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Abstract. An approximate method of spectral analysis called ‘successive spectral analysis’ based
upon the mean-quadratic approximation of an empirical function by generalised trigonometric
polynomial with both unknown frequencies and coefficients is developed. A few quotations describing
some properties of the method as well as one of the possible methods for numerical solution are given.

1. Introduction

In astronomy, geophysics, oceanography and other experimental sciences we often
have to express a given empirical function in the form of a generalised trigonometric
polynomial the frequencies of which are not known beforehand. To solve the problem
the classical approximate methods of spectral analysis based either on Fourier
transformation or on statistical auto-correlation are used.

In this paper we are going to discuss another approach based upon the minimisa-
tion process, using mean-quadratic distance as a criterion. We shall prove that such
an approach has certain useful properties. The method, built on this approach, which
we shall call ‘successive spectral analysis’ has given encouraging results when applied
to several geophysical problems.

2. Description of Successive Spectral Analysis

Let the given function F be defined on

27
J{nz{—n+ i},iz(),l,..‘,n—l,
n—1

where 7 is any odd integer greater than 2. We require a general trigonometric poly-
nomial

m—1

an"(t)=a0+ Y, rjcos(w;t —¢)), (1)

Jj=1

(te M,, L(n+1)=m>=2 given), which has the least mean-quadratic distance from F
in the space ¢, of all the functions defined on .#,. We assume that neither ampli-
tudes ay, r; nor frequencies w; and phases ¢; are known beforehand. The solution,
should it exist, is obviously very difficult. It involves solving a system of non-linear
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algebraic equations. This was the reason why we have chosen to resolve the problem
approximately only, step by step.
Let us, for this purpose write (1) in the following form

m m—1 m—1 m—1
T(1)= -21 (ag; + 1;cos(w;t — @) = 21 T;(t), Y, a¢;=a,. (1"
Jj= Jj= j=1
Introducing a;=r; cos;, b;=r; sing; we can write
T;(t) = ae; + ajcosw;t + b;sinw;t. )

Obviously, if the frequencies w; of Fe% , are integers then we can determine ecach

m

T; separately instead of seeking 7" as a whole in one go. This is because the matrix
of the system of normal equations (see for instance Berezin and Zidkov, 1962;
Karatajev, 1963; Laurent, 1965) for such frequencies is diagonal and the system
degenerates into 2m—1 independent linear equations for individual coefficients.

Generally though, the polynomial 7* with components Tj‘ found separately, will

differ from 7.%

To find T}, giving the largest ‘contribution’ to F, we shall exploit the fact that for
any rational w, €(0, 2(n—1))=¢& ., the optimal coefficients ay;, a;, b, are given by
the set of normal equations

(I, Dag, + (1, coswt)a, + (1, sinw,t)b; = (1, F)
(coswyt, 1)ag, + (cosw,t, cosw t)a; + (coswt, sinw,t)b; = (cosw,t, F) (3)
(sinwqt, 1)ag, + (sinw t, cosw,t)a, + (sinw,t, sinw,t)b; = (sinw,t, F),

where by (f; g) we denote the scalar product of f, ge¥% , .
In (3) (1, sinw,t), (cosw,t, sinw,t) are identically zero because sinw,? is odd,l,
cosw,t are even function and .#, is symmetrical.

We get thus
1 1
do1 :*( Z F(t) —a, Z Coswlt):’f(zF—alQ)’
te Mn te Mn h
n Y (F(t)coswt)— > F(t): ) coswt
gy = e tedn  tidn (4)
! n Y cos’oit— () coswt)
teMn te My
_nZFcos—QZF
nQ1_Q2 ’
by= Y (F(t)sinwt)/ ) sin w1 =) Fsin/Q,,
te Mn te Mn

where nQ, — Q%> 0 follows from Schwarz inequality and Q, is obviously also positive.

$ To what extent does the difference depend on distribution of frequencies, amplitudes and phases
remains to be established. From this view the studies of the method have not yet been completed.
Although, from a number of experiments carried out for hypothetical as well as observed functions
it seems clear that the deviations should be reasonably small.
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The square of mean-quadratic distance o(F, T%) is given by
=2 (F(t)— (' (1)’ [0, X F71. (5)
te M

This can be rewritten as

0°=Y F>~ag, Y F—a, Y Fcos—b; ) Fsin (5"

and for the given F'is a function of w, only.

The quantity ¢? can be thus regarded as a transformation of F into frequency
space. The minima show the approximate values of frequencies ‘present’ in F in a
similar way as the peaks do in either power spectrum or Fourier transform periodo-
gramme. If we were interested in locating unknown frequencies only then this trans-
form or a ‘least-square periodogramme’ o= F?—¢*e[0, Y F*], showing the domi-
nant frequencies also in form of peaks, could be used.

The argument w? of the absolute minimum of ¢® in &=[v;, v, |C& . is the first
frequency we seek. Together with the coefficients aq,, a;, b; given by (4) for w,; =}
it determines T'¥. o2 is analytic on & so that the minima are sharp; case ¢®=const. is
trivial. If there were several absolute minima in & we would take the one correspond-
ing to the smallest frequency.

Having found T7, we can calculate the first residue 4'F=F—T%. The procedure
of finding the following most distinctive component T will be exactly the same if we
only replace everywhere F by A'F. Similarly, for any T7F, 4°7'F shall replace F.

3. Some Properties of the Method

(a) The solution is unique. It is not difficult to see that there exists one and only one
m

polynomial 7* for any given m.
(b) The fit improves with the increase of m. As this is not obvious let us prove it.
To do it, we shall use the identity Q(T F)= Q(F T, 0), O is the zero element of &,

m+1
IsA™ ' F=A""2F-T}_ =F— T* HenceQ(T* F)=0(4™ 'F, 0) and o(T*, F) =
=0(4A™F, ). Therefore ¢(A™F, O)=g(A™ 'F—Ty, O)=9(4™ 'F, T). From the
fundaments of the method followsg(A"‘_lF Tr)<o(4A™ 'F,0)and we get: o (A™F, 0)<

m+1

o(4™'F, O)oro( T * F)<Q(T* F). The equality thus takes place if and only if
T*=0.

(¢) If F is represented by a simple sinusoidal curve then the fit is precise. This is
obvious and requires no proof.

(d) The fit is invariable in the transformation F— F+const. It means that 7%| .,
=T%*|p+ K if K=const.

To prove it let us take (5") and substitute for aqy, a;, b; from (4). We get:
> F)* (O Fsin)®> (n) Fcos—QY F)?

n 0, n2Q1 — nQ? .

lr=2F - (5)
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Similarly, for F+ K,
Y F+Y K)? Fsin — Y K sin)?
QZI(FH()ZZ(F—i-K)Z_’(Z 25) _(Z 2 ) B
n QZ
(nY Fcos+ny Kcos— QY F—QY K) _
n*Q, — nQ? -
= 0*r + 0%k + 40%|r+x 5

where by AQ2|(F+K) we denote the term

> nQ; — Q2
(Z FK — (1/”) ZF Z K - Q2b1|Kb1lF I —
Evidently we obtain: a1]K=0, bl]K=0, aOlIK:K and finally AQZI(F+K)=0, Q2|K=0.
Therefore QZI(F+K)=Q2|F. Equally easily we can prove: aOI‘(F+K)=a01|F+K, all(F+K)=
=a1|F, blI(F+K):b1,F- We can conclude that A'F=A4'(F+K) and the deduction

al‘KallF'

T[*(”K):T{’Fk—I—K is thus evident.
4. Remarks

Now, it is obvious that mean F=(1/n)),. , F(t) can be removed beforehand from
all the values F(¢) without any influence on results of analysis (with the exception
of a, that becomes a,— F). Removal of the mean will simplify formulae (4), (5'), (5").

To find the numerical values of minima of ¢ in & and their arguments we can use
any iterative method. In the program, used for analyses carried out so far, the follow-
ing method of separation of minima was adopted.

A real positive & — the fundamental step — is chosen so that ¢? has no more than
one sharp local minimum in any interval [w—h, w+h]Cé. We now calculate the
values 0% (w) for w=v;,v; +h, ..., v, +ih, ..., v +qh (gh<v,—v; <(g+ 1)h) from (5).
If for any ie{l, 2, ..., ¢g—1} the conditions:

0’ (vy + (i — )h) = ¢*(v; + ih) < 0* (v, + (i + 1) h) (6)
are satisfied then one sharp minimum is separated in the interval [v, +(—1)A,
v; +(i+1)]. Experiments have shown that the values of A=+ for o<1 and % for
w>1 are adequate.

To determine the numerical value of one minimum as well as the value of its
argument, the simple iterative method of dividing the interval into 4 divisions has
been used (see for instance Demidovic and Maron, 1966). The precision of iteration
(1/e) had to be fixed in advance. Transform ¢ could be used in the same manner as
o? with the only exception that absolute maxima instead of minima would be sought.

In order to shorten the computation time the values of Q, Q;, Q, can be calculated
from the formulae

Q = sin(nnw/(n — 1))/sin(ro/(n — 1)),
Q, = 1(n + sin(2nnw/(n — 1))/sin 2nw/(n — 1))),
» = 1(n —sin(2nnw/(n — 1))/sin 2nw/(n — 1)),

which are equivalent to the initial ones (see Vancl and Cufik, 1921).

(7
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If  F=0 then o can be written as

1 n
o(@)= (¥ Fsin)® + (¥ F cos)’. ®)
0, nQ; — Q2 (Z
It can be noticed hence that ¢ has a similar form to Fourier transform periodogramme
given (according to Lanczos, 1957; Serjebrjenikov and Pjervozvanskij, 1965) by

R*(w) = (2/n)((X F sin)* + (3. F cos)?). )

Since ¢ is a linear transformation of ¢ it retains the properties described in Section
3(c), 3(d). These properties distinguish the least-square periodogramme clearly from
Fourier transform periodogramme. The latter has none of the described properties
as can be easily proved. The advantage of the former periodogramme is particularly
noticeable in lower frequency range. In comparison with power spectrum, the advan-
tage of the least square periodogramme is in higher power of distinction of lower
frequencies too. These qualities were also confirmed by several experimental analyses.

The computation of o(w) is almost as fast as the computation of R*(w) and much

m

faster than that of power spectrum. Computation of the whole polynomial 7°*
(consists of determination of both frequencies and coefficients) is, indeed, much slower.
This is not surprising if we consider that the process corresponds to two separate
procedures with classical methods — spectral analysis for determining the frequencies
and solution of normal equations for the found frequencies.

Evidently, the presented method can be also used for analysing a function defined
on a set .4, of unequidistant arguments. In that case, expressions (4), (5'), (5”), (8)
become more complicated and slow the computation down.
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