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Complete Solution of a General Problem of Three Bodies 
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A problem investigated by C. Burrau in 1913 which may be referred to as the Pythagorean problem of 
three bodies is solved numerically, the solution being valid for any length of time. The solution found is 
neither quasi-periodic nor periodic but it assumes the form known in the recent Soviet literature as “elliptic- 
hyperbolic.” In the final configuration two of the three participating bodies form a permanent binary while 
the third body is rejected to infinity. A new method of treating close approaches which allows achieving 
the solution is also described. 

INTRODUCTION 

BY complete solution we mean the description of the 
motion of the participating three bodies for any 

length of time. This may be accomplished for periodic, 
almost periodic, or asymptotic solutions. 

Burrau’s original paper of 1913 computes the develop- 
ment of this dynamical system for a time that might be 
considered to be too short to arrive at general con- 
clusions. In the past year, at the suggestion of one of 
us (Szebehely), research has been conducted at several 
institutes to íícomplete,, Burrau^ problem. At Yale 
University, Mr. E. M. Standish (1966), under the 
direction of the first author; at the Institute of Space 
Studies, NASA, New York, Dr. R. Spinelli (1966) with 
the cooperation of Dr. M. Lecar and Dr. V. Szebehely; 
and at the Eidgenössische Technische Hochschule in 
Zürich Mr. L. Stanek (1966), under the supervision of 
Dr. E. Stiefel, have studied the problem. The final and 
complete solution has been obtained only recently, 
after a new method has been introduced by one of us 
(Peters) to integrate the equations of motion. The 
development of this new method was necessary in 
order to obtain the complete solution because of the 
occurrence of repeated close approaches during the 
evolution of the system. 

The asymptotic solution found by us may be termed 
elliptic-hyperbolic. Such final configurations have been 
predicted by Merman (1958) and by Alexeev (1961). 
Two of the three bodies move on approximately 
elliptic orbits around each other forming a close binary 
system and the third body departs on a hyperbolic orbit 
to infinity. The total energy of the system is negative. 

Fig. 1. Initial configura- 
tion of the Pythagorean 
problem of three bodies. 

The center of mass of the system is stationary and 
consequently the close binary and the escaping body 
move to infinity in opposite directions. The solution 
presented, therefore, may be considered an example 
of escape and also of capture, since two of the bodies 
stay permanently together, while the third is ejected. 
Other special features of the motion are pointed out in 
the next section. 

A detailed description of the historical and scientific 
perspective of Burrau’s problem has been given recently 
by the first author (1967). 

EVOLUTION OF THE DYNAMICAL SYSTEM 

The initial conditions are such that a Pythagorean 
triangle is described at / = 0 by the participating bodies. 
Burrau’s example is Pythagorean not only in the geo- 
metric sense but also regarding the masses. The sides 
of the triangle formed by the three bodies at /=0 are 
3, 4, and 5 and the masses of the participating bodies 
are also 3, 4, and 5. The particle with mass f»i=3, 
referred to as the first body, is located at that apex of 
the triangle which is opposite to the side with length 3. 
The second body with mass W2= 4 is positioned opposite 
to the side whose length is 4 and the third body with 
m^=5 occupies the third apex. Figure 1 shows the 
initial configuration and the coordinate system used. 
The three initial speeds are zero, consequently the 
motion is planar. The three components of the vector 
of the angular momentum are zero initially and they 
remain zero during the motion. The center of mass is 
initially at the origin of the coordinate system selected 
and it stays there during the evolution of the system. 
The total energy E of the system is also preserved and 
it is identical with the potential energy V at /=0. Its 
value is E= F= 769/60= — 12.8166... using unity for 
the constant of gravitation. 

The development of the system is shown in Figs. 2 
to 8. In these figures the motion of the first body is 
shown by a dotted line, the dashes represent the orbit 
of m2 and the solid line illustrates the motion of the 
body with the largest mass m3. The numbers on the 
curves are the values of the time in unit increments, 
excepting Fig. 7, where intermediate time steps are 
also shown. All orbits are referred to the inertial 
rectangular coordinate system described previously. 
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GENERAL PROBLEM OF THREE BODIES 877 

The marks on the horizontal # axis and on the vertical 
y axis are at unit distances. The series of seven figures 
(2 to 8) were prepared by an automatic plotter at the 
Yale University Computer Center where the numerical 
integrations were also performed. 

To give physical meaning to the numerical values of 
the time variable shown on the figures, we note that 
the equations of motion are integrated using unity for 
the dimensionless parameter of the problem; i.e., 

'DGM/U^ 1. 

Here T, L, and M are the time, length, and mass in 
the system of units used and G=6.67X10“8 is the 
constant of gravitation in cgs units. The preceding 
equation follows immediately from the equations of 
motion, which are written as 

d2Qi 3 
  
dr2 i=i Ipr-pq3 

where p» is the position vector and m is the mass of the 
ith body. The dimensionless form of this equation is 

dhi GMT2 3 Tj—ii 
 = E  -, 
dt2 U i=l ! Tj— Ti 13 

j 7¿Í 

where r¿= p¿/T, and t—r/T. 

Expressing the masses in grams and the distances 
in centimeters, for instance, the unit of time becomes 
3872 sec or approximately 1.08 h. If we wish to consider 
three stars of masses 3Mo, 4Mo, and 5Mo at distances 
3, 4, and 5 pc, then the unit of time becomes about 
1.43X107 yr. The unit of length L=1 pc=3Xl018 cm 
in this last example corresponds to one third of the 
average distance (3 pc) between the stars in the 
neighborhood of the sun (Mo = 2Xl033 g). 

The initial motion of the bodies is expected to be 
oriented toward the center of mass. At /i= 1.879 this 
trend ends, and as shown in Fig. 2 the second and third 
bodies approach each other, while the first body 
continues its orbit. The closest distance between w2 and 
m% is approximately r23(/i)=10~2. Following the orbits 
for 0< /< 10 of the three bodies in Fig. 2, the obser- 
vation may be made that the third body with the 
largest mass performs repeated close approaches to the 
first and second bodies but these latter bodies do not 
find themselves near to each other. This tendency of 
the body with the largest mass to act as an agent 
between the two other masses persists during the entire 
motion. In other words, the communication and the 
direct gravitational effect between m\ and wh is only 
through m%. This phenomenon of separation between 
m\ and ra2 may be seen clearly in Figs. 2, 3, and 4. 
In Fig. 7 there is an instant when the two bodies with 
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878 V. SZEBEHELY AND C. F. PETERS 

the smaller masses are closer to each other than to the 
third body (>12023). As discussed later, Mi and m% at 
this critical time are already in the process of forming a 
close binary system that will be their final configuration. 

Returning now to Fig. 2, we direct attention to the 
system at /=3.35. At this time m\ moves away from 
the origin, while m2 and Mz are on approach trajectories. 
Since Burrau’s integration ended at ¿=3.35, it is 
understandable that he could not find any indication 
of either periodicity or of an asymptotic behavior. 

The close approaches between m2 and mz in Fig. 2 
occur in the following intervals of time: K¿i<2, 
3 </2 <4, and 8 <¿3 <9. The corresponding distances are 
r23(¿i)^10-2, r2z(t2)^6XlO"2, and lO“3. The 
last close approach occurs at ¿3= 8.760 and it is the 

smallest distance during the interval of time shown in 
this figure. The close approaches between mi and mz 
occur at ¿4=3, 6<¿5<7, and at ¿6=10. The distances at 
the close approaches between mi and mz are all larger 
than the close approaches between m2 and mz for 
0<¿<10. 

Proceeding now to Fig. 3, a clear separation of the 
orbits of mi and m2, with mz oscillating between them, 
may be observed. The close approaches between mi 
and mz occur at ¿6=10, 14<¿7<15, and at ¿8=17. The 
corresponding times for m2 and m3 are 11<¿9<12, 
¿io=15.8299236, and 19<¿n<20. The close approach 
at ¿10 is /'23(¿io)=4X10~4 which is the smallest distance 
occurring between any bodies at any time during the 
evolution of this dvnamic system between ¿=0 and 
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GENERAL PROBLEM OF T H RE E B O D I ES 879 

¿==oo. The relative velocity of rrn and mz at close 
approach is approximately 171 in our units and at the 
same time the velocity of m\ is z>i=0.04:. 

Note that this closest approach corresponds to a 
distance of 1.7X104 solar radius or 80 a.u. and the 
maximum velocity becomes approximately 10 km/sec. 
The nearly stationary condition of m\ is reflected by 
its velocity of approximately 10 km/h. 

If the distance would have become zero and at the 
same time would also have obtained the value of 
zero, a periodic solution would have presented itself. 
In other words, had m2 and Mz collided and mi stopped 
at the same time, the solution would have reversed. 
Such a tendency may be seen in Fig. 3 where all three 
bodies describe approximately the same orbits before 
and after the close approach. This trend continues 
through Figs. 4 and 5 since half of the period would be 
/io= 15.83 = ^r if the motion would be periodic. Indeed, 
in Fig. 5 at ¿12= 2¿i0= 31.66= F, the three bodies 
approximately occupy their initial positions with small 
velocities. The existence of a periodic solution near the 
Pythagorean initial conditions used in this paper is 
still being investigated. Note that the period of the 
three-body problem mentioned corresponds approxi- 
mately to twice the period of rotation of the galaxy. 

Figure 4 resembles part of Fig. 3 and part of Fig. 2 
because of the near periodicity described in the preced- 
ing paragraph. Figure 5 at ¿12= 31.66 resembles Fig. 2 
at ¿=0. The sensitivity of this dynamical system to 
initial conditions is well demonstrated in Fig. 5. Since 
the initial conditions of Fig. 2 are not exactly reproduced 
in Fig. 5 at ¿12, the subsequent motion in these two 
figures is entirely different. In other words, no simi- 
larity may be seen between Figs. 2 and 5 after tn. 

The next figure already foreshadows the final evolu- 
tion of the system. At ¿13=47 in Fig. 6 the body with 
the smallest mass mi seems to be departing in the third 
quadrant of the x, y plane with Xi<0, ÿi<0. At the 
same time m2 and mz form a binary which is moving 
away from the center of mass in the opposite direction. 
That ejection does not occur at this time becomes clear 
when Fig. 7 is inspected. At ¿14= 53 the first body 
reverses its direction and since its velocity is almost 
zero, it evidently has an elliptic-type motion with 
respect to the binary. 

Figure 7 shows the final formation of a binary by 
m2 and mz and the penetration of this binary by Wi. 
At ¿15=54, the body with the smallest mass mi ap- 
proaches the binary with Xi>0, ÿi>0. At ¿i6=59.2 the 
binary is in the position of periastron and at ¿17= 59.4 
the condition is almost that of apastron. At the same 
time mi is approximately on the line connecting m2 
and mz- After this, mi departs fast while m2 and mz 
reach periastron again, approximately at ¿i8=59.7. One 
way to describe the interaction may be by referring to 
mi as shooting through the binary without influencing 
it very much and attaining a high velocity in the process. 
At ¿19=60 the speed of mi is approximately 2.7 and its 

Pig. 5. Orbits between /=30 and ¿=40. 

distance from the center of mass of the system is about 
2 units. If one considers a problem of two bodies, the 
first body being mi and the second the binary with mass 
m2+mz and with velocity 0.9, the total energy of this 
artificial system becomes positive; consequently the 
motion is hyperbolic. 

Figure 8 completes the problem. The binary and the 
body with mass mi depart with hyperbolic velocities. 
The period of the binary is approximately 0.9 time 
unit and therefore this binary performs 15 revolutions 
during one complete rotation of the galaxy. 

The previously mentioned approximate calculation 
regarding the hyperbolic departure may be sharpened 
by using Alexeev’s (1961) conditions. In this way we 
find that his conditions of hyperbolic-elliptic motion 
are satisfied at ¿=69. The numerical integration was 
performed to ¿20=102 or to 1.5X109 yr and gave no 
change from the situation shown in Fig. 8. 

Table I lists the data for the close approaches 
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880 V. SZEBEHELY AND C. F. PETERS 

Fig. 6. Orbits between /=40 and / = 50. 

occurring between ¿=0 and ¿=30, i.e., for the first 430 
million years. 

METHOD OF REGULARIZATION 

From preliminary studies, it was found that several 
very close approaches occurred during the course of 
the numerical integration. In order to increase accuracy 
and to save time spent on a high-speed electronic 
computer, the equations of motion were subjected to 
the treatment known as regularization, which seems 
to be the only available method to deal with collisions 
and close approaches. The basic idea is to eliminate the 
singularities occurring at binary collisions in the prob- 
lem of three bodies under consideration by introducing 
a new independent variable. This method has been 
proposed by Sundman (1912) and the effectiveness of 
the transformation is unquestionable from the point 
of view of analysis. Unfortunately, for purposes of 

numerical integration Sundman’s method and other 
similar approaches do not seem to be satisfactory 
because of practical computational reasons. One 
primary reason for this discrepancy between the analytic 
and computational requirements is the appearance of 
terms of the type Xi/r in the transformed equations. 
Here r=[2(x»2)^ and %i and r both approach zero at 
collision. The limit of the ratio x^r is well defined and 
entirely satisfactory for analytical purposes, neverthe- 
less its time-consuming computation gives losses in 
accuracy. This disadvantage of Sundman’s trans- 
formation is well known from the numerical experiences 
of other dynamical systems, such as the restricted 
problem of three bodies. It has been shown, for instance 
by one of us (Szebehely 1967), that the introduction 
of a new independent variable, while regularizing the 
restricted problem, results in increased complexity of 
the equations of motion as well as being responsible for 
the appearance of terms undesirable from the point 
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GENERAL PROBLEM OF THREE BODIES 881 

of view of numerical integration. The remedy is to 
increase the complexity of the regularizing trans- 
formations in the case of the restricted problem, where 
the proper combination of the transformations of the 
independent and dependent variables accomplishes not 

Table I. Close approaches between / = 0 and ¿=30. 

time 
approximate 

distances 
between 
particles 

h 
h = 
h '■ 
h '■ 
¿3 = 
h = 

1.879 
3.026 
3.801 
6.898 
8.760 
9.962 

h =11.611 
h =14.618 
bo =15.830 
h =17.001 
¿11 = 19.807 

21.791 
22.966 
24.537 
27.780 
28.679 
29.802 

IO"2 

0.6 
6X10-2 

0.1 
8X10"3 

0.5 
0.2 
0.2 

4X10-4 

0.3 
0.2 
0.4 

2X10-2 
0.1 

5X10-2 
0.5 

3X10-3 

m2, mz 
mi, mz 
m<i, mz 
m\, mz 
w2, mz 
mi, mz 
m2, mz 
mi, mz 
m2, mz 
mi, mz 
m2, mz 
mi, mz 
m2, mz 
mi, mz 
m2, mz 
mi, mz 
m2, mz 

only regularization but also significant simplifications 
of the equations of motion. The generalization of this 
idea to the gravitational problem of n bodies will be 
expounded elsewhere. It should be mentioned that 
the need for the transformation of the dependent and 
independent variables was conjectured by Lemaître 
(1955) by stating “It is possible that it is the introduc- 
tion of the superfluous conformal transformation which 
makes the whole difference between a mere mathe- 
matical theorem and a powerful numerical tooL^ 

A special method is mentioned here which seems to 
be well suited for the solution of the planar problem of 
three bodies. The transformation used was originally 
proposed by Levi-Civita (1904), and it combines the 
introduction of a new time-variable r* and the trans- 
formation of the coordinates from the system x, y to 
the system £, rç. The essential aspects are described 
by the equations 

dt 
r*= / —|-ro* and £+fy= (£+A/)2. 

JtQ r 

The application of these equations to the general 
planar problem of three bodies is not at all trivial. It 
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882 V. SZEBEHELY AND C. F. PETERS 

is first necessary to transform the equations of motion 
into a form suitable for the application of Levi-Civita^ 
method. A convenient choice is a system in which x 
and y are the relative coordinates of one colliding body 
with respect to the other. The method is used for the 
regularization of the restricted problem and the reader 
may be referred to standard references such as for 
instance to Wintner (1941) in order to see how the 
method is applied to a relatively simple problem. 

The following few paragraphs will indicate the 
application of Levi-Civita’s method to the actual 
numerical integration of our problem. Upon deciding 
that only isolated binary collisions are to be regularized, 
a limiting value for r# is set, below which the trans- 
formation is applied. Here rty is the distance between 
the ith. and jth particles and, therefore, the previously 
mentioned limit means that when two of the three 
bodies are closer than this limiting value, the equations 
of motion of these two bodies are to be regularized. 
If all three distances are below the limit, that pair is 
selected for regularization which has the smallest 
distance. At the time when the distance between a 
critical pair decreases below the given limit, the equa- 
tions are regularized and when the pair increases their 
distance above the limit, the equations of motion are 
transferred back to the original variables. This pro- 

cedure, therefore, requires that regularization be 
switched on and off quite often, the frequency depend- 
ing on the limit set and on the special dynamical system 
under consideration. Attention is called to the compli- 
cations introduced by changing the variables during 
the course of the numerical integration and to the fact 
that every time such a change is made, the integration 
must be restarted with a new set of initial conditions. 
Runge-Kutta’s method of integration is well adaptable 
to this special requirement. 

METHOD OE NUMERICAL INTEGRATION 

A fifth-order Runge-Kutta scheme developed by 
Zonneveld (1964) was used to numerically integrate 
the equations of motion. Zonneveld also gave an 
expression for the last term, of the fifth order, included 
in the Taylor series which was used to derive the 
algorithm. This term may be used as an estimate of 
the truncation error. Ollongren (1966) has derived an 
elegant formula for predicting the optimum step size 
to be used at each step of the integration. If hi is the 
size of the ith. step, £max the maximum allowable 
truncation error, and E*> the estimate of the truncation 
error of the fifth-order scheme, then the optimum size 
of the (¿+l)th step is given by 

hi+1=( — +0.45 V. (2) 
VËmax +E, / 

In the case where E^Em^ the step is rejected, and the 
formula is used again until the requirement for the 
tolerance is satisfied, i.e., Ez<Ema,x. In the problem 
discussed, about one out of every 1000 steps was 
rejected. 

The value of the total energy was monitored through- 
out the integration. In addition, the conservation of the 
angular momentum and the integral of the center of 
mass were also checked at selected times. In all cases 
the requirement of keeping the total energy constant 
proved to be the most sensitive control. It should be 
remarked, however, that the check of the integral of 
energy is not always reliable, being a necessary but not a 
sufficient condition for accuracy. 

In the regularized system the total energy is defined 
in terms of the original variables and, as such, it is an 
inconvenient quantity to compute. In this case the 
transformed Hamiltonian, which should be identically 
zero, is used as the control of the energy. 

COMPARISON AND ACCURACY 

Some aspects of the accuracy of the numerical 
integration have been discussed in the preceding 
section. Here the question of reversibility is taken up 
since its numerical and dynamic aspects are not always 
clearly separable. The dynamic system under considera- 
tion is reversible. The equations contain the independent 
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GENERAL PROBLEM OF THREE BODIES 883 

variable t in such a manner that a change from t to 
(—/) does not change the equations of motion. Conse- 
quently, it is expected that when the differential 
equations representing the dynamic system are inte- 
grated from, say, to h and at t\ integration is reversed 
to /o, the original initial conditions are obtained. (The 
integrations in the forward and reverse directions are 
completely independent, since the integration interval 
is computed at each time step. Only by pure chance 
would the times in the two integrations agree for any 
particular time.) In this process no numerical errors 
are allowed for, since these inaccuracies may negate 
the reversibility of the system. The process of regulari- 
zation is helpful in this respect since it allows a signifi- 
cant increase in the accuracy. Consequently, when 
actual reversibility is considered to be the measure of 
the accuracy of a numerical integration, efficient 
regularization becomes mandatory. In the problem 
treated in this paper reversals were executed at /=32 
and at ¿=62. The initial conditions for the positions 
were reconstructed for these two cases with errors in the 
tenth and third decimals, respectively, keeping the 
error in the total energy below 10-10 in both cases. 
Reversal at ¿=62 required about 19 000 steps of 
integration. 

It is of interest to compare various numerical methods 
of solution for the Pythagorean problem treated in 
this paper and therefore the speed and accuracy of the 
numerical integrations for three different systems are 
shown in the range 0< ¿< 25, where 14 close approaches 
occur. In the first system, denoted by 2?, the con- 
ventional system of rectangular coordinates is used as 
introduced before. In the system denoted by V the 
potential energy is used as the regularizing function 
and only the time is regularized. The system denoted 
by L corresponds to the variables introduced by 
Levi-Civita. 

Table II presents the results of four computations. 
The numbers listed under the heading of tolerance 
represent the accuracy attained in the first few inte- 
gration steps. In systems R and V the accuracy de- 
generated at each close encounter and at a much faster 
rate than for system L. This process of degeneration 
is a function of how close the bodies approach one 

Table II. Comparison of different systems. 

System 

Time spent Change in 
Number on computer total 
of steps (sec) energy Tolerance 

R 17 631 
V 4300 
L 3450 
L 600 

395 
280 
155 
26 

7X10-7 

8X10“7 

2X10“11 

7X10-8 

10"12 

lO"12 

lO"10 

lO"6 

another when systems or F are used since all numeri- 
cal accuracy would be lost if a collision should occur. 
In system L, however, it is possible to integrate through 
collisions without difficulty. It was found that greater 
computer speed could be achieved if the L system was 
used when the particles were less than a distance of 2 
apart. From the figures showing the trajectories this 
means that the integration was in the L system during 
the majority of the time. 
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