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Allowing nonzero eccentricity for Jupiter’s orbit, the differential equations of motion of the restricted 
problem are presented. The simple form of the equations is obtained by using the true anomaly of the pri- 
maries as the independent variable and by introducing a special set of dimensionless variables describing 
the position of the third body. The short- and long-time effe ts of the eccentricity of the orbits of the pri- 
maries are discussed in connection with the generalized Jacobi integral. 

The similarity between the equations for the circular and for the elliptic case permits the introduction of 
regularizing transformations following methods applicable for the circular case. The major effect of the ec- 
centricity is that the regularized equations are in the form of integro-differential equations. 

INTRODUCTION 

THE problem of three bodies represents one of the 
few cases in celestial mechanics where the 

applicability of the general case is less than that of a 
special version. The restricted problem of three bodies 
in its original form specifies the motion of two of the 
three bodies on circular orbits and restricts the effect 
of the third body on the primaries. In spite of the 
simplifications introduced by the above restrictions the 
aproblème restreint^ still belongs to the class that 
Birkhoff calls nonintegrable dynamical systems. Never- 
theless, the now so frequently quoted “bon mot” 
applies; we know much more about the restricted 
problem than about the general problem. Furthermore, 
the restricted problem describes actual situations in 
celestial mechanics with a tolerable first approximation. 
The major fault of the approximation introduced by 
the restricted formulation is its questionable ability 
to treat the long-time behavior of practically important 
dynamical systems in celestial mechanics. The principal 
reason for this is that significant effects might be 
expected because of the eccentricity of the orbits of 
the primaries. Introducing elliptic orbits for Jupiter’s 
motion (elliptic orbits for the primaries) generalizes the 
original restricted problem and significantly improves 
its applicability. The elliptic restricted problem (also 
called pseudo restricted problem) will not possess the 
only known integral of the circular problem, at least 
not in its usual and extremely useful sense. The elliptic 
problem has been discussed in considerable detail by 
Ovenden and Roy (I960), Kopal (1956, 1963), Huang 
(1963) and recently it was applied to the problem of the 
Kirkwood gaps by Brouwer (1963). The introduction 
of the special variables used in the present paper was 
suggested by an almost one hundred year old and 
erroneous paper by Scheibner (1866) and by the well- 
known Lagrangian equilateral solution of the general 
problem of three bodies. Such variables have also been 
indicated by Brown and Shook (1933) in connection 
with the problem of planetary perturbations. 

The study of the long-time behavior of dynamical 
systems usually requires the establishment of a singu- 
larity-free set of differential equations so that Cauchy’s 

theorem may be applicable. Such sets of equations for 
the original (circular) restricted problem were estab- 
lished a long time ago (Thiele 1895) and several possible 
regularizing transformations have been proposed since 
then (Birkhoff 1915; Arenstorf 1963; Deprit 1963). 

Our purpose here is to extend the applicability of the 
restricted problem to the study of the long-time be- 
havior of important systems in celestial mechanics along 
two lines. Firstly we will give the set of equations 
applicable to the eccentric case and secondly we will 
show its regularization. 

EQUATIONS OF MOTION FOR £=(=0 

In this section we show that the equations of motion 
for the case of nonzero eccentricity can be writtenjin 
a, form identical with the form of the equations appli- 
cable to the circular case. The circular restricted problem 
is represented by 

x-2ÿ=ïlx, 

ÿ+2x=üy, 

where dots denote derivatives with respect to the 
dimensionless time, x and y are the synodic Cartesian 
rectangular dimensionless coordinates of the third body 
in a uniformly rotating system (mean motion = 1), 
subscripts denote partial derivatives and 

ß(^l/2) = i[(l—m)^12 + ^22] + \  (2) 
ri r2 

with 
rSix^^ix-ßY+y2, 

r22(x,y)= (x—ß+iy+y2. 

The above set of equations (1), (2), and (3) contains 
only one parameter which is related to the mass ratio 
of the primaries according to \x—m2/(mi+mf), 

The elliptic restricted problem is described by 

?7"+2£' = coi?, 
(la) 

where primes denote derivatives with respect to the 
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ELLIPTIC RESTRICTED PROBLEM OF THREE BODIES 231 

true anomaly (/) of Jupiter (viz. of the primaries), $ 
and 77 are the synodic Cartesian rectangular dimension- 
less coordinates of the third body in a nonuniformly 
rotating system (mean motion = 1), and 

w(pi,P2)= (l+e cos/)~10(pi,p2) (2a) 
with 

Pi(^,n) = r 1(^,1]), 

P2(^) = r2(^). ( ) 

The (x,y) dimensionless coordinates in the circular 
restricted problem are obtained by dividing the dimen- 
sional position coordinates (X,F) by the fixed distance 
between the primaries. The (£,77) coordinates, on the 
other hand, are obtained by dividing the dimensional 
position coordinates of the elliptic problem (£*,77*) by 
the variable distance between the primaries. Therefore 

The derivation of Eqs. (la) starts again with the 
dimensional description of the elliptic problem, viz : 

d2£* dfdrj* £"-£1* £*-£2* 
 2 = — k2Mi k2m2  
di2 dt di Pi3 P2

3 

J277* df d£* 77* 77* 
 b 2 = — k2tni k2ni2— 
di2 dt di Pi3 P2

3 

(Id) 

1+e cos/ 
f = -f*’ 

a(l — e2) 
(4) 

where f = £+^77, £*+^77*, — 1, a is the semimajor 
axis of the elliptic orbit of Jupiter with respect to the 
sun, and e is the common eccentricity of the primaries. 

The derivation of Eqs. (1) is well known and only for 
the sake of similarity will it be briefly mentioned. The 
dimensional differential equations of the circular 
restricted problem are 

d2X dY dF 

di2 di dX 

d2Y dX ÔF 
—+2n—=— 
dt2 dt dY 

where £* and 77* are the dimensional coordinates of the 
third body in the elliptic problem, corresponding to the 
(X,F) dimensional coordinates in the circular problem, 
Pi and P2 correspond to Ri and P2, and the other 
symbols have been defined earlier. The origin of the 
system (£*,77*) is at the mass center of the primaries 
which now move on ellipses. The masses are located on 
the £* axis whose rotation is now not uniform and the 
£1*, £2* abscissas of these masses are not constant. In 
fact 

* ^ 
£1 =- 

(lc) £2* = - 

with 

1+e cos/ 

-P2 

1+e cos/ 

(5) 

Pi üi WÎ2 
where X and F are the dimensional Cartesian rectangu- 
lar coordinates of the third body, in a uniformly 
rotating system (mean motion=^), i is the dimensional 
time, and 

/Ml m2\ 
F=W(X2+ Y2)+k2[ —+— ) (2c) 

\Pi P2/ 
with 

Rl*=(X-X1y+Y\ 

i?22=(Z-Z2)2+F2. ' c) 

In Eq. (2c) Wi and m2 are the masses of the primaries ; 
M! having the coordinates (Xi,0) with Xi>0 and m2 is 
located at (X2,0) with X2<0. The distance between 
the primaries is Z=Xi—X2 and k2(Mr+m¿) = n2lz. The 
origin of the (X,F) coordinate system is at the center 
of mass of the primaries. 

Introducing t=ni for the dimensionless time, x=X/l 
and y=Y/I for the nondimensional coordinates, 
ri=Rx/l and r2=P2// for the dimensionless distances, 
and finally /¿= w2/(mi+m2) and 1—ß for the non- 
dimensional masses of the primaries, we obtain Eqs. (1) 
together with the appropriate definitions for r2 and 0. 

> 
pi ai mi 

where ai and a2 are the semimajor axes of the elliptic 
orbits of mi and w2 described around their center of 
mass. 

The terms on the left side of Eqs. (Id) are the total 
accelerations and the Coriolis effects. The first and 
second terms on the right side represent the gravi- 
tational forces; the last two terms are the centrifugal 
force (radial acceleration) and the force occuring 
because the system is not rotating with a uniform 
angular velocity (acceleration normal to the radius 
vector). 

The equations of motion for the circular problem 
(lc), (2c) are obtained from Eq. (Id) by making the 
appropriate substitutions: /= nl, £*=X, t?*=F, etc. 
The distances between the primaries and the third! 
body are completely similar to Rx and i?2 and they 
can be written as 

A2=(r-^*)2+n*2, 

iY=(r-è*)2+»)*2. (3d) 
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232 V. SZEBEHELY AND G. E. O. GIACAGLIA 

Equations (la) can now be obtained from Eqs. (Id) 
by using the true anomaly as the independent variable 
instead of the time i and by introducing dimensionless 
variables. The transformation of the independent 
variable is given by 

d df d 

di dt df 

Transforming similarly the second term in the same 
equation (Id) and collecting terms we obtain 

We note that the following four orbits all have the 
same eccentricity: the orbit of Mx relative to w2, the 
orbit of m<i relative to Wi, the orbit of mx with respect 
to the center of mass and the orbit of with respect to 
the center of mass (cf. Danby 1962). The semimajor 
axes are, of course, different, in fact ax=ap and a2 

= a(1 •—/*), where a is the semimajor axis of the ellipse 
described by the relative motion. 

The dimensionless variables are the (£*,rç*) variables 
divided by the variable distance between the primaries, 
viz. : 

£*(l+e cos/) 

a(l —62) 

7?*(l+e cos/) 

a(l —e2) 

(6) 

The masses of the primaries are made dimensionless 
as in the case of the circular problem and the location 
of the primaries becomes fixed since we make £i* and 
£2* dimensionless by division by their variable distance, 
i.e. 

£i*(l+£Cos/) pi ax 

#(1 —e2) ail — e2) a 

Division by r(df/di)2 and utilization of the properties 
of elliptic motion of the primaries, viz. : 

df\2 r2 / 

di) a(l —e2)^ 

d2f dr df 
r2——|- 2— —7 = 0, 

di2 di di 
and 

/ df\2 

^r2—J =a(l —62)&2(mi+w2) 

gives Eqs. (la), the desired result. 
We conclude this part by the remark that the form 

of the equations of the restricted problem is invariant 
when the eccentric case is considered. This seems to be a 
new justification of BirkhofFs idea according to which 
one of the fundamental problems of celestial mechanics 
is expressed by equations of the general form 

¿+2¿\(x,y)¿=Ea;+¿Eí/. (7) 

The invariant property of this equation when 
regularizing transformations are performed is well 
known and will be discussed later in this paper. 

THE JACOBI INTEGRAL 

d2r / 

di2 \ 

and similarly 

1- 

With the above remarks Eqs. (la) can be obtained 
from Eqs. (Id) ; nevertheless, previous computation of a 
few characteristic terms will facilitate matters. The 
first term of the first of Eqs. (Id) becomes 

The circular restricted problem in a rotating co- 
ordinate system has the property that its Hamiltonian 
does not depend explicitly on the time; therefore the 
problem possesses an integral. This is obtained by 
multiplying the first of Eqs. (1) by x, the second by y 
adding the resulting equations, and integrating with 
respect to the independent (time) variable. The result 
is known as the Jacobi integral : 

or 

d / d% dr \ d2% d% dr d2r 
r-_-\—/ ) = r——|-2— —H— 

dt\ di dt / dt2 di dt dt2 

dr d% df d2r 
+2— H—Hi? 

di df di di2 

where the variable distance between the primaries is 
denoted by 

a{\ — e2) 
r = . 

1+e cos/ 

¿2+ÿ2=2i2(*,y)-C, (8) 

where C is the constant of integration. 
The same steps when performed with Eqs. (la), the 

elliptic problem, result in 

(9) 

The integrand is now not a total differential, since co 
depends on the independent variable (/) explicitly. 
In fact 

dco=co^d^-{-coridr}-{-o)fdf ; (10) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
64

A
J 

 6
9.

 . 
23

0S
 

ELLIPTIC RESTRICTED PROBLEM OF THREE BODIES 233 

therefore the integral can be written as 

2 j (dœ—œfdj) = 2oo—2 jœ/df—C. (11) 

Since w(£,77,/)= (1+e cos/)-1^,??), the integral can 
also be expressed as 

2H r Ü sin/ 
 2e /  df-C (12) 
l + e cos/ J ( 1 + e cos/)2 

and the form of the Jacobi integral, corresponding to 
Eq. (8) now becomes 

rf Í2 sin/ 
Ç/2+ri/2 = 2œ(Ç,rj,f) — C-2e -df. (13) 

Jo (1 + ecosf)2 

The left side and the first two terms on the right side 
show complete analogy to the Jacobi integral of the 
circular problem with the remark that zero velocity 
curves—omitting the last term in Eq. (13)—can be 
constructed for any fixed value of /. At f=l=0 the 
Hill curves of the elliptic problem are identical to 
the Hill curves of the circular problem, but in general 
the expression 

2œ-C=2Q(l+e cos/)“1 - C (14) 

shows that—still neglecting the last term in Eq. (13)— 
the zero-velocity curves pulsate. That is, a fixed Hill 
curve will have a variable value of C attached to it. 
The variation during one revolution of the primaries 
is between (l + e)_1H and (1 —e)“^ and it amounts to 
2ei2 (for small e). Considering the well-known sensi- 
tivity of the structure of the Hill curves regarding the 
Jacobi constant, the above-mentioned variation, even 
for small eccentricity, is significant. Equation (14) 
describes what in dynamics is known as the quasi-steady 
effect, since at every “instant” (i.e. at every value of /, 
or in other words, at every position of the nonuniformly 
rotating synodical system) the relation holds and it is 
meaningful. The true and essential “unsteady” effects 
appear with the inclusion of the last term in Eq. (13). 
The interpretation of this term and its evaluation is as 
follows. 

Along an orbit for given / values the £ and rj co- 
ordinates of the third body are to be substituted in 
12 (£,??) and the resulting expression, 

y ti(f) sin/ 
2e  df 

Jo (1+ecos/)2 

is to be evaluated. An expansion of this expression to 
the second order in the eccentricity gives 

2e f Û(j) sin/d/—2e2 í ü(f) sin2/d/. 
Jo Jo 

This shows that the quasi-steady approach, by 
neglecting the integral in Eq. (13), errs in first order. 

For orbits of brief duration, that is, when interest 
in an orbit is only from some initial point to a point 
which is reached in a time during which / changes 
little, the unsteady effect represented by the integral 
might be a small contribution. This is, of course, not 
the case if the orbit is near a singularity. 

We close with the remark that the above-described 
situation is similar to the generalized Bernoulli theorem 
of time-dependent hydrodynamical problems. An 
integral of the Euler or of the Navier-Stokes equations 
leads to essentially the same phenomenological questions 
(cf. Truesdell 1950 and Szebehely 1950). 

REGULARIZATION OF THE CIRCULAR PROBLEM 

In this section the same procedure is followed as 
previously; first a short outline will be given of the 
regularization of the circular problem and then the 
same steps will be followed for the eccentric case. 

Equations (1) can be written as 

z+2iz= grad *12, (15) 

where z=x+iy and grad2í2=f2a;+A2¡/. 
Introducing the z=g(w) transformation from the 

physical plane (z) to the transformed plane (w) and at 
the same time introducing a time transformation from 
the physical time (¿) to a parameter (r) which will 
serve as the independent variable in the (w) plane, 
we have 

dg dw dr 

dw dr dt 
(16) 

and 

z = 
dg dw 
 f+ 
dw dr 

- dg d2w d2g / dw\2 

_ dw dr2 dw^\ dr )- 
(17) 

The right-hand side of Eq. (15) transforms into 

(dg/dw)-1 grsidwü, (18) 

where bar denotes conjugate, w=u-{-iv and grad^O 
ílU i A2.y. 
Performing the substitutions of Eqs. (16), (17), and 

(18) into Eq. (15) and rearranging terms we obtain 

d2w dw 
 1 (f)_2(f+2if) 
dr2 dr 

grad^H. (19) 

The Jacobi integral for the circular problem, Eq. (8) 
in complex notation is 

|¿|2=2Í2—C=2£7, (20) 
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234 V. SZEBEHELY AND G. E. O. GIACAGLIA 

which, using Eq. (16) transforms into 

dw 

dr 
— 2U\ 

dg 

dw 

where U = Q—\C. 
The kinematic side of the transformation is 

dr= I dg/dw\~2dt, 

which gives for f occuring in Eq. (19) 

(21) 

(22) 

d2r 

dt2 

dg 

dw 

% / dg d2g dw dg d2g dw\ 
( ^ J. (23) 
\ dw dw2 dr dw dw2 dr / 

Substituting (22) and (23) into Eq. (19) gives 

dg\2 d2w dw 
 \-2i— 
dr2 dr dw 

dg 

dw 
gT&àwU-\- 

dw 2 d2g / dg\ 1 

dr dw2\ dw/ 

while the Jacobi integral becomes 

dw\2 dg 2 

—I =2 — U. 
dr I dw 

The right side of the equation of motion (24), by 
means of the Jacobi integral, can be written as 

dg 2 d2g dg 
— gradw¿7-{-211 =gradw( U 
dw dw2 dw 

therefore Eq. (24) becomes 

dg * 

dw 

d2w dw 
 \-2i—|g'|2 = gradw(V|gT), 
dr2 dr 

0 sin/ 
¡/'|2 = 2a!—C—2e / dj. 

o (l+ecos/)2 

This latter equation can also be written as 

|r|2=2(F-Z) 
with 

and 

Z=e 
ß sin/ 

t (1+e cos/): 
àî- 

(29) 

(30) 

(31) 

(24) 

(25) 

Note that Eq. (27) corresponds to Eq. (15), Eq. (29) 
to (20) and V to the previously used U function. 

The transformation now is from the f plane to the w 
plane according to Ç=g{w) and the independent 
variable of the f plane (the true anomaly, /) will be 
transformed into r as before. 

Computation of and is similar to Eqs. (16) and 
(17), only t is changed into /. For instance, 

df dg dw dr 

df dw dr dj 

Equation (19) for the elliptic case is obtained 
without difficulty by writing / in place of t, co for Í2, and 
the dots are to be replaced by primes, since instead of 
f=dr/dty we have T' = dr/df. 

The kinematics of the transformation is given, 
similarly to equation (22), by 

dT=\dg/dlv\-2df, (32) 

which gives 

d2w dw 
 h 2i— 
dr2 dr 

dg 

dw 

(26) 

dg \ 2 ) dw\2 d2g/ dg \-1 

—! grad w F +1—j Í—) , 
dw\ \ dr \ dw2\dw/ 

(33) 

where g' = dg/dw is the derivative of the transformation 
function. 

Equation (26) is the regularized representation of the 
restricted problem provided the proper g(w) trans- 
formation is selected. 

REGULARIZATION OF THE ELLIPTIC PROBLEM 

Equations (la) describing the elliptic problem can 
be written as 

f "+2iÇr = gradeo? (27) 

and the Jacobi integral takes the form [see Eq. (13)] 

corresponding to Eq. (24). 
At this point the derivations for the circular and for 

the elliptic problems branch since the Jacobi integral 
is utilized. Equation (29) is transformed into 

j dw 

i dr 

! dg 
= 2| — 

! dw 
(F-Z), (34) 

by means of which the right side of Eq. (33) becomes 

dg\2 

dw\ 

d2g dg 
1 gradwF+2(F-Z)  

dw2 dw 

(28) = grad 
/ \di \ L 

ÍF|— J — 2Z- 
\ I dw / G 

7d
2g dg 

dw2 dw 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
64

A
J 

 6
9.

 . 
23

0S
 

ELLIPTIC RESTRICTED PROBLEM OF THREE BODIES 235 

Therefore Eq. (33) can be written as 

d2w dw 

T7+ 2L- ^ 12 = Srad- (FI sT2) - 2Zo'g", (35) dr2 dr 

where g' = dg/dw as before. 
Note that Eq. (35) and the corresponding Eq. (26) 

for the circular case show the only essential difference 
in the appearance of the last term in Eq. (35). The V 
function which replaces U is defined by Eq. (30) as 

F=i2(l+ecos/)-1-iC (36) 

and since e<l, the g(w) transformation which regular- 
ized 12 and U for the circular case will also regularize a> 
and V for the elliptic problem. 

The explicit form of the last term in Eq. (35) is 

rf sin/ 
T=2Zg'g" = 2eg'g" ttdf 

Jo (1 + ecos/)2 

or, by introducing the new independent variable r by 
Eq. (32), we obtain 

T = 2g'g"el 

sin/(r) 

r(0) [l + £ cos/(r)]: 
■(ß\gf\2)dr. (37) 

The integral occurring in this expression is convergent 
since firstly the 121 g' |2 term is regular at the singularities 
because g(w) regularized Eq. (26). Secondly, the f{r) 

relation is given by 

/M= Í 
J T (0) 

therefore /(r) is defined and finite at the singularities. 
In fact, at the singularities | g' | = 0 in order to regularize 
12; therefore g/ = 0 and T=0 at the collisions. 
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