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ABSTRACT 
It is shown that gravitational instability is a plausible basis for the formation of the spiral pattern in 

disk galaxies An explicit asymptotic formula is obtained for the form of the spiral. It gives reasonable 
numerical results for the galaxy, and qualitatively satisfactory trends for normal spirals of various types. 

I. INTRODUCTION 

The mechanism for the formation of the spiral patterns observed in most disk-shaped 
galaxies has not yet been fully understood. There is little doubt, from the observational 
data available, that these magnificent manifestations are associated with the interstellar 
gas and the brilliant young stars born in them. But could the old stars also play an im- 
portant role in the formation of the spiral structure? 

To construct a theory of the spiral structure, one must bear in mind the following 
important components of a galaxy: 

a) The stars—with their gravitational forces, circular velocity, and velocity dispersion 
h) The interstellar gas—with its gravitational field and pressure 
c) The magnetic field—which exerts its influence through the highly conducting inter- 

stellar gas. 

A complete theory should take all these components and forces into account, and put 
their relative importance into perspective. Such a theory is not yet available. 

There are at least two possible types of spiral theories. The first alternative is to as- 
sociate every spiral arm with a given body of matter; e.g., such an arm might essentially 
be a tube of gas primarily constrained by the interstellar magnetic field. The difficulty 
with the disrupting influence of differential rotation in such a theory is well known. The 
various issues associated with this point of view have been thoroughly discussed recently 
by Oort (1962). The second alternative is to regard the spiral structure as a wave pattern, 
which either remains stationary, or at least quasi-stationary, in a frame of reference 
rotating around the center of the galaxy at a proper angular speed (possibly zero). 

Three years ago, through discussions with Professors B. Strömgren and L. Woltjer, 
one of us (C. C. L.) became interested in the possibility of spiral structure from the point 
of view of gravitational instabilities of the galactic disk, and several of us, including A. 
Toomre and C. Hunter, began to examine the problem in some detail. Our emphasis and 
conjectures are not yet in complete agreement. Since A. Toomre’s (1964) point of view 
has been published, it seems desirable to publish our point of view even though the work 
is not yet as complete as the present writers would wish to have it. Furthermore, we feel 
that, in any case, the role of gravitational force, which is by far the largest in a galaxy, 
deserves to be carefully examined for a complete understanding of the problem, whether 
or not it eventually turns out to be the predominant mechanism. 

Toomre tends to favor the first of the possibilities described above. In his point of 
view, the material clumping is periodically destroyed by differential rotation and re- 
generated by gravitational instability. It is somewhat difficult to see how this mech- 
anism alone can account for the relatively regular spiral pattern over the whole disk in 
most of the flat galaxies. The present authors favor the second point of view, i.e., that 
the matter in the galaxy (stars and gas) can maintain a density wave through gravita- 
tional interaction in the presence of the differential rotation of the various parts of 
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SPIRAL STRUCTURE 647 

the disk. This density wave provides a spiral gravitational field which underlies the 
observable concentration of young stars and the gas. In this way, an observable spiral 
pattern can be maintained over the whole disk. Indeed, an explicit formula, equation 
(14), for its approximate description has been found.1 

It is almost certain that the basic mechanism to be proposed here is related to the 
idea of “density waves” discussed by P. O. Lindblad (1960) and B. Lindblad (1961). 
Our analysis will, on the whole, tend to support their general conclusions. It is, however, 
somewhat difficult to make a detailed comparison between their ideas and ours, since 
the methods used are very different from each other. There is considerably more empha- 
sis on individual stellar orbits in the Lindhlads’ theory, while the interaction of the stars 
over the disk as a whole is directly considered in our work through the use of the dis- 
tribution function. This approach will enable us to exhibit certain spiral patterns very 
easily from general dynamical considerations (Sec. II). Some attempts at comparison 
will be made in Section IV. An investigation that further clarifies the relationship be- 
tween these two approaches would no doubt enhance our understanding of the whole 
problem. 

II. THE STABILITY PROBLEM OF THE GALACTIC DISK 

It is natural to ask whether distribution of mass in the form of a thin rotating disk, 
such as that in our own Galaxy, is in a state of stable equilibrium. Instability can take 
the form of a warping of the disk or of motions in its plane. We shall concentrate on the 
latter mode as being more relevant to the problem at hand. In our idealized model, the 
mass is concentrated in an infinitesimally thin disk, with a surface density that is ap- 
proximately equal to the projected density in the galactic plane. The gravitational 
forces are in balance with appropriate circular and random velocities. Such a representa- 
tion necessarily involves a high surface density in the central region, where a typical 
galaxy has a bulge due to the large three-dimensional velocity dispersion of the stars. 
Thus, it will often be found convenient to have a singularity of the density distribution 
at the center, provided the total mass is finite. 

To investigate the stability of such a disk, we may start with the basic equations of 
stellar dynamics expressed in terms of the distribution function in phase space (Chan- 
drasekhar 1960). But it is sometimes convenient to use the infinite set of equations for 
the (tensorial) moments of the velocity components, and to terminate them by imposing 
a suitable approximation. As a first step, we shall neglect the velocity dispersion alto- 
gether.2 One then has the following set of equations : 

Mí + r~l[(riiu)r + 0^)0] ^ 0 , (la) 

ut + uur + (v/r)ue — v2/r — , (ib) 

vt + wi)r + (v/r)v& + = 4>d/r , (ic) 

0rr + 0rA + 000A2 + 0^ ==: “^TtG/A, 6)KZ) j (1<i) 

where the cylindrical system of coordinates (r, 6, z) is used, /x is the surface density, and 
0 is the negative of the gravitational potential. The first three equations are restricted 
to the plane z = 0, while equation (Id) is for the ^ree-dimensional space. For the initial 
state of equilibrium, we consider a solution of the form p = /¿(A), w = 0, = FA) = 
ri2(r) > 0. We then consider a disturbance from the equilibrium state; e.g., p — po(r) + 
m'A 6y A As in all stability problems, we begin by considering the case of small dis- 

1 Preliminary results obtained by detailed numerical calculations carried out by Mr. Ronald Rehm 
confirm the validity of the formula and the general conclusions. 

2 In this approximation, the gaseous component of the galaxy is naturally included. We simply regard 
the density, p, below as the total density of matter including both the stars and the gas. 
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648 C. C. LIN AND FRANK H. SHU Vol. 140 

turbances. The equations governing the quantities //(r, 6, t), etc., can then be linearized.3 

We obtain 

ixrt + Í2jll/0d ( T HQUr)r~{- (mo/^ ) = 0 , (2a) 
r 

Uf
t + — ISlv' — <j>fr , (2b) 

v't + tiv'e + {k2/2Q)u' = (j)'e/r , (2c) 

<l>'rr + 0'rA + <l>'Öd/?2 + = —47rGy 0(2) . (2d) 

In the above equations, k is the epicyclic frequency given by 

/c2 = 4i22[l + (r/2ti)(dQ/dr)]. O) 

The set of linearized equations (2a-d) admits solutions of the type 

ju/ = Re{fi(1^(r) exp [i(œt — nd)]} , co = cor + , (4) 

where n is an integer (which may be taken to be positive without loss of generality), and 
œr and o)i are the real and imaginary parts of the parameter co. Unstable modes are given 
by coi < 0. 

Under such a general formulation, co takes on characteristic values for the solution of 
a set of linear integro-differential equations in the single independent variable r, sub- 
jected to suitable boundary conditions at r = 0 and as r —* <». However, since we would 
admit a singularity at r = 0 in the solution, if we adopt the disk model right to the center 
of the galaxy, and the range of r is infinite, the set of characteristic values may be ex- 
pected to have a continuous spectrum (in addition to any discrete part). Physically, this 
means that we are looking for a representation of the situation in the disklike part of the 
galaxy, and leaving the conditions near the central bulge, where the random velocities 
are large and three-dimensional, to adjust themselves to almost any requirement of the 
disk part. We also expect that all the disturbances would die off at infinity in a reasonable 
manner. 

The solution (4) is clearly of the nature of a density wave. Indeed, it generally has a 
spiral form. To see this, let us write (as we can always do), 

ix^{r) = S(r) exp [i4>(r)] , (5) 

where S{r) and 4>(r) are real. Then equations (4) give 

//(r, 0, t) = cos [o3rt — nB + 4>(r)]. (6) 

If S(r) varies slowly with the radial distance r while 4>(r) varies quickly, then equation 
(6) gives a spiral impression in the density distribution at any instant of time, the form 
of the spiral being 

0 = — [4>( r ) + const. ]. (7) 
n 

There are n arms in the spiral. These are trailing spiral arms if &{r) < 0, and leading 
ones if ^(f) > 0. Note that we have taken fí(r) and n to be positive by convention. 
By comparing equation (7) with observed two-armed galactic spirals, it is easy to see 
that 4> should change by an order of 47r over a typical radial distance in such cases as 
the whirlpool nebula. 

3 It is suggested that this is justifiable for our present purposes, even though the random velocities 
neglected might be comparable to the plausible amplitude of the disturbance, since we are dealing with the 
co-operative effect of grouping of stars, which acts in a manner quite different from the effect of velocity 
dispersion (see also Sec. IV). 
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III. AN ASYMPTOTIC SOLUTION 

The stability problem formulated above is very similar to those in ordinary hydro- 
dynamics.4 It has, however, the additional mathematical difficulty that, after the vari- 
able z is eliminated, (^'(r, 6, 0) and 0) are connected by an integral relationship. 
Fortunately, this difficulty disappears in an asymptotic approximation based on the 
rapid change of the phase factor 4>(f) mentioned at the end of the last section. In this 
case, we may attempt to integrate the Poisson equation 

$rr(9 -|- faW/r — n2(j)^/r2 + (t>^zz = —4:7rGfjL^(r)d(z) , (8) 

by an asymptotic process.5 We write 

ß^(r) = S(r) exp [iX/(r)], and (9) 

^(r, z) = ^(r, z, X) exp [i\h(r, z)] , (io) 

where all the functions involved may be complex, X is a large real parameter introduced 
for the convenience of the formal asymptotic procedure, and ^(r, z, X) is assumed to 
have an expansion in inverse powers of X. In effect, we are looking for asymptotic solu- 
tions of the Laplace equation for 2 > 0 and z < 0, bounded at infinity (in a suitable sense 
for X large), continuous at z = 0, and fulfilling the jump condition [</>2] = 
at z = 0 that can be easily derived from equation (8). Such a solution leads to the simple 
result that, to a first approximation, 

0/1) = 2iriGe¿» , <j>eW = 0(m(1)/X) , di) 

where e = + 1 according to the sign of the real part of/'(/). 
Within this approximation, it is very easy to find solutions of the type (5) for the 

system of equations (2a-d). Our first aim is to determine the phase factor, which turns 
out to be 

Xf(r)e = [k2 — (o) — nti)2]/2TrGßo. (12) 

Thus, a solution of the type considered is possible only if the real part of k2 — (œ — nQ)2 

is positive, i.e., if 
K2 + (¿i2 — (cdr — flQ)2 > 0 . (13) 

The sign of = Re\\f(r)} can, however, be positive or negative. Thus, both leading 
and trailing arms are permitted. The choice between the two might be resolved only after 
the solution is found (e.g., by numerical integration) in the ranges where the inequality 
(13) is violated. In those ranges, the solution is expected to have a behavior different 
from that indicated above.6 In particular, the condition at the center of the galaxy 
deserves special attention. 

Another effect that might distinguish between leading and trailing arms is differential 
rotation. Although density waves are propagated primarily by gravitational forces, they 
would be modified by differential rotation, when the non-linear terms, omitted from 
equations (2a-d), are included. The effect might be analogous to that of fluid motion 

4 The similarity might hold not only for problem of initial instability, but also for the subsequent 
process of development into a quasi-stationary final state, with the random velocities of the stars and of 
the interstellar-gas clouds supplying the smoothing effects that limit the growth of the waves. Differential 
rotation corresponds to the shear flow which can supply the energy to the oscillations and random motions 
(cf. Sec. IV). 

5 For details see Appendix. 
6 Toomre (1964) carried out numerical calculations for axisymmetrical disturbances over the whole 

range of disk radii and found that the solution drops off roughly in an exponential manner at infinity. 
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that leads to the distortion of acoustic waves. In that case, a density decrease in the 
direction of wave propagation tends to be accentuated into a compression shock, whereas 
a density decrease would tend to be smoothed out by the motion of the fluid. Thus, it is 
conceivable that only trailing waves are stable in the presence of non-linear effects. 

In the case of axisymmetrical disturbances, w = 0, the formula (12) reduces to one 
already obtained by Toomre (1964) for a local wavenumber in terms of an assumed fre- 
quency. The present asymptotic approach can also yield the slowly varying amplitude 
distribution over the disk, which is not available from the local theory. The importance 
of this approximate analysis over the whole disk will be seen in Section IV. 

The present study shows that non-axisymmetrical disturbances can propagate around 
the disk without change of shape even in the presence of differential rotation. Indeed, for 
the range n < r < r2 in which expression (13) applies, the geometrical form of the spiral 
pattern is found from equations (7) and (12) to be given by 

n(d — 6o) = ’—J' K2(¿i2(o)r —n&)2] dr . U4) 
ro 

The end points of this range, r = ri and r2, correspond to the points of local gravitational 
resonance in the neutral case (cf. Sec. IV). As a typical example, if we refer to the density 
data given by Schmidt (1956) and the velocity data given by P. 0. Lindblad (1960, 
Table 2) on the basis of Schmidt’s model, and take wr = 20 km/sec kpc and co¿ = 50 
km/sec kpc (which is somewhat less than the value of k at 5 kpc from galactic center), 
we would have a wavelength of the order of 2-3 kpc in our neighborhood. The lower limit 
ri would be at about 2 kpc from the galactic center, while the upper limit r2 would dis- 
appear altogether. Such a mode amplifies rather rapidly in the absence of velocity dis- 
persion. Its expected behavior in the presence of velocity dispersion will be discussed in 
Section IV. 

The contrast between the spiral patterns of Sa, Sb, and Sc galaxies can also be brought 
out analytically by equation (14). If there is a comparatively greater concentration of 
mass in the center, the density /¿o of the disk part is relatively smaller. Equation (14) 
then predicts tighter spirals, as indeed are observed in Sa galaxies. More even distribu- 
tion of matter corresponds to loosely wound spirals, as observed in Sc galaxies. 

IV. HYPOTHESIS OF QUASI-STATIONARY SPIRAL STRUCTURE 
IN THE SPATIAL DISTRIBUTION OF STARS 

The above analysis suggests that, in the absence of velocity dispersion of the stars, 
there are many possible spiral patterns of density modifications in a basically axi- 
symmetrical disk of gravitating matter. Those modes which are strongly unstable may 
be expected to bring themselves into prominence. On the other hand, there is consider- 
able velocity dispersion among the stars, and it is to be expected that all gravitational 
instabilities would tend to be smoothed out by their effects. Two possibilities then exist. 
The first is that all the modes of gravitational instability are suppressed. The second 
possibility is that the two tendencies might balance each other for certain modes, or a 
group of modes, in such a manner that a stable or nearly stable pattern might be main- 
tained over long periods of time. Modes which are sufficiently different from this select 
group would, however, be suppressed. 

It is not easy to examine the various factors that would enter into the decision between 
these two possibilities. A first attempt could be made by examining whether the velocity 
dispersion present is sufficient to suppress all the waves according to a local theory. Such 
a calculation has been carried out by Toomre (1964) for the solar neighborhood, and he 
reached the conclusion that an rms velocity dispersion <ju of the order of 20-30 km/sec 
would be needed for the suppression of all the waves. This amount of velocity dispersion 
is actually present, and he concluded that the solar neighborhood is locally stable. How- 
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ever, if one would adopt the same method of analysis for a location at 4-5 kpc from the 
galactic center, the value of <rw required would be about 70-90 km/sec (if we adopt 
Schmidt’s model [1956] for our Galaxy). If such a high-velocity dispersion were actually 
present, it would imply that a considerable number of stars with high radial velocities 
would reach our neighborhood from the interior part of the Galaxy, contrary to observa- 
tional evidence. Thus, that part of the disk is locally unstable. 

This picture of a galactic disk, which is in part stable and in part unstable according 
to a local theory, would suggest the possibility of a balance resulting in a neutral density 
wave extending over the whole disk and having a scale of the order of (but smaller than) 
the distance between the stable and the unstable regions.7 

The question may be raised as to why the velocity dispersion might cease to grow to 
the extent needed for complete stabilization. One possible reason is that large-scale waves 
are ineffective in producing local velocity dispersion. Furthermore, it may be conjectured 
that these large-scale waves are stabilized at small but finite amplitudes8 by the joint 
effects of velocity dispersion and by the reaction of the gas together with its associated 
magnetic field (Chandrasekhar and Fermi 1953). 

We now venture to suggest that there are indeed such large-scale neutral (or nearly 
neutral) waves for most of the disk galaxies, and formulate our ideas in the form of the 
following hypothesis : 

The total stellar population, which has various degrees of velocity dispersion, forms 
a quasi-stationary spiral structure in space of the general nature discussed above. This is 
primarily due to the effect of gravitational instability as limited by velocity dispersion 
(and secondarily to the influence of the gas and the magnetic field). The extent of density 
variation in the spiral pattern may be only a small fraction of the symmetrical mean 
density distribution. 

In advancing this hypothesis, we are not ignoring the fact that transient local patterns 
of a general spiral form are relatively easy to produce in a system in rotation. However, 
it seems rather difficult to account for a coherent pattern over the whole disk without 
bringing into account the co-operative effects of long-range gravitational forces. 

If we accept the above hypothesis and follow the line of reasoning that led to it, the 
following inferences and conjectures may be made. 

1. Due to the prevailing spiral gravitational field, all components of the galaxy, in- 
cluding the gas and the young stars, should form similar spiral patterns on the scale of the 
radius of the disk, whatever other secondary processes there might be. Different stellar 
components, with different extent of velocity dispersion, should lie on somewhat differ- 
ent spirals (cf. Zwicky 1957) and exhibit different degrees of unevenness. As an extreme 
case, one may even attempt to analyze the behavior of the gas, which has very little 
pressure, as a separate system (including possibly an appropriate magnetic field), which 
is subjected to the action of a spiral gravitational field produced by the rest of the 
galactic population. Its density contrast may therefore be expected to be far larger 
than that in the stellar components, as is indeed known from observations. These dis- 
cussions should be supplemented by a consideration of the reaction of the gas on the 
stellar population, as mentioned above. 

2. It is known from observations that galaxies devoid of gas do not show prominent 
spiral patterns. This is consistent with the present proposal. The velocity dispersion in 
such galaxies is usually thought to be comparatively large, and the mechanism of in- 
stability discussed here may indeed be suppressed completely. Even if this were not so, 

7 Although such waves cannot be analyzed by a strictly local theory, it is still feasible to apply the 
asymptotic method described in this paper; for the method does allow for the interrelationship between 
the various regions in the higher approximations. An asymptotic analysis that includes the effect of veloc- 
ity dispersion would be extremely desirable. 

8 Cf. Landau’s theory of stable oscillations at small but finite amplitudes in the problem of hydro- 
dynamic stability (in Landau and Lifschitz 1959). 
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and the old stars did form a spiral structure, the lack of gas and the young stars stemming 
therefrom might so impair the manifestation of the spiral structure that it would hardly 
be observable. 

3. One simple method to account for the effect of velocity dispersion and the reaction 
of the gas is to adopt the Lindblads’ concept of a fixed smooth disk of stars belonging to 
the disk population and Population II and a mobile disk of Population I (gas and young 
stars). Then the basic equations (la-d) should be modified by the addition of a force F(r) 
in equation (lb) to represent the fixed field, and the surface density n would refer to that 
of Population I alone. Except for this change of the interpretation of the above theory 
will remain unchanged.9 The spiral pattern is still given by equation (14), but the wave- 
length is much shorter, since m is reduced. However, there is no sharp demarcation be- 
tween the fixed and the mobile components. One could include in the mobile part also 
some older stars with relatively low-velocity dispersion. Thus, if we choose o)r = 20 km/ 
sec kpc, co¿ = 0, the mobile component in our neighborhood should be set at about 25 
per cent of the total mass10 in order to get a wavelength of approximately 2 kpc. In con- 
trast to Section III, we consider neutral waves here, since the stabilizing influence of 
velocity dispersion has largely been taken into account. 

4. Both the Lindblads emphasized the approximate constancy of ß — /c/2 over a 
large part of the Galaxy. Our theory does not seem to be dependent on it. Instead, we 
have a certain kind of local resonance only at two distinct radial locations in the galaxy 
where /c2 — (co — wfí)2 = 0 in the case of neutral waves (and also approximately for 
slightly amplifying and damped waves). This condition clearly means that the traveling 
spiral gravitational field is in step with the local epicyclic motion. Indeed, near these 
points, one would expect the gas, even more than the stars, to react very strongly and 
possibly to acquire very large radial velocities. These radial velocities should be outward 
and inward over alternate sectors of extent ir/n each. It would be very interesting to 
pursue this point further both theoretically and in relation to observational facts (e.g., 
the 3-kpc arm).11 

We are indebted to Professors B. Strömgren and L. Woltjer for introducing this sub- 
ject to one of us (C. C. L.) at a conference in Princeton, N.J., in 1961 and for many help- 
ful discussions during the course of this study. We had the pleasure of collaborating with 
Dr. A. Toomre. Frequent discussions with him have been to our mutual benefit, al- 
though we have placed somewhat different emphasis in our work and have arrived at 
somewhat different conjectures. We also had the pleasure of discussing the problem 
with Professors M. Krook and D. Layzer and Mr. A. J. Kalnajs. 

This work is partially supported by a grant from the National Science Foundation. 

APPENDIX 

ASYMPTOTIC SOLUTION OF POISSON’S EQUATION 

We now consider, in some detail, the solution of the equation for gravitational potential 
corresponding to a surface distribution of density in the plane z = 0. Especially we wish to dem- 
onstrate an asymptotic method used in the text. 

9 Dr. Kevin Prendergast first mentioned to me (C. C. L.) the idea that the present analysis might be 
made in the presence of the gravitational field of a fixed disk during a discussion at the early stages of 
this study. 

10 This is not unreasonable, especially since we expect this region to be locally stable and forced to 
oscillate by the inner regions. It might even be too low an estimate in view of the possible existence of 
some molecular hydrogen as yet undetected. 

11 See Oort (1962), pp. 3-22, and esp. his reference to B Lindblad on p. 12. 
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Since we are working with a cylindrical coordinate system, the convenient form for the basic 
equation is 

1 rlrh r)^(h 1 rl^fh . . 
(Al) d2</> , 1 d<£ , d24> , 1 a r* ( % ( \ 

—^ = — 47rG(7( ) 5 ( 2 ). 
r dr ds: r2 d02 

In other words, we look for solutions of Poisson’s equation for 2 > 0 and for 2 < 0 such that, 
at 2 = 0, there is a discontinuity in ^ given by 

= O+)-02(r,0, 0-) = -\-nGo(r,Q). (A2) 

Since the problem is linear, we may consider the individual harmonic components in 

c = a-n( r )cos #0 , cj) = Fn(r,z )cos nd (A3) 

and obtain the general solution by superposition. We thus have the partial differential equation 

d2Fn . 1 dFn . d2Fn n2Fn 

dr2 r dr 

to be solved under the condition 

dz 
— 4c.ttCj (Tn ( r) ô ( z) (A4) 

(AS) 

We consider the case where the variation of <rn(r) is sufficiently rapid in some sense. That is, 
we consider a representation 

( r ) = [ o-U) ( r ) eix/(r) ], (A6) 

where X is large, while both o-fb(f) and /(r) vary but slowly in r. We may then expect a solution 
of the form 

Fn(r,z) = Re[ A ( r,z,\) eiX*(r>2) ], (A7) 

where A (r, 2, X) depends on X in the following asymptotic manner : 

A(r,z,\) = ^(°)(r,2) +X-M(1)(r,2) +X-2^(2)(r,2) + ... (As) 

The functions #(f, 2), A^(r, 2), . . . , etc., are slowly varying functions of r and 2. The condi- 
tion (A5) becomes the pair of relations 

We have imposed the conditions that <!>(>, 2) and A (>, 2, X) are continuous at 2 = 0. 
Differential equations.—We now substitute 

(A9) 

F= A 0,2,X) (A 10) 

into the equation (A4) ; we get 

d2A t d2A ^ \ dA n2A 
d r d^ r dr 

H- Fh ̂  ( 
dr2 d z2 r d r ) \ 

dA , dA 3$ 
dr dr dz dz/J 

(An) 
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This leads immediately to the condition 

(B’+d)'-0’ 

d? = /i( r +iz ) or fnir—iz), 
which is satisfied by 

(A 12) 

(A13) 

but not a combination of both. The second of the boundary conditions (A9) imposes the re- 
quirement that 

fi(r) = f2(r) = f (r). (Ai4) 

The choice of solution for z > 0 and z < 0 must be such that the solution decreases with | z | 
increasing. Thus, we should have 

$ = f(r+iez) for and $ = f (r —iez) s > 0 , 

for 2 < 0, where e = ± 1 accordingly as f{r) ^ 0. The first condition (A9) becomes 

or 

[|j]= -47rG<r(1)(r)+2X4|//(r)i. 

Equation (A 16) suggests that A(r, z, X) should be of the form 

A ( r,z,\) =X-1U<1>(r,z)+X-1yK2)(r,z) + 

and that AM(r, z) satisfies the condition 

0= -47rG<7(l)(r) + 2^(1)(r, 0) |/'(r) |, 

(AI5) 

], 

(A 16) 

(A 17) 

(A 18) 

With z) given in the form of expression (A13), equation (All) can be somewhat simpli- 
fied. Indeed, we get 

( 

d2A , dM , 1 dA n2A 
d r‘ dz‘ r dr ) 

(Z^0) (A 19) 

Using the form (A 17), the equation for A^(r, z) becomes 

A+m . . dJ+O) 
 = H     + If  =  

2r L dr dz 
or 

4-1 r1/2 A ±V) ]±ie4-[ rl'2A ] = 0 . 
dr dz 

The solution of this is immediately seen to be 

[ rVM ¿C1) ] — g(r ±iez), 

where g is to be determined from the boundary condition (A 18). 
We have 

r-^gir) =27rGo-(1)(r)/|/'(r) |. 

(S^0) (A20) 

(A21) 
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Thus, to a first approximation, the surface distribution 0-(9(f) exp 
to the potential 

(¡>(ryz) = A±( f,2)exp[iX f (r ±ize) —ind], 

in 6] gives rise 

(z^O) (A22) 

where e = sgn f{r), 
A±( r,z) = \~1r~1/2g (r ± ize) (A23) 

and 
r-'/tgir) = lirGcrí1) ( r) / \ f' ( r) |. (A24) 

The force per unit mass in the plane z = 0 is given by 

<¡)r( r, 0) = IwiGcre , [e = ± 1 according as/'( r ) ^ 0] (A25) 
where 

a = o-ii) ( r)exp[i\ f (r) —inB]. 

Notice that n does not appear in the initial approximation for the amplitude functions. It ap- 
pears only in the higher approximations. 

It is understood in the above reasoning that (r) and f(r) are analytic functions. Otherwise, 
a more elaborate process is needed to justify the same results. See Shu (1963). 

The higher approximations can be easily found by using the asymptotic representation (A 17) 
for A (r, z). It appears from the form of the solution that it holds only for a finite wedge (\z/r\ < 
const.) in the (z, r)-plane with the further restrictions that r should be finite, and that f{r) does 
not vanish over the range in question. 
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