A High-Sensitivity Survey of the North Galactic Polar Region at 1415 MHz

D. J. SCHEER AND J. D. KRAUS

Ohio State University Radio Observatory, Columbus, Ohio

(Received 3 February 1967)

Results of a 1415 MHz north galactic polar survey with the Ohio State University 260 by 70 ft radio telescope are presented in the form of source lists and detailed maps. The survey covers nearly 1000 square degrees of the sky at a resolution of 8.5 beam areas per square degree. A list of 236 sources is given with flux densities of 0.37 flux unit or greater. Of these 129 do not appear in other lists. Additional lists are included of sources with flux densities less than 0.37 flux units, but which are at 4C positions, and of sources which appear to have either very high or very low spectral indices. The low index sources are of interest because of the possibility that they are variable quasars. The log N-log S curve for all the sources has a slope of -1.8.

I. INTRODUCTION

A CONTINUUM survey of the north galactic polar region has been conducted at 1415 MHz with the Ohio State University 260 by 70 ft radio telescope. The survey covers an area of sky which includes the north galactic pole (1950.0: R.A.=12h49m, Dec.=27.4N) and contains approximately 975 deg² of sky corresponding to 8300 beam areas of 8.5 beam areas per deg². Included is most of the area between right ascensions 08h00m and 16h00m and declinations 25°00'N and 37°40'N. The antenna half-power beamwidths are about 10' in right ascension and 43' in declination.

Records for this survey were obtained during the period beginning 2 March 1965 and ending 2 July 1965. Declination scans were spaced at 20' intervals and for purposes of data processing the 8-h scans were divided into four 2-h segments. A minimum of two records per declination was averaged, and in some cases, as many as five records were averaged. During the observing period of 120 days a total of 289 2-h segments were obtained which were acceptable for further processing. The results of the survey are presented in two tables which include 262 sources and in detailed contour maps of the regions covered.

II. DATA PROCESSING

The essential steps in the main data reduction program have been described in a previous paper (Kraus, Dixon, and Fisher 1966) with modifications as follows. In the present survey, record drift removal was performed twice, once for each 2-h declination scan with a sixth-order polynomial of best fit and again for the average of two or more scans with a third-order polynomial. The survey area lies in the vicinity of the galactic north pole where the sky background radiation varies quite slowly. Most record drift would therefore be due to receiver effects and removal of this drift probably results in the loss of but little significant information. Drift removal is required in order that adjacent profiles be compatible for combining into a contour map.

The flux density of most sources was computer evaluated by calculating the volume under the observed temperature versus position pattern. It is this pattern

which is indicated on the contour maps. The position of most sources was obtained by computer determinations of the centroid of this volume. In some cases where the pattern was incomplete, as near the edge of the map, the flux density and position were determined from the peak value. The radio telescope was calibrated using measured flux densities (Kellermann 1964; Pauliny-Toth, Wade, and Heeschen 1966) of sixteen 3C sources (Bennett 1962).

The flux density of each source tabulated in the present survey was evaluated using the relation

$$S = \frac{2k}{A_{e}\Omega_{M}} \int \int \Delta T_{A}(\theta, \phi) d\Omega$$

where k is Boltzmann's constant (=1.38×10⁻²³ J °K⁻¹), A_e is the antenna effective aperture (=635 m²), Ω_M is the antenna main beam solid angle (=0.131 deg²) and $\Delta T_A(\theta,\phi)$ is the antenna temperature (°K). The integral is equal to the volume under the temperature versus position surface.

The contour maps for the present survey, presented in Plates I–IV, are the result of hand-smoothing the original maps plotted with a Cal Comp 563 digital increment plotter using data obtained from the main data reduction program. The contour interval on each of these maps is 0.025° K antenna temperature. It is important to note that, owing to the data reduction procedure, the contours are relative to an arbitrary local background level and that a given contour at one point on the map is not necessarily at the same absolute value as the same contour several degrees distant. For the most accurate positions or flux densities reference should be made to the tables and not to the maps. All data processing was done with IBM 7094 and 1620 computers.

III. TABLES OF SOURCES

For the bandwidth (8 MHz) and the integration time (40 sec) used and an average of two records, the rms noise temperature of the system was about 0.02°K. Since each source catalogued in the survey appeared on at least three adjacent declination scans, the sensitivity was further increased by a factor of about √2. The minimum detectable sensitivity of the telescope,

Table I. Sources in the Ohio State University north galactic pole survey (1415 MHz). $S \ge 0.37$ flux unit.

	(1950.0)						Flux density	Spectral	
Source number	h	α m	S	deg	δ min		(flux units)	indexª n	Remarks ^b
OJ316 OJ318 OJ320 OJ324 OJ337	08 08 08 08 08	09 10 12 14 22	36 34 11 25 17	36 35 36 32 34	11 10 38 51 20	*	0.47 0.42 0.78 0.60 0.73	1.12 0.84 <0.47 <0.58 0.80	4C35.18 4C35.19 4C34.28
OJ341 OJ347 OJ349 OJ353 OJ356	08 08 08 08	24 28 29 31 33	31 29 29 52 43	35 36 33 34 33	26 43 32 43 52		0.92 0.37 0.59 0.38 0.45	0.52 <0.83 <0.59 <0.81 <0.72	4C35.20
OJ357 OJ373 OJ378 OJ383 OJ385	08 08 08 08	35 43 47 50 50	04 46 14 17 35	36 35 36 33 34	23 00 14 15 15		0.57 0.50 0.37 0.51 0.56	<0.60 <0.67 <0.83 0.66 0.78	d c, d c, d, 4C33.22 4C34.29, NRAO302
OJ392 OK305 OK313 OK324 OK338	08 09 09 09	55 03 08 14 22	34 13 54 03 42	36 36 33 35 36	54 23 58 02 39		0.41 0.37 0.92 0.59 1.09	<0.77 <0.83 <0.39 0.82 0.47	4C34.31 4C36.14
OK347 OK359 OK373 OK391 OL302	09 09 09 09 10	27 35 43 54 01	51 18 36 50 34	35 33 33 34 32	23 55 13 27 02		0.49 0.71 0.75 0.39 1.70	<0.68 <0.50 <0.49 <0.80 0.64	c, d 4C32.34
OL308 OL311 OL314 OL318 OL326	10 10 10 10 10	04 06 08 11 15	43 24 43 00 31	34 31 32 34 35	53 25 18 59 58		0.57 0.50 1.16 0.61 1.01	<0.60 <0.67 <0.27 <0.57 <0.33	d, NRAO346
OL327 OL329 OL333 OL343 OL348	10 10 10 10 10	16 17 19 26 28	28 52 52 03 27	33 31 31 37 30	10 57 06 20 20		0.54 1.05 0.99 0.78 0.55	$\begin{array}{c} 0.72 \\ 0.79 \\ < 0.34 \\ < 0.46 \\ 0.63 \end{array}$	4C32.35 4C31.35 e 4C30.18
OL350 OL353 OL361 OL362 OL364	10 10 10 10 10	30 31 36 36 38	02 55 11 49 09	30 34 36 31 33	35 05 19 37 30		0.43 0.41 0.40 0.37 0.54	$< 0.75 \\ 0.83 \\ 0.86 \\ < 0.83 \\ 0.72$	4C34.32 4C36.17 Poss. 4C33.24 lobe shifted
OL367 OL368 OL372 OL376 OL379	10 10 10 10 10	39 40 43 45 47	52 36 22 49 34	30 31 37 35 30	12 46 16 25 50		0.57 0.81 0.42 1.24 0.44	<0.60 <0.45 0.86 0.26 <0.73	4C37.28 4C35.23
OL382 OL391 OL395 OL398 OL399	10 10 10 10 10	49 55 57 58 59	04 01 01 41 23	34 31 31 33 35	26 37 46 50 11		1.14 0.61 0.43 0.37 0.66	0.57 <0.57 <0.75 <0.83 0.88	4C34.33 4C35.24
OM307 OM308 OM320 OM326 OM336	11 11 11 11 11	04 04 12 15 21	16 37 03 55 49	30 36 33 31 31	41 33 18 34 25		0.38 0.47 0.99 0.48 0.47	<0.81 0.89 0.43 <0.69 <0.69	c, d 4C36.18 4C33.25

<sup>a The index n is defined by S α λn in accord with the convention of Conway, Kellermann, and Long (1963).
b 4C: Pilkington and Scott (1965); CTD: Kellermann and Read (1965); NGC: Dreyer (1888); NRAO: Pauliny-Toth, Wade, and Heeschen (1966).
c Computer evaluated source position strongly influenced by adjacent source or interference. Position quoted is that of peak.
d Flux density S determined assuming a point source; S = 4.35T (max) flux units.
e Source not completely on map. Position and S based on peak.</sup>

Table I (continued)

						TABLE 1 (continued	,	
_		Celestial coordinates Flux (1950.0) density Spectral						
Source number	h	α m	s	deg	δ min	(flux units)	indexª	Remarks ^b
OM338 OM339 OM342	11 11 11	23 23 25	27 42 29	30 34 32	20 04 40	0.63 1.02 1.09	0.99 0.49 0.56	4C30.21, NRAO374 4C33.26 4C32.37, NRAO375- NRAO376 unresolved
OM348 OM350	11 11	28 30	16 05	31 35	$\begin{array}{c} 28 \\ 04 \end{array}$	0.55 0.64		Uncertain 4C34.35
OM351 OM352	11 11	30 31	43 45	33 31	46 02	1.32 0.53	<0.64	4C33.27-33.28 unresolved c, d
OM354 OM359 OM362	11 11 11	32 35 37	26 23 21	37 31 35	28 28 30	0.64 0.73 0.41	<0.55 <0.49 <0.77	
OM368 OM369 OM370 OM374 OM381	11 11 11 11 11	41 41 41 44 48	31 47 56 36 24	35 30 37 35 36	17 10 25 21 34	0.38 0.53 1.47 0.39 0.44	0.82 0.92 0.45 <0.80 0.92	4C35.26 c, d, 4C30.23 e, 4C37.32 4C36.19
OM383 OM389 OM397 ON202 ON205	11 11 11 12 12	50 53 58 02 03	09 42 19 23 05	33 31 34 29 26	27 44 48 45 49	0.52 3.39 0.85 1.50 0.55	<0.65 0.38 0.50 0.67 0.71	4C31.38, NRAO389 4C34.36 4C29.46 4C26.36
ON208 ON209 ON231 ON235 ON237	12 12 12 12 12	04 05 18 20 22	52 28 57 52 05	28 25 28 29 26	08 42 22 47 26	0.63 0.42 0.44 0.46 0.54	<0.56 <0.76 <0.73 <0.71 0.97	4C26.37
ON244 ON254 ON273 ON281 ON283	12 12 12 12 12	26 32 43 48 50	12 32 52 53 01	27 29 26 28 29	23 28 24 22 10	0.55 0.62 0.44 0.37 0.63	<0.62 <0.57 <0.73 <0.83 <0.56	d
ON286 ON289 ON292 ON294 ON301	12 12 12 12 12	51 52 55 56 00	37 25 32 39 58	26 25 26 28 31	47 46 42 16 02	0.40 0.38 0.44 0.90 0.45	1.02 <0.81 <0.73 <0.39 0.80	4C26.40 c, d NRAO416 4C30.24
ON307 ON309 ON319 ON322 ON323	12 12 12 12 12	04 04 11 13 13	16 42 42 18 33	37 34 33 32 35	06 12 35 15 06	0.68 0.54 1.13 0.41 1.44	0.80 <0.63 <0.27 <0.77 0.20	4C37.33 4C35.28
ON325 ON329 ON332 ON334 ON343	12 12 12 12 12	15 17 19 20 25	14 28 14 33 38	30 36 31 37 36	31 49 43 29 56	0.46 0.51 1.04 0.43 2.59		4C36.20 4C31.40
ON353 ON358 ON361 ON366 ON369	12 12 12 12 12	32 34 36 39 41	22 52 45 44 21	36 36 32 32 32	29 27 49 46 01	0.37 0.50 0.87 1.28 0.39	<0.83 <0.67 0.58 <0.22 <0.80	4C32.40 NGC4631
ON371 ON374	12 12	42 44	33 43	36 32	21 29	0.89 0.87	0.60 0.51	4C36.21 4C32.41
ON375 ON379 ON385	12 12 12	45 47 51	09 28 10	34 33 30	06 40 45	0.45 1.34 0.45	$ \begin{array}{r} < 0.72 \\ 0.48 \\ < 0.72 \end{array} $	4C33.30
ON389 ON393 ON394 OP207 OP211	12 12 12 13 13	53 56 56 04 06	51 04 49 08 37	35 32 36 27 27	26 58 46 26 06	0.44 0.79 0.50 0.72 0.63	<0.73 0.45 <0.67 0.56 <0.56	4C33.31 4C27.23

Table I (continued)

						TABLE I (communu)		
Source		Celesti (α	al coord (1950.0))	δ	Flux density (flux	Spectral indexª	
number	h	m	S	deg	min	units)	n	Remarks ^b
OP215 OP228 OP229 OP233 OP234	13 13 13 13 13	08 16 17 19 20	53 40 41 59 35	26 29 25 27 29	34 48 51 00 56	0.55 1.16 1.06 1.08 1.79	<0.62 0.49 0.41 0.62 0.39	4C29.47 4C25.42 4C27.25 4C29.48, CTD80
OP255 OP256 OP257 OP268 OP276	13 13 13 13 13	33 34 34 40 46	12 03 21 39 06	27 26 28 25 28	36 34 53 47 49	0.72 0.37 0.69 0.42 1.17	0.88 <0.83 0.60 <0.76 0.80	4C27.26 4C28.32 4C28.34
OP278 OP291 OP301 OP303 OP305	13 13 13 13 13	46 54 00 01 03	37 59 37 50 12	26 25 32 35 36	50 44 00 19 21	0.96 0.39 0.37 0.71 0.67	0.79 <0.80 <0.83 <0.50 <0.54	4C26.42
OP312 OP313 OP315 OP316 OP326	13 13 13 13 13	07 08 08 09 15	44 20 54 18 31	34 32 31 32 34	09 35 34 49 42	0.55 1.01 0.47 0.58 0.51	<0.62 <0.33 <0.70 0.92 <0.66	c, d c, d, 4C32.42
OP329 OP331 OP333 OP334 OP335	13 13 13 13 13	17 18 19 20 21	26 38 31 29 24	36 34 35 32 31	19 33 21 33 43	0.41 0.51 0.59 0.65 1.69	0.91 <0.66 <0.59 0.90 <0.08	4C36.23 c, d, 4C32.43
OP337 OP339 OP340	13 13 13	22 23 24	25 44 01	36 37 32	26 13 07	0.75 0.45 4.24	0.63 0.97	4C36.24 4C37.38 c, d, poss. 4C32.44 lobe shifted
OP341 OP342	13 13	25 25	$\begin{array}{c} 17 \\ 24 \end{array}$	32 35	06 08	0.86 0.38	< 0.81	c, d
OP343 OP346 OP353 OP354 OP364	13 13 13 13 13	26 27 32 32 38	15 57 16 34 25	30 32 31 35 30	48 09 57 15 12	0.60 0.55 1.02 0.72 0.40	0.93 <0.62 <0.32 <0.50 <0.78	4C31.42, NRAO423
OP367 OP368 OP370 OP372 OP381	13 13 13 13 13	40 40 42 43 48	17 46 16 35 24	35 31 34 37 30	24 55 13 15 40	0.69 0.69 0.38 0.70 0.62	$\begin{array}{c} 0.75 \\ 0.66 \\ < 0.81 \\ 0.63 \\ < 0.57 \end{array}$	4C35.30 4C32.45 4C37.39
OP386 OP391 OP397 OQ208 OQ210	13 13 13 14 14	51 54 58 04 06	46 33 20 53 01	32 32 30 28 25	03 32 27 46 48	0.49 0.73 0.55 1.09 0.39	<0.68 0.85 <0.62 <0.29 <0.80	c, d 4C32.46
OQ217 OQ229 OQ237 OQ238	14 14 14 14	10 17 22 22	02 44 24 30	29 27 26 27	21 16 45 41	0.80 1.31 0.82 0.56		4C27.28, CTD85 c, d, CTD86 c, d, poss. 4C27.29 lobe shifted
OQ241	14	24	44	27	23	1.19	0.32	c, poss. 4C27.30
OQ242 OQ243 OQ244 OQ248 OQ252	14 14 14 14 14	25 25 26 28 31	10 18 18 47 00	26 28 29 25 27	43 40 34 40 10	0.37 0.57 0.72 0.83 0.43	<0.83 0.95 <0.50 <0.44 <0.75	c 4C28.35
OQ256 OQ259 OQ260	14 14 14	33 35 35	53 53 58	27 28 28	00 59 24	0.79 0.59 0.37	<0.45	c, 4C28.36, NRAO450 c, d, 4C28.36, NRAO450; OQ259 and OQ260 may be same source
OQ268 OQ274	14 14	$\frac{40}{44}$	35 28	28 28	45 12	0.43 1.33	$< 0.75 \\ 0.41$	4C28.37

TABLE I (continued)

Celestial coordinates Flux						,		
Source			(1950.0)	δ	density (flux	Spectral index ^a	
number	h		s	deg	min	 units)	n	Remarksb
OQ286 OQ287 OQ291 OQ293 OQ302	14 14 14 14 14	52 52 54 55 01	05 15 33 50 15	27 29 27 28 35	05 54 50 55 13	0.83 0.84 0.40 1.12 0.96	<0.44 <0.43 <0.78 0.55 0.64	4C28.38 4C35.32
OQ313 OQ314 OQ316 OQ323 OQ324	14 14 14 14 14	07 08 09 13 14	46 49 36 58 49	31 37 34 34 35	41 04 17 59 54	0.37 1.31 0.44 1.62 0.65	1.18 0.53 <0.73 <0.10 0.75	4C31.44 4C37.40 4C36.25
OQ329 OQ332 OQ338 OQ342 OQ346	14 14 14 14 14	17 19 22 25 27	31 28 40 29 27	30 31 30 33 30	19 22 38 13 46	0.73 0.99 0.84 0.41 0.66	<0.49 0.39 0.55 <0.77 <0.54	4C31.45 4C30.27
OQ348 OQ361 OQ366 OQ367 OQ371	14 14 14 14 14	28 36 40 40 42	48 34 09 32 34	37 34 32 31 36	02 09 49 00 23	0.52 0.97 0.61 0.55 0.94	<0.65 0.61 <0.57 <0.62 0.43	4C34.39 4C36.26, may be extended
OQ384 OQ389 OQ394 OR204 OR211	14 14 14 15	50 53 56 02 06	49 48 42 19 47	33 35 35 28 28	18 18 56 48 52	0.48 0.48 0.47 1.43 0.60	0.69 0.90 <0.70 <0.16 <0.58	in Dec. 4C33.33 4C35.34
OR236 OR243 OR254 OR259 OR266	15 15 15 15 15	21 25 32 35 39	23 34 38 12 27	28 28 29 27 25	41 42 24 18 30	1.44 0.57 0.40 0.43 0.41	0.27 <0.60 <0.78 <0.75 <0.77	4C28.39
OR302 OR304 OR307 OR308 OR311	15 15 15 15 15	01 02 04 05 06	23 26 07 34 49	36 33 32 36 34	28 49 13 53 58	0.48 0.44 0.62 0.62 0.46	<0.69 1.00 0.63 <0.57 <0.71	4C33.34 4C32.47
OR312 OR314 OR316 OR317 OR321	15 15 15 15 15	07 08 09 10 12	16 31 30 11 48	35 30 34 32 37	41 40 50 12 05	0.39 0.39 0.65 0.80 0.99	0.85 <0.80 <0.55 0.62 0.76	4C32.48 4C37.43
OR326 OR331 OR337 OR342 OR343	15 15 15 15 15	15 19 22 25 25	50 01 03 17 52	35 31 32 31 33	26 09 27 23 13	0.41 0.47 0.74 0.81 0.41	<0.77 <0.70 <0.49 <0.44 <0.77	
OR344 OR347 OR348 OR353 OR362	15 15 15 15 15	26 27 28 31 37	32 55 28 50 34	37 34 34 35 32	45 58 01 56 25	1.00 0.61 0.76 0.40 0.60	0.81 0.66 0.71 0.90	e, 4C37.44 4C34.40 4C34.41 4C35.37 Complex
OR366 OR370 OR371 OR376 OR378	15 15 15 15 15	39 42 42 45 47	26 44 50 22 09	34 32 35 35 31	28 26 04 38 00	0.64 0.80 0.40 0.52 1.32	0.85 0.44 0.73 0.79	4C34.42 4C32.49 4C35.38 4C30.29
OR382 OR393 OR398 OR399 OS201	15 15 15 15 15	49 55 59 59 00	10 53 29 56 14	33 35 34 36 26	50 07 32 16 02	1.07 0.62 0.76 0.40 0.43	0.69 0.69 0.87 <0.78 <0.75	4C33.36–33.37 4C35.39 4C34.43
OS300	16	00	11	33	37	1.91	0.11	4C33.38, lobe shifted

neglecting confusion effects, was therefore about 0.014°K. Previous measurements showed that the confusion level for the telescope operating under conditions similar to those for this survey is about 0.01°K rms (Kraus, Dixon, and Fisher 1966). The resultant minimum detectable temperature is equal to the square root of the sum of the squares of the sensitivity and confusion values or about 0.017°K. For a high probability that an observed source not be due to a random peaking effect, a temperature deflection should be about five times this amount or 0.085°K. In the present survey, this temperature corresponds to a point source having a flux density of about 0.37 flux unit (1 flux unit = 10⁻²⁶ W m⁻² Hz⁻¹).

Table I presents a list of 236 sources with flux densities equal to or greater than 0.37 flux units (level 5 or more times the minimum detectable flux density). Each source has been assigned an Ohio number which consists of five characters made up of two letters and three digits. The first letter (O) stands for Ohio, and the second letter (B to Z, inclusive, omitting O) indicates the source right ascension in hours (0 to 23, inclusive). The designation OA is reserved for sources in the first Ohio lists (Kraus 1966). The first digit gives the source declination in 10° increments. Thus, 3 indicates that the source declination is between 30° and 40° north. The last two digits give the source number within the 1 h right ascension by 10° declination region. These digits (0 to 99, inclusive) increase according to source right ascension roughly one unit per 0.01 h of right ascension. For example, source OP386 is between 30° and 40° north declination, and at a right ascension P of 13 h and about $0.86 \times 60 = 52$ min. We have adopted the above designation for the sources in our list because it is very concise and yet indicates the source position to within $\pm 5^{\circ}$ of declination and $\pm 1^{m}$ of right ascension. By adding an S between the two letters and three digits for sources with south declinations this designation is adequate for cataloguing over 30 000 sources which exceeds the number we expect to find in our survey.

The 236 sources in Table I do not include any of the 22 3C sources which are in the region surveyed. These 3C sources are 211, 220.2, 223, 236, 248, 252, 261, 265, 268.2, 269, 270.1, 277.3, 284, 286, 287, 290, 293, 294, 301, 310, 315, and 320. Of the 236 sources in Table I, 129 do not appear in other lists. The remaining 107 sources appear in one or more lists as follows: 103 in the 4C list (Pilkington and Scott 1965), 10 in the NRAO list (Pauliny-Toth, Wade, and Heeschen 1966) and 3 in the CTD list (Kellermann and Read 1965).

All source positions were corrected with respect to instrumental errors and a correction for aberration was applied. A systematic correction was then made as based on NRAO, Owens Valley, and Royal Radar Establishment positions for 21 3C sources (Tyler et al. 1965; Pauliny-Toth et al. 1966; Formalont et al. 1964; Wyndham and Read 1964; Adgie and Gent 1966). From Monte Carlo tests and comparisons of sources common

Table II. Sources in Ohio State University north galactic pole survey (1415 MHz). S < 0.37 flux unit but at 4C positions.

Source number	Cel h		l co 950 s	•	ates δ min	Flux density (flux units)	Spectral indexa	Remarksb
OJ313	08	07	45	34	57	0.34	0.98	4C34.27
OJ399	08	59	20	33	22	0.26	1.13	d. 4C33.23
OK388	09	52	39	35	50	0.31	1.13	4C35.21
OL360	10	36	08	32	33	0.36	1.10	4C32.36
OL363	10	38	03	30	07	0.19	1.15	4C30.19
OM310	11	05	56	31	24	0.33	0.89	4C31.36
OM323	11	14	06	34	57	0.29	0.96	4C34.34
OM347	11	27	58	32	42	0.31	0.90	4C32.38
OM349	11	30	00	37	08	0.27	1.10	4C37.31
ON308	12	04	39	35	28	0.27	1.21	4C35.27
ON344	12	26	23	31	51	0.29	0.98	4C31.41
ON351	12	30	25	34	59	0.32	0.95	4C34.37
ON357	12	34	19	37	15	0.28	1.40	4C37.34
ON365	12	37	59	35	10	0.32	0.91	4C35.29
ON380	12	47	58	30	34	0.36	0.95	4C30.25
ON390	12	53	54	37	31	0.28	1.39	4C37.35
ON391	12	55	01	36	46	0.33		Poss. 4C36.22
						0.00		lobe shifted
OP265	13	39	13	26	41	0.35	0.89	Poss, 4C26, 41
								lobe shifted
OP296	13	57	36	27	21	0.32	0.97	4C27.27
OP347	13	28	23	33	04	0.32	0.93	4C33.32
OP382	13	48	56	35	19	0.32	0.95	4C35.31
OQ222	14	13	29	25	38	0.36	0.94	c. d. poss.
~							****	4C25.45
OQ364	14	38	55	35	45	0.34	1.10	4C35.33
OÃ235	15	21	10	27	09	0.14	1.41?	4C27.31
OR309	15	05	48	30	23	0.20	1.12	Poss. 4C30.28 lobe shifted
OR372	15	42	52	37	19	0.33	1.13	4C37.45

For footnotes see Table I.

to other lists the standard deviations for the positions are taken to be 5 sec of time in right ascension and 4 min of arc in declination. The flux densities S are believed accurate to about ± 30 percent. Spectral indices n are given for those sources corresponding to ones in the 4C list with the index based on two flux densities: at 178 MHz (4C) and 1415 MHz (Ohio). Limiting values of spectral index are given for those sources which do not correspond to ones in the 4C list assuming a flux density of less than 2 flux units at 178 MHz. The approximate positions of the 4C sources are indicated by dots on the contour maps.

Another 26 sources were found at 4C positions but with flux densities less than 0.37 flux units. These are listed in Table II. They are of particular interest since

TABLE III. Summary of sources detected at 1415 MHz in north galactic polar survey.

Sources at 0.37 or more flux units			
3C sources	22		
In other lists	107		
$egin{aligned} ext{In other lists} \ ext{Not in other lists} \end{aligned} ext{Table I}$	129		
Sources less than 0.37 flux units	258	258	
but common to 4C (Table II)		26	
Sources between 0.30 and 0.37 flux units and not in other lists		63	
Total detected	*	347	

Table IV. 4C sources in north galactic polar survey (1415 MHz).

Detected at 0.37 or more flux units		
3C sources	22	
Others (in Table I)	104	
	126	126
Detected at less than 0.37 flux units (Table II)		26
Detected or possibly detected but too near edge of map, etc.		20
Probably undetected		3
Total in region surveyed		175

they all have high spectral indices but their position and flux density errors may be larger than those for Table I. Another 63 sources between 0.30 to 0.37 flux units and not on other lists have been numbered and appear on the maps, but are not tabulated herein. A list of these with positions and flux densities is available

Table V. Sources with high $(n \ge 0.95)$ or low (n < 0.35) spectral indices which are in 4C catalogue.

Source	S_{1415}	n	4C No.
	Hi	gh index	-
OJ313 OJ316	$\begin{array}{c} 0.34 \\ 0.47 \end{array}$	0.98 1.12	4C34.27 4C35.18
ОЈ399	0.26	1.13	4C33.23
OK388 OL360	$\begin{array}{c} 0.31 \\ 0.36 \end{array}$	1.13 1.10	4C35.21 4C32.36
OL363	0.19	1.15	4C30.19 4C34.34
OM323 OM338	0.29 0.63	0.96 0.99	4C34.34 4C30.21
OM349	0.27	1.10	4C37.31
ON237	0.54	0.97	4C26.37
ON286 ON308	$\substack{0.40\\0.27}$	$\substack{1.02\\1.21}$	4C26.40 4C35.27
ON344	0.27	0.98	4C31.41
ON357	0.28	1.40	4C37.34
ON380	0.36	0.95	4C30.25
ON390	0.28	1.39	4C37.35
OP296 OP339	$\begin{array}{c} 0.32 \\ 0.45 \end{array}$	$\begin{array}{c} 0.97 \\ 0.97 \end{array}$	4C27.27 4C37.38
OP382	0.32	0.95	4C35.31
OQ243	0.57	0.96	4C28.35
OQ313	0.37	1.18	4C31.44
OQ364 OR235	$\begin{array}{c} 0.34 \\ 0.14 \end{array}$	$\substack{1.10\\1.41}$	4C35.33 4C27.31
OR304	$0.14 \\ 0.44$	1.00	4C33.34
OR309	0.20	1.12	4C30.28?
OR372	0.33	1.13	4C37.45
		>1.23?	4C26.38
		>1.00? >1.27?	4C26.44 4C37.23
	-		1007.20
OT 27/		ow index	4025 02
OL376 ON323	$\substack{1.24\\1.44}$	$0.26 \\ 0.20$	4C35.23 4C35.28
ON323 OO241	1.19	0.32?	4C27.30?
OR236	1.44	0.27	4C28.39

OS300

1.91

0.11

on request. Lists of the sources in Tables I and II in galactic coordinates are also available.

A summary of the sources detected in the survey is given in Table III.

IV. COMPARISON WITH 4C CATALOGUE

There are 175 4C sources in the region surveyed. Of these 126 were detected at flux densities of 0.37 flux units or more and 104 of these are listed in Table I. The remaining 22 are 3C sources. Twenty-six 4C sources were detected at less than 0.37 flux units and these appear in Table II. In the case of seven sources in Tables I and II much closer position agreement is obtained if the 4C positions are lobe shifted. There are 20 more sources which were detected but which appeared on less than three adjacent declination profiles, as when too close to the edge of the map, or were possibly detected (indication weak and/or position agreement less good). One source (4C37.23) is in the vicinity of several strong sources but is remote from them and so was probably undetected. The remaining two sources (of the 175) have such weak indications in their vicinity that they also were probably undetected. These are

Table VI. Sources with more than 0.7 flux units at 1415 MHz but which are not in 4C catalogue.

Source	S_{1415}	n
ОЈ320	0.78	< 0.47
OK313	0.90	< 0.39
OK359	0.71	< 0.50
OK373	0.75	< 0.49
OL314	1.16	< 0.27
OL326	1.01	< 0.33
OL333	0.99	< 0.34
OL343	0.78	< 0.46
OL368	0.81	< 0.45
OM359	0.73	< 0.49
ON294	0.90	< 0.39
ON319	1.13	< 0.27
ON343	2.59	<-0.13
ON366	1.28	< 0.22
OP303	0.71	< 0.50
OP313	1.01	< 0.33
OP335	1.69	< 0.08
OP353	1.02	< 0.32
OP354	0.72	< 0.50
OQ208	1.09	< 0.29
OQ217	0.80	< 0.45
OQ237	0.82	< 0.44
OQ244	0.72	< 0.50
OQ248	0.83	< 0.44
OQ256	0.79	< 0.45
OQ286	0.83	< 0.44
OQ287	0.84	< 0.43
OQ323	1.62	< 0.10
OO329	0.73	< 0.49
OŘ204	1.43	< 0.16
OR337	0.74	< 0.49
OR342	0.81	< 0.44

4C33.38

26.38 and 26.44. It could be inferred that these three probably undetected sources have high spectral indices or else are spurious. A summary of the 4C sources is presented in Table IV.

Twenty-six sources common to the 4C catalogue with high index $(n \ge 0.95)$ are listed in Table V with the flux density (S_{1415}) at 1415 MHz. Also included are three 4C sources probably not detected in our survey for which high spectral indices might be inferred. A flux density of less than 0.25 flux units at 1415 MHz is assumed for these three sources. In addition Table V lists another five sources common to the 4C catalogue but with low or probably low spectral indices.

A list of 32 sources with more than 0.7 flux units at 1415 MHz, but which are not in the 4C catalogue, is presented in Table VI. The sources in this list have low or probably low spectral indices. The limiting index in Table VI is calculated on the assumption that the flux density is less than 2 flux units at 178 MHz (4C frequency).

V. DISCUSSION

Our survey has been conducted at a higher frequency (1415 MHz) than most surveys. It has often been pointed out, as by Kellermann (1966), that surveys at 1415 MHz or higher are very desirable. Thus, such a survey might include sources with flat spectra that would have escaped detection at lower frequencies. Such sources are of particular interest because this type of spectrum is characteristic of a variable quasar, as for example, the prototype 3C273B. If 3C273B were not accompanied by a low-frequency component (3C273A) it might not have been detected so readily at the lower frequencies. Also our survey has been conducted in a region near and including the north galactic pole. This part of the sky has the highest density of known quasars. Hence, the 32 sources in Table VI with low or probably low spectral indices are of much interest. To these may be added the five sources in Table V which have low spectral indices. The sources in these lists (Tables V and VI) with lowest indices (≤ 0.3) are: OL314, OL376, ON319, ON323, ON366, OP335, OQ208, OQ323, OR204, OR236, and OS300. ON343 has a negative index (flux increases with frequency).

A spectral index histogram of the sources common to the 4C catalogue shows a slightly asymmetrical distribution with a peak at about n=0.85 and a mean value at n=0.76. A $\log N-\log S$ graph of all of the sources detected in our survey has a slope of -1.8.

The maps of Plates I-IV reveal several interesting associations. Thus, there are clusters of sources with extensions forming partially closed circles situated

around R.A. = $10^{h}40^{m}$, Dec. = $32^{\circ}5$ and R.A. = $12^{h}22^{m}$, Dec. = 28°. These structures are suggestive of supernova remnant rings. There are three sources in these two clusters which correspond to 4C sources. They all have high spectral indices: 0.72, 0.97, and 1.10. There is a another ringlike group near R.A. = 10^h22^m, Dec. = 35°. At other locations on the maps there are several close pairs with similar indices, such as OL327 (n=0.72)and OL329 (n=0.79), OR353 (n=0.90) and 3C320 (n=0.81); OR347 (n=0.66) and OR348 (n=0.71); OQ229 (n=0.65) and OQ238 (n=0.70); OP228 (n=0.49) and OP234 (n=0.39); and finally OP207 (n=0.56) and 3C284 (n=0.61). A group of three involves O $\sqrt{3}$ 313 (n = 0.98), O $\sqrt{3}$ 316 (n = 1.12) and O $\sqrt{3}$ 318 (n=0.84). A group of eight sources near R.A.= $11^{h}25^{m}$, Dec. = 34° includes OM339 (n = 0.49), OM342 (n = 0.56), OM350 (n=0.57), OM347 (n=0.90) and OM351 (n between 0.54 and 0.91 depending on whether one or two 4C sources are involved). The source OM348 is uncertain and the other two sources of this group, OM345 and OM346, have flux densities less than 0.34 flux units (not listed in Tables I or II) and are also uncertain.

ACKNOWLEDGMENTS

We thank J. C. Notestine, of the Ohio State University Computer Center, and W. D. Brundage, R. S. Dixon, and P. N. Myers of the Ohio State University Radio Observatory staff for assistance on the data reduction program. This work was supported in part by the National Science Foundation, the Air Force Cambridge Research Laboratory, and Mershon and Development Funds of the Ohio State University.

REFERENCES

Adgie, R. L., and Gent, H. 1966 Nature 209, 549.
Bennett, A. S. 1962, Mem. Roy. Astron. Soc. 68, 163.
Conway, R. G., Kellermann, K. I., and Long, R. J. 1963, Monthly Notices Roy. Astron. Soc. 125, 261.
Formalont, E. B., Matthews, T. A., Morris, D., and Wyndham, J. D. 1964, Owens Valley Radio Obs. Rept. 5.
Harris, D. E., and Roberts, J. A. 1960, Publ. Astron. Soc. Pacific 72, 237. 72, 237.

Kellermann, K. I. 1964, Astrophys. J. 140, 969. Kellermann, K. I., and Read, R. B. 1965, Owens Valley Radio Obs., Publ. 1.

Obs., Publ. 1.
Kellermann, K. I. 1966, Astrophys. J. 146, 621.
Kraus, J. D., Dixon, R. S., and Fisher, R. O. 1966, ibid. 144, 559.
Kraus, J. D. 1966, Radio Astronomy (McGraw-Hill Book Company, Inc., New York), p. 439.
Pauliny-Toth, I. I. K., Wade, C. M., and Heeschen, D. S. 1966, Astrophys. J. Suppl. XIII; 1965, Suppl. No. 116.
Pilkington, J. D. H., and Scott, P. F. 1965, Mem. Roy. Astron. Soc. 69 183

Tyler, W. C., Hogg, D. E., and Wade, C. M., 1965, Astron. J. 70, 332.

Wyndham, J. D., and Read, R. B. 1964, Owens Valley Radio Obs., Rept. 9.

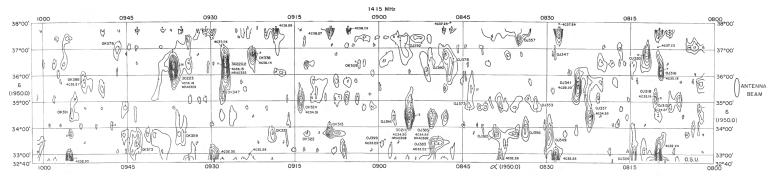


PLATE I (No. 1, Scheer and Kraus). Contour map of 8 to 10 h portion of 1415 MHz survey with O.S.U. 260-ft radio telescope. The contour interval is 0.025° K. Reference should be made to tables for most accurate positions and flux densities.

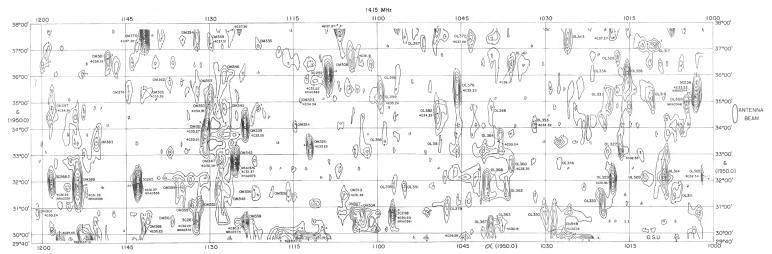


Plate II (No. 2, Scheer and Kraus). Contour map of 10 to 12 b portion of 1415 MHz survey with O.S.U. 269-ft radio telescope. The contour interval is 0.025 K. Reference should be made to tables for most accurate positions and flux densities © American Astronomical Society • Provided by the NASA Astrophysics Data System

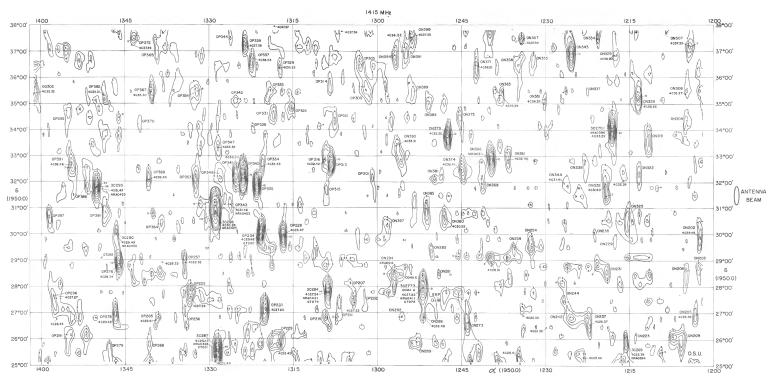


PLATE III (No. 3, Scheer and Kraus). Contour map of 12 to 14 h portion of 1415 MHz survey with O.S.U. 260-ft radio telescope. The contour interval is 0.025 K. Reference should be made to tables for most accurate positions and flux densities.

PLATE IV (No. 4, Scheer and Kraus). Contour map of 14 to 16 h portion of 1415 MHz survey with O.S.U. 2694; radio telescope. The contour interval is 0.925 K. Reference should be made to tables for most accurate positions and flux densities