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NOTES 

ACCRETION OF INTERSTELLAR MATTER 
BY MASSIVE OBJECTS 

Observations of quasi-stellar radio sources have indicated the existence in the Uni- 
verse of extremely massive objects of relatively small size. The present note discusses 
the possible further growth in mass of a relatively massive object, by means of accretion 
of interstellar gas onto it, and the accompanying energy release. Although there is no 
evidence for (and possibly some evidence against) quasi-stellar radio sources occurring 
inside ordinary galaxies, for the sake of concreteness we consider the fate of an object 
of mass M > 106 (masses in solar units throughout) in an ordinary spiral galaxy some- 
what like ours. 

We first re-examine the hypothetical problem of an object of mass M moving with 
velocity U (in km/sec) relative to a completely uniform gas medium of density n (ex- 
pressed as H-atoms per cm3) and thermal speed ¿7th. We define (Hoyle and Lyttleton 
1939) a characteristic length sQ and express the rate of accretion in terms of a dimen- 
sionless parameter a to be determined, 

so = GM/U2 = (M/U2) X 4.3 X lO"3 pc, 

dM/dt = l'iras^2 nil = oM/U , (D 

¿o = (Uz/Mn) X 3.3 X 1011 years . 

We assume that the size of the object, as well as the collision mean free path in the gas, 
is very much smaller than ^0. For cases with large Mach number, U ^>> Uth, a standing 
(relative to the object) shock front develops behind the object, with a large pressure 
increase across the front. The shape of the shock front is conical about the accretion 
axis, as shown schematically in Figure 1, but the cone angles depend on the specific 
heat ratio y of (and on any irreversible energy loss from) the gas. If 7 — 1 <<C 1 (almost 
isothermal compression) then the density increases greatly across the shock front, the 
cone angles are everywhere small, and pressure gradients parallel to the accretion axis 
are small compared with gravitational forces. For such cases Bondi and Hoyle (1944) 
found that 1 < a < 2, no matter what the degree of mixing in the shocked region is. 
For the special case of purely laminar flow, the results are as though molecules moved 
without collisions except for giving up their transverse momentum when they reach 
the accretion axis. In this case all the gas with impact parameters less than V(2) so is 
accreted and a = 2. 

If 7 — 1 is appreciable, then the cone angles of the shock front are not very small, and 
the gas molecules lose less of their transverse momentum when crossing the shock front 
and also regain some longitudinal momentum during the re-expansion in the shocked 
region (see Ruderman and Spiegel [1964]). These effects result in a decreasing with 
increasing 7. Explicit calculations for 0(7) have not yet been carried out but plausibility 
arguments lead to the conjecture that a is non-zero for 7 < § and not much less than 
unity for 7 < f. The a is also reduced slightly if Í7 is only slightly larger than Uth (see 
Bondi [1952] for cases with U < n Uth). 

McCrea (1953) has discussed the slowing down of an object during its passage through 
a gas cloud with velocity U <$C Z7th. This retardation, analogous to that experienced by 
a charge moving through a plasma, can be expressed as 

dU/dt = — ßU/to , 0 « 1 + ln(5max/50) , (2) 

796 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
 6

4A
pJ

. 
. .

14
0.

 .
79

6S
 

NOTES 797 

where ¿o and so are defined in equation (1). For a uniform medium of infinite extent the 
limiting impact parameter would be ômax ~ U/^(4:wpG) as in the plasma problem. In 
practice the limit in the gravitational problem is the extent of the uniform medium 
(e.g., thickness of the galactic disk). Consider a massive object in the “halo population^ 
with U ~ 100 or 200 (relative to the galactic disk) which spends a fraction of about 
(10/¿7) of its time in the disk. According to equations (1) and (2) the time required for 
slowing down is (Í7/10) ¿o/4ß (if mass increase is neglected and ß assumed constant). 
Unlike accretion of mass, the retardation involves only distant gravitational encounters 
and does not require collisions by the “gas molecules,,, so that the stars in the disk also 
contribute to the retardation. We assume an average gas density w ^ 1 in the disk and 
^tot ^ 10rc (including stars) and ß « 5. A halo object with initial velocity U (relative 
to the disk) will slow down in a time less than 1010 years, roughly the age of our Galaxy, 
if its mass M exceeds a critical value of 

Mcr.sl « (U/lOO)4 X 1.5 X 106. (3) 

For a highly supersonic object retardation is more rapid than accretion (4ßwtot aw), 
and we need to consider accretion only after the object has slowed down to a velocity 

Fig. 1.—A schematic view of the flow. The dotted line is the axis of accretion. The heavy line is the 
standing shock front; the thin lines are (laminar) flow lines. 

U not much bigger than C/th. For our large mass M the characteristic impact parameter 
so exceeds the “spacing between interstellar gas clouds” (or “turbulence scale length”) 
d, and we have to include the random cloud velocities in the thermal velocity. We assume 
Úth ^ 10 or 15, U ~ 25, 1. We thus cannot make use of the much lower thermal 
velocity and higher density available in individual H i region, as attempted in previous 
work for smaller masses. On the other hand, the difficulties encountered previously 
(Schatzman 1955) due to the heating and expansion of H i regions are absent when 
so > d. The energies released by the compression at distances near So can easily be 
radiated away at typical H n temperatures, so the compression is almost isothermal 
(7 — 1 small). The presence of turbulent magnetic fields in the gas makes the compres- 
sion more adiabatic and raises the effective 7 toward f. The accretion time (to/ a) is less 
than 1010 years if the mass M exceeds 

Mct, acc « (U/25y (0.25/aw) X 2 X 106, (4) 

and a probably lies between 0.1 and 1. The characteristic impact parameter is s = 
V(a) So (withy « 7 pc for M = Mct, acc) and the size of the object must be less than s. 
The mass of typical halo globular clusters in our own Galaxy is too small for retardation 
and accretion to become catastrophic by one order of magnitude or so (and their diameter 
would be sufficiently small). 
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So far we have only discussed the gravitational capture of gas atoms from the stream 
at radial distances r from the central object with r ~ s, where the energy released per 
H atom GMH/S ~ \HU2) is only a few eV. If the original gas stream possessed no 
angular momentum about the accretion axis at all (and 7 < f ) the captured gas would 
immediately collapse toward the center, somewhat as in star formation but with a con- 
tinuously increasing mass in the condensation. The evolution of massive stars takes less 
than 107 years and no zero-temperature spherical equilibrium models exist exceeding 
two or three solar masses. After a relatively short time, then, most of the accreted matter 
would have collapsed to the “Schwarzschild singularity” (r = 2GM/c2). Although the 
gravitational redshift for radiation from “collapsed matter” is large, note that its 
“active gravitational” (as well as “passive inertial”) mass is essentially undiminished. 
If the original star cluster (or other non-condensed object) exceeded both critical masses 
in equations (3) and (4), then the accreted collapsed matter eventually dominates as the 
cause for further accretion. 

Theories for quasi-stellar (or other condensed) objects which invoke the gravitational 
collapse of an isolated mass or cluster usually encounter some difficulties in shedding origi- 
nal angular momentum. In our problem the incident “turbulent” gas stream will also 
carry some small angular momentum at any instant of time, and a captured gas “tur- 
bule” will not be able to penetrate to very small radial distances by itself. For our con- 
tinuous gas stream, however, the angular momentum is only a statistical quantity, pro- 
vided that the accretion impact parameter s is much smaller than characteristic dimen- 
sions of the galaxy. The angular momentum then changes sign over times of the order of 
s/U and in about that time a gas “turbule” can shed its angular momentum by collisions 
with other turbules and spiral in toward the Schwarzschild radius. In this turbulent 
manner gravitational energy is continually converted into bulk kinetic energy, compres- 
sional heating, and compression of turbulent magnetic fields. Densities n(r) at radial dis- 
tance r must lie in the range between (s/r)lhn and (s/rYn and radiating away 
energy (bremsstrahlung or synchrotron radiation via energetic electrons) at these high 
densities presents no great problems. 

Each accreted gas atom eventually approaches the Schwarzschild radius r = 2ro 
(with ro = GM/c2 = (M/108) X 4.7 X 10~6 pc), and we have to estimate the fraction 
/tot of its rest-mass energy which is radiated away altogether. As a simplified model for 
the spiraling in via many collisions, consider a particle in circular orbits with diminishing 
radii caused by a slow drain of angular momentum and energy. Due to general relativistic 
effects (see the Appendix) the orbits become unstable to spontaneous spiraling in at r = 
6ro. By this time a fraction/ = 0.057 of the rest-mass energy has escaped to infinity. If, 
at r = 6r0, the particle could be brought to rest (by the unlikely collision with a matched 
particle of opposite momentum) an additional fraction A/ = 0.126 could in principle 
escape. After free fall to r = 3r0 the additional fraction is 0.22, and so on. However, the 
chances of arresting the free fall with appreciable efficiency seem small. In addition, even 
in the absence of any optical absorption, 50 per cent of all radiation (or highly relativistic 
particles) emitted isotropically at r = 3r0 would be prevented from escaping by general 
relativistic effects (but only 14.5 per cent at r = 6r0). We estimate /tot (net energy 
escaping to infinity in all forms) to lie in the range of 0.05-0.20. Note that the gravita- 
tional mass of the collapsed source is increased by a fraction 1 — /> 0.8 of the accreted 
mass, and we omit a corresponding correction factor which should be applied to equa- 
tion (1). 

The optical luminosity Z0pt can be written in the form 

^-(¥)’* Ô5 (w)’X 2 X 10’io • 

If a (and n) remained constant, then M (and Z) would increase to infinity after a finite 
time (/oM according to equation (1). However, the effects of radiation pressure de- 

cs) American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
 6

4A
pJ

. 
. .

14
0.

 .
79

6S
 

No. 2, 1964 NOTES 799 

crease the effective value of the gravitational constant appreciably as (L0pt/M) ap- 
proaches a limiting value which depends on the average opacity coefficient. (Z0pt/ 
M)\im can be as low as 100 (in solar units) in H i-regions in our Galaxy, due to the pres- 
ence of dust grains (van de Hulst 1955) and as large as 3 X 104 in pure ionized hydrogen 
if only Thomson scattering is important. Once the mass M has grown sufficiently for 
equation (5) to give a value of (Lo^t/M) close to this limit, radiation pressure automati- 
cally lowers a in such a way as to keep Lo^t/M almost constant. Subsequently, M (and 
hence L0pt) increases with time only exponentially as etlT, where 

r = (/opt/0.03) (103 M/Lovt) X 4 X 108 years , (6) 

and the characteristic accretion impact parameter s = V(a) increases only as <\/M. 
For instance, under typical conditions for our galactic disk with (Zopt/^Oiim ^ 200, the 
exponential growth would start at M ^ 107 and s would reach about 350 pc when M ~ 
109andZ,Opt~2 X 10u. 

To summarize the situation for a highly evolved spiral galaxy like ours (with only a 
few per cent of the mass remaining in the form of gas): Objects of the order of 106 if©? 
more than typical globular cluster masses, are required to initiate a catastrophic accre- 
tion process. Unlike theories involving the gravitational collapse of isolated objects, the 
time scale of our process never becomes very short due to the self-limiting effects of 
radiation pressure. In our Galaxy, in fact, dust grains would keep the time scale well 
above 108 years, which is much longer than required for quasi-stellar objects, and the 
luminosity too low (< 1012 Z©). The situation is likely to be more favorable in systems 
less evolved than our Galaxy where {a) a larger fraction of the mass is still in the form 
of gas and (b) the relative abundance of heavier elements, and hence of dust grains, is 
lower. This leads to a shorter time scale and a larger limiting value for the luminosity- 
mass ratio for the accreting condensation. 

I am indebted to Drs. R. P. Feynman, M. Ruderman, M. Schwarzschild, E. Spiegel, 
L. Spitzer, and L. Woltjer for helpful criticism and suggestions. In fact, they have con- 
tributed most of the positive ideas in this note without being responsible for any of the 
unwarranted conjectures. I am also grateful to the National Academy of Sciences for a 
senior postdoctoral fellowship. 
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APPENDIX 

We use the usual Schwarzschild metric outside of a mass M (and put c= 1), 

ds*= (l-2u)dP- rHQ* , (Ai) 

where u = GM/r, and we consider the motion of a single test particle of unit mass in this field. 
As discussed by Feynman in unpublished lecture notes, the following quantities are constants of 
the motion 

k=(\-2u)Kl) , (A2) 

* Permanent address: Cornell University, Ithaca, New York. 
f This work was supported in part by contract AFOSR-321-63 with Cornell University. 
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where a superscript (1) denotes differentiation with respect to proper time. The terms l and k 
are generalizations of angular momentum and energy, respectively, and are also conserved in any 
local collision processes (any number of particles at the same u). The radial distance r satisfies 
the equation 

[r(i)]2==^2_1 + 2w-. ( 1 — 2u)Vu1 . (A3) 

The circular orbit with the smallest radius which is stable is then at # = J with l = 2\/3 and 
k = Vf- A photon (or an extremely relativistic particle) can have an unstable circular orbit at 
u= A particle at rest at distance r(r[l] — 1=0) has k= — 2u). Consider a particle 
which started at rest far away (k= \fu= 0) and ends up at some finite distance from the source 
with some value of k. If the energy released during this change all escapes “to infinity” then the 
escaped energy (after all redshift corrections) is simply (1 — Æ)c2. 
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COOLING OF INTERSTELLAR GAS 

It has been generally supposed that the cooling of interstellar H i clouds is through 
electron impact excitation of low-lying levels of C+, Si+, and Fe+ for temperatures below 
about 60° K and through hydrogen-atom impact excitation of the rotational levels of 
H2 for temperatures above about 60° K (see Gould and Salpeter [1963] for a recent dis- 
cussion). We wish to draw attention to a third cooling mechanism which is probably more 
efficient than electron impact at all temperatures and which is probably more efficient 
than rotational excitation of EL at temperatures below 100° K if ^(EL) = 0.1 w(H), 
below 300° K if n(H2) = 0.01 rc(H), and below 1000° K if n(H2) = 0.001 n(H). 

The cooling mechanism is the excitation of low-lying levels of C+ and Si+ in spin-flip 
collisions with hydrogen atoms: 

C+(2p 2P1/2) + H C+(2p 2P3/2) + H , 

Si+(3¿ 2P1/2) + H Si+(3¿ 2P3/2) + H . 

By a straightforward generalization of the theory used by Dalgarno (1961), it may be 
shown that the cross-section for these processes has the form 

00 

Q =-|p^ (2Z+ l)sin2( í?¡f — rti°), 

where k is the wavenumber of relative motion and 77^ and Tjf are phase shifts describing 
elastic scattering in the triplet and singlet states of the quasi-molecule formed in the 
collision, the difference between 2 and tt states being ignored.1 Now following the orbiting 

1 The generalization of the formula to take account of the 2 and tt states is trivial. It is unnecessary 
here since, in the orbiting approximation, the 2 and tt states are not distinguished. 
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