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ABSTRACT 

The observed net flux of energy from the surface of Jupiter is assumed to derive from the thermal 
energy of the protons in the interior of the planet The thermodynamics and transport properties of 
metallic hydrogen at finite temperature are discussed, and the temperature distribution in the interior 
is calculated for various assumed luminosities and atmospheric boundary conditions. The resulting mod- 
els possess deep convective envelopes for surface fluxes in excess of ^lO2 ergs cm-2 sec-1 and are wholly 
convective for surface fluxes exceeding ^lO3 ergs cm-2 sec-1. 

I. INTRODUCTION 

Recent observations of Jupiter in the infrared (Low 1966) indicate that the planet 
radiates somewhat more energy than it receives from the Sun and may possess an inter- 
nal heat source. If the heat source is real, it is desirable to know whether it is in the 
deep interior or is an atmospheric phenomenon. The simplest model for an internal heat 
source would be residual thermal energy in the hypothetical proton lattice of the deep 
interior, and it is the purpose of this paper to examine whether such a cooling model 
agrees with all known parameters of Jupiter. 

In order to construct thermal models, we assume that the metallic hydrogen of which 
Jovian matter largely consists can be described by the ordinary Debye theory of metals, 
with the run of density and pressure fixed once and for all by the zero-temperature model 
of De Marcus (1958). Since the pressure in the outer 20 per cent of the radius of the 
planet, which is comprised largely of molecular hydrogen, appears to be temperature- 
sensitive (Peebles 1964), we define the outer 20 per cent of the radius to be the atmos- 
phere. To a sufficient approximation, the luminosity passing through the base of the 
atmosphere is equal to the total luminosity, and thus we take the temperature and lumi- 
nosity at the base of the atmosphere as the boundary conditions for the cooling model. 

In § II below we discuss the observational limits which may be placed on the intrinsic 
luminosity, and some of the properties of the Jovian atmosphere; in § III we discuss 
the thermodynamics of metallic hydrogen; in § IV we discuss the opacities; and in § V, 
cooling models of Jupiter are presented. 

II. THE INTRINSIC LUMINOSITY OF JUPITER 

Öpik (1962) discussed the data then available on the brightness temperature under 
various assumptions about the spectrum of Jupiter, and concluded that there must be 
a net flux of energy from the surface in excess of 103 ergs cm~2 sec-1, and possibly as 
high as 104. Öpik’s speculations have possibly been confirmed by Low (1966), who esti- 
mates a net flux of energy from the surface of Jupiter of more than twice the solar in- 
put, yielding a surface flux of 103-104 ergs cm-2 sec-1. Low’s result is based upon meas- 
urements of the brightness temperature at 1 mm and 20 /x, both yielding about 150° K 
(at the equator); however, this is subject to the validity of using the brightness tem- 
perature as a measure of the effective temperature. 

The brightness temperature increases considerably with wavelength, with Ti — 
144° K at 8.35 mm (Thornton and Welch 1963), 224° K at 6 cm (Dickel 1967), and 

* Supported in part by the National Science Foundation (GP-5391) and the Office of Naval Research 
(Nonr-220(47)). 
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260° K at 21.2 cm (Berge 1966). This phenomenon is usually interpreted as being due 
to a decrease in opacity at longer wavelengths, exposing hotter layers at greater depths. 
If this interpretation is correct, we may reject the possibility of a cold, isothermal at- 
mosphere. 

Traf ton (1967) has computed model atmospheres for Jupiter and has shown that the 
atmosphere is convectively unstable in the deep layers. With observed He/H2 ratios, 
Trafton concludes that Jupiter probably radiates more energy than it receives from the 
Sun, with an effective temperature greater than 130° K.1 

The figure of 103-104 ergs cm-2 sec-1 for the surface flux of Jupiter is therefore indi- 
cated by the observations but cannot be regarded as a reliable value at present. The 
evidence seems to suggest, however, that the flux cannot be very much less than 103 

ergs cm-2 sec-1. 

III. THERMODYNAMICS OF METALLIC HYDROGEN AT FINITE TEMPERATURE 

In the Debye theory of metals, it is assumed that the Helmholtz free energy of the 
ions can be written in the form 

F = Ne0 + NkT[3 In (1 - e-Q/T) - D(Q/T)] (1) 

(Landau and Lifshitz 1958), where N is the number of ions, €0 is the interaction energy 
per ion, depending only on the density, k is Boltzmann’s constant, 0 is the Debye tem- 
perature, and D is the usual Debye function; thus, 

X3 0 

z3dz 

ez - 1 (2) 

In the present case, 0 must be calculated theoretically and depends upon the dominant 
vibrational mode of the lattice. For the case of a coulomb lattice, Van Horn (1968) 
obtains 0 = 1.74 X 103 (2Z/A) p112 in degrees Kelvin, where p is the density in g cm-3, 
Z is the effective atomic number, and A is the atomic weight. In the case of hydrogen, 
this result is in approximate agreement with an estimate by Critchfield (1942). For 
terrestrial alkali metals, Z ^ 1 and A ^>1, giving Debye temperatures of the order 
of a few hundred degrees Kelvin. On the other hand, since the ions in a metallic hydrogen 
lattice are merely protons, their vibrational frequency is much higher, and at Jovian 
densities (p ^ 1) the Debye temperature is several thousand degrees. Such a high Debye 
temperature gives indirect evidence that the internal temperature of Jupiter is not much 
less than a thousand degrees, since the heat capacity drops markedly as the tempera- 
ture falls well below the Debye temperature, and the planet would then be able, at the 
presently estimated luminosity, to radiate all its available energy in an unacceptably 
short time. 

Adding to the free energy (eq. [1]) the free energy of a degenerate electron gas, we can 
then calculate the adiabatic relation between temperature and pressure. The calculation 
is simplified by assuming that the temperature-dependent parts of the internal energy 
and pressure represent small perturbations. Since the temperature-dependent part of 
the entropy is a function only of 0/ T, we evidently have 

Thus, 
/dlnPp 

/ d In p * 

(3) 

(4) 

1 The maximum effective temperature that Jupiter could have without an intrinsic luminosity is 
about 120° K. 
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Here P is the pressure, and P0 is the pressure at zero temperature. In the limit of high 
density P cc p5/^ and thus Vs—>0.3. For p^ 1, V« can be calculated using the equa- 
tion of state given by De Marcus (1958), which in turn is taken from the work of Wigner 
and Huntington (1935). We find that Vs can be fitted to within a few per cent by the 
formula 

Vs = 0.3 - 0.161p"1 + 0.012p"2 . (5) 

Note that pressure ionization tends to depress the adiabatic gradient, in a manner some- 
what analogous to the effect of temperature ionization. 

The melting temperature of metallic hydrogen can be estimated in a variety of ways. 
One method is to postulate that the lattice melts when the mean-square vibrational dis- 
placement of the protons, <x2>, exceeds a given fraction of the mean-square interionic 
distance, a2. The critical fraction, r*-1, can be written for a coulomb lattice as 

r* = a2/{x2) = Z2e2/akTM , (6) 

where TW is the melting temperature and 

a = {Zmn/^)llzp-llz , (7) 

where wh is the mass of a hydrogen atom. 
Estimates of the value of Tx vary from about 10 to as high as 125 (Van Horn 1968). 

In the case of Jupiter, if F* were taken to be 125, the melting temperature would fall 
so far below the Debye temperature that an ionic lattice phase might not exist at all; 
instead the ions would form a quantum liquid. However, an explicit thermodynamic 
calculation by Van Horn (1967) of the melting density of hydrogen suggests that Tx is 
of the order of 10, for high densities at least The adopted value of F* is not crucial; we 
merely wish to be certain that it is possible for the proton lattice phase to exist in Jupiter. 
For the purposes of this paper we therefore adopt F* = 40. Since this value is consider- 
ably higher than the value of F®^ 1 chosen by Critchfield (1942), conditions seem 
somewhat less favorable for the existence of metallic hydrogen in Jupiter than has been 
previously thought. 

Above the melting temperature, the adiabatic relation (3) changes to some extent. 
In particular, the latent heat of fusion must be included in the thermodynamic relations. 
However, in the case of Jupiter, the melting temperature is not much greater than the 
Debye temperature, and quantization of the protons is important even in the liquid 
phase. Since no theory is available for the thermodynamics of a strongly coupled quan- 
tum liquid, it is difficult to estimate the adiabatic gradient in such a case. As a prelimi- 
nary estimate, however, we assume that the quantum effects are negligible and that 
adiabats above the melting temperature can be calculated using the numerical results 
of Brush, Sahlin, and Teller (1966) for the thermodynamics of a strongly coupled plasma. 
For T slightly greater than Tm, V« can be approximated by formula (4) to within 10 
per cent, assuming that the electron gas can still be considered highly degenerate. 

For the Debye model at temperatures above the Debye temperature, the heat capac- 
ity is given by the law of Dulong and Petit, 3k per proton. For temperatures well be- 
low the Debye temperature, the heat capacity falls strongly to zero. However, even at 
a temperature of ^0, the heat capacity is still about 80 per cent of the limiting value of 
3k (Landau and Lifshitz 1958), and, since we will be interested in temperatures ranging 
from Tuto about |0, we take 3k to be an adequate approximation to the heat capacity. 

Finally, we estimate the degeneracy temperature of the metallic hydrogen by setting 
the pressure of an ideal gas of ionized hydrogen at a density of 1 g cm-3, 1.6 X 108 T 
dynes cm-2, equal to the pressure of metallic hydrogen at zero temperature and the 
same density, 2.2 X 1012 dynes cm“2. The degeneracy temperature is then about 1.4 X 
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104 ° K. The estimated melting temperature at p = 1 is about 40 per cent of the de- 
generacy temperature. 

IV. OPACITY 

The main carriers of energy in Jupiter are probably electrons rather than photons, 
since the opacity given by Kramer’s law for free-free scattering of photons is much 
higher than the calculated conductive opacity for temperatures below about 105 0 K. 
Two calculations of the conductivity of metallic hydrogen exist in the literature : Critch- 
field (1942) obtains 

K ~ 4 X 10y (1 - 0.25p -1'3)4 ergs cm“3 sec"1 ° K . (8) 

Abrikosov (1964) has calculated the electrical conductivity of metallic hydrogen, and 
upon applying the Wiedemann-Franz law to his result, we obtain 

K ~ 108 p4/3 ergs cm-1 sec-1 ° K , (9) 

Both expressions (8) and (9) are calculated in the limit T > 0. Expression (9) is in 
agreement with a result obtained independently by Hubbard (1967). 

The great discrepancy between results (8) and (9) needs careful consideration. First, 
it must be noted that expression (9) is an exact result in the limit of high density where 
the electron wave functions can be taken to be plane waves and the Born approximation 
is valid. The failure of Critchfield’s expression to yield the correct asymptotic result is 
due to neglect of an important contribution to the electron-scattering cross-section. The 
scattering cross-section is approximately proportional to the quantity C2, where 

C = -~f\Vuk\Hh+fV\uk\Hh (10) 

(Wilson 1953). Here me is the mass of an electron, uk are the usual Bloch functions where 
the electron wave functions \¡/k are proportional to uk exp (—ik*r), F is the ionic po- 
tential, and the integrals are taken over the Wigner-Seitz sphere. The first term in C 
represents the interaction of an electron with the screening cloud of electrons around 
each ion, while the second term represents the interaction of an electron with the ionic 
potential itself. In the limit of high density, uk becomes constant, and the second term 
dominates the first term. Since Critchfield’s calculation uses only the first term in C, it 
gives an incorrect asymptotic limit. In order to estimate the relative importance of the 
two terms for Jovian densities, the quantity 

f\uk\*Vd?r 

has been evaluated using the wave functions given by Wigner and Huntington. The re- 
sult is that plane waves (uk = const.) give a satisfactory approximation, and therefore 
the formula (9) may be extrapolated to p ^ 1 without serious error. We conclude there- 
fore that the Critchfield formula greatly overestimates the thermal conductivity. 

Expression (9) gives the thermal conductivity in the range between the Debye tem- 
perature and the melting temperature. It is independent of temperature because the heat 
capacity of the electrons, which is proportional to T, is exactly compensated by the 
scattering cross-section which is also proportional to T. Below the Debye temperature, 
the number of phonons which are able to scatter electrons decreases sharply, and the 
mean free path becomes large. In the case of hydrogen, umklapp processes are not pos- 
sible, and following Abrikosov, we assume that the thermal conductivity is given ap- 
proximately by 

z = ^^[expie/r) - i], (il) 
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where i£0 is the thermal conductivity given by expression (9). Expression (9) or (11) 
actually gives the so-called ideal conductivity, which is the value the conductivity would 
have if electrons were scattered by phonons only. In reality, the conductivity is much 
lower due to the effects of random impurities such as helium ions, lattice defects, etc. 
The effect of dilute impurities can be estimated in the following way: the thermal con- 
ductivity can be written in the form K oc PTG (Hubbard 1966), where G is a dimension- 
less scattering integral. In the case of phonon scattering in metallic hydrogen above the 
Debye temperature, we obtain G = GP = 1.5 X 104 plls/T, in agreement with expres- 
sion (9). At the melting temperature, Gp~3, so we can write Gp = 1/(| T/Tm). In 
the case of dilute random impurities, G takes the form G = Gi^ 1/ln (1+4 kF2/ks

2), 
where kp is the Fermi wavenumber and ks is the inverse of the screening length (Hub- 
bard 1966). In the case of Jupiter, we estimate that the impurities are screened out in 
roughly the radius of a Wigner-Seitz sphere and thus k8 should be of the order of kp, and 
hence Gi ~ Since the scattering cross-section is proportional to the number of scat- 
terers, Gi must be multiplied by the reciprocal of the impurity concentration. We may 
suppose that the impurities in Jupiter are mainly helium ions, roughly 10 per cent by 
number. Hence the effective G is given by 

G ^ l/ÍGp-1 + Gr1) = 1/(1 ~ + o.l) . (12) 
1 M 

The impurity scattering dominates after T falls below about ^ the melting temperature, 
and the very large conductivity predicted by equation (11) will never be realized. Thus 
expression (9) represents an upper limit for the conductivity for all temperatures be- 
low Tm- 

All the above expressions for the thermal conductivity presume the validity of the 
Born approximation, and we must therefore verify that the Born approximation is 
valid at densities under consideration. In order for the Born approximation to be valid, 
it is necessary for the perturbing potential to be small compared with the kinetic energy 
of the electrons. It should be noted that a perturbing potential results when an ion is 
displaced from its ideal lattice site, and therefore the Born approximation is valid at a 
sufficiently low temperature. A criterion for the validity of a transport equation based 
on the Born approximation is 

^/r « Ep (13) 

(Van Hove 1955), where r is the mean free time of the electrons and Ep is the Fermi 
energy. For a density of 1 g cm“3, this becomes T <<C 105 ° K. Hence, at the lattice melt- 
ing temperature and below, the Born approximation is probably valid. We therefore 
adopt expression (9) as a satisfactory estimate of the thermal conductivity of metallic 
hydrogen for the temperatures and densities of interest in the present discussion. 

V. THERMAL MODELS OP JUPITER 

In the following discussion, spherical symmetry is assumed. It is clear that in the 
case of convective equilibrium, the rather rapid rotation of the planet will have a pro- 
found effect on the distribution of the convective currents. In addition, interaction of 
the pressure-ionized convective elements with magnetic fields may be important. Never- 
theless, the results presented may provide a starting point for more elaborate models. 

First, it is necessary to note that, with the observed limits on the luminosity and the 
adopted thermal conductivity, the central temperature is given by K(TC — Tq)/Rj ^ H, 
where Tc is the central temperature, To is the temperature at the base of the atmosphere, 
Rj is the radius of Jupiter, and H is the net surface flux. With K ^ 108 ergs cm“1 sec“1 ° K, 
r0~0, Rj = 7X 109 cm, ß’^ 3 X 103 ergs cm-2 sec“1, we obtain Tc~ 105 ° K, an 
improbably high temperature. This temperature is so high that the proton lattice 
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would be completely destroyed, and the electrons would only be partially degenerate. 
It would be difficult to reconcile this result with the success of the zero-temperature 
models of Jupiter if the possibility of convection were not admitted. With an adiabatic 
temperature gradient, relatively large fluxes of energy may be transported through the 
planet with a relatively low central temperature. 

For the conductive portion of the planet, the usual equation of heat flow is employed : 

JL A 
r2 dr 

(14) 

where r is the radius, C is the heat capacity per gram, and t is the time. Since we assume K 
independent of temperature and take C = 3Æ/^h, equation (14) possesses a solution of 
the form T(r) exp (—co/) and becomes a simple eigenvalue problem. In reality we have 
an initial-value problem, but since information on the earlier evolutionary configura- 
tions of Jupiter is lacking, we take the fundamental eigensolution to be the physically 
interesting one, since it dominates in the limit of large t. In the same spirit, for regions 
in convective equilibrium, we assume the energy release to be governed by the same 
time constant co, so that the total luminosity passing through a shell of radius r is 
given by 

r 
Lr = J'4:Trr'2drf3(k/Mjî)ü)p(r')T(r') , (15) 

o 

whether conductive or convective equilibrium obtains. Thus for a given atmospheric 
boundary temperature To, we obtain a different luminosity for each different value of co, 
and the boundary of the convective envelope is fixed by the condition 

dlnT 
dlnP 

= V = Vs (16) 

in the usual manner. 
Since equation (14) is homogeneous in T and V« is independent of T, it is clear that 

the position of the conductive-convective interface is a function of the eigenvalue co only 
and is independent of TV Thus a solution for a boundary temperature T0 can be obtained 
from another solution for a boundary temperature To' by multiplying temperatures and 
luminosities by T0/To'. 

For an adiabatic atmosphere with a temperature of 150° K at a pressure of 1 atm, 
Peebles (1964) obtains a temperature at the base of the atmosphere of about 2000° K, 
using a Debye model for the molecular hydrogen equation of state. Since an adiabatic 
atmosphere seems more consistent with observation than an isothermal one, we adopt 
2000° K as the probable boundary temperature T0. The corresponding adiabat is given 
by 0/T ^ 2. As an extreme (and possibly unrealistic) case, we also consider a boundary 
temperature of 7000° K, which yields an entirely molten interior. The adiabat is calcu- 
lated from the data of Brush et al, (1966) and corresponds to an entropy per proton 
S = 6.6 Æ, with the entropy zero point determined by the condition that the proton 
entropy tends to the perfect-gas value 

as T —> o° . 
In Figure 1 are plotted three adiabats for the Jovian interior, together with two par- 

tially conductive models for T0 = 7000° K (curves 1 and 2). Curve 1 corresponds to a sur- 
face flux of 180 ergs cm-2 sec-1, while curve 2 corresponds to a surface flux of 130 ergs 
cm-2 sec-1. The conductive-convective interface is at 0.35 Rj and 0.60 Rj, respectively. 
For lower values of the boundary temperature, the corresponding surface fluxes are 
proportionately lower. In Table 1 we present the adiabatic models for To = 7000° and 
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Fig. 1.—Adiabais for To = 7000°, 3500°, and 1700° K. Numbered curves are models with conductive 
cores and are discussed in the text. 

TABLE 1 

Temperatures of Adiabatic Models as a Function 
of Radius for T0 = 7000° and 2000° K 

r/R, P 
(g cm"3) 

T(° K) 
(To = 7000° K) 

T(° K) 
(To = 2000° K) 0(o K) Tm(° K) 

0 0.. 
2.. 
4. 
5. 
6. . 
7 .. 

0 8.. 

1 
7 
9 
5 
1 
63 

0 96 

15100 
14400 
12600 
11500 
10500 
9100 
7000 

4000 
3800 
3400 
3200 
2900 
2500 
2000 

7050 
6700 
5900 
5500 
5050 
4450 
3400 

8650 
8350 
7700 
7300 
6900 
6350 
5300 

* From Peebles (1964). 
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2000° K, together with assumed melting temperatures and Debye temperatures. The 
position of the conductive-convective interface is given as a function of H in Table 2, 
together with cooling times. 

To conclude this section, we verify that convective motions in Jovian matter are 
capable of transporting the observed flux without a significant departure from the 
adiabatic gradient. According to the mixing-length theory of convection, the convec- 
tive flux is given by 

TABLE 2 

Radius at Which Convective Instability Starts as a Function of 
Surface Flux 

(Includes Cooling Times) 

H 
(ergs cm-2 

sec-1) 

To = 7000° K 

r/Rj co-1 (years) 

To = 2000° K 

r/R, or1 (years) 

50 
130 . 
180 
220 

1000 . 
2000 . 

10*. 

Conductive 
0 6 
0 35 

Convective 
Convective 
Convective 
Convective 

3X1012 

1012 

1012 

9X1011 

2X1011 

1011 

2X1010 

0 35 
Convective 
Convective 
Convective 
Convective 
Convective 
Convective 

1012 

4X1011 

3X1011 

5X1011 

6X1010 

3X101(> 
6X109 

where l is the mixing length (Schwarzschild 1958). We assume that the pressure can be 
calculated from the Debye model according to 

P = P„ + A- pP[f5^(l - e-qYl ~ k#'(?)], (19) W,TT Ä 

where P0 is the pressure at zero temperature and q = G/T. To lowest order in T we then 
obtain 

(20) 

For # ^ 1, p ^ 1, we obtain 

lO"3. (21) 

For a perfect gas, the value would be about 10-2. Solving equation (18) for V — V. for 
Hc = 104, we find 

___ IQ"6 

^ ** Xlilz ’ 
(22) 

where l is now expressed in units of Rj. For any plausible value of Z, the difference be- 
tween V and V« is clearly negligible. Although one might expect convection to be sup- 
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pressed in a degenerate gas due to the lower thermal expansivity, the large heat capacity 
at higher densities more than compensates. 

In the preceding analysis, we have assumed that the metallic hydrogen possesses no 
strength but can be treated essentially as a fluid under the high pressures which occur in 
the interior of Jupiter. An indication of strength in Jovian matter might be a lack of co- 
incidence between the equipotential surfaces and surfaces of constant density, which 
would be indicated by a disagreement between the measured gravitational moments 
J and K, and the J and K calculated from fluid models.2 Unfortunately, this test is not 
a sensitive one because the calculated J and K vary considerably with the choice of 
atmospheric structure and chemical composition (Peebles 1964). A fit to the observed 
J and K can be made for a plausible choice of parameters, however, and we conclude 
that there is no indication of strength in Jupiter from such considerations. 

VI. DISCUSSION 

One of the more puzzling features of Jupiter is the presence of a rather strong mag- 
netic field. It can easily be verified that the field is not a primordial one, for if we com- 
pute the electrical conductivity of the Jovian matter, we find 

cr ~ 3 X 10V/3/T esu (23) 

using expression (9) and the Wiedemann-Franz law. The decay time in seconds for a 
magnetic field is given by the usual expression 

r ^ 47rZ,2<r/c2 , (24) 

where c is the velocity of light in centimeters per second and L is a typical dimension 
of the planet. Taking L ~ 109 cm, one finds a decay time of 107 years, which implies 
that the field is continuously generated. The magnetic field could, of course, be gener- 
ated by some suitable atmospheric mechanism for transforming solar energy into mag- 
netic energy, but deep convection in pressure-ionized matter would seem to offer at least 
as attractive a mechanism. 

If Jupiter is in fact largely convective, its present state may be a remnant of a primor- 
dial luminous phase during which the planet evolved down a Hayashi track but failed 
to start hydrogen burning. The immediate predecessor of the present Jupiter may have 
been an object similar to a white dwarf but completely convective and with a rather 
low effective temperature. If Jupiter's predecessor were such an object, the planet must 
now be completely mixed and cannot possess a core of higher-density elements. Accord- 
ing to the models of De Marcus (1958) and Peebles (1964), if such a core exists, it is 
quite small, and there is no great difficulty in fitting observed parameters without a core. 
It should be noted, however, that the present thermal model does not exclude a small 
conductive core. 

It is of course possible that the present energy radiated by Jupiter comes from the 
atmosphere only rather than from the deep interior. This would be possible if the planet 
were able to store energy from an earlier epoch when it received more energy from the 
Sun, which might occur in the case of a variable albedo. The model herein presented is 
therefore only one of several possible interpretations of the observed intrinsic luminosity 
of Jupiter. Observations of Jupiter at additional wavelengths may help to clarify the 
situation. 

The author gratefully acknowledges conversations with Drs. John Bahcall, Peter 
Goldreich, and Bruce Murray. 

2 The author acknowledges a very helpful discussion with Dr. Bruce Murray on this point. 
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