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ABSTRACT 
Perturbations of a spatially homogeneous isotropic universe are investigated in terms of small varia- 

tions of the curvature. It is found that rotational perturbations die away. Density perturbations grow 
relatively to the background, but galaxies cannot be formed by the growth of perturbations that were 
initially small. In the steady-state universe small rotational and density perturbations die away. 

The behavior of gravitational radiation in expanding universes is also investigated. Its “energy den- 
sity” decreases at the same rate as that of electromagnetic radiation, although its active gravitational 
effect is only half as great. If a small amount of viscosity is present, gravitational radiation will be com- 
pletely absorbed in the steady-state universe but not in an evolutionary universe. 

I. INTRODUCTION 

Perturbations of a spatially homogeneous and isotropic universe have been investi- 
gated in a Newtonian model by Bonnor (1957), in a Newtonian approximation to a 
relativistic model by Irvine (1965), and relativistically by Lifshitz (1946) and Lifshitz 
and Khalatnikov (1963). Lifshitz, method was to consider small variations of the 
metric tensor. This has the disadvantage that the metric tensor is not a physically 
significant quantity. That is, one cannot directly measure it but only its second deriva- 
tives. It is thus not always obvious what the physical interpretation of a given perturba- 
tion of the metric is. Indeed it need have no physical interpretation at all, but merely 
correspond to a coordinate transformation. Instead it seems preferable to employ a 
method which considers small variations of the physically significant quantity, the 
curvature. This method has an additional advantage in the discussion of the behavior of 
gravitational radiation in an expanding universe, since it includes the interaction be- 
tween the gravitational radiation and the matter. This interaction was not present in 
the approximations mentioned above. 

II. NOTATION 

Space time is represented as a four-dimensional Riemannian space with metric tensor 
gab of signature +2. Covariant differentiation is indicated by a semicolon, and covariant 
differentiation along a world line by a prime. Square brackets around indices indicate 
antisymmetrization; round brackets, symmetrization. The conventions for the Riemann 
and Ricci tensors are 

^a;[6c] :=:: a cbVp , -R-ab RaFbp • 

Also Vabcd is the alternating tensor. Units are such that k, the gravitational constant, and 
c, the speed of light, are 1. 

III. THE FIELD EQUATIONS 

We assume the Einstein field equation 

Rah ^¿gabR- ~ Ta5 , 

where Tab is the energy-momentum tensor of matter. We will assume that the matter 
consists of a perfect fluid. Then, 

Tab = fJLUaUb + phab 
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EXPANDING UNIVERSE 545 

where ß is the density, p is the pressure, ua is the velocity of the fluid, uau
a = ~1, and 

hab = gab + uaub is the projection operator into the hyperplane orthogonal to ua: 

habUb = 0 . 

We decompose the gradient of the velocity vector ua as 

^a;& — &ab ~1” & ab "4“ s^ab^ % a^b > 

where u'a = ua-bUh is the acceleration, 6 = ua
,a is the expansion, aab = ú(c]d)hc

ah
db — 

%habO is the shear, and œab — U[c;d]hc
ah

db is the rotation of the flow lines ua. We define the 
rotation vector œa as 

Oía = ÍVabcdOícdUb . 

We may decompose the Riemann tensor Rabcd into the Ricci tensor Rab and the Weyl 
tensor Ca&c(i: 

Rabcd ~ Cabed ga[dRc\b gb[cRd]a R/^ga[cgd\b > 

Cabed =: C[ab\[cd\ > 

Cabca “ 0 ^ Ca\bcd\ • 

Cabed is that part of the curvature that is not determined locally by the matter. It may 
thus be taken as representing the free gravitational field (Jordan, Ehlers, and Kundt 
1960). We may decompose it into its <<electric,, and “magnetic” components. 

Rab =:= CapbqM^'M'^ j 

Hab = ^Ca
P qry]qrbsM"pM'S , 

Cabcd = %U[aEb] {cud] - U\caE
d\ - 2r}abpqu^H^cu^ - 2v

cdrsUrHs[aub] , 

Eab = E(ab) , Hab = H(ab) , -Ea® = Ha
a = 0 , EabUb = HabUb — 0 . 

Eab and Hab each have five independent components. We regard the Bianchi identities, 

Rab[cd;e] = 0 

as field equations for the free gravitational field. Then 

Cab cd}d = —Rc[b',a] + igc[&E;a] 

(Kundt and Triimper 1962). Using the decompositions given above, we may write these 
in a form analogous to the Maxwell equations: 

habEbc,dhcd + 3HabO)b — 7]abCdUbaCeHde = iha
bßib, U) 

habHbc;dhcd — 3EabO)b ~ r}abcdUb<Tc
eE

de = (/X + p)œa , (2) 

JLE ab + h^'ï]b)cde^'CHfd,e EabO EC(aOib)c EC(aOrb)c 'f]acdßVbpqr'^'C/^P^dqEer 

"T 2Hd
(ar}b) cdeM^'M' e == 2 (ß “4“ P) &ab y 

(3) 

- h (a^Vb) cde^CEfd,e “f" HabQ Hc(aOib) c Hc(aGb) c 

— VacdeVbpqrU^a^H61, + 2Hd(aVb) cde'Mf'M 6 0 , 
(4) 
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where JL indicates projection by hob orthogonal to ua (cf. Trümper 1964). 
The contracted Bianchi identities give 

{Rab - IgabR)* = - Tab* = 0, (5) 

/^ + (m + p)0 — 0 , 
(6) 

(M + P)u'a + p-bhh
a = 0 . 

The definition of the Riemann tensor is 

Ua;[bc] — ^RapbcM? • 

Using the decompositions as above we may obtain what may be regarded as ^equations 
of motion.,, 

0' = 2cu2 — 2a-2 — J02 + w'a
;® — + $P) i U) 

-Leo ab = %&abQ “f“ 2o’c[oe*J6]C H- ^ [p;q]hP
ak

qb ? 

±0-'a6 = Eab — C0acC0C6 — (Tac(T% — %<TabO 
(9) 

”■ ^hab(2œ2 — 2a2 + uc
;c) -f" uf

au
fb + u\p;q)h

p
ah

qb , 
where 

2co2 = coa&coa& , 2a-2 = o-^a-®6 . 

We also obtain what may be regarded as equations of constraint. 

0;bhba = f[(wb
c;6 + <Tbcfi)hCa “ u'b(ù)ab + <ra&)] , (10) 

coa
;® = 2coau'a , (ii) 

Hob ^ W (aVb) cdeMffafd’6 ”f" O"/^’6] . (12) 

We consider perturbations of a universe that in the undisturbed state is conformally 
flat, that is, 

Cabed = A • 

By equations (l)-(3), this implies, 

Gab — (dab =:: A > 

= A = QfihPa . 

If we assume an equation of state of the form p = ÿ(ju), then by equations (6) and (1A), 

PfihPa = A == a . 

This implies that the universe is spatially homogeneous and isotropic since there is no 
direction defined in the 3-space orthogonal to ua. 

In this universe we consider small perturbations of the motion of the fluid and of the 
Weyl tensor. We neglect products of small quantities and perform derivatives with 
respect to the undisturbed metric. Since all the quantities we are interested in, with the 
exception of the scalars ju, p, and 0, have unperturbed value zero, we avoid perturbations 
that merely represent coordinate transformation and have no physical significance. 

To the first order, equations (l)-(4) and (7)-(9) are 

Eab'** — ska^flib y (13) 

Hab;b = (M + , (14) 
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No. 2, 1966 EXPANDING UNIVERSE 547 

Eab + + hf (aVb) cde^CHfd]e — “ K/* “t“ 

H'ab + HabO — hf (aVb) cdeUcEfd',e = 0 , (16) 

0' = - ie2 + - Km + 3p), <17) 

(¿'ab = — §Wa60 + Uf[p;q]hp
ah

qb , G8) 

& ab = Eab ^Gabô \hab'M' c,C “1” ^ (p;q)hPah% • (19) 

From these we see that perturbations of rotation or of Ea& or Hab do not produce per- 
turbations of the expansion or the density. Nor do perturbations of Eab and Hob produce 
rotational perturbations. 

IV. THE UNDISTURBED METRIC 

Since in the unperturbed state the rotation and acceleration are zero, ua must be a 
gradient: 

Ma = T;a > 

where r measures the proper time along the world lines. As the surfaces r = constant are 
homogeneous and isotropic they must be 3-surfaces of constant curvature. Therefore the 
metric can be written, 

ds2 = - dr2 + Wdy2 

where Í2 = ß(r), and dy2 is the line element of a space of zero or unit positive or negative 
cuivature. We define t by 

cU = l 
dr ÍI 

Then 
ds2 = Í22(- dt2 + dy2) . 

In this metric, ua = (—ß,0,0,0), 

3ß' _ 3 dß 
ß ~ ti2 dt' 

Then, by equations (5) and (7), 

(ß + p)3^, 

i ( M + . 

(20) 

(21) 

If we know the relation between /x and p, we may determine ß. We will consider the 
two extreme cases, p = 0 (dust) and p = p/3 (radiation). Any physical situation should 
lie between these. 

The Case for p — 0 

By equation (20), /x = üf/ß3, M = const. Therefore, 

3 ß" 

M ß 
E = const. 

a) For E > 0: 

£2 = [cosh V{EM/3 ) / — 1 ], t=-L[ V(3/EM)sinh\/(EM/3)i — <]. 
¿JOj 
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b) For E = 0: 

c) Fot £ < 0: 

S. W. HAWKING 

U 12 * ’ 

Vol. 145 

Q=~[l-cosV(~EM/3)t], Vl — 3/EM) sin V ( —EM/ 3)2]. 

E represents the energy (kinetic + potential) per unit mass. If it is non-negative the 
universe will expand indefinitely; otherwise it will eventually contract again. 

By the Gauss-Codazzi equations *R, the curvature of the hypersurface r = const, is 

*£=2(-102 + m) = -2^- 

If E 0, we normalize M as ilf = 3/|E| . 

The Case for p — p/3 

and therefore 

a) For E > 0: 

b) For E = 0: 

c) For E < 0: 

M = — 4 —, 3—=—/x, 
Í2 7 ß 

3(a')2 1 
M fí2 

M 
fí4 

E. 

£2 = 4 sinh t, r = 4(cosh / — 1 ) 

£2 = / , r = . 

£2 = — 4 sin ^ r = 4(cos ^ — 1 ). 
E E 

By equation (6) 

Therefore 

For /> = 0, 

For p = ti/3, 

V. ROTATIONAL PERTURBATIONS 

w'[c:d] ha
chh

d = 
Mgbp' 

P 

co' = 

Therefore w = coo/£2. 
Thus rotation dies away as the universe expands. This is in fact a statement of the 

conservation of angular momentum in an expanding universe. 

VI. PERTURBATIONS OF DENSITY 

For p = Owe have the equations, 

, 0' = _ 102 __ . 
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No. 2, 1966 EXPANDING UNIVERSE 549 

These involve no spatial derivatives. Thus the behavior of one region is unaffected by 
the behavior of another. Perturbations will consist in some regions having slightly 
higher or lower values of E than the average. If the universe as a whole has a value of E 
greater than zero, a small perturbation will still have E greater than zero and will 
continue to expand. It will not contract to form a galaxy. If the universe has a value of 
E less than zero, a small perturbation can contract. However, it will only begin contract- 
ing at a time hr earlier than the whole universe begins contracting, where 

Ôjr_8E 

To Eo 

Here t0 is the time at which the whole universe begins contracting. There is only any 
real instability when E = 0. This case is of measure zero relative to all the possible 
values E can have. However, this cannot really be used as an argument to dismiss it, 
as there might be some reason why the universe should have E = 0. For a region with 
energy — 5E in a universe with E = 0, 

!1"4Íi('‘_T2+ ')' T"T215l(‘*-ÎÔ+ ")' 

For E = 0, n = fr-2. 
Thus the perturbation grows only as r2/3. This is not fast enough to produce galaxies 

from statistical fluctuations even if these could occur. However, since an evolutionary 
universe has a particle horizon (Rindler 1956; Penrose 1964), different parts do not 
communicate in the early stages. This makes it even more difficult for statistical fluctua- 
tions to occur over a region until light had time to cross the region. 

For p = n/3, 

6'= -±0>-ß + u'a’a, «'0=-^p. 

As before, a perturbation cannot contract unless it has a negative value of E. The action 
of the pressure forces makes it still more difficult for it to contract. Eliminating 6, 

u 

MM"-í(M')2-fM3 + fMVo^ = 0, 

> = u'a.bh^ + u'all'« = - 1 

to our approximation; hacVchh
aVb is the Laplacian in the hypersurface r = constant. 

We represent the perturbation as a sum of eigenfunctions S{n) of this operator, where 

S(n);cu
c = 0 , hac(hb

aSW.b) ;C = - Hi ^(w) * 

These eigenfunctions will be hyperspherical and pseudohyperspherical harmonics in 
cases (c) and (a), respectively and plane waves in case (b). In case (c) n will take only 
discrete values but in {a) and {b) it will take all positive values. 
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where no is the undisturbed density. Therefore 

B"m»o - iB'Wn'o - BW (j|Mo2 - Mo) = 0 • 

As long as /¿o > n2/tâl2, £(n) will grow. For /¿o)£>w2/4ß2, 

^Ct + Dt~1 . 

These perturbations grow for as long as light has not had time to travel a significant 
distance compared to the scale of the perturbation Until that time, pressure 
forces cannot act to even out perturbations. 

When n2/ü )$> no, 
d2B(n) 

dt2 

Therefore B(n) =£= CQrll2ei(n,vVt. We obtain sound waves whose amplitude decreases 
with time. These results confirm those obtained by Lifshitz and Khalatnikov (1963). 

From the foregoing we see that galaxies cannot form as the result of the growth of 
small perturbations. We may expect that other non-gravitational forces will have an 
effect smaller than pressure equal to one-third of the density and so will not cause rela- 
tive perturbations to grow faster than r. To account for galaxies in an evolutionary 
universe, we must assume there were finite, non-statistical, initial inhomogeneities. 

VII. THE STEADY-STATE UNIVERSE 

To obtain the steady-state universe we must add extra terms to the energy-momen- 
tum tensor. Hoyle and Narlikar (1964a) use 

Tab = nUaUb + phab — CaCb + hgabCdP* , 
where 

Ca 
== U;o , U;a

a :== ja'a , ja == (M "F p'ï'M'a • 
Since 

Ta¿h = 0 , 

// + (ju + ÿ)0 + uaCaCb'h = 0 
and 

(n p)ufa *F P;bhha — hh
aCbCd'd = 0 . (22) 

There is a difficulty here, if we require that the “C” field should not produce accelera- 
tion or, in other words, that the matter created should have the same velocity as the 
matter already in existence. We must then have 

hh
aCb = 0 . (23) 

However, since C is a scalar, this implies that the rotation of the medium is zero. On the 
other hand, if equation (23) does not hold, the equations are indeterminate (cf. Ray- 
chaudhuri and Bannerjee 1964). In order to have a determinate set of equations we will 
adopt equation (23) but drop the requirement that Ca is the gradient of a scalar. The 
condition (23) is not very satisfactory, but it is difficult to think of one that is more 
satisfactory. Hoyle and Narlikar (19646) seek to avoid this difficulty by taking a par- 
ticle rather than a fluid picture. However, this has a serious drawback since it leads to 
infinite fields (Hawking 1965). From equation (17), 

ca = - 1 - • 
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Therefore, 

+ p')-{n+p)d=-e\\ P   
p'+p'+in+p) 6 

 Pl_  
+ P' + (» + P)e 

For p, p' p' = 6[1 — (ju + p)]. Therefore /* + />—>!. Thus, small perturbations 
of density die away. Moreover, equation (18) still holds, and therefore rotational 
perturbations also die away. Equation (19) now becomes 

0' = — J02 — K/x + ?>p) + 1 . 

Therefore 0 —* \/[3(i — p)]- 
These results confirm those obtained by Hoyle and Narlikar (1963). We see therefore 

that galaxies cannot be formed in the steady-state universe by the growth of small per- 
turbations. However, this does not exclude the possibility that there might by a self- 
perpetuating system of finite perturbations which could produce galaxies (Sciama 1955 ; 
Roxburgh and Saffman 1965). 

VIII. GRAVITATIONAL WAVES 

We now consider perturbations of the Weyl tensor that do not arise from rotational 
or density perturbations, that is, 

= Hob* = 0 . 

Multiplying expression (15) by ucyc and expression (16) by ha(p7iq)rbsUrV8, we obtain, 
after reduction, 

E"ab - (Ecd'ehcfhd
gh

eic) ;ihk Wah0b + lE'abB 

+ Eab[Bf + |02 + K/x — 3ÿ)] + (Tab[\Q(p + ÿ) + I(m/ + p')] — 0 . 
(24) 

In empty space with a non-expanding congruence ixa, this reduces to the usual form of 
the linearized theory, 

n^Eab = 0 . 

The second term in equation (24) is the Laplacian in the hypersurface r = constant, 
acting on Eab. We will write Eab as a sum of eigenfunctions of this operator: 

Eab = VA^Vab^ , 
where 

V'abW = 0 , 

(V(n'>cd'teh
cfhdghe

k)-ihkihfah
d

h — 
ri1 

Ö2 Vab^, 

Then 
m,b;6 = o, m* = o. 

F' -iyV -
dA(n) 

£ oI'~ £2 2Fa!> dt ’ 

Similarly, 

E" ab 
ti2 SFai,(") ( 

dP 

i ¿o 

ß dt dt )' 

(Tab = XD^VabM . 

Then, by expression (19), 
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dD^ 
dt 
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Substitution in equation (24) yields 

^Ü+É ^ /lwr„,+^+6„.i 
av ü dt dt L £2 dt2 Ü2\dt/ 3 J 

+ ô«[(M + />)^+i(/ + ÿ,)o2] = o. 

We may differentiate again and substitute for dDin)/dt. 
For and £2}>> 1/w2, 

J (w) _rt_ J_ ^ int 
A ~We ’ 

so the gravitational field Eab decreases as £2“1 and the “energy” %(EabEab + HajbHah) as 
£2~6. We might expect this, as the Bianchi identities may be written, to the linear ap- 
proximation, 

^gei J^S^CaUä) ~ Jabc • 

Therefore, if the interaction with the matter could be neglected Cabcd would be propor- 
tional to £2 and Eab, Hab to £2_1. 

In the steady-state universe when n and 6 have reached their equilibrium values, 

Eab = (I + p)gab • 
Thus 

Jabc = -Kc[a;&] — 6^C[«^;&1 = ^ • 

Thus the interaction of the “C” field with gravitational radiation is equal and opposite to 
that of the matter. There is then no net interaction, and E¿b and Hab decrease as £2-1. 

The “energy” %{EabEah + HabHab) depends on second derivatives of the metric. It is 
therefore proportional to the frequency squared times the energy as measured by the 
energy-momentum pseudotensor, in a local co-moving Cartesian coordinate system 
which depends only on first derivatives. Since the frequency will be inversely propor- 
tional to £2, the energy measured by the pseudotensor will be proportional to £2“4 as for 
other rest-mass zero fields. 

IX. ABSORPTION OF GRAVITATIONAL WAVES 

As we have seen, gravitational waves are not absorbed by a perfect fluid. Suppose, 
however, that there is a small amount of viscosity. We may represent this by the addi- 
tion of a term to the energy-momentum tensor, where X is the coefficient of viscosity 
(Ehlers 1961). 

Since 
TV = 0 

we have 
ß' (ß p)6 — 2X<72 = 0 (25) 

and 
(jtf -f" p)^'a “F* Pibhb

a -f" \(Tcb’bhCa = 0 . (26) 

Equations (15) and (16) become 

Efab + EabO + kf (aVb) cdeUcHfd]e = — J(/X + P)o’ab — |X(E0& ~ J(ra&0) , (27) 
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H'ab + HahQ - hf(arjb) cdeUcEfd’e = - ^XHab . (28) 

The extra terms on the right of equations (27) and (28) are similar to conduction terms in 
Maxwell’s equations and will cause the wave to decrease by a factor e_(X/2)r. Neglecting 
expansion for the moment, suppose we have a wave of the form 

Eab = 0Eahe
ivT. 

This will be absorbed in a characteristic time 2/X independent of frequency. By expres- 
sion (25) the rate of gain of rest-mass energy of the matter will be 2\a2 which by expres- 
sion (19) will be 2\oE2v~2. Thus the available energy in the wave is 4:oE2v~2. This confirms 
that the density of available energy of gravitational radiation will decrease as £2“4 in an 
expanding universe. From this we see that gravitational radiation behaves in much the 
same way as other radiation fields. In the early stages of an evolutionary universe when 
the temperature was very high we might expect an equilibrium to be set up between 
black-body electromagnetic radiation and black-body gravitational radiation. Since 
they both have two polarizations, their energy densities should be equal. As the universe 
expanded they would both cool adiabatically at the same rate. As we know that the 
temperature of black-body extragalactic electromagnetic radiation is less than 5° K, 
the temperature of the black-body gravitational radiation must be also less than this 
which would be absolutely undetectable. Now the energy of gravitational radiation does 
not contribute to the ordinary energy-momentum tensor Tab- Nevertheless it will have an 
active gravitational effect. By the expansion equation, 

0' = —lO2 — 2a2 — + 3ÿ) . 

For incoherent gravitational radiation at frequency v, 

o’2 = 0E
2P-2 . 

But the energy density of the radiation is 4oE2v~2. Therefore, 

0' = —i02 — hua — Km + 3ÿ) , 

where no is the gravitational “energy” density. Thus gravitational radiation has an 
active attractive gravitational effect. It is interesting that this seems to be just half 
that of electromagnetic radiation. 

Gravitational radiation emitted in an expanding universe will eventually be absorbed 
by other matter if f\dr diverges. Clearly this is so for the steady-state universe since X 
will be constant. In evolutionary universes X will be a function of time. Now for a gas, 
X T1/2, where T is the temperature. For a monatomic gas, T oc fí-2; therefore the in- 
tegral will diverge (just). However, the expression used for viscosity assumed that the 
mean free path of the atoms was small compared to the scale of the disturbance. Since 
the mean free path oc ¿r1 cc 0~3 and the wavelength oc fi-1, the mean free path will 
eventually be greater than the wavelength and so the effective viscosity will decrease 
more rapidly than Or1. Thus complete absorption of gravitation radiation emitted will 
not occur. 

The author wishes to thank Dr. D. W. Sciama and Mr. B. Carter for their advice and 
help. 
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