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ABSTRACT 

A critical factor in the formation of galaxies may be the presence of a black-body radiation content 
of the Universe. An important property of this radiation is that it would serve to prevent the formation 
of gravitationally bound systems, whether galaxies or stars, until the Universe has expanded to a critical 
epoch. There is good reason to expect the presence of black-body radiation in an evolutionary cosmology, 
and it may be possible to observe such radiation directly. 

Assuming that the Universe is expanding and evolving, very likely most scientists 
would agree on the over-all picture for the evolution of the Universe. At a remote time 
in the past the Universe contained only dense gaseous material, with neither stars nor 
galaxies. As the Universe expanded from this state the material became organized into 
galaxies and clusters of galaxies, and the material within galaxies passed through the 
generations of stars. Now a central question is what were the physical processes, and 
what were the physical parameters and conditions that determined how galaxies formed, 
with the observed distributions of mass and size, and the observed tendency for galaxies 
to be distributed in clusters. 

An approach to the problem may be based on the following important property of an 
evolutionary cosmology (Dicke, Peebles, Roll, and Wilkinson 1965). 

1. Assuming that the Universe expanded from a sufficiently highly contracted phase, 
the early Universe would have been opaque to radiation. As a result the radiation field 
would have achieved thermal equilibrium with the matter—the Universe would have 
been filled with black-body radiation. This fireball radiation suffers the cosmological 
redshift, so that it is very much cooled by the expansion of the Universe, but it retains 
its thermal, black-body character. 

It may be possible to observe this fireball radiation directly by means of a microwave 
radiometer. Recently, Penzias and Wilson (1965) have reported that at 7-cm wavelength 
there appears to be isotropic background radiation with intensity equivalent to 3.5° ± 
Io K. Further measurements at other wavelengths are necessary to establish that this 
radiation has a black-body spectrum, as expected for the cooled fireball from the big 
bang. The purpose of this article is to show that, if the Universe does contain black-body 
radiation of this general amount, this radiation must have had an important effect on 
the early evolution of matter leading to galaxy formation. 

* This research was supported in part by the National Science Foundation and by the Office of Naval 
Research of the United States Navy. 
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It is important to distinguish this possible thermal radiation from the integrated back- 
ground radiation due to the galaxies. Eddington (1926) estimated that the starlight in 
our own Galaxy amounts to 3°K. However, this is an effective temperature, such that 
oT4 is the total starlight radiation energy flux. The radiation intensity spectrum is quite 
different from the black-body radiation considered here. 

The role of the thermal, fireball radiation in the formation of galaxies is summarized 
in the following remarks. 

2. The expansion of the Universe adiabatically decompresses and cools its contents. 
So long as the temperature exceeds about 4000° K, the material in the Universe is ionized 
and is sufficiently opaque to radiation that material and radiation would remain in 
thermal equilibrium. The temperature T varies with the mean density of matter p 
according to the formula 

T oc p1/3 . (1) 

3. In the expanding Universe any sufficiently large-scale perturbation to a homogene- 
ous mass distribution grows more pronounced with time, eventually tending to form a 

TABLE 1 

Formation of Protogalaxies and Clusters of Galaxies 

Present mean density of matter (gm/cm3) 
Present black-body radiation temperature (c 

Present age of the Universe (yr) 
K) 

Formation of gravitationally bound gas clouds: 
Time of formation (yr). 
Temperature (° K)  
Radius (pc)  
Density within cloud (protons/cm3) . 
Mass of cloud {Mo) . ... 

Formation of galaxies: 
Minimum mass of galaxy {Mo) . . . 
Protogalaxy mass {Mo) : 

n—0 ... ... 
w = l  .... 

Maximum mass of a cluster of galaxies {Mo) : 
w=0    
w=l. . .   

2X10-29 

3 
7X109 

1X106 

4000 
10 

3X104 

2X106 

2X106 

109 

1010 

1013 

1016 

2X10-29 

0 3 
7X109 

3X103 

5000 
0 

5X107 

6X104 

6X104 

109 

1010 

1013 

1017 

7X10~31 

3 
1X1010 

7X105 

4000 
40 

1X103 

1X107 

1X107 

109 

1010 

1012 

1014 

7X10~3 

0.3 
1X1010 

2X104 

4500 
1 

1X106 

3X105 

3X100 

109 

1010 

1010 

1013 

gravitationally bound system. This is the familiar Jeans gravitational instability 
(Gamow 1948). 

4. With the Jeans instability alone we encounter a dilemma of initial conditions. The 
time at which a bound system forms depends critically on the details of the density per- 
turbation evaluated at some chosen, initial time, and to form the observed galaxies it 
would be necessary to postulate extremely special initial conditions. 

5. This unsatisfactory situation is avoided if it is assumed that the Universe con- 
tains black-body radiation. It will be shown that the radiation would prevent density 
perturbations from growing larger than the mean density itself until the Universe has 
expanded to a critical epoch. 

6. After this epoch the Jeans instability leads to the formation of gravitationally 
bound gas clouds of well-defined size and mass. The properties of the gas clouds are 
listed in Table 1, where each column corresponds to definite assumptions about the 
present mean density and radiation temperature of the Universe. Subsequent evolution 
pf the matter is not influenced by the black-body radiation. 
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7. The motion of the gas clouds is subject to a gravitational instability. This results 
in the formation of bound systems of gas clouds, which should collapse to form more 
massive protogalaxies. 

This discussion is based on conventional general relativity and the homogeneous iso- 
tropic cosmological models. All quantities below will be expressed only in proper units, 
as measured with ordinary measuring rods and clocks and balances. 

To obtain the critical condition mentioned in the fifth remark for forming a gravita- 
tionally bound system, suppose a spherical mass of gas has just achieved equilibrium, 
tending neither to expand nor collapse. As the Universe expands, the mean black-body 
electromagnetic-radiation energy density is decreasing, so that radiation is tending to 
flow out of the system. This is opposed by Thompson scattering of the radiation by the 
free electrons, if the temperature is above 4000° K. Thus, the radiation temperature 
within the bound system will exceed the mean radiation temperature by the amount 

AT vWpH 
—~ ^ . (2) 
T cmv 

In this equation it will be recalled that all quantities are measured in proper units, where 
R is the radius of the bound system, a is the Thompson scattering cross-section for an 
electron, p is the density of matter within the system, H is Hubble’s constant, and mp 

is the mass of a proton. 
Suppose first that the system is so large that AT/T^> 1. In this case radiation would 

be trapped inside the bound system, and for equilibrium the gravitational force would 
have to balance the radiation pressure of this trapped radiation. Ignoring the gas pres- 
sure, and assuming for the moment that the system is not too large, the condition for 
equilibrium is 

where p and T are the density of matter and the radiation temperature within the system, 
and b is the radiation energy density constant (b = 7.6 X 10“15 erg/cm3 ° K4). In situa- 
tions of interest the mass density of matter will be substantially below that in radiation 
(Table 2) so that expression (3) reduces to 

c/(Gp)112. (4) 

But Hubble’s constant is 
H = (SwGbT^/Sc2)112 (5) 

and with the mass density p much less than the radiation density bTA/c2, we see that 
expression (4) implies 

R » c/H . (6) 

This means that the system is larger than the visible Universe. Evidently the simple 
Newtonian approximation (3) would not apply if expression (6) were valid, but more 
important, we see that the system must be unstable against gravitational collapse, for 
the mass of the system satisfies GM/Rc2 > 1. However, we do not believe that any 
appreciable part of the observable Universe has already collapsed. Thus, the system 
could not be large enough to contain the radiation pressure. Therefore, for equilibrium 
the system must be small enough to allow the radiation to escape (AT/T <<C 1 in eq. [2]) 

R2 < cmvl a pH . (7) 

If expression (7) is satisfied, the radiation will be very nearly uniformly distributed 
in space. Then assuming that the center of the gravitationally bound system is at rest 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
 6

5A
pJ

. 
. .

14
2.

13
17

P 

1320 P. J. E. PEEBLES Vol. 142 

in the comoving coordinate frame, and assuming that the (proper) size of the system 
is constant, the edge of the system will be moving with velocity HR relative to the 
comoving coordinate frame at that point. Since the radiation is moving with the comov- 
ing coordinate frame there will be a radiation drag force per electron at the edge of the 
system amounting to 

p ' 

This is the radiation force for temperatures in the range T <3C 1010 ° K (that is, non- 
relativistic electrons) to T > 4000° K (free electrons). 

If the system satisfies Jeans’s criterion for gravitational instability, pressure forces 
may be neglected, and equation (8) must be balanced by the gravitational force per 
proton, 

F0 = %irGmPR(^Pb + —^. (9) 

TABLE 2 

Condition for a Gravitationally Bound System* 

Age of the Universe (yr) 
Temperature (° K)  
Mass density due to radiation (gm/cm3) 
Mean mass density of matter: 

Gm/cm3 .... 
Protons/cm3  . ... 

Matter density within a bound system 
(protons/cm3) . . .   

Maximum mass (Mo)  

7X105 

4X103 

2X10-21 

2 X 10~21 

103 

106 

1014 

5X103 

4X104 

2X10-17 

2X10-18 

106 

1012 

109 

* Assumed present conditions T = 3°K,p = 7 X lO“31 gm cm3. 

Equating (8) and (9), the density p& within the system divided by the mean density of 
matter in the Universe, p, is found to be 

P&/ P 
2bT*/3acH 
pc2 xSirGnip / pc* 

(10) 

where in the final term we have assumed the present value of Hubble’s constant is Hf = 
3.2 X 10“18 sec""1 (100 km/sec Mpc). 

The ratio (10) of the density pb required for equilibrium to the mean matter density 
p is given in Table 2 for reasonable values of the mass density and radiation temperature 
in the present Universe. Also shown is the maximum mass of a bound system, as given 
by equation (7). It is evident that until the plasma recombines (T ~ 4000° K) a bound 
system could have formed in this cosmology only if there were extremely large density 
fluctuations. 

One could imagine a situation in which a system with density greater than the mean 
density is expanding just slightly less rapidly than the general expansion, so that the 
radiation drag and gravitational forces just balance. However, it is important to notice 
that this is an unstable balance. The radiation drag force is spherically symmetric, while 
within an elliptical mass distribution the gravitational force is larger, for the most part, 
along the minor axes. Thus the system tends to fragment, eventually into pieces so small 
that pressure forces can disperse them. 

The significance of these remarks is that while p&/p ^>> 1 (eq. [10]) the Universe is 
stable against the development of large matter-density perturbations. On the other 
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hand, given a smooth density distribution, small perturbations to the matter distribution 
tend to grow with time. It is important to recognize the distinction between these two 
cases. We shall show that small density perturbations (5p/p<<C 1) are not appreciably 
affected by the radiation drag. When the density excursions have grown comparable to 
the mean density radiation drag becomes an important factor, serving to prevent density 
perturbations from growing larger until p&/p approaches unity. 

To discuss the behavior of small density perturbations we write the matter density 
p(jt,¿) as 

p(*,0 = p0)[1 + D(x,t)\, (a) 

where p is the mean matter density. This first-order perturbation problem was first dis- 
cussed by Lifshitz (1946). Introducing the simplifying assumption that the linear dimen- 
sions of any perturbation are small compared with the radius of the visible Universe, it 
is shown in the Appendix that if the perturbation is resolved into Fourier components 

D = d(t)eik-x (12) 

such that the wavelength X = 2ir/\k\ satisfies 

ld\ 
X dt 

= — H (13) 

(so that the wave is taking part in the general expansion) then the Fourier amplitude 
d(t) satisfies 

87r2¿r\ 
m^X2 ) a (14) 

This is valid if X is small compared with the radius of the visible Universe. 
From equation (14), if 

X >X, = /27r&TV/2 

^ \Gpmp) 
(15) 

d{i) grows with time. This is Jeans’s criterion. For smaller wavelengths d(t) oscillates, 
and the disturbance is dissipated by the damping terms (in dd/dt). 

To estimate the rate of growth of the perturbation d when expression (15) is valid, 
consider a cosmologically fiat Universe. Under the assumption that the particle mass 
density is greater than the mass density in radiation, the age of the model since start of 
expansion from infinite density is ¿ = (67rGp)-1/2, and H = 2/ (3/). Then, neglecting the 
pressure and radiation drag terms in (14) (i.e., setting T = 0), we find d ¿2/3. This is 
the result obtained by Lifshitz (1946). Similarly, if the mass density in radiation domi- 
nates, d ^ ft61. 

These results apply once the electrons have become non-relativistic. We see that the 
density perturbations grow slowly, as a power of time. We believe it is reasonable to 
assume that there has been adequate time for the growth of perturbations on the scale 
of galaxies and clusters of galaxies. This would not have been the case if it were assumed 
that at the epoch when the electrons first became non-relativistic the Universe was strict- 
ly homogeneous, with the density perturbations only random (thermal) fluctuations. 
However, the assumption of an exactly symmetrical Universe at this epoch appears quite 
overidealized. In the following discussion we shall assume that the early Universe was 
sufficiently irregular that appreciable density perturbations did form due to the gravi- 
tational instability, but not so irregular that parts of the Universe have already suffered 
gravitational collapse. The general question of the homogeneity of the early Universe 
will be discussed in detail elsewhere. 
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When the density excursions have grown to a value comparable with the mean densi- 
ty, perturbations can develop very rapidly. To understand this, consider a region, 
roughly uniform and spherical, in which the density is twice the mean value. At time ¿o 
let the material in the region be expanding at the general rate, so the speed v of material 
in the patch a distance r from the center is given by 

{v/r)2(t = to) = %irG[p(to) + pr(¿o)] , dö) 

where we have written separately the densities of matter, p, and radiation, pr. If we 
neglect for a moment the radiation drag, the subsequent motion is given approxi- 
mately by 

(v/ry=~[2P(t)+pr(t)-p(t0)roi/ri]. ' (17) 

Thus the patch stops expanding when 2p(t) + pr(t) = p(to)rQ
2/r2. If the mass density in 

radiation does not exceed that in matter (Table 2) this is an expansion of a factor of 2 
in radius. The patch would then collapse by a factor ^2 in radius to a stable, bound 
system. However, it is important that this situation is very much altered if p&/p » 1 
(eq. [10]). In this case, we have shown that the patch must fragment and be dispersed. 

Now we can draw the following general picture. In the initial very contracted Universe, 
there was a more or less uniform distribution of ionized hydrogen. That part of any 
density perturbation with wavelength satisfying expression (15) would grow with time, 
while the rest of the perturbation decayed. The resulting pattern of density fluctuations 
takes part in the general expansion of the Universe (eq. [13]). Notice from expressions 
(1) and (15) that the critical Jeans wavelength expands with the pattern. The fully 
developed pattern of density perturbations is characterized by a power spectrum cut 
off at the Jeans wavelength. Assuming that the power spectrum (contribution to the 
variance of p per wavenumber increment) does not increase with wavelength faster than 
X3 for X > Xc, the characteristic dimension of density fluctuations is the Jeans length Xc. 
That is, the density perturbation at any point is correlated with the density perturbation 
at points a distance less than Xc away, and uncorrelated with points much more distant 
than Xc. Density excursions are roughly comparable to the mean density. Peaks in the 
density pattern tend toward rapid growth, only to break, because of the radiation drag, 
and return to the general level. 

When ph/p (eq. [10]) approaches unity, at time 4, patches of higher density, with 
dimensions of the order of Xc, now are in a position to evolve toward gravitationally 
bound systems. If the mean density of matter is pc at this time (4) the mass of one of 
the systems is of the order of 

Mc = J^rpoXc3. 
Notice that 

GMcMp _ 47T2 

2kTc\c~'J~' 

That is, the matter is formed at roughly an equilibrium configuration. This means that 
the bound systems have density and characteristic dimensions very roughly of the 
order of pc and Xc. 

Assuming that the present thermal radiation temperature is 3° K (Penzias and 
Wilson 1965) and the present matter density is 7 X 10~31 gm cm3 (Oort 1958) equation 
(18) implies a mass Mc~ 107 Me, roughly the mass of a dwarf galaxy (see Table 1). 

With much of the matter in the Universe now concentrated in these discrete clouds, 
there is at any point a gravitational field, of the general order of GMC/L, where L is 
the mean distance between clouds. A cloud thus tends to move toward nearby, higher- 
density regions, leading to clustering of the clouds. 

(18) 

(19) 
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The development of this gravitational instability depends on the power spectrum of 
the density fluctuations at the time tc of formation of the gas clouds. With a flat power 
spectrum, the total power (i.e., contribution to the variance of p) in wavelengths greater 
than X goes as X~3. However, we can find no reason to expect a characteristic random 
(flat) spectrum, so for the purpose of a brief discussion of the formation of bound clusters 
of gas clouds, we shall characterize the power spectrum di? at time tc as 

di? œ X” , (20) 

where the index n would vanish for a flat spectrum, and for boundedness n < 3. This is 
the power spectrum per increment of wavenumber k. 

In the cosmological models in Table 1 the clusters of gas clouds are forming at a time 
when the mass density in radiation approximately may be neglected. With this assump- 
tion, we consider first a cosmologically flat Universe, such that the acceleration parame- 
ter, q = 47rGp/(3#2) is equal to J. 

Let ^4 be a spherical region which is expanding with the general expansion of the 
Universe and such that, within the volume of A, there would be a mass M of matter on 
the average. Then the actual mass within A at time tc is uncertain, by the amount 

{bM/M)c ~ {M/Mc)-» 5+"/6. (2i) 

The functional form of expression (21) is obtained using expression (20) by integrating 
the density perturbation over A and averaging the square of this integral, with the 
assumption of random phases of the dic. The normalization is obtained by noting that 
when M ~ MCl bM ~ Mc. 

As long as bM/M <<C 1, we have shown above that the uncertainty (21) grows as ¿2/3. 
Now consider the epoch t such that 

5+”/6 = 1 . (22) 

At this time we can make the following assertions. Within spherical volumes equal to 
that of the region A the total mass varies by a factor ^2. Within much larger volumes 
the mass is nearly constant. There exist systems, of mass 

m ~ , (23) 

which are in the process of forming bound systems. In smaller subsystems this process 
occurred earlier, and the subsequent collapse, or adjustment to equilibrium is already 
well advanced. This process should be pictured as a roughly continuous progression 
along a hierarchy in the departure from the general expansion. 

We see immediately from equation (23) that in this cosmology the maximum mass of 
a cluster of galaxies in the present Universe is 

m < Mc{tf/tcyi^), (24) 

where // is the present age of the Universe. Adopting the value of Hubble’s constant 
Hf — 100 km/sec Mpc, and assuming a cosmologically flat space, # = J, we have 

p/ = 2 X 10~29 gm cm3. (25) 

This is the first density used in Table 1. The maximum mass of a cluster of galaxies as 
given by equation (24) is given in Table 1 for two different values of the index n in 
equation (20). It is seen that this limit can be consistent with Abell’s (1961) conclusion 
that galaxies are ordered or clustered up to a scale ^1016 Mo. 

Although it appears unlikely that the present value of q is very much larger than J, 
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q could be nearly equal to zero (Sandage 1961). Therefore, we have considered also the 
assumption 

p/ = 7 X 10~31 gm cm3. (26) 

This is the estimated mean density of matter in galaxies (Oort 1958). It is interesting 
that in this limit of small mass density (small q) the expanding Universe becomes very 
nearly stable against small density perturbations. This follows directly from equation 
(14). Thus, the growth of the most massive organized clusters of matter is cut off at a 
time, ¿3, when 2q departs from unity, and the maximum mass of a cluster of galaxies is 
given by equation (24) with // replaced by the effective time h. The resulting maximum 
masses for this case are shown in Table 1. It is seen that for any of the conditions as- 
sumed in the table a reasonable value of n may be chosen to obtain a reasonable upper 
mass limit. 

In this theory a galaxy of normal size would be formed by accretion of many of the 
original gas clouds. In the manner just described, gravitational instability can lead to 
the formation of a bound system of clouds of gas, including the original gas clouds and 
more massive subsystems formed earlier. The clouds within the system may collide, 
radiate much of the energy of the collision, and fall toward the center of the system, 
thus leading to the formation of a massive central nucleus. A cloud which passes close 
to the nucleus may be captured due to gas drag, or it may be torn apart by tidal stresses, 
and the remnants captured by the nucleus. The situation is further complicated because 
the various subsystems, or gas clouds, would be in various stages of evolution, with 
masses ranging from Mc up to a mass approaching that of the total system. 

Without attempting to provide a reasonably complete description of this process, we 
shall show only that the accretion necessary for the formation of galaxies can take place. 
Consider a gravitationally bound system, with mass M = NMC. At time tc the material 
within the system would have occupied a region with dimension 

Ri ~ A1/3XC (27) 

and from equation (22) the system would have stopped expanding at time 

when the system had grown to a size 

Ri ~ Rifa/h)2'* — ACA(5-")/6. (28) 

As before, in obtaining equation (28) we have assumed an expansion parameter q^%. 
Now we simplify the problem by supposing that the system contains original gas 

clouds only, and ask whether the system will have collapsed, due to collisions, by the 
present time tf. The mean velocity of gas clouds in the system is 

v ^ 
GMCN V/2- (GMc\

lli 

Xc^(5-»)/6y Xc / (29) 

nearly independent of N. The cross-section for collision is Xc
2. Using equations (28) and 

(29), the largest mass M for which the system could have collapsed by the present time 
satisfies 

/GMA1/2 N 
1 

\\c J XcW(6-")/2 

or 
(30) 
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This rough mass estimate, listed in Table 1, is of the same general order as observed 
galaxy masses, ^lO11 Mo. The significance of this result is that there is time for gas 
clouds within a fairly massive system to have collided with each other to form a proto- 
galaxy. 

APPENDIX 

THE DENSITY PERTURBATION EQUATION 

We consider small perturbations away from a homogeneous, isotropic cosmological model. 
The calculation is simplified by confining attention to perturbations with dimensions small com- 
pared with the radius of the visible Universe. In this approximation Newtonian gravity theory 
applies (Dicke, Callan, and Peebles 1964). Furthermore, we shall take the temperature of 
matter and radiation to be a function of (world) time only. This is quite adequate in the linear 
perturbation case for the characteristic dimensions of density perturbations considered here. The 
calculation is similar to that of Bonnor (1957), but some new effects due to the radiation are 
taken into account. 

In completely ionized hydrogen the electron density is p(xyt)/mv, where mv is the mass of a 
proton and p{xyt) is the mass density. If the matter is moving with velocity u relative to the 
comoving coordinate frame, radiation, isotropic in the comoving frame, exerts a volume force 
crbT4pu/(mpc). Therefore, the equations of motion for matter are 

[(3o* fa 
-T-7+ (v-V)v = - f>v<t>-vp — - p(v- Hr). (31) 
at J Mpc 

This equation is expressed in coordinates, approximately Minkowski, at rest relative to the 
comoving coordinate frame at the origin, r = 0. The Newtonian gravitational potential satisfies 

VV = 47rG(p + 2bT*/c2) . (32) 

The factor of 2 in the radiation energy density follows from the linearized form of Einstein’s field 
equations (Tolman 1934). The equation of state is 

p = 2p(x,t)kT/mp (33) 

and the continuity equation is 

44 + v-(py)=0. 04) 

In a first-order perturbation calculation, we write 

v = rH + u(r,t), p = p{t)[\ + D{r,t)\, <¿> = <¡>ü(t) + y¡/{r,t). 

The unperturbed variables satisfy 
P or3, 

where a(t) is the usual expansion parameter, and 

to = fxG(po + 2bTyây , 

ä/a = -fxG(po + 2bTi/â). 

To first order in the perturbations (35), equations (31), (32), and (34) become 

(35) 

(36) 

(37) 

(38) 
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VV = ÏttGpD , (39) 

dD , { TI ÔD n —-+V-u + tfr —— = 0 . 
dt dr 

(40) 

On taking the divergence of equation (38), and using expressions (39) and (40) and the formula 

Q 
V-(rdu/dr ) = r —( V-u) + V-U, (41) 

o r 
we obtain 

(!+(ir+ir)= 
(42) 

nip mpC \ dt dr / 

This equation is simplified by transforming to new, comoving coordinates, 

y = r/a(t) . (43) 

Then assuming a plane wave, D = d{t)e^y^ we obtain equation (14), where it should be noticed 
that the propagation vector kQ is constant in comoving coordinates, so that the proper wave- 
length is expanding with the general expansion of the Universe (eq. [13]). 
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