughout the interior region of
the star. Therefore, like in the linear theory the
pulsation amplitude A (M, ¢) in the interior region
as a function of time can be expressed by

A (M, t) = Ao(M,) exp (K1) . (46)

In contrast to the linear theory (Schwarzschild and
Hirm, 1959), at large amplitudes, K is not independ-
ent of time. But at a given amplitude K can still be
calculated with good approximation from the

formula
1 W
K= T T (47)
where Ep is the total pulsation energy. (Strictly

speaking, Ep is, of course, the energy of the pulsation
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Fig. 1. The normalized velocity v,(M,, t)/r,(M,) for three layers of a pulsating 130 M, main-sequence star. The three layers

are: the surface (r,=1.03 X 107km, broken line), M, = 0.50 M (r, = 3.69 x 106 km, solid line), and M,= 0.01 M,

(ro = 7.89 x 10% km, dotted line). The pulsations shown in this figure were started with initial values taken from the linear
pulsation theory (see text). The damping is due to the use of backward time differences

of the interior region. But since the outer region
contains less than 1 per cent of the total pulsation
energy, Ep is also with good approximation the total
pulsation energy.)

VII. Numerical Results and Discussion

If, as suggested above, the initial velocity ampli-
tude is about equal to the final pre-main-sequence
contraction velocity, the linear adiabatic pulsation
theory used by Schwarzschild and Hérm is at the
beginning a very good approximation. Pulsations of
small amplitude were therefore only computed in
order to test the computer program. At an amplitude
corresponding to a relative radius variation of
OR/R = 5 x 10~* the solutions of the nonlinear and
nonadiabatic equations and the results of the linear
adiabatic theory were found to be identical within
the computational accuracy of the linear calculations.
Significant deviations from the results of the linear
theory have to be expected if either the condition
OR/R <1 is violated or if somewhere in the star the
velocity v (M,,t) surpasses the velocity of sound.
From the hydrostatic stellar model and from the
linear theory it can be estimated that the velocity
amplitude in the photosphere reaches the local sound
velocity already at a pulsation amplitude correspond-
ing to 6 R/R = 0.09. The nonlinear calculations were
therefore started at approximately this amplitude.
The initial values were taken from the results of the
linear theory. Since §R/R is already too large to
obtain accurate initial values for the fundamental
mode of the nonlinear solutions from the linear
theory, no attempt was made to derive the linear

solutions very accurately. In order to eliminate
spurious higher harmonics that are possibly introdu-
ced by the inaccurate initial values, the calculations
were started with backward time differences but, at
first, without artificial energizing. The results are
shown in Fig. 1. There the velocity v (M,, f) divided
by the corresponding radius of the hydrostatic
model 7, (M,) is plotted against the time ¢ for
three stellar layers: for the visible surface (7 = 2/3,
7o = 1.03 x 107 km, broken line), for a mass shell in
the deep interior (M,=0.5 M, r,= 3.69 x 10° km,
solid line), and for a mass shell near the stellar center
(M,=0.01 M, ry="7.89 x10°km, dotted line). In
good agreement with the linear theory the normalized
velocity v/ry changes only little between M,=0.01 M
and M, = 0.5 M. In both these layers the velocity
curve is approximately a (phase shifted) sinus curve
with exponentially decreasing amplitude, which is
characteristic for a damped linear pulsation. The
damping, of course, is due to the backward time
differences. The pulsation period is 0.400 days which
still agrees within 1 per cent with the fundamental
pulsation period derived from the linear theory. The
double peak at the first maximum of the surface
velocity curve indicates that, due to the numerical
inaccuracies, overtone components were present in
the initial values. But as shown by Fig. 1 the over-
tones are damped out by the backward time differ-
ences within a few pulsation periods. With only the
fundamental mode still present, the velocity curve
becomes sinosoidal in all layers of the star. The
decrease of the velocity amplitude from the surface
to the center and the rate of amplitude increase
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Fig. 2. Normalized velocity for three layers of a pulsating 130 M, main-sequence star. The three layers are the same as
in Fig. 1. Compared to Fig. 1, the initial velocity amplitude is twice as large. Nonlinear effects make the difference to Fig. 1
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Fig. 3. Normalized velocity for three layers of a pulsating 130 M o main-sequence star. The three layers are the same as
in Figs. 1 and 2. The pulsation amplitude is about 20 per cent larger than the initial amplitude of Fig. 2. The nonlinear
effects have become much stronger therefore

derived from the work integral still agree within a
few per cent with the values predicted from the
linear theory. Thus the initial pulsation amplitude
in Fig.1 turned out to be still too small to get
marked deviations from the linear theory. These
calculations were therefore repeated with the initial
pulsation amplitude twice as large. The results are

shown in Fig. 2. Although the velocity curves of
the two interior mass shells deviate now somewhat
more from damped sinus curves, the deviations are
still only small fractions of the velocity amplitude
in these layers. At the surface, however, the devia-
tions have increased strongly. The most striking
feature of the surface velocity curve at this amplitude
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Fig. 4. The normalized velocity for three layers of a pulsating 130 M, main-sequence star. The three layers are the same as

in Fig. 1. At this amplitude the positive and negative surface velocities do no longer cancel out when averaged over one

pulsation period, but now the average is always positive. After ¢ = 23 hours (in Fig. 4) even the surface velocity itself
stays positive. Thus, at this amplitude an expanding shell around the star is formed

is the strong deceleration which occurs after the
phase of maximum negative velocity. Actually this
sudden deceleration is an outward acceleration of
the surface layers caused by the passage of a shock
wave through the stellar surface. [The details of the
acceleration of stellar surface layers by shock waves
will not be described here, since extensive descrip-
tions of this mechanism have been given by other
authors. See e.g. Hazlehurst (1962), Kushwaha and
Odgers (1960), Sparks (1969).] The shock wave
develops during the contraction phase just below the
photosphere and then travels to the surface. Since
the occurrence of the shock wave is a truely nonlinear
feature of the fundamental mode at this amplitude,
it cannot be eliminated by the backward differences.
The apparent decrease with time of the strength
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of this effect in Fig. 2 is due to the slowly decreasing
pulsation amplitude and the very strong amplitude
dependence of the shock strength. The effect increases
again, when the amplitude is increased artificially,
as demonstrated in the last pulsation period of Fig. 2.

In order to find out how the properties of the
fundamental mode change with increasing amplitude,
the nonlinear calculations were continued for about
20 pulsation periods while the interior pulsation
amplitude was increased artificially at a rate of about
3 per cent per period. The velocity curves at two
later stages of this time sequence are shown in Fig. 3
and Fig. 4. The zero points of the time axis of these
figures are arbitrary. In Fig. 3 the pulsation ampli-
tudes of the interior mass shells are only about
20 per cent larger than the initial amplitude in Fig. 2.
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The total variation of the surface velocity, however,
has almost doubled, since periodically recurring
shock waves now transport additional mechanical
energy to the surface layers. The sudden sign-
reversal of the acceleration at the phase of maximum
negative velocity also became much more pro-
nounced, since the strength of the shock front which
causes this reversal is growing rapidly with increasing
pulsation amplitude. Although the shock waves
originate now in somewhat deeper layers than at the
pulsation amplitude of Fig. 2, they are still confined
to the outermost layers of the star. This is demon-
strated best by Fig. 5 where the radius » (M,, t) is
plotted against the time ¢ for several selected values
of M,. The velocity amplitude corresponding to
Fig. 5 is slightly larger than the maximum amplitude
in Fig. 3. But the values for Fig. 5 were not taken
from the time sequence of Figs. 1 to 4 but from the
more accurate calculations with centered time
differences. As shown by Fig. 5 the strong deviations
from the linear solutions due to the recurring shock
waves are present only in a thin surface layer, con-
taining about 10— per cent of the stellar mass and
(at this amplitude) only about 5 per cent of the
stellar radius.

When the amplitude is increased further, at first
the shape of the surface velocity curve stays essen-
tially constant. But the surface radius curve becomes
more and more nonperiodic, since the effective
displacement of the stellar surface during one pulsa-
tion period, given by

t,+ 1T
d= f v(M,, t) dt 48)

t

is not longer zero like in a truely periodic radius
change. Instead we obtain d > 0, which means that
the mean radius of the star is increasing. This stage
of the dynamical evolution is illustrated by Fig. 4.
Here positive (or outward) velocities become more
and more dominant until eventually v(M,, f) stays
continuously positive. At this final stage the star
consists now of a periodically pulsating interior and a
continuously expanding shell. This shell is supported
mainlynot by gas or radiation pressure but by the perio-
dic transfer of momentum by the recurring shock
waves. As soon as the shellis formed, the total variation
of the surface velocity does no longer increase, but now
starts to decrease (as shown on the right hand side
of Fig. 4). This happens because the shock waves
now loose so much energy while travelling through
the expanded and further expanding outermost

Astron. & Astrophys.

layers of the star, that they cannot longer overtake
or reach the supersonically expanding surface. In
addition the velocity curve is smoothed out since any
deceleration of the outward moving layers just below
the surface results in a decrease of the effective
gravitational acceleration

GM, otr
Jett = T + o (49)

and thus in an expansion of these layers. A free
falling shell e.g. would simply be blown appart by the
strong radiation pressure gradient near the surface.

From calculations of the work integral W it was
found that the radiative damping of the pulsations
increases strongly when the shell is formed, and that
W becomes negative when the amplitude is increased
further. Therefore, the artificial energizing mechnism
was turned off at the amplitude of Fig. 4 and a few
more periods were calculated without the artificial
amplitude increase. Although during these periods
the expansion velocity at the surface stayed essen-
tially constant (at about 500 km s—1), the velocity
eventually reached the escape velocity since with
continuously increasing radius the escape velocity
became smaller. Matter that is moving faster than
the escape velocity is permanently lost from the star,
since it can never fall back on its surface. Thus the
star starts to lose mass shortly after the shell is
formed. At this stage the calculations were stopped,
since with the rapidly increasing radius and the
decreasing surface temperature the surface boundary
conditions and the assumptions on % become too
wrong to get meaningful results from the model
calculations.

Since, for numerical reasons, artificial effects
(artificial viscosity, artificial energizing, and artificial
selective damping by the backward differences) were
included, the model calculations described above
need not be characteristic for the behaviour of a real
star. However, additional calculations without the
artificial energizing, with centered time differences,
and with several different values of the viscosity
constant ! in Eq. (14), showed that qualitatively the
results are independent of the artificial effects.
Quantitatively at large amplitudes the ratio of the
surface velocity amplitude and the interior velocity
amplitude (but not as much the shape of the velocity
curve) was found to be strongly affected by the
backward time differences and the artificial viscosity.
While this effect is still negligible for the amplitude
of Fig. 2 the interior velocity amplitude in Fig. 4 is
too large compared to the surface amplitude by a fac-
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Fig. 5. The radius function r (M,, t) near the surface just

before the shell is formed

tor of 1.3 +0.1. The numerical uncertainty of this
factor results from a possibly rather inaccurate
extrapolation to zero artificial viscosity, which is
necessary since, unlike the backward time differences
and the artificial energizing, the artificial viscosity
cannot be eliminated completely from the calculations.
The computations with the centered time differences
also showed that the star forms its shell and starts
to loose mass at an interior pulsation amplitude
about 30 per cent smaller than in Fig. 4. But in spite
of the strong dependence of the surface velocity on
the artificial viscosity, the work integral was found
to depend not as much on the viscosity. This is
apparently due to the fact that only in the outermost
layers, where the optical depth is in the order of
unity, the energy loss is strongly affected by the
artificial viscosity. The contribution of these layers
to the total loss of mechanical energy is not very
large, however, since the pressure is already very
small there.

The relative gain of mechanical energy as a
function of the pulsation amplitude is given by Fig. 6.
Here K, as defined by Eq. (47), is plotted against the
relative radius variation 7/ry near the center of the
star. In order to derive the leftmost point for Fig. 6
another time sequence was computed, in which the
interior pulsation amplitude was increased to a value
about 20 per cent above the value where the shell
was formed. At this amplitude the loss of mechanical
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Fig. 6. The exponent of amplitude increase as a function of
the interior pulsation amplitude for a 130 M ,, zero-age-main-
sequence star

energy during one pulsation period was found to be
at least two orders of magnitude larger than the gain
of mechanical energy in the core. (The corresponding
point, therefore, is far outside the lower margin of
Fig. 6.) The main reason for this extremely strong
damping is that the shock waves become so strong
that a relatively large portion of the shell (containing
up to 10-5M,) is ejected during each pulsation
period. This very strong increase of the damping
confirms that the pulsation amplitude can certainly
not increase to a value substantially above the
amplitude where the expanding shell is formed.
Since the gain of mechanical energy in the core is
approximately proportional to the square of the
pulsation amplitude, the upper limit for the pulsation
amplitude also means that there is an upper limit
for the energy gain per pulsation period. And since
the kinetic energy of the matter that is accelerated
to the escape velocity during one pulsation period
cannot be larger (in a quasi-stationary state) than
the mechanical energy gained in this time interval,
the limiting pulsation amplitude also means an
upper limit for the mass loss rate. In particular, the
mass 6 M ejected during one pulsation period cannot
be larger than

2

where v, is the escape velocity and W; is the net
gain of mechanical energy of the stellar interior
below the layers that are ejected. Using Eq. (50) and
the work integral an upper limit of

OM =4 x10°M,
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per year for the 130 M, star on the zero-age-main-
sequence was found. This mass loss rate agrees
approximately with the amount of mass that was
found to be eventually streaming from the star in the
numerical solutions. But since probably not enough
pulsation periods could be calculated for the shell
stage of the star in order to get a real quasi-stationary
state the estimate from Eq. (50) seems more reliable.
Because of the same reason the effective radius R,
(the radius of 7 = 2/3) after the expanding shell is
formed also cannot be determined accurately from
the model calculations. But from the condition that
at R, the growth of 7 due to the outstreaming mass
and the decrease of 7 due to the expansion of the
atmosphere above R, must compensate, R, can be
estimated to be roughly 4 times the initial stellar
radius (or about 60 R). Because of Eq. (8) and since
the bolometric luminosity changes only slightly, the
effective temperature of the star decreases propor-
tional to R; 12 when the shell is formed. Thus with
R,=60 R, the effective temperature of the star
becomes about 28 500 °K.

Since the limiting pulsation amplitude in the
interior and thus the maximum possible mass loss
rate of the star is much smaller than predicted from
the linear theory, the main result of the nonlinear
calculations is that a vibrationally unstable 130 M,
main-sequence star can survive much longer than
assumed so far. With the mass loss rate derived
above, the star can exist for more than 108 years
(or nearly its total main-sequence live time as
determined by the exhaustion of hydrogen in the
core) before becoming vibrationally stable again
due to the decrease of its mass. However because of
the change of the chemical composition and the
resulting change of the stellar structure, 6 M will
certainly not be constant over such a long time
interval. No nonlinear pulsation calculations were
carried out for evolved 130 M, main-sequence stars.
However, from hydrostatic model calculations of
very massive stars (Stothers, 1966) and from the
linear pulsation theory it is known that both, the
vibrational instability and the velocity of sound in
the outer layers of the star are decreasing with
increasing age on the main-sequence, until the star
becomes vibrationally stable again after about
1.5 x 108 years (Schwarzschild and Harm, 1959). It
seems rather safe, therefore, to predict that the rate
of mechanical mass loss is also decreasing with
increasing age on the main-sequence. If we assume
the mean rate of mass loss to be one half the upper
limit derived above, and if we assume further that
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Fig. 7. The bolometric light curve of a pulsating 130 M,

main-sequence star at maximum luminosity amplitude (at

the beginning of shell formation). The broken line indicates
the luminosity of the hydrostatic stellar model

the mass loss continues for 1.5 x 108 years, until the
star becomes stable again, actually only about
30 M, or 23 per cent of the original stellar mass are
lost on the main-sequence.

Using Eq. (46) and the values of K plotted in
Fig. 6, the age corresponding to a given pulsation
amplitude can be computed. With the time scale
determined by this method, the numerical results
described above can be summarized as follows:
during the first 18000 years on the main-sequence a
130 M, star looks like a very hot and luminous
O star, having the same observable properties as a
hydrostatic star of this mass and thus the properties
listed in the Table. During this time the star is already
pulsating, but the luminosity amplitude is less than
0.01 magnitudes and thus not detectable. For about
the next 5000 years the star is a regular variable with
rapidly increasing luminosity amplitude and chang-
ing light curve. (The computed light curve at
maximum luminosity amplitude is shown in Fig. 7.)
Then, about 23000 years after the start of the
oscillations, the star becomes a P Cyg like object
with an effective temperature in the order of 28000°K
and a supersonically expanding shell. This evolution-
ary stage lasts for most of the star’s remaining main-
sequence live time. During this time the star con-
tinuously looses mass, but the total mass loss on the
main-sequence will be only a minor fraction of the
initial stellar mass.

VIII. Comparison with Qbservations

Because of the well determined pulsation period
and the unique velocity and light curve, obviously
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the “regular variable” stage of the evolution of a
130 M, main-sequence star would be suited best to
identify such a star from observations. However, a
comparison of the length of the different phases of
the main-sequence evolution shows that only the
“P Cyg-stage” lasts long enough to make its observa-
tion likely. Since some of the known P Cyg stars
belong to the most luminous early type stars in our
galaxy, it has frequently been suggested that at
least some of these stars are very massive main-
sequence stars and that the observed expanding
shells and strong mass loss are caused by the vibra-
tional instability. The most thoroughly investigated
P Cyg star is the star P Cyg itself. [A detailed review
of all observed properties of this star has been given
by Beals (1951) and more recently by de Groot
(1969).] According to Kopylow (1958) the absolute
visual magnitude of P Cyg is M, = —8.4. Thus, if
the bolometric correction of a normal B0Ia super-
giant is applicable for this peculiar star, its bolo-
metric magnitude is about My, = —11.4. Luud
(1967) already pointed out that this luminosity is
much higher than that of any normal supergiant of
corresponding spectral class, but approximately
equal to the luminosity of a main-sequence star with
M > 100 M ;. Indeed, a comparison with the Table
shows that the bolometric brightness of P Cyg
agrees approximately with the luminosity of our
130 M, zero-age-main-sequence star (which is My,
= —11.1). The surface temperature (~25000 °K) and
radius (~64 R,) of P Cyg as derived by Luud (1967)
also agree approximately with those found from the
model calculation for the visible surface of the shell
of a 130 M, star. The mass loss rates which have
been derived from spectral observations of P Cyg
by Hutchings (1969) and de Groot (1969) are
somewhat larger than those found for the maximum
mass of the 130 M, star. According to Hutchings
the rate of mass loss of P Cyg is 6M =5 x10~* M,
per year, according to de Groot,itis M =2 x10—4M o
per year. The 130 M, model calculations resulted
in a maximum rate of about M =4 x 10-5 M, per
year. But since both, the value derived from the
model calculations and the values determined from
spectroscopic observations of P Cyg are hardly more
than order of magnitude estimates, they are still in
agreement within their error limits. Thus, the basic
physical properties of P Cyg as they are observed
presently are indeed at least compatible with the
hypothesis that this star is a main-sequence star of
about 130 M,. However, it must be noted that at
least the visual brightness of P Cyg (and probably
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the effective temperature and mass loss rate as well)
has changed considerably in historical times, as
described e.g. by Miiller and Hartwig (1920). P Cyg
was discovered on August 18, 1600 as a star of about
third magnitude. Since the star has never been
observed before, its apparent visual magnitude
prior to 1600 must have been fainter than m, = 6.0.
Between 1600 and 1715 the visual brightness of
P Cyg seems to have varied irregularly between
m, = 3 and m, = 6. After 1715 the amplitude of the
brightness fluctuations decreased and the star
reached its present visual brightness of approxi-
mately m, = 5.0. If P Cyg is indeed a vibrationally
unstable main-sequence star, a sudden increase by
several magnitudes of the visual brightness seems
not an unlikely event. In contrary, at the evolution-
ary stage, when the expanding shell is formed, the
effective temperature decreases strongly, thereby
shifting the energy maximum of the stellar radiation
towards the visual region of the spectrum. Since,
when the shell is formed, the bolometric luminosity
changes only little, the shift of the energy maximum
means that the visual brightness is increasing
strongly. The numerical calculations carried out
with the artificial energizing mechanism are too
crude to decide if the relatively strong irregular
brightness changes of P Cyg that seem to have
occurred between 1600 and 1715 can be explained
by the thermal and dynamical adjustment of the
outermost stellar layers during the time of shell
formation of a vibrationally unstable main-sequence
star. The relatively quiet period of P Cyg between
1715 and today, on the other hand, fits rather well
to the quasi-stationary state of slow mass loss and
small brightness and velocity fluctuations which in
the model calculations followed the forming of the
expanding shell. In the calculations the periodicity
of the pulsations in the deeper layers could no
longer be detected in the fluctuations of the brightness
and radial velocity at the surface. This may have
been due, however, to the fact that the computations
were stopped before a real stationary state was
reached. Since it takes several pulsation periods
for a pressure wave to travel through the expanding
shell, even small nonperiodic changes of the sound
velocity in the shell tend to destroy any periodicity
in the fluctuations of the surface parameters. But
because of the continuous mass loss the outer layers
of the star will never be exactly in thermal equi-
librium. Theoretically at least it seems possible,
therefore, that the fluctuations at the surface will
stay nonperiodic as long as the shell exists.
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‘While little is known on the short period (<1 day)
radial velocity fluctuations of P Cyg, extensive
observations of the brightness fluctuations have been
carried out by Magalashvili and Kharadse (1967 a, b).
From observations that covered the time between
1951 and 1960 these authors found superposed on the
irregular light variations indeed a regular variation
of about 0.1 magnitudes with a period of 0.500656
days. Because of the shape of the light curve Maga-
lashvili and Kharadse suggested that P Cyg is a
W UMa like binary system with an orbital period
of one half day. But Fernie (1968) showed that this
hypothesis is incompatible with the spectroscopic
observations. The 0.500 day period observed by
Magalashvili and Kharadse is significantly longer
than the 0.403 day period of the pulsating interior
of the 130 M, star after the shell is formed. But
0.6 days are about equal to the initial pulsation
period of a 170 M, star. (A mass of 170 M, also
seems to fit even better to the observed luminosity
of P Cyg.) All other attempts to explain the regular
component of the brightness fluctuations reported by
Magalashvili and Kharadse lead to serious con-
tradictions (de Groot, 1969). Thus, these observations
may indeed be the most direct evidence that P Cyg
is a vibrationally unstable main-sequence star with
a mass larger than 100 M. This, in turn, would
confirm the result of the nonlinear pulsation calcula-
tions that stars with masses in the order of 130 M,
are not destroyed by their vibrational instability
when they reach the main-sequence, but that they
become P Cyg like objects and survive without
losing much of their total mass until they become
stable again towards the end of their main-sequence
evolution.
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Appendix
The Difference Equations

In the difference equations in place of the in-
dependent. variable M, and the dependent variables

Astron. & Astrophys.

P, T,r, L, and v the transformed variables

§=n(1- 1%'4) (n = 1.0001) , (A1)
Y=lhP, (A2)
O&=InT, (A3)
E=Inr, (A 4)
A=1n(1 +%) (I’ = const. > 0), (A 5)

=§ (A 6)

were used. Except of @, these transformed variables
are identical with those suggested for stellar evolution
calculations by Kippenhahn, Hofmeister and Weigert
(1967). Using these definitions for each shell between
& and & + A ¢ the differential Eqgs. (13), (2), (3), (4)
and (12) were replaced by the following five difference
equations:

Vern:— W Gn*M*
a4 4

(1-exp(§))exp (s — 45 - P)

— 2 Dy i+ P exp 6 - E-P)

" Qe+Aje— Qe=0’ (A7)
gl S e -0, 0

Herae — & nM ’ o
SAE T T ang e (6 —85)=0,

(A9)

0 p— 0 3 M ’
eij s _ 6:n1’7a6 (L (exp (4) — 1) — L)

xexp(E—-4E5-460)=0, (A10)
Sey— Spe
SETB i@yt (1- g7 Pryemgs- (A1)

Before Eq. (A 8) was formulated, the time deriva-
tives of the functions U and V in Eq. (2) were
expressed by time derivatives of the dependent
variables P and T, using the definitions of U and V
as given by Egs. (5) and (6). These time derivatives
were then joined to form a single term &, the
mechanical work that is generated per gram and
per second. In difference form &;; in Eq. (A 8) thus
becomes:

ey=—(4p1—3) VP (Dy,; — V' D,s)

where

(A12)

Dy,; = ‘},‘(Tt —¥a) - (p—1) Dy,4—4: - (A13)
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and

De,t=j¢; (0 — 0i-a0) — (p — 1) Do,4—a:- (A 14)

Analogous Dy, ; in Eq. (A 7) is defined by
Do, i= o= (B~ Py_se) — (¢ — 1) Do, 1—as . (A15)

The constant ¢ in Egs. (A 11), (A 13), (A 14) and
(A 15) determines the phase shift between the time
differences and the dependent variables. Either the
value ¢ =1 (meaning backward time differences)
or the value ¢ = 2 (centered time differences) was
used.

In Egs. (A7) through (A 10) all dependent
variables and functions where the mass argument &
is not indicated explicitly by a subscript, are mean
values of the corresponding two values at & and at
& + AE. The time argument in these four equations
is always ¢.

A disadvantage of the difference scheme described
above is that numerical difficulties may be en-
countered when the energy dissipation by the artificial
viscosity is included in Eq. (A 8) by adding an
additional term &q. This happens because at a given
time ¢ the artificial viscosity characteristically adds
heat to only about 2 to 4 mass shells (over which the
shock front is smoothed out). In these shells the
internal energy and thus the temperature is increas-
ing with time. But since in the difference scheme
the dependent variables are not defined for the mass
shell itself but for the boundaries of the shell only,
an increase of T in the shell means that the mean of
the two temperature values at the two boundaries of
the mass shell is increased. The difficulty now is
that the boundaries of each mass shell are also
boundaries of the two neighboring mass shells. Let
us assume e.g. that because of ¢g + 0 in the #'" mass
shell the temperature at the boundary between the n'®
and the (n 4+ 1)** mass shell is increased. Let us
further assume that in the (n 4+ 1)* mass shell we
have gg = 0 and that therefore in this shell in order
to satisfy the energy law the mean of the temperature
values at the two boundaries must stay constant.
Then, since 7' at the boundary between the n'* and
the (n + 1)t shell is increased, the temperature at the
boundary between the (n + 1)** and the (n 4+ 2)2¢
shell has to decrease. Because of the same reasons
(and assuming that ¢ =0 for all following mass
shells) 7' at the boundary between the (» + 2)*¢ and
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the (% + 3)™ shell must increase again correspond-
ingly. And so on. Thus, including an &4 in Eq. (A 8)
would result in sawtooth like solutions for the func-
tions 7'(M,) [and L,(M,)]. Test calculations showed
that in the presence of strong shock waves this effect
may lead to erroneous solutions and to slow con-
vergence or even divergence of the Henyey method.
Therefore, for the present problem the energy
dissipation by the artificial viscosity was treated in a
different but energetically equivalent way, as
described in the main text.
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