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II. SPIRAL ARMS AS SHEARED 
GRAVITATIONAL INSTABILITIES 

P. Goldreich* and D. Lynden-Bell 

(Received 1964 June 25) 

Summary 

This paper treats examples of gravitational instability in differentially 
rotating media. The particular cases dealt with include polytropic, stratified 
sheets of gas, as well as the infinite homogeneous media. Application of the 
results is made to the formation of spiral arms in a differentially rotating 
disk galaxy. Relations are derived which connect the thickness of the 
galactic disk, its density, and the velocity dispersion perpendicular to the 
galactic plane with Oort’s differential rotation parameters A and B. 

Sections 1 and 2 discuss requirements of any theory of spiral arms. 
Sections 3 to 8 give a mathematical treatment of gravitational instability 

in a sheared rotating stratified medium. 
Section 9 discusses these results qualitatively and proposes a theory of 

spiral arm formation based on them. 
Section 10 gives the observational tests and consequences of the theory. 
Finally Section 11 gives a very brief discussion of barred spirals and 

points to the many problems left unsolved by the present work. 

I. Introduction 

Since Lord Rosse (1) discovered spiral structure in M51 the explanation of 
this beautiful form has been one of the outstanding problems of cosmogony. 
The straightforward belief that this structure is a natural consequence of a 
swirling motion was probably held by many of the early observers and it is 
our hope that the present work goes some distance to establish that belief on 

a firm theoretical foundation. 
Jeans (2) tried to identify the arms with pieces of material that would be 

shed equatorially as a uniformly-rotating centrally-condensed mass slowly 
shrank. We know now that a galaxy is not a pressure-supported mass of glowing 
gas, but a star-gas mixture supported by rotation or stellar motions. Secular 
shrinking is not therefore a natural form of evolution. The observed rotation 
is not normally uniform except in barred spirals where a theory reminiscent of 
Jeans’ still looks promising. 

Lindblad attempted to give an explanation of spiral arms, first in terms of 
orbits (3) and then in terms of the complete self-gravitating perturbations of a 
stellar system (4). His concept of a hierarchy of subsystems with different 

flattenings was a forerunner of Baade’s discovery of different stellar populations, 
while it is his realization of the dynamical importance of flattening for the 
stability of the galactic disk that we shall develop here. 

* N.A.S.-N.R.C. Fellow 1963-64. 

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System 



19
 6

5M
N

R
A

S.
13

0.
 .

12
5G

 

126 P. Goldreich and D. Lynden-Bell Vol. 130 

In external galaxies we recognize spiral arms by their brightness on a 
photographic plate and the knots of Hu regions that occur along them. It is 
sometimes possible to extend the arms inwards towards the nucleus by allowing 

the eye to follow dust markings. Whether or not such markings are a genuine 
extension of the same spiral structure we do not know, but we take the primary 
characteristic of spiral arms to be their photographic brightness. This brightness 

is caused by very luminous stars, so luminous in fact that they have short lives 
and can hardly have moved from their birthplaces. We deduce that stars are 
being formed in spiral arms. Star formation requires considerable condensation 

of the interstellar medium and if new stars are the end-products of Jeans’ 
gravitational instability then spiral arms must be the seat of such instability. 
This at once raises the question whether the arms themselves can be due to 
gravitational instability on a slightly grander scale. Whether that is the case 
or not it is most important to know how gravitational instability occurs in a 
differentially rotating structure of finite thickness. It is this problem that we 

shall solve. 

2. Requirements of any theory 

In this section we shall talk only of normal spirals ; a discussion of barred 
spirals is given at the end of the paper. 

2.1. Form.—Any theory must be wide enough to contain the bewildering 
variety of galactic forms. The conventional picture of two spiral arms starting 
symmetrically from the nucleus and winding several times around like continuous 
threads is wrong in several respects. In only about a third of all normal spirals 
can it be claimed that just two arms are dominant and although in these there 
is some tendency to symmetry it is not always very pronounced. The arms are 
not normally continuous and can be traced without ambiguity once around the 
nucleus only rarely. In many though not in all cases these arms give the 
impression of several pieces joined at kinks. But these kinks may be perturbations 
on the continuous arms of the conventional picture. There are galaxies that fit 
that picture. The symmetry of their large-scale structure must depend on a 
more realistic discussion of gravitational instability than we can give here. 
However we think that this structure could form in a large-scale version of the 
same type of instability. The remaining two-thirds of normal galaxies are 
multiply armed structures. In Sc’s the arms often branch at unlikely angles 
and the whole structure is considerably more messy than the conventional 
picture. A swirling hotch-potch of pieces of spiral arms is a reasonably apt 
description. A correct theory must have room for neat symmetrical two-armed 
spirals, but it must not predict that most normal galaxies should be like that. 
The mechanism of spiral arm formation must be so universal that it can still 
work under the difficult messy conditions of a typical spiral galaxy. 

2.2. Dynamics.—SO galaxies are topographically similar to normal spirals 
but they have no gas, no dust and no spiral arms. This suggests that stellar 
dynamics is not alone responsible for arm formation. Gas dynamics differs 
from stellar dynamics in the following respects : 

(1) The nature of the pressure is different. In the interstellar gas turbulent 
pressure dominates. 

(2) Turbulent energy is dissipated and then lost by radiation whereas energy 
is conserved in stellar dynamics. 
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No. 2, 1965 IL Spiral arms as sheared gravitational instabilities 127 

(3) The gas is subject to magnetic forces. 
(4) Gas may be cooled by the presence of dust grains, etc. 

Any theory of spiral arms must depend on at least one of these differences or be 
merely a reflection of special initial conditions. 

2.3. The winding problem.—If the arm structure rotates differentially, as the 
observations indicate that the iin regions do, then the pitch must diminish. 
In times that are typically a few 108 years the arms will become tightly wound. 
However the proportion of normal spirals with tightly wound arms is small, and 
it is currently believed that galaxies are typically 1010 year-olds. Unless the 
galaxies have conspired all to be spiral together for a very brief period we must 
deduce that either : 

(1) the spiral structure rotates nearly uniformly although the material rotates 
differentially, or 

(2) the arms are short-lived but reform as open structures, or 
(3) that the observations are wrong and spirals rotate nearly uniformly. 

To admit (3) is to say that the theorist is bankrupt of ideas. There is little doubt 
that a large fraction of spirals rotate with considerable shear. 

Perhaps the most promising of the theories based on (1) is the density wave 
theory (5) in which a nearly uniformly rotating spiral wave propagates through the 
star-gas fluid. Stars are most likely to form near the density maxima. To date 
theoretical discussions of such waves have been limited to thin disk models with 
infinite density and no pressure. All such models are violently unstable (6) 
since the growth rate of Jeans’ gravitational instability is proportional to (Gp)1/2. 

A second type of theory based on (1) allows considerable radial streaming 
and maintains a uniformly rotating structure in a differentially rotating medium 
by forcing the material to flow out along the arms. Magnetic forces are usually 
invoked to do this. The weak point of such theories is the large angular momentum 
transport required to keep the outflowing material at the observed angular 
momenta. Magnetic fields cannot provide the necessary torque unless they are 
either impossibly strong, >io~4G, or violently bent on the scale of the 
thickness rather than the radius of the galactic disk. No fully developed theory 
based on such ideas has yet appeared. 

The present theory is based on (2), the idea that arms are constantly forming 
and dying. A natural regenerative mechanism based on the turbulent dissipation 
in the interstellar gas and gravitational instability (7) will be proposed after 
our mathematical discussion of the instability. 

3. A property of differential rotation 

Gravitational condensation in a differentially rotating medium is a complicated 
process. If we are to understand it we must first solve similar problems which 
have only a few of the complicating features. In paper I we discussed a series 
of such simplified problems all of which involved uniform rotation. In this 
section we discuss the most drastically simplified differentially rotating problem. 

We consider an infinite medium which is uniform in the z direction but 
possibly non-uniform in R {R2 = x2+y2).^ We suppose that it rotates at 
equilibrium with a velocity law u0 = + w0(i?)4>*. We shall consider the behaviour 

* The positive sign makes — u0{K) the circular velocity in the conventional 21 cm picture of 
the galaxy ; is the unit vector in the anticlockwise direction in which <f) increases in Ry <f>, z 
coordinates. 
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of small perturbations to such a system when both the gravitational and the 
pressure perturbations are neglected. In such an approximation (which would 
be correct for small wave-length disturbances in a cold gas) the perturbations 
move in nearly circular orbits under the influence of the unperturbed gravity 
field. We shall constrain the perturbations to be independent of z. Since 
there are no perturbed forces acting, the particles of the fluid follow Lindblad’s 
elliptic-epicyclic orbits. There is however an essential difference from the 
stellar dynamical case in that our gas has only one velocity at each point at any 

one time. Our initial conditions for gas perturbations are thus more organized, 
and this organization leads to the density becoming large in places purely as a 
result of propagation along Lindblad orbits. 

We write iff for the gravitational potential, p for the density, u for the 
perturbation in velocity and we let a suffix o or 1 represent an unperturbed 
quantity or a perturbation, respectively. We assume the unperturbed fluid to 
be barytropic with the equation of state 

Po = K/>oy- 

The unperturbed equation of motion is 

where 

(u0.V)u0 = Vip0- - VPo = VXo, 
Po 

Xo = 4’o- /V“1' y-l 

(1) 

(2) 

The complete equation of motion is 

3u 
— +[(u+u0).V](u+u0) = Vxo, (3) 

where we have neglected the perturbed gravity and pressure. Subtracting (1) 
from (3) and linearizing in u 

^ + K. V)u + (u. V)u0 = o. (4) 

Writing out equation (4) ^cylindrical polar coordinates (i?, <f>, z) we obtain 

du 
^2 +Í2 — z£lu, = o 

du 

and 

where 

and 

dt 

du 

dcf> 

du 
——! + + 2,Bu^ — o, 
dt d<f> 

u< 
0(i?)= + -^ 

(5) 

(6) 

(7) 

(8) 
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No. 2, 1965 IL Spiral arms as sheared gravitational instabilities 129 

Note that Q(i?)=where £lg is the positive angular velocity of the 
galaxy in the conventional picture. B is the usual Oort “constant” since — 
is the circular velocity. 

We now transform to co-moving variables by writing 

Then 

so 

Hence from (5) and (6) 

and 

therefore 

We define 

<f>f = <f>-il{R)t9 ' 

t' = t, 

R' = R. 

dt df dfi ’ 

3 _ a 

jty - 3f ’ 

3Q 3 

3R 3R' t dR d<f>' ’ 

3 0 3 _ 3 

dt+ild<f> df 

—- = 2llu., 
dt * 

du 

df 

32Mr 

df 

Í = -zBu R> 

= — 4^Qur. 

n*=4BQ., 

so the solution of equation (14) is 

=u cos {nt' + a), 

(9) 

(10) 

(”) 

(13) 

(!3) 

(H) 

(15) 

(16) 

where u and a are arbitrary* functions of i?', and n is of course a function of R* 
From equation (12) we deduce 

nu 
f^= — ^ sin {ntf + a). (ï?) 

Equations (16) and (17) determine the perturbed velocity which may be used in 
the perturbed continuity equation to find the density. The perturbed continuity 

equation reads 

If+Q + div (18) 

* They must of course be periodic in <j>f. 

9 
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which may be written using (10) and (n) 

Vol. 130 

Thus 

dp1 1/3 , 3Í2 3\ \ d / \ / \ 

dF + R \dR' Midp ) ( p°Ub^ + dp = °' 

dp1 

dt 
j = (terms periodic in £') 

dn , [ <$n - , , \ dû doc f 
-1 Y°uWSln^ +v?>~PoUdRdP'sm^nt + ^ 

dû du . , . 
+ Po Jr dp cos (nt +a) 

(20) 

For the secular terms to vanish both u (the initial disturbance amplitude) must 
be independent of and 

dn dû doc 

dR^dRdp' (2I) 

(21 ) is impossible except when both dnjdû = m (an integer) and the disturbance is 
such that 0L = m<f>'. dn/dû cannot be constant. Hence there are always secular 
terms in dpjdt'. Thus will be of the form 

Í/o1(P',^,) + (terms of period zn/n in t') 
(22) 

+ tr (terms of period zirfn in tf). 

If it is remembered that <f>r is constant for a point moving with the unperturbed 
fluid motion then it is clear that at such a point the amplitude of the oscillating 
density is growing with time. The physical reasons for this effect are interesting. 

Firstly the dnjdR term arises because the period of Lindblad oscillations 
depends on radius. Note that this term persists even for axially symmetrical 
disturbances. The growth corresponds to the initially organized oscillations of 
the gas becoming progressively more and more out of step at each radius. We 
show later that the introduction of pressure eliminates this trouble for such 
disturbances. 

Secondly note that the remaining secular terms only appear for non-axially- 
symmetrical disturbances. The phase of the oscillations in the neighbourhood 

of a cylinder P = P0 varies with <£. The shear therefore brings parts of the 
disturbance with different phase and slightly different radius to the same azimuth. 
Thus points on the same azimuth but with slightly different radius have velocities 
that are progressively more and more out of phase. This leads to the amplitude 

of the density growing linearly with time. This effect is modified by pressure 
but the density amplitude still grows (like ¿1/2) (see Section 6). 

We do not believe that this interesting behaviour is directly related to spiral 
arm formation. Although the density becomes very large the wave-length of 

the disturbances becomes shorter due to the differential rotation. We shall see 
presently that conditions become less and less favourable to Jeans’ instability 

as the modes become more and more sheared. All non-axially-symmetrical modes 
are subject to this type of asymptotic behaviour in the linearized theory. Some 
pioñeering investigations of the non-linear theory which we hope to follow up 

elsewhere strongly suggest that shock waves are formed which dissipate the 
energy of the disturbance. 
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No. 2, 1965 II. Spiral arms as sheared gravitational instabilities i3i 

These effects are not uninteresting in their own right. They are a mechanism 
by which perturbations can feed on the energy of the differential rotation of the 
galaxy and finally convert that energy into shock waves in the interstellar gas. 
These in turn may, be an important source of both thermal and turbulent energy 
for the gas. 

4. Wave-lengths small compared with the size of the galaxy 

In paper I we found that the critically stable modes of the uniformly rotating 
sheet had wave-lengths of some 2tt times the thickness of the sheet. This scale 
is smaller than the radius of the galaxy. The large wave-length problem is much 
more difficult mathematically for a differentially rotating galaxy, so it is expedient 
to exploit the small scale expected of the critical modes. The present section is 

devoted to obtaining the non-linear equations which govern the behaviour of 
disturbances whose wave-lengths are small compared with the distance to the 
centre of a differentially rotating* galaxy. 

Equations.—The equation of motion in rotating axes is 

^ + (U. V)U+2no xU-Q|R = i V/>, 
ot p (23) 

where U is the fluid velocity, w.r.t. the rotating axes and £2a = (o, o, £!a) is the 
angular velocity of the axes. For our galaxy £îa is negative in the right-handed 

coordinates that we superpose on the 21 cm galactic map. R=(#,y, o) is the 
radius vector from the rotation axis, i/j is the gravitational potential, p is the 
density of the fluid, p is the pressure of the fluid. For polytropic fluid the 
equation of state reads 

p = Kpv, 
so 

or 
p Vr-1 / 

- V/> = V(íclog/>) 
P 

y=l. 

(24) 

(25) 

We write 

x=iA 

or 
y-I 

X = >p-K\ogp y=l. 

Further we put 

where 

U=Uo+u, 

u0=u0(/î)4», 

(26) 

(27) 

(28) 

is the velocity in the equilibrium state, w.r.t. the rotating axes and u is the 

* Of course we may then specialize to the uniformly rotating case to obtain the equations 
solved in paper I. 
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perturbation. Using the identity R=—zx<|> (hats denote unit vectors) the 
equation of motion becomes 

— +(u0. V)u+(u. V)Uo + 2fíaxu+(u. V)u 

= (^+2ßa«0 + ^)R + Vx. 

(29) 

For the equilibrium state itself u is zero so 

(ÿ +2í2au0 + Ü^)R + VX0=o. (30) 

Subtracting, we obtain 

— +(uo. VJu + tu.VJuo + a^xu + tu. V)u = Vxi- (31) 

So far the development is purely formal and the angular velocity of the axes is 
arbitrary. We now concentrate our attention on the stability of a small portion 
of the galaxy near some point at (P0, <£0,#) initially. We choose the angular 
velocity of the axes to reduce the unperturbed motion of (P0, ^0,#) to rest, 

^0(P0) = o. We set up cartesian axes (x,y,z) with origin at (P0, <£0) and with 
the x axis pointing outwards from the galactic centre. In the region about 
(P0,^0) we may now expand the components of u0 in a Taylor series 

Here u0' is 

{u0x> UQz) — RoU0 y ^ 2" ^ J • 

du0 

Jr i2 = JR0 

(32) 

Oort’s constant A evaluated at P = P0 
may calculated by remembering that 

the circular velocity is — (w0 + üaP) and that w0(^o) is zero. It is 

A = W. (33) 

Substituting (28) and (29) into equation (27) we obtain 

8u 

dt 

9u a 
+ zAx + ux2Äy + zSia x u + (u. V)u=Vx^ (34) 

where terms of order x/R0 have been neglected but those of order %/À, where A 
is the typical scale of the perturbation, have been retained. In a similar manner 
we may obtain the non-linear continuity equation 

+div/>U=o ; 

while for the equilibrium 
div(p0u0) = o. 

(35) 

(36) 
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No. 2, 1965 IL Spiral arms as sheared gravitational instabilities. i33 

Subtracting and using expressions (27), (28) for U 

^ + 2ÄX d-h + div (pu) = o. (37) 

Equations (34), (37) together with Poisson’s equation and the equation of state (26) 
are our full set of equations. To within our approximation p0 is independent of R 

because 

p0(i?,s) =p0(R0,z) + xp^R^z) + O(x2/R0
2) 

and presuming that Rq/pq' ~po the second term is of order x/R0 times the first. 
This is consistent with equation (30) to the order to which we are working. 
We show this as follows : 

= o by our choice of £!a. 
Bo 

Hence V%0 vanishes at R = R0 and it is radial elsewhere and proportional to x 
(to first order). Thus = Xo(°) + 0{x2). To the order to which we are working 
Xo, p0 and are functions of z alone. 

5. Models 

In Section 4 we made the crudest form of small wave-length approximation 
to the dynamics of a portion of a differentially rotating galaxy. We wish to note 
here that those approximate equations are actually exact if they are thought of 
as describing a certain physical model. The unperturbed state of the model we 

describe in axes rotating with angular velocity iia. The fluid is homogeneous 
in # and y but is pressure supported against its own gravity in the z direction. 
With respect to the rotating axes its unperturbed velocity is parallel to the y axis 
and of magnitude zAx. In order that this should be an equilibrium velocity in 
the presence of Coriolis force, there is an imposed tidal field which exactly 
cancels the Coriolis force. The equations derived in the last section are the 
exact equations that describe the evolution of arbitrarily large perturbations 
superimposed on this model. We shall find that we need the full non-linear 
equations to discover the real behaviour of this system. We shall treat the 
polytropic sheets with y = 1 and y = 2 but, following our policy of discussing 

the simplest problems first, even if they lack some reality, we shall also consider 
the generalized Chandrasekhar problem. That is, the stability of a uniform 
medium* of infinite extent vertically, which is uniformly sheared in rotating axes. 

The remainder of this section is devoted to developments that are common 
to these three problems. 

We transform to sheared axes, co-moving with the unperturbed flow as 
follows : 

^ +2ÜaM0 + Oa
2^ 

y' =y — zAxty 

z' =z, 

t' = t. 

(38) 
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3 _ 3 _ 3 

3^ ""3? ZAt dÿ’ 

= — — zAx' 
dt dt' 

3 _ _3 

oy cy 

3 _ 3 

dz dz' 

dy / > 

/ > 

Vol, 130 

(39) 

The time derivative following the unperturbed motion is 

d d A d 
Tn = + 2 Ax — . 
dt dt dy 

Under the transformation (38) the equation of motion (34) becomes: 

w -2Qa.+(“-'7K- (¿ - 5?) 

^7 +2P«x+(u. V)m3/= Ip, 

(40) 

(41) 

(42) 

(43) 

where B = A + Qa, in agreement with Oort’s notation, when it is remembered 
that Qa is negative. B is Oort’s constant evaluated at R0. 

Similarly the transformed continuity equation (37) reads 

w + (¿ ^-)+ ¿ <p"'>+ ¿«-° 

and the perturbed Poisson equation is 

Linearization.—Equations (41) to (43) may be linearized by dropping the 
(u.V)u term, while equation (44) is linearized by replacing p by p0. The 
linearized form of equation (26) is 

(46) 
Po 

where c2 is the variable Kyp0
y~1 which happens to be constant when y = 1. 

These linearized equations have coefficients that depend on t' and on z' 
(through p0) but which are independent of x' and y'. This is in marked contrast 
fo the untransformed equations whose coefficients depend on x and z and are 
independent of t and y. It will appear later that our transformation to dashed 
coordinates (which throws the inhomogeneity from x into t) is essential for a 
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No. a, 1965 IL Spiral arms as sheared gravitational instabilities i35 

Fig. i.—Uniform shear in rotating axes and sheared coordinates. 

correct solution of the problem of real interest. We Fourier analyse in x' and / 
by giving the independent variables an ex.\>i(kxx +kyy ) dependence. The 

linearized equations (41 ) to (45) then read, dropping the suffix a on Í2 : 

^ - 2Quy=i(kx - 2At’ky)Xl, (47) 
ot 

dUy 

dt' 
+ 2Bux=ikvx1, 

_ dXi 

dt' dz' 

(48) 

(49) 

and 

r) 3 
^ +i(kx-2At'ky)p0Ux + ikyp0Uy+ gp (j>0us) = O 

[(K-zAt’kyf + k/- gpsj >Pi = 

(50) 

(SO 

Excepting for the present the special modes with ky zero we introduce the 
new “time” variable r by 

T=zAt' — . (52) 
""y 
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Notice that the time variable now has a different zero for modes with different 
values of kx[ky. There is important physical significance in this zero because 
one finds by transforming back to x, y that 

exp [i(kxx' + kvy’)] = exp {i[kxx + kv(y - zAxt)]} 

= exp [iky(-TX+y)\. 

This shows that our Fourier modes in x' and y are modes that are sheared with 
the unperturbed motion of the fluid and that r = o when the (x,y) wave vector 
of the disturbance is purely in the y direction. What this means physically is 
that for each mode the time r = o occurs when the contours of perturbed density 
point radially outwards from the galactic centre. We shall show shortly that 
density perturbations grow fastest after they pass through this configuration. 

Writing equations (47) to (49) in terms of r we obtain 

• ß -z, ux-¿uy= -lkrXiy 

Úv+ ^ux = ikXl, and 

1 sXi 
Uz 2 A dz ’ 

(54) 

(55) 

(56) 

where dots denote differentiation, w.r.t. r and 

k - by 

Similarly, equations (50) and (51) now read 

(57) 

and 

p1-ikrp(iux + ikp()uv + — — {p0uz) = o 

[_V(I + T
2)+Z_]iAi=_477Gp 

(58) 

(59) 

It is convenient to derive here the z component of the vorticity equation. 

Multiplying equation (55) by —ikr and adding it to —ik times equation 
(54) we obtain 

3 B 
-ik — {ux + TUy) + ik — (-TUx + Uy) = 0, (60) 

where we have used the relation il=—£20 = jB —Æ Similarly, we take the 
two-dimensional divergence of equations (54) and (55) by multiplying (54) by 
— ikr and (55) by -{-ik and adding: 

., 3 , . 
ik-^iUy-TuJ + ik^ (TUy + ux) + 2ikux = - k\i 4- r^Xi- (61) 

We cannot proceed further without knowledge of the way in which our variables 
depend on z. To this end we turn to more specific models. 
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6. The sheared infinite medium 

In this section we attack the generalization of Chandrasekhar's problem 
which includes not only rotation but also uniform shear. The medium is 
assumed homogeneous and of infinite extent in all directions. 

As we have explained in paper I the greatest interest attaches itself to the 
stability criterion for Chandrasekhar’s singular modes, which have wave vectors 
perpendicular to the axis of rotation. For such modes there are no variations 
in the z direction and we may put 

s?-° and uz=o. (62) 

With these restrictions the continuity equation (58) reads 

íA(-TMa. + M¡,)=- (63) 
Po 

Substituting this value of —rux-\-uy into the vorticity equation (60) we obtain 

d 

dr (64) 

and therefore .7, v -B Pi ^ 
— ik(ux + TUy)— — — = Ci = const. 

^ Po 
(65) 

The constant Q is necessarily small and represents the perturbation of the 
vorticity per unit mass (multiplied by pJzA). If the perturbations are caused 
by a time dependent gravity field or by an external pressure, applied to the 

unperturbed state, then Kelvin’s circulation theorem holds exactly and (^ = 0 
since it is zero initially in the unperturbed state. If however, the system was 
never quite in its unperturbed state or if it has had worse perturbations applied 
to it (which generated vorticity) then Cx will not be zero (except by conspiracy). 

From equations (63) and (65) 

+ (66) 
Po 

¿Ä(Ma.+ TMJ,)= -Q- 
B pi 

^ Po 
(6?) 

so 
ik(i + t2)ux = —t61 — C1~ (68) 

Equations (66), (67), (68) may now be used to eliminate the velocities from 
equation (61) to obtain 

~Öl+2(~Cl~29l) + TTri 2 dl) = ~*2(I + t2)xi’ (69) 

which simplifies to the form 
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i38 P. Goldreich and D. Lynden-Bell 

From equations (59) and (46) 

where 

Xi = 
/_47rGpo_ 2\ 

W^+t2) / 
0i, 

c2 = kyp0
v 1. 

Vol. 130 

(71) 

For simplicity, taking non-vortical perturbations so that C^o we have 

d / è1 \ 

dr \i+t2/ 
+ 

B 
2Ä 

(i+^y 
+ 

BQ, 

~Æ 

77 

A2 

I+T¿ + 
k/c2 

4A2 ^ = 0. 
(72) 

The equation for the axially-symmetrical “ring” modes with ky = o may be 
obtained from this by writing out r in full and performing a limiting procedure. 
With an arbitrary zero for r one obtains 

d 

dr 
^Gpo kx

2c2\ 
A2 4A2) 

61 = o. (73) 

This equation is simple harmonic so the “ring” waves are stable or unstable 
according as 

4PQ — 477Gp0 + > o or <0 (74) 

respectively. 
Apart from the factors 1 + r2 which arise from the varying wave number of 

the non-axially-symmetrical sheared modes, the main difference between 
equations (72) and (73) is the extra term (zB/A)/! + r2 in the former. Since B 
is negative this term tries to make the solution of equation (72) grow exponentially. 
This growth will occur even at densities too low to make the ‘ ‘ ring ’ ’ modes 
unstable (74). If the density is secularly increased the first modes to show 
considerable growth are sheared. As explained more fully in what follows the 
period of greatest growth occurs after the time r = o (when the lines of equal 
density point radially). When growth has occurred those lines will be trailing 
(to form a spiral pattern if we are prepared to put several of our small-scale 
analyses side by side). 

Equation (72) is the prototype of equations with similar behaviour that we 
shall be led to discuss for sheets of finite thickness. We shall here discuss the 
form of its solutions in some detail because we believe them to be closely related 
to the mechanism of spiral arm formation. 

Comparison of the “ring” modes with the others is best made through 
equations (72) and (73), but a discussion of the form of the solution of equation 
(72) is best effected by transforming to the new variable 

O = 01(i + r2)-1/2. 

Equation (72) then takes the form 

(75 ) 

3 
+ T2)2 + 

B _ 
2J~2 BjB-Ay-TrGpo k/c2 

(l + T2) A2 4.A2 
0 = o. (76) 
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No. 2, 1965 IL Spiral arms as sheared gravitational instabilities 189 

The factors (i + r2) are only as small as 2 for the period — +1. Let 
us consider the situation when the “ring” modes are just stable so that 

[B{B-A)-TrGp¿IA2 is very small. Then for |r| large the coefficient of €> 
is dominated by the large pressure term, and the solution of the equation 

oscillates. However, when |r| decreases to near zero the 3/(1+ T2)2 and 

— 2( —£/^4 + i)/(i + t2) terms become of greater importance. Note that B is 
negative so that provided — BjA > \ the second of these terms is always 
the larger. If we now take long waves so that ky

2c2I^A^<^i then the 
— 2( — B/A + i)Ii + tí term is dominant for small r, so the coefficient of ® 
will be negative and the solutions will therefore grow quasi-exponentially. 
However, the period of growth is limited since |r| will again become large which 
will again change the character of the solutions to oscillation. To sum up, the 
solution will start by oscillating when the waves are pointing forward. As the 
differential rotation sweeps them round through the straight out position they 
go through the period of greatest acceleration (in the sense that Ö/O is largest). 
The greatest actual rate of growth of ® is achieved later when ® has itself grown 
and the waves trail. However, considerable trailing is associated with renewed 

dominance of the pressure term and renewed oscillation at the greatly enhanced 
amplitude. Since the equation is derived from a linearized analysis it will not 
remain true if 61 ever achieves values of order unity. Thus, if in the period of 
growth the perturbations in the density become comparable with the unperturbed 
density, the predicted return to oscillatory character need not occur. For the 

stratified isothermal sheet discussed later we show that it is energetically possible 
for the non-linear modes to continue to condense rather than to revert to 
oscillatory behaviour. 

7. The vertical equilibrium approximation 

In paper I we found that in all modes close to marginal stability the vertical 

accelerations were small compared with the perturbations of the gravity field: 

(77) 

In that problem 3/3i is the time derivative (in the uniformly rotating axes) that 
follows the unperturbed motion. The analogue in our problem is 2^4(3/3t). 
If we write out equation (56), using equation (46), it reads 

zA 
9ms 

3t 

Assuming analogously that 

we have 

Hence 

fyl _ d , y_2 \ _ 9*1 
dz' dz' (KyPo p1^ dz 

(78) 

2A dUz « 3x1 
(79) 

’Xi ^ O. 
dz 

Xi—Ai(t). 

(80) 

(81) 
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Physically the above approximation neglects any inertia of the fluid to vertical 
movement. The fluid is thus infinitely responsive to vertical forces. 

With xi independent of z it follows from equations (54) and (55) that both 
ux and uy can be independent of z*. We therefore integrate equation (58) from 
z = — a to z = + a and apply the boundary conditions as in paper I to obtain 

2i + 2of&( TUx-\-Uy>) — o, (82) 

where 
edge 

2o + 2i= J pdz 

edge 

(the edges being the perturbed edges). Equation (82) is the surface density 
continuity equation ; when written in the form 

ik{-TUx + Uy)=-^ (83) 

it is closely analogous to equation (63) for the infinite medium, and the same 
analysis yields from equation (60) the equation similar to (67) 

B S 
-ik(ux + TUy)-- -1 =CX* = const. (84) 

Similarly, following the analysis of equations (68)-(7i), we arrive at the equation 
analogous to (72) which reads 

d 

dr 

BQ. ' 

A2 

7+^ 

ACS (85) 

The only difference is that 6^ now stands for SJEq rather than Pi/p0> that is, 
O-i* is the fractional increase in surface density. 

To proceed further we must solve Poisson’s equation (59) making use 

of the boundary conditions and the fact that Xi = A1(r) is independent of z 
(equation (81)). We have already done this calculation for the cases y = 2 
and y=i in paper I but, comparing equation (59) and paper I equation (38), 
we see that we now have ky2(i + r2) written where k2 alone stood before. This 
is hardly surprising because we see from equation (53) that our ordinary space 
wave number at any time r is indeed ky(i + r2)1/2. Thus the |ä| of the boundary 
conditions of paper I should also be replaced by this quantity. The solutions 
for y = 2 and y = 1 follow those of Sections 8 and 9 of paper I (except that we 

now omit the 0(a)) terms owing to the vertical equilibrium approximation). 
We thus deduce paper I equation (130) which may be written in the form 

(86) 
a 

where F(K) is defined by the identity (135) of paper I (written again below) and 

K2 = k2
ya

2(i + r2) (87) 

* We assume this to be the case since it is true of the critical modes in the differentially rotating 
dase. 
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in the present context : 

where 

^ r - ! ) + (Z-2/+1 ){K-i + T) 

L*T+f-K 

U‘-Zi — K2, 

Z2 = 2^— a2 = for zero halo pressurej , 

zap0(a) 
f = 

and 
S0 ’ 

T= f tanL. 
JL/ 

From equations (57), (87), (86) 

kZi, 01* 
4A2 1 4A2a2(i + 72) 4a2A2 F(KXi + t*)’ 

• so for y=2 equation (85) reads—dropping the vorticity term C,*— 

where 

B BQ_ P 
21 i 3Ï2 _ F(K) 

(i + t2)2+ (x + t2) 
0i* = 0, 

ttGEq _ kS0 

A^za ~ 4a3A2 * 

I4I 

(88) 

(89) 

(90) 

(91) 

(92) 

(93) 

(94) 

(95) 

In discussing equation (94) it must be remembered that K itself contains a 
factor (i + t2)1/2 and so ilF(K) changes with time. The equation for the 
“ring” vibrations of the y = 2 sheet is similar, but simpler, like the situation for 
the infinite medium. It reads 

(96) 

Similarly the equations for y = i isothermal sheet read (for non-radial vibrations) 

B BÙ _ P' 

¿ / V \ 2 ^ ü2 g(m) 

dryi + 'Aj [.(l + T2)2 (1 + T2) 
e1*=o 

(97) 

and for radial vibrations 

d • 
S(v)+ 

BCl P' 
O, (98) 
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where 

P. Goldreich and D. Lynden-Bell 

_ TrGpa _ 3 irGp 

A2 2 A2 

m(i—m2) 

i+m + imW [ — 

’Ll  = y 1 

■(I-)’ Í2 j '-'(H” 

m=k
1?(i + 72)V2, mx = kJ?, 

and 

& 2 _ Kq — 
27TGp{ 

Vol. 130 

(99) 

(100) 

(xoi) 

(102) 

F and £ suitably normalized define functions 3 (see paper I). 

The functions i/5 are plotted in Fig. 2. Reference to these graphs enables 
us to draw qualitative conclusions about the behaviour of the equations for d-f. 
We shall be interested in that particular range of parameters (A, B, p) for 
which the “ring” modes (as expressed by equations (96) or (98)) are just 
stable. A discussion of the growth of sheared modes for these parameter values 
will be the topic of this section. In what follows we shall restrict our discussion 
of the equations for y — z. This makes the treatment less cumbersome and 
involves no loss of generality since the y=i equations behave completely 
analogously to those for y = 2. 

We begin by observing (from equation (96)) that some “ring” modes will 
be unstable unless 

Sû > mœ(,PA*IF) = . (103) 
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No. 2, 1965 II. Spiral arms as sheared gravitational instabilities 143 

We shall denote by Kc the value of kxa at which i/F(kxa) attains its maximum 
value. Hence, we are interested in values of the parameters (A, By p) for which 
BQ is infinitesimally larger than 770^/4*44. We now proceed to a discussion of 
equation (94) for sheared modes using the appropriate parameter values. 

K, the argument of F(K) in equation (94), varies with r as y^i + r2). 
K starts large when r is large and negative and decreases to its minimum value 
of kya at r = o. It subsequently increases again as r becomes large and positive. 
If kya < Kc then there will be two times, ± tc, when K=Kc. At these values 
of T and for a range of r about these values, the coefficient of 0J* in equation (94) 
will be negative (to see this we must remember that both B and Q are negative 
quantities). While this coefficient is negative will in general exhibit a rapid 
growth. As we are interested in the growth of 9^ we endeavour to choose kya 
such that this growth is maximized. By a mixture of foresight and hindsight 
(as provided by computing solutions on ED SAC) we find that the appropriate 
value of kya is about \ but it varies with both “a” and y. For this best value 
of kyy 9-1* grows by a factor of ~io2'7±1 when we integrate equation (94) from 
r = —10 to r = +10. Graphs of 0-,* versus r are given in Figs. 3, 4 and 5. 

Growth mainly occurs after r = o. Since BQ>IA2 — P/F(K) is always positive 
the term that provides the negative part of the coefficient of 9-^ is (B/A)(i + r2)-2. 
This is greatest in magnitude at r = o. Maximum growth occurs when kya is 
chosen so that BQ/A2 — P/F(K) reaches its maximum near r = o also*. 

Computation procedure.—Our procedure was to choose a value of B/A (in the 
first instance the value — f for the solar neighbourhood). For this value we 
set P so that equation (96) was just stable. We then used these values in 
equation (94) and computed from r=—iotor=+io with the starting values 
9]* = i, 0^ = 0. For the linearized treatment the initial value of 0X

# is of course 
unimportant and can be scaled to any required value. We made a number of 
runs with different values of kya seeking that value which gave the greatest 
growth. We also made runs with oscillations out of phase with the above by 
choosing 9-1* to be zero initially and 9-^ non-zero. The results may be seen 
from the graphs (Figs. 3, 4 and 5). These are all computed for the isothermal 
y = i sheet. Similar results were found for the y = 2 sheet. 

8. Non-linear problem 

We shall again make a vertical equilibrium approximation by neglecting the 
inertia of the fluid in the vertical direction. With this assumption equation (43) 

With xi independent of z the velocities ux and uy may be taken independent of # 
from equations (41) and (42). 

To proceed further it is easiest to return to unsheared axes and so to use the 
equation of motion in the form (23). It is also convenient to introduce a 
two-dimensional notation so that \3={Uxy Uy)y etc. To emphasize this change 
we shall give all our vector operators a suffix 2. Thus 

yields 
(104) 

(105) 

* Actually before r = o as may be seen by more careful reflection using the graph of 1 /F. 
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and 

We also use the convective derivative 

— = — +TJ — +U — 
Dt dt+ Xdx+ vdy 

(106) 

(107) 
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In this notation equation (23) reads 

M+2ñaxU-ÍVR = V2X, (108) 

where fla x U is to mean ( — Uy, Ux). The third component of equation (23 ) 
reads 0 = 0 thanks to vertical equilibrium. 

We write 
cu = curl2 U + 2Í20 (io9) 

so that o) is the total vorticity in inertial axes. Taking the curl2 of equation (108) 
we find 

D2cü 

~Dt 
+ co div2 U = o, (no) 

where to derive this equation we have used the identity 

curl2 [(U. V2)U] = (U. V2) curl2 U+curl2 Udiv2 U. 

Equation (no) may be written 

O2 

Dt 
(log w) + div2 U=o. 

(in) 

(113) 

This equation is similar to the surface density continuity equation which we now 
derive by integrating equation (35) through the sheet: 

as 

aF 
+ div2(SU) = o, (“S) 

10 
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146 P. Goldreich and D. Lynden-Bell 

which may be written 

^(logS) + div2U=o. 

We subtract this equation from equation (112) to find 

Dc 

Vol. 130 

("4) 

_ 
Dt (logs) (■■s) 

This is the convenient form that Kelvin’s theorem takes when the horizontal 

motions are independent of height. For our non-linear discussion we shall 
consider only perturbation from the equilibrium state caused by perturbing 
pressure forces or by forces derivable from a time dependent potential. In that 
case equation (116) holds even when the perturbations are being applied, so we 
may take as its initial conditions the values in the unperturbed equilibrium. 

Thus 

w 2S t e.\ 
%-%• <I,6) 

where B is Oort’s constant. 
We now derive the two-dimensional form of a remarkable equation due to 

Hunter. Taking the div2 of equation (108) 

g (<&,»)+ |^ -2ÍlacurlgU = V2
3x + 2fl0

2, i11?) 

where we have adopted the summation convention that terms with repeated 
indices are summed over x and y. 

We write 

so 

but 

so 

lj 2 dxj ’ 

^ l* 2 dXj dXj 2 dXj dxi 

dUjdUi 

2 dXj dXj 2 dXj dXi 

dXj dXj 
— EyEtf \{o) 2Íia)

2. 

(118) 

(119) 

(120) 

(121) 

Substituting this in equation (117) and evaluating (117) by means of the 
continuity equation (114) we obtain 

- ^2 (l0§ S) = - 2^a)2 + 2Ûa(a> - 2Üa) - Eifia + 2Üa
2 + V2

2
X, (122) 

and therefore 
7) 2 

Dt* 
(log 2) = — iœ2 + EÿEtf — V2

2
x, (*23) 
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which is the two-dimensional form of Hunter’s equation (8). Using equations 

(I23)> (27) and (33) we find 

7)2 2#2X2 

(log2)= - + ^+^2-v2sX) 

where 
i /3w, 3mA _ /o ^4\ 

e,'J'= 2(3^ + d^j = ö“ o) ' 

For the unperturbed state 

0= -2S2 + 2^2-V2
2Xo, 

D 2 

Z)i2 (logS) = 2fi2 ^1 - ^ + eö.eö. - V2
2
Xl, 

so subtracting 

where 

Now 

%^‘ = r^r (e*€) = ^n2 “^22 

when e is written in principal axes. But 

Xi = X-Xo* 

Hence, 
^H2 “^^222 ^ ^22)2* 

iTD* 

SO 
D 2 
^2 
Dt2 

^,^M«,ï)2 = i(div2u)2= (logS)] , 

(iogS)S ^ (, - g) + Í g (logs)]' - VAl. 

(124) 

(125) 

(126) 

(127) 

(128) 

(129) 

(ISO) 

(ïS1) 

(132) 

Even with the assumption of vertical equilibrium our form of Hunter’s 
equation is not equivalent to the full equations of motion. In this sense its use 
in our problem is similar to that of the virial theorem in many dynamical problems. 
While not enabling us to find explicit solutions of the equations of motion it 
still allows us to draw general conclusions about the behaviour of such solutions. 
In particular, we shall use Hunter’s equation to ascertain the conditions under 
which instabilities can continue to grow once non-linear effects become important. 

We shall restrict our treatment of the non-linear stability problem to 
disturbances which are the non-linear generalizations of a sinusoidal plane 
wave instability. This is not to say that more general disturbances cannot be 

treated by the same method. We make this restriction simply because this 
particular class of instability is the most relevant one to spiral arm formation. 
From our study of the linearized stability problem we know that the unstable 
plane waves have wave-lengths which are at least several times the characteristic 
scale height of the shçet. For disturbances with this property we may observe 
that the vertical behaviour of the density can be approximated by taking the 
z dependence, at a given {x,y), the same as that for an entire sheet with central 

density pc(x>y> o). Thus the scale height of the sheet at any point (x,y) is given 
by 7r/k0 where 

and cî = yKpcy-i(Xjyy0) for p = Kpv. 

10* 
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Within this approximation it becomes a simple matter to estimate the terms on 
the right-hand side of Hunter’s equation. Before making these estimates there 
is one further point which must be mentioned. In analogy to the plane wave 
disturbances discussed in the linearized theory, the disturbances that we shall 
consider will be constant on lines given by some time dependent linear combination 

of the x and j coordinates (at fixed #). However, unlike the sinusoidal plane wave 
instabilities, the scale lengths, perpendicular to the wave fronts, associated with 
the regions of enhanced and diminished density need not be the same. 

We define k+ and k~ such that and tt/ä- are the scale lengths associated 
with regions of enhanced and diminished density respectively. 

The form of Hunter’s equation which is most convenient for our purposes 

is given by equation (132) and rewritten below: 

g!(logS,^(,-g) + jglogs]' -VA + V 

c2 log p = I 

rK 

[y-i 
>y-i y I 

(ïSS) 

In the form given above, the terms on the right-hand side of Hunter’s 
equation are especially easy to estimate. We shall be interested in the 2 dependence 

of these terms in regions of enhanced density. However, a brief interpretation of 
these terms shall be given first. 

The — term contains the condensive force of gravity ; the 

V2
2 

c2 log p 

— i 

y=I 

y^ I 

term is the disruptive force due to the pressure; the — 2P2(22/Z0
2—1) term 

gives the effect of the centrifugal field in opposing condensation; finally, the 
eijeij term> which is condensive, is likely to be quite small compared with the 
others. We have inserted Dtloglh)2 in its place and shall not 
consider it any further. 

We now proceed to estimate these terms in the regions of enhanced density. 
Only these regions are considered since we are interested in the growth of density 
instabilities. Under the assumptions concerning vertical equilibrium and the 

scale lengths of perturbations made in this section we see that 

V2
2Xi = V2^-V2 

C2 log p 

YK v-i 
 Pv 1 
y-I 

y=I 

i 

and is independent of z. Its terms can be estimated as follows 

v2
2>A=v2vfr- 

av 

äi2- 

In regions of enhanced density 

Hence 

VV = - G/>+^ - (k+2+ 

V2
2i/f~ - 

4.irGpk+2 

(F2T¿+2)* 
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Similarly 

V 2 v 2 

c2 log p 

rK 

y-l P 
y-l 

y=i 

I 
~£+2k/>v-1. 

In order to compare the two terms above with each other and the term arising 
from the centrifugal field, we must express />+ and in terms of This 
is easily done using the definition of 

Since 

we have 

Hence 

—a 

£ocpc
v/2 or pcoc22/v. 

&0oc22-y/y. 

This tells us that the terms in Hunter’s equation due to the pressure, the 
rotational field and the self-gravity of the disturbance behave as 

^+22+2(y-1)/y> and 
¿+22+2/y 

k+i+K+* 
2-yIy 

respectively as increases, (k^ is the initial value of ä0
+.) 

Until non-linear effects become important, i.e. until E+ —E0/£0 becomes of 
order unity, the terms above can be replaced by their expansions to first order 
in S+ —S0/210. In this case y enters Hunter’s equation only through the 
coefficients of these terms. This accounts for the insensitivity of the linear 
approximation to the value of y which is used. However, once the non-linear 
realm is reached the terms above depend critically on the value of y, since y now 
enters into the exponents of the pressure and gravity terms. 

For the instability to continue to grow once non-linearity becomes important 

the gravitational terms must grow at least as rapidly with 2+ as the other two 
terms. This can only happen if k+ grows like (2+)'Sf. Setting the initial value 
of £+ equal to k^~ we find that (if we restrict ourselves toy^i)y=i, 
is the only solution which allows the gravitational term to dominate the others 
as 2+/20 increases. 

We now see that in isothermal sheets, a mode which is unstable in the linear 
approximation will continue unstable in the non-linear realm provided its 
“wave-length” as determined by S, also changes with time. 

9. A physical mechanism for spiral arm formation 

9.1. Qualitative considerations.—In the mathematical sections of this paper 
we have shown that small perturbations of a differentially rotating, stratified 
sheet of self-gravitating gas may be considered as a superposition of density 
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waves which are sheared by the differential rotation. The analyses of perturbations 
in terms of these sheared modes turned out to be very fruitful. It allowed us to 
extend the concept of instability to include cases in which growth occurs only 
for a limited time (at least in the linear approximation). 

From the equations that we have derived governing the growth of these 
modes, we have drawn one outstanding conclusion. It is that even when all 
purely radial disturbances are stable, there are still some sheared waves whose 
amplitudes grow by factors of more than 100. Moreover, this growth occurs 
for waves of a well-defined wave-length and begins as the lines of constant 

density are sheared past the radial direction. If the initial perturbations are so 
small, that even after this growth has taken place they remain small, then the 
growth gives way to oscillation as the trailing wave is stretched out by the 
differential rotation. However, if the initial perturbations are greater than 
i per cent of the unperturbed quantities, then non-linear effects will become 
important and the oscillations predicted by the linear theory may not arise. 
In particular, we have shown in our discussion of the non-linear problem 
(Section 8) that it is energetically advantageous for the growth of perturbations 
to continue into the non-linear range, provided that the gas is isothermal. 
However, if the energy of collapse is stored as thermal energy, condensation is 
eventually halted and the system will “bounce 

We are now in a position to apply the results of our calculations on gravitational 
instability to the theory of spiral arm formation in normal galaxies. 

9.2. Proposed theory of spiral arm formation.—The pressure support of the 
interstellar gas is turbulent in origin. Hence, in the absence of energy sources 
it will die down. The gas sheet will become thinner and the total density will 
increase. Eventually 7rGpl^B(B — A) will become so large that considerable 
growth of certain sheared perturbations will ensue. Modes of optimum growth 
potential will have small initial amplitudes and point forwards (with respect to 

the direction of rotation). As they are swept around by the differential rotation 
their amplitudes will begin to grow. Greatest acceleration will occur when 
they point straight out from the galactic centre. The perturbations will grow 
to a magnitude at which the linear analysis is no longer a good approximation. 
However the gas will be able to radiate away the gravitational energy released 

during the collapse enabling the growth of the condensation to continue. At this 
stage a trailing spiral arm has been formed. We assume that at this point stars 
are born in the growing condensation. The new stars will stir up the interstellar 
gas. This extra turbulence will again increase the thickness of the gas layer of 
the galaxy and reduce its density below the level for instability. When the 
brightest new stars have died the turbulence of the interstellar gas will begin to 
diminish, instability will ensue, and the process will be repeated. Thus generation 
after generation of spiral arms will form, wind up, and disperse. The main 
secular effects will be the depletion of the gas (which will have to form a slightly 
thinner sheet each time) and the relaxation of the stellar motions by the gravity 

fields of the recurrent instabilities. 
Although the excess density which causes the instability is produced by the 

thinning of the gas sheet, nevertheless, a considerable fraction of the total density 
may reside in the stars (as in our galaxy). Jeans’ instability of a uniformly 
rotating system of stars may be shown to occur, for waves perpendicular to the 

axis of rotation, if ^nGp ^ 4ÍÍ2, exactly the same criterion as that for instability 
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in a rotating gas*. Jeans’ gravitational instability thus occurs for stars in much 
the same way as it occurs for gas. Spiral arm formation should not, therefore, 
be regarded as an instability in the gas but rather as an instability of the whole 
star-gas mixture which is triggered by an increase in gas density. 

Once the instability has developed into the non-linear range the difference 
between the stars and the gas will become important. The stars will conserve 
energy so their instability will be resisted by the non-linear terms. By contrast 
the gas can easily radiate the energy of compression in the time available and can 
therefore continue to condense. 

In the absence of a more refined mathematical theory in which we can treat 
the stars and gas as separate fluids we must use the approximate criterion that 
when 

ttGpo 
(I35) 

considerable growth can occur. 
The modes that grow most in our investigations have wave-lengths of about 

477T (when they point radially). Here T, the thickness of the galaxy, is defined 
as T(R) = 'L(R)/p(R). In the solar neighbourhood T ~8oo pc which makes the 
wave-length embarrassingly large for something deduced from a small scale 
approximation. Of course this wave-length will decrease as the shearing proceeds 
so that when the waves have been swept around to make an angle a with the radius, 
the wave-length will be about 477Teosa. The equivalent length in a more 
complete theory which allowed for the curvature effects in the galaxy would be 
related to the distance between spiral arms. In our theory it can do no more 
than indicate the sort of length scales involved in growing condensations. They 
are in the right range for spiral arms when suitable angles a are used. 

From a local theory we cannot produce any preference for the formation of 
symmetrical two-arm spirals. However it seems likely that the instability leading 
to them is a somewhat more organized form of the one discussed here. 

10. Observational consequences and predictions 

Perhaps the most important prediction of the theory is that anywhere in any 
spiral galaxy (except in the nuclear bulges) the star-gas mixture must be on the 
borderline of gravitational instability. For stellar velocity distributions whose 
smaller axis of dispersion in the galactic plane is not considerably greater than 
the axis normal to the plane this leads to the prediction 

77 Gp 
(!36) 

A discussion of the exactness of this number is not inappropriate. For a 
galaxy that is all isothermal gas it should be 0-7 if ring instabilities are critically 
stable. However transverse modes would form spiral structure even before that 
so the number might be slightly further reduced to o*6 say. For galaxies of stars 

* It is a simple matter to make the slight extension of the result proved in (9) to cover waves 
exactly perpendicular to the axis of rotation. 

f This number is rather sensitive to anisotropy in the pressure. For y = 1 it is 0*7 for isotropy 
and 1*8 for an anisotropy corresponding to sound velocities in the ratio of 2*1 : 1 between the 
direction of wave propagation and the vertical. For y = 2 it is i-i for isotropy. 
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the problem is aggravated by velocity anisotropy and with no velocity dispersion 
normal to the plane but considerable dispersions in the plane the number would 
become infinite, the stability being dependent on the surface density as discussed 
in the note after paper I but with B(B — A) replacing £î2 (which takes account 
of the differential rotation exactly for ring modes). For the ring modes near 
the Sun with the observed anisotropy of 2*1 :1 the number would be i*8 but it is 
the sheared spiral arm modes that are really relevant to the problem because these 
are more unstable on two counts. Firstly as discussed above even when pressures 
are isotropic sheared modes show instability while ring modes are stable. 
Secondly as discussed in Appendix II of paper I the lower velocity dispersion in 
the tangential direction should favour sheared modes. From that note and the 
replacement ^Q?->^B(B — A) we see that these transverse sheared modes will be 
on the verge of instability if 7rGpl^B(B — A) is slightly less than 1*3(5). This is 
in striking agreement with Jones’ (10) discussion of the best value of the total 
density of gravitating matter derived from observations. Correcting his value 
for P = —10, A = 15 we obtain from observations 

/> = fpc=6 •10-24 gm/cm3 

and 
<■ 

à) ~ i'2<5)- 

This is probably better agreement than we deserve. 
Unfortunately in external galaxies the velocity anisotropies are not observable 

but, assuming that they vary from isotropic to somewhat beyond those found at 
the Sun the expected range of TrGpl^B(B — A) would be from o*6 to 1-5. 

In our theory the central line of the condensing material moves with the 
differential rotation. Hence, we can also make a prediction of the shape of spiral 
arms. If (i?, <£(i?)) is a general point on the central line of a spiral arm and if 
(i?0, (¡>q) is some reference point of the central line of the same arm then 

<ttR)-<f>0=(a(R)-Cl(R0))t (137) 

is the equation of the arm at time t after the embryo arm pointed radially. This 
is a reasonable starting time since the acceleration is greatest about then; 
it is always the initial stages of growth that are crucial to the development of 
gravitational instability. 

Formula (137) is also open to observational test. Consider an open armed 
spiral whose planes make an angle of about 45° with the plane of the sky. 

Furthermore we assume that it has reasonably continuous arms, or at least a 
number of pieces of arm that overlap in radial distance from the galactic centre. 
Then, if the tilt of the galaxy can be estimated <^(i?) —can also be estimated. 
If the velocities can be measured then il(i?) — Q(/?0) can be determined up to 
a multiplicative ‘ ‘ distance scale ’ \ Hence a plot of <j>(R) — <f>o against £l(R) — il(i?0) 
should yield a straight line whose gradient is the product of t and the constant 
entering the distance scale. Disconnected pieces of spiral arm should have 
different values of t since we have no reason to suppose that they started to form 
at the same time. 
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Other consequences of this theory that have not been exploited in this paper are : 

(1) the possibility that the shock waves which seem to be an inevitable 

consequence of differential rotation, will play an important role in stirring 
up the interstellar gas ; 

(2) the strong relaxing effect of the growing spiral arms on stellar motions. 

Mechanism (1 ) may actually provide the feedback which keeps the gas sheet at 
the right density. A growing spiral arm will provide pressure perturbations for 
other modes ; these will feed on the energy of differential motion before dissipating 
it in shock waves which produce heat and turbulence in the interstellar gas. 

Fig. 6 

It is important to realize that equation (135) contains the key to the building 
of more or less unique models of flat galaxies based on observations of velocity 
laws. It is well known that the balance of centrifugal force and gravity leads to 
a distribution of surface density 2(i?) for a disk. Equation (135) shows that 
when the velocity law is known the mean density p(i?) is determined. Thus the 
thickness T(R) = 'L(R)/p(R) is also determined and the balance between the 
stellar motions and the gravity on to the disk will determine the vertical velocity 
dispersion ctJ (R). It is clear from Figs. 3, 4 and 5 that for different values of 

the wave-lengths associated with the greatest growth vary from about 2ttT 
(T=thickness of the galaxy) for large \B/A\, such as 10 or 3, to about 477T for 
the more greatly sheared cases, \B/A | = | or J. Another result of the computations 
is that growth by a given factor is attained at smaller values of r for the larger 
values of \B/A\. Initial perturbations of given size will grow into the non-linear 
regime before they are very violently sheared when the galaxy is nearly uniformly 
rotating. They will be more tightly sheared for strong differential rotation. 
If we take as a representative point the value of the shear angle ^ = tan_1r 
when growth by a factor of 50 is attained then we find the graph of Fig. 6. 
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This could be related to the difference between open and tightly wound 
spirals in which case our prediction would be that the more open spirals rotate 
more uniformly (i.e. have the larger average values of \B¡A\). However, this is 
not an inescapable consequence of the theory because the more open spirals 
are notably more messy and may therefore generate larger initial perturbations 
than the tight spirals. Smaller growth factors could therefore bring such 

perturbations into the non-linear regime. If equation (137) were observationally 
checked in at least one galaxy one would have some confidence in applying it 
to face-on spirals in which the velocity law is unmeasurable. By combining 
results from several pieces of different arms it should be possible to build up a 
picture of the variation of £l(R) with R, determined up to a normalizing constant 
(and possibly a zero point). This provides a method of determining mass 
distributions (but not masses) for face-on spirals. 

There is also the less certain prediction (discussed in Section 10) that the 
more open armed spiral galaxies should rotate more uniformly than the tightly 
wound ones. 

Assuming the velocity dispersion tensor 

(r)= J/cc¿3c yj/¿3c, (138) 

where /(r, c) is the distribution function (weighted with the masses) always 
has one principal axis vertical, we may deduce Jeans’ stellar hydrodynamical 

equation in the form 

Wz(r°->)-P Tz- ('39) 

We have also assumed a steady state. Further for a stratified distribution 

di/j 

Thus 

and hence 

¿--^Gjpdz. 

0 

z z 

\pazX= jp(z) Jp(z’)dz'dz 

0 0 

z 

[pct J0
2 = - Jp(G) ifej , 

(140) 

(Hi) 

(142) 

where the right-hand side has been derived using an integration by parts. 
Hence 

uu 

[ J 
(HS) 

where pc{K) is the density at the centre of the sheet. Now Pclß^t'S for y = 1 
and pc/p = 4/77 for y = 2 which shows that this ratio is insensitive to the value of y 
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(in the range of interest). Hence, even if azz varies somewhat with height 
(as it does for a y = 2 sheet) we may expect 

s ttG 
°zz(R>0)= — 

[ PH' 

(^•/4)-1P 

(144) 

(hs) 

Thus not only the surface densities but also the mean densities, thicknesses, 
and velocity dispersions can be derived from velocity curves for spiral galaxies, 
provided that we assume the vertical velocity distribution is not much smaller 
than the least dispersion in the plane. 

ii. Further problems 

11.1. Barred spirals.—The gravity field of the bar must dominate the 
dynamics of at least the central regions of barred spirals. Thus only in the 
outer parts can a theory of the type presented in this paper apply. However 
the near uniform rotation of barred spirals removes the winding problem which 
makes it much easier to construct theories that are plausible. In this section 
we discuss a theory that has been developing at the hands of a number of authors. 

If a cloud is falling together under its self-gravity and in the absence of 
pressure support then any initial inequality of axes will be greatly exaggerated 
during the motion. This is true even when rotation is present so one might 
expect objects which have recently fallen together to have very unequal axes, 
a^>b^>c (11), (12). These necessarily elongated objects will have a natural 
preference to form their shortest axes along their rotation axes. Ogorodnikov has 
pointed out that there are such elongated objects among the members of some chains 
of galaxies catalogued by Vorontsov-Velyaminov, and he suggests that these are 

protobarred spirals. He and Antonov have suggested that the ends of the bars 
of barred spirals are neutral points of the total gravitational plus centrifugal 
field ( 13). A streaming of material from these points could be responsible for the 
arms of barred spirals. More recently Freeman (14) and Prendergast (15) have 
shown that in the rotating axes of the bar, particles leaving the end of a uniform 
gravitating ellipsoid with a small radial velocity trace out convincing spiral arms. 
The presence of this material trailing behind the bar must lower its angular 
momentum. Relieved of some of its angular momentum the bar will shorten. 
Fujimoto has discussed this process using dynamical models due to Aarseth while 
Ogorodnikov has pointed to the observation that old barred spirals have stubby 
arms, in good agreement with this line of thought ( i6)-( 19). 

The origin of the streaming from the ends of the bar and of the continued 
presence of neutral points there remains obscure, so we present here an idea of 
a possible mechanism. Suppose the configuration is as postulated at some time, 
then the bar loses angular momentum to the arms and contracts a little. This 
contraction increases both the angular velocity and density of the bar. The 
latter is further increased by the lateral contraction necessary to make the pressure 

balance the increased lateral gravity (assuming y <2). Although the loss of 
angular momentum eases the problem that the galaxy has in holding itself 
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together, nevertheless the increased density aggravates the problem. If this 
aggravation wins then the neutral points will move inwards through the material 
of the bar leaving more arms behind them. 

11.2. Problems raised by the present work,—(i) The divergence of the density 

leading to shocks that we discussed briefly in Section 3 should be further 
investigated. The physical reason why shocks form in a sheared flow may be 
compared with the mechanism of shock formation in Riemann’s plane non-linear 

waves. There, different disturbances overtake one another because the wave 
velocity depends on the density. In our case the behaviour occurs in the linearized 

theory because the mean flow velocity is added to the wave velocity yielding 
disturbances that can overtake one another. 

It would be important to calculate the energy input into the interstellar gas 
due to these shocks. 

(ii) A non-linear treatment of instability growth using the equations of 
motion rather than Hunter’s equation should be attempted. 

(iii) It would be important to determine the critical value of nGpl^BQ, for 
the superposed sheets of gas and stars discussed in Section 10. A better value 
could then be used to build galactic models. 

(iv) Using the formulae given here models of galaxies should be derived. 
(v) The stability of such a model without the use of a small scale analysis 

should be attempted. 
(vi) The validity of the vertical equilibrium approximation should be 

checked. 
(vii) Application of this theory of gravitational instability to other 

differentially rotating systems should be considered, e.g. for the cosmogony of 
the solar systems. 

(viii) A mathematical model of the dynamics of a barred spiral galaxy 
obeying our mechanism should be worked out. 

(ix) The rate of relaxation of stellar orbits due to spiral arm formation 
should be worked out. This is likely to be the dominant relaxation mechanism 
in the galactic disk. More generally whenever the mean gravitational field of a 
whole stellar system is undergoing rapid change the effective relaxing effect is 
likely to be enormous. The density distributions of elliptical galaxies could be 
due to rapid relaxation during their chaotic birth stages. This form of relaxation 
will lead to relaxation times and velocity dispersions that are independent of 
stellar mass. 

Appendix 

Validity of the vertical equilibrium approximation,—In paper I we worked out 

the exact dispersion relation for the incompressible uniformly rotating sheet. 
It is 

7rGp0 7 7 / T \ 1 

oPkPcp71 at (1 + — z\k\a)2\k\ay 

where 

w“2 = i — 
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However, following the method of the present paper one may also work out 
the dispersion relation approximately by using the vertical equilibrium 
approximation and integrating through the sheet. The result is 

_ nGpo =  i  

to2 —4Ü2 (1 + — 2\k\a)2\k\a * 

Evidently the two expressions coincide (as they must) when œ is small for then 
n is small and th(nka) may be replaced by nka. 

Our present concern is that for the differentially rotating sheet we have used 
the vertical equilibrium approximation for modes whose wave numbers vary 

through the critical ones and which may at times be considerably different from 
them. 

How bad is the equilibrium vertical approximation when used away from the 
critical wave numbers ? Does it give the correct qualitative behaviour and if so 
what are the errors quantitatively ? What is crucial to the preceding argument 
is that both the onset and the growth of the instability should be determined 
accurately. The accuracy of our solutions in their oscillatory regions is irrelevant. 

By looking at the computed solutions we determined approximately the range 
that k swept through during the period of growth. In Fig. 7 we have plotted 
the exact and approximate dispersion relations and have indicated the region of 
growth. In this region the approximation is virtually exact; not bad for an 
approximation which saves six orders of differentiation ! 

Note added in proof. 
We have heard from Dr Toomre and Mr Julian of further work on zero 

thickness stellar disks including a discussion of sheared modes. These behave 
very similarly to their gaseous counterparts discussed here. This work was 
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independent of ours although the same sheared coordinates have been invented 
by them. Their discussion of truly stellar disks adds to our confidence in applying 
results obtained for gas to a mainly stellar galaxy (20), (21). 

Department of Applied Mathematics and Theoretical Physicsy Clare College, 
University of Cambridge : Cambridge. 

1964 June. 
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