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PHYSICAL BASIS OF THE PULSATION THEORY
OF VARIABLE STARS!

By S. A. ZHEVAKIN
Radio Physics Institute, Gorky University, Gorky, USSR

It is not the purpose of the present paper to criticize the entire literature
dealing with the theory of stellar variability (this would require a paper of
much greater size) but to give a brief account of the physical content of the
theory as it exists up to 1963. At the same time, special emphasis has been
placed on those aspects of the problem which are of interest to the author
and seem most worthy of attention. Thus, the paper does not pretend at any
kind of full coverage of the literature. It should be noted that very useful
surveys of many investigations on the theory of stellar variability may be
found in papers by Rosseland (1), Ledoux & Walraven (2), Ledoux (3), and
Ledoux & Whitney (4).

I. BrRiEF HiSTORICAL SURVEY OF THE DEVELOPMENT OF THE PULSATION
THEORY OF STELLAR VARIABILITY

The explanation of the variability of stars by their pulsations (free oscil-
lations) was first put forward by Ritter in a series of publications (5); it was
also suggested by Umoff in 1896 during the defense of Belopolsky’s thesis,
in connection with the latter’s discovery of the periodic Doppler shift of
spectral lines in the atmosphere of § Cephei.

The discovery of the temperature variations of Cepheids provided a new
corroboration of the pulsation hypothesis, and made it impossible to explain
the Cepheids as binary systems. Afterwards, in 1913, the pulsation hypothe-
sis was formulated in fully definite form by Plummer, and in 1914 by
Shapley.

In 1918-1926 a series of publications by Eddington (6, 7, 8) laid the foun-
dations of the theory of conservative (adiabatic) free radial oscillations of
gaseous spheres. In the same papers [especially in (8)], Eddington showed
that free oscillations of stars must quickly decay [see also (9, 11)] and there-
fore that there must be in pulsating stars a continuously operating mecha-
nism that transforms thermal energy into the mechanical energy of pulsation.
In order not to violate the second law of thermodynamics, this mechanism
must operate on the same principle as all other thermodynamic heat ma-
chines. For the case of small oscillations, Eddington (7, 8) derived a suitable
formula for the magnitude of the dissipation of mechanical energy of oscil-
lation W, arising as a result of the working of a thermodynamic machine,
which transforms heat energy into mechanical energy:

=—fM§ iTzldem g

1 The survey of literature pertaining to this review was concluded at the end of
1962.
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Here 6T/T is the relative change of temperature at time ¢ in the element of
mass dM, and dQ is the quantity of heat put into the element of mass d M
in the time df. The first integral is taken over all of the elements of the
“working body,” whereas the cyclic integral is taken over the time of the
oscillatory cycle.

If the dissipation of mechanical energy W >0, then the mechanical oscil-
lations decay; if W <0 (the case of negative dissipation), the oscillations are
amplified. In the latter case, thermal energy dQ brought into the system is
transformed into mechanical energy of oscillation.

It is obvious from Equation 1 that the introduction of heat dQ >0 is
especially favorable at the moment when the temperature of the system is
increasing (e.g., because of its compression), i.e., when 67 /T >0. An ordinary
Diesel engine (and also every other thermodynamic engine) operates ac-
cording to just such a principle. For the correct operation of a Diesel engine,
the flash of fuel (and therefore the liberation of energy in the chamber)
should occur at the moment of compression of the ‘“working body,” when
6T/T >0.

Eddington [see (8, pp. 200-3)] points out two possible mechanisms, ap-
plicable to stellar conditions, for the excitation of stellar oscillations from
the point of view of the thermodynamic formula Equation 1. The first
mechanism is such that the energy generation, for example, by nuclear
processes in the center of the star, becomes more intensive during the phase
of stellar contraction and the corresponding increase of temperature, but is
less intensive during the phase of stellar expansion. Therefore, as a result of
the enhanced liberation of nuclear energy (dQ >0) during the contraction
phase, the gas pressure increases; but during the expansion phase the pres-
sure decreases, which creates a situation similar to that in an ordinary
Diesel engine operation.

We must note at once that subsequent work by Cowling (12) [see also
(10, 11, 13)] showed that this mechanism is inefficient under stellar condi-
tions. Make the usual assumption that the amplitude distribution of non-
adiabatic free oscillations of a real star along its radius is similar to that for
the adiabatic free oscillations of the model of this star [nonadiabatic free
oscillations, with such an amplitude distribution, which we have labeled
“ordinary’’ (14; see also 15, 16), will really exist]. Then, as a consequence
of the effect (well known for adiabatic stellar models) of nonhomology of the
oscillation, which consists in an increase of the relative amplitude of free
oscillations /7 from the center of the star to the periphery by a factor of
from 10 to 10% (depending on the degree of concentration of the mass of
the star to its center), nuclear reactions become ineffective for the excitation
of oscillations. In particular, because of the relatively small amplitude of the
central pulsations, the negative dissipation of the energy of the star’s oscil-
lation, derived from nuclear reactions occurring at its center, appears to be
insufficient to compensate for the positive dissipation that occurs during the
transfer of energy in the peripheral portion of the star, which has a consider-
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ably larger amplitude of oscillation. Thus, if the rate of nuclear energy
generation is determined by the expression e=¢€pT% then for the value of
nonhomology which is appropriate to stellar models with a likély degree of
concentration of mass to the center and an index y=(d In P/d In p)aqa =5/3,
oscillational instability may arise only for values of « of the order of hundreds
or even thousands (12), whereas the contemporary theory of thermonuclear
reactions in stars gives values for & of not more than several dozens. Further,
nonadiabatic free oscillations of a star, which we have called ‘“‘extraordinary”’
(14) (because for such oscillations the distribution of the relative amplitude
of oscillation é7/7 along the radius has nothing in common with the distri-
bution that occurs in the case of adiabatic free oscillations), and for which
6r/r has an especially sharp and great maximum in the center of the star,
can also not be excited by nuclear energy reactions (14), just because of the
great sharpness of this maximum.

The second possible mechanism, which, according to Eddington, is ‘‘fan-
tastic in an ordinary engine but not necessarily so in the star,”” consists in a
special ‘‘valving” operation of the medium when the energy flux passes
through it. Eddington describes this mechanism in the following way: ‘‘Sup-
pose that the cylinder of the engine leaks heat and the leakage is made good
by a steady supply of heat. The ordinary method of setting the engine going
is to vary the supply of heat, increasing it during compression and diminish-
ing it during expansion. That is the first alternative we considered. But it
would come to the same thing if we varied the leak, stopping the leak during
compression and increasing it during expansion. To apply this method we
must make the star more heat-tight when compressed than when expanded;
in other words, the opacity must increase with compression.” [See (8,
p. 202).]

We must note that the second mechanism as formulated by Eddington also
cannot be realized in the star as a mechanism for exciting oscillations in a star.
From the above quotation, Eddington evidently visualized the whole star as
stopping the leakage of energy in the contraction phrase, because the increase
of the opacity coefficient in the entire volume retards the flow of energy. Con-
versely the opacity would decrease and the leakage increase during expansion.
In reality, this effect cannot be realized over the entire star but only in the
layer where the critical ionization of Het occurs. Therefore, the appearance
of negative dissipation by no means requires that the ‘“‘opacity must increase
with compression,”” “stopping the leak during compression and increasing it
during expansion.” We shall illustrate our statement by the following exam-
ple. For the sake of simplicity, we suppose that the density of the energy
flux H is given by H=H,T? where T is the temperature and 6 is some effec-
tive index. For illustrative purposes, let us consider that both the tempera-
ture and oscillation amplitudes do not vary along the stellar radius. Then
the condition for the occurrence of negative dissipation in the layer with
thickness dr [i.e., dQ=(6H/dr)dr >0 during contraction] will be not the
negative sign of the effective index 6 (as would follow from Eddington’s
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formulation taking into account the temperature increase at the moment of
contraction), but the negative sign of the derivative: 60/6» <0 (15).

In this case the onset of negative dissipation of the energy of oscillation
of the whole star is possible only when the amplitude of oscillation of the
layer in which the dissipation is negative is sufficiently great in comparison
with the amplitude of the layers in which the dissipation is positive. For a
peripheral layer, in which second ionization of He is occurring, this condition
is realized if the stellar oscillations are sufficiently nonhomologous, i.e., if the
amplitude 67/7 increases greatly from the center of the star to its periphery.
It has been shown (16) that, as the nonhomology of the stellar oscillations
increases, the efficiency of Eddington’s second mechanism also increases and
approaches ‘“‘saturation’ at the degree of nonhomology that corresponds to
a central mass concentration for the polytrope with index n = 3.

Eddington (17) next takes into consideration the zone of critical ioniza-
tion of hydrogen. He expresses confidence in the existence of a connection
between (a) the phase shift between oscillations of brightness and radial
velocity and (b) the period-luminosity relation, and he believes that both
depend on the existence of a peripheral zone of partially ionized hydrogen.
Yet he rather positively inclines to the opinion that the pulsations of Cepheids
are not likely to be caused by the ionization zone but rather “by sub-atomic
stimulation,” and that ‘‘the hypothesis of negative dissipation is not likely
to be advocated except as a last resource’’ (he means here the negative dis-
sipation created by the second or ‘‘valve” mechanism). He further states
that in general “‘the steady supply of energy €, at high temperature in the
interior could be converted into mechanical energy of pulsation if the con-
stitution of the star provided a suitable ‘valve mechanism.” But, unless the
conditions are widely different from what we suppose, there appears to be
no mechanism which would regulate the flow of heat in the way required.”
The fact that only those stars are pulsating which occupy a definite narrow
band in the H-R diagram Eddington explains by the fact that ‘“‘pulsation
is associated with a transient decrease of dissipation” (in this case he means
a minimum of positive dissipation) rather than by a transient increase in the
liberation of sub-atomic energy, since the latter ““would not give the existing
sequence of Cepheid variables, in which the stars of short period have much
higher internal temperatures than those of long period.”

Moreover, arguing the inevitability of the conclusion concerning the con-
nection between the phase delay and the existence of a critical ionization
zone in which the index 8, defined by the ratio 67/T =60(8p/p), becomes con-
siderably less than unity, Eddington takes the position that the second
mechanism (i.e., the ‘“valve mechanism’’) cannot be realized in a star. He
shows that the two assumptions: (a) the index 8 is constant throughout; and
(b) maximum radiation occurs a quarter period after ‘“‘minimum radius,”
when taken together, inevitably lead to the existence of negative dissipation
caused by the ‘‘valve mechanism.” Hence it follows “by reductio ad ab-
surdum’’ that one of the two assumptions must be rejected, since according
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to Eddington the ‘‘valve mechanism’ cannot be realized in stars. Since (b)
is based on observation, Eddington concludes that (a) must be rejected, i.e.,
there must be a layer in which the index abruptly falls, and this is the zone
of critical ionization.

In 1948, the author (18) pointed out that nuclear reactions are ineffective
as the cause of Cepheid oscillations both because of the effect of non-
homology and because of the very large amplitudes of the auto-oscillations
excited by the energy of nuclear reactions (18, 19). He considered instead
that Cepheids are auto-oscillating systems and examined whether stellar
auto-oscillations could be maintained by a peripheral zone of critical ioniza-
tion. Owing to the strongly nonadiabatic character of the oscillations, the
hydrogen ionization zone cannot excite the auto-oscillations of giants. In-
stead, the zone of He™ critical ionization was considered to be the cause of
stellar auto-oscillations (9, 18). In later investigations (15, 16, 20-26, 27-32)
it was shown, in contrast to Eddington’s assertion about the improbability
(or at least the small probability) of the excitation of stellar oscillations by
means of a valve mechanism in the critical ionization zone, that if the con-
tent of helium in the envelopes of variable stars is about 15 per cent by num-
ber of atoms, it is possible to explain both the onset of auto-oscillations and
the main features of all basic types of variable stars.

In 1958-1960, Cox and Whitney (33, 36) put forward similar ideas con-
cerning the nature of stellar variability. However, it should be noted that
both the method of solution of the equations of nonadiabatic oscillations and
a number of devices used in the papers of Cox and Whitney seem to the
author to be incorrect (29, 37).

Let us enumerate the observed facts which are now explained by the
theory of the maintenance of stellar auto-oscillations by the Het ionization
zone.

(a) The very fact of the existence of variable stars is explained, and the
cause of the oscillations is given (9, 20-22, 24, 26).

(b) An explanation is given of the phase shifts between the oscillations of
brightness and those of stellar radius, characteristic of Cepheids, of long-
period variables of the RR Herculis and o Ceti types and of short-period
variables of the 8 Canis Majoris type (9, 20, 21, 23-27, 30).

(¢) The connection between the amplitudes of the luminosity and radius
oscillations is explained for the types of variable stars enumerated in (b)
above (20, 21, 23-27).

(d) An interpretation is given of the irregular changes in brightness and
of a number of peculiarities which are characteristic of some types of semi-
regular variables, namely, for variables of the AF Cygni and RS Cancri
types (27).

(e) A number of peculiarities of the location of variable stars on the H-R
diagram are interpreted. In particular, it is explained why variability is
peculiar only to supergiants but not, for example, to stars of the main
sequence [with the exception of that part of the main sequence which is
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close to the giant branch, some members of which are known to be short-
period Cepheids (25)]. Also explained is why in moving along the ‘“‘great
sequence’’ from the spectra of type A to those of type M, the first variable
stars that appear are Cepheids (i.e., variables from which the brightness
maximum comes about one fourth of a period later than the epoch of maxi-
mum stellar contraction), followed by semiregular variables and long-period
variables of the RR Herculis type (i.e., variables for which maximum bright-
ness coincides with the epoch of maximum stellar contraction) and, finally,
long-period variables of the o Ceti type (i.e., variables for which maximum
brightness comes about one fourth of a period earlier than the epoch of
maximum stellar contraction) (21, 24, 27, 30).

(f) The order of magnitude of the observed sizes of the amplitudes of the
auto-oscillations of variable stars is explained (20, 24, 26).

(g) The observed value of the asymmetry of the radial velocity curve is
explained (38).

(k) For the classical Cepheids (calculations have not yet been carried out
for other types of variability) one obtains the period-luminosity relationship
with the zero-point according to Baade (22-26, 30) and with a dispersion
of about 1™ (28).

(z) The masses of the classical Cepheids obtained from the theory are
about 1.6 times smaller than they should be according to the period-
luminosity relationship for stars of the main sequence (22-24, 30).

II. STATEMENT OF THE PROBLEM OF STELLAR AUTO-OSCILLATIONS

The basic equations? describing nonadiabatic stellar oscillations are a
mechanical equation:

dr 1 5
Et; = 7 grad P — qg .
and a thermal equation:
as 1 q
— = —div(KgradT) +— 3.
i T iv (K grad T) + -

Here r is the distance of the element considered from the center of the star;
p is the density of the element; T is the temperature; P is the total pressure
of gas and radiation; g is the acceleration of gravity; .S is the specific entropy;
g is the rate of energy liberation per unit mass; K is the coefficient of thermal
conductivity (in the case of radiative thermal conductivity

4 caT?
K=—
3 «kp

where k is Rosseland’s mean coefficient of absorption). The solution of the
nonlinear differential Equations 2 and 3, if it could be obtained, would

2 The relativistic equations of motion are described by Thomas (39). In view of
the smallness of the relativistic corrections, there is no need at present to apply the
relativistic equations to the study of variable stars.
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answer all questions pertaining to the theory of stellar variability: Does the
given stellar model pulsate or not? What is the form or amplitude of the
auto-oscillations, etc.? Till now, although the solution of the nonlinear system,
Equations 2 and 3, is quite possible with the help of high-speed electronic
computing machines, only those equations have been considered which have
been obtained from Equations 2 and 3 as a result of linearization (33, 36, 40—
45). It must be noted that the consideration of linearized equations is quite
sufficient for the explanation of the very important question of whether a
system is oscillationally unstable, i.e., whether or not auto-oscillations may
be excited.

However, the investigations cited do not give satisfactory consideration
to the problem of linear nonadiabatic stellar oscillations. We have no oppor-
tunity to criticize these works here and only note that some authors (41, 42,
44, 45) have used incorrect boundary conditions and others (33, 36) have
used a method of solution of the equations of nonadiabatic oscillations in
which quantities of the same small order as those determined are neg-
lected (29).

Among the solutions of the linearized system obtained from Equations 2
and 3, only those are of physical interest which describe so-called free non-
adiabatic oscillations.

The problem of free nonadiabatic stellar oscillations is to obtain those
solutions of the linearized system for which the energy of oscillations de-
scribed by the solutions is finite. This requirement of finiteness of the energy
of oscillations, which is due to peculiarities in the equations of the linearized
system in the stellar center and in the periphery, turns out to be equivalent
to the application of boundary conditions linking the solution and its first
derivatives in the center and the periphery (14, 15).

For a star of finite radius, the requirement of the finiteness of the energy
of oscillations is equivalent to that of the finiteness of the solution of the
linearized Equations 2 and 3 in the center (the latter is also true for a star of
infinite radius) and at the periphery (14). For the linearized problem the
requirement of a finite solution is equivalent to the application of two
boundary conditions in the center and two at the periphery. Thus, all in all,
there are four boundary conditions [see e.g. (15)]. Since the system of differ-
ential equations resulting from the linearization of systems 2 and 3, and from
the introduction of an exponential time-dependence of the form ei“’ for all
quantities entering into these equations, is a complex system of the fourth
order, its general solution contains four arbitrary (complex) constants. Since
the problem is homogeneous, one of these constants may be arbitrary
(it corresponds to arbitrary initial amplitudes and phases of the oscillations).
Four boundary conditions are sufficient for the determination of the three
other constants and the eigenvalue w (the complex frequency of oscillations).
The boundary problem is considered to be solved if both the eigenvalue
numbers w; and the eigenfunctions are found (both are complex in general).

It has been found that the boundary problem of linear, nonadiabatic, free
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stellar oscillations, owing to peculiarities in the equations, may possess two
types of solutions, ‘“‘ordinary’” and “extraordinary’ (14). (This circumstance
distinguishes it, for example, from a problem such as that of the oscillations
of a uniform string with fixed or free ends, where there are no ‘“‘extraordinary’’
oscillations.) The solutions of the “ordinary’ type are quasi-adiabatic in the
center of a star and strongly nonadiabatic at the periphery; with increasing
degree of adiabaticity of the model (e.g., by diminishing the equilibrium
luminosity Lo of the model to zero) they turn into free oscillations of the
corresponding adiabatic model. The solutions of the extraordinary type are
strongly nonadiabatic in the center as well as at the periphery: the relative
amplitude 67/r has a very high and sharp maximum in the center of the star;
with increasing degree of adiabaticity of the model, the extraordinary oscilla-
tions do not transform into free oscillations of the adiabatic model (14).

It is shown further that only ordinary oscillations may be self-excited in
a real star (the excitation mechanism in this case is the peripheral zone of
Het critical ionization) (14).

In Woltjer’'s method (40), the solution of the equations of nonadiabatic
oscillations is carried out by successive approximations; an adiabatic solution
is used as the zeroth approximation. The method essentially assumes the
proximity of both adiabatic and nonadiabatic oscillations (we note that such
proximity is absent even for ordinary oscillations at the star’s periphery);
otherwise the rapid convergence may not only disappear, the solution may
even diverge.

The present writer (18, 19, 20, 29, 46, 47) has proposed another method
unrelated to successive approximations and suitable for any degree of non-
adiabaticity of the oscillations (whether linear or nonlinear). The method is
based on a discrete treatment, as follows: the star is divided into concentric
layers, then a ‘‘discrete model’’ of the star is constructed in which each of
the layers is assigned a constant temperature, density, opacity coefficient,
etc.

This method makes it possible to examine, with almost equal simplicity,
adiabatic as well as nonadiabatic linear and nonlinear stellar oscillations.
Whitney & Ledoux (48) considered linear free adiabatic oscillations in order
to explore the possibilities of the method. The method has further been
applied to the study of the nonadiabatic linear oscillations of a stellar en-
velope (21-28, 30, 31, 32) and to that of its adiabatic nonlinear oscillations
(38). Recently, V. I. Aleshin (unpublished) has employed an electronic com-
puter to calculate the auto-oscillations of a multilayer discrete model main-
tained by the zone of critical ionization of He™.

Increasing the number of layers of the discrete model naturally increases
the accuracy of the method (just as diminishing the integration step increases
the accuracy of ordinary methods of integrating differential equations). It
must be emphasized, however, that if the number of the layers is small, high
accuracy may be achieved by the so-called “principle of correspondence”
(21, 29, 32), which may be described as follows. The selection of the parame-
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ters of a discrete model is to some extent arbitrary. For example, the tem-
perature of a given layer in the discrete (static) model may be selected within
the limits of the spatial variation of the temperature of the corresponding
layer in the continuous model. Therefore, by the selection of these parame-
ters, one may always obtain proximity (preferably as close as possible) of
of the quasi-adabiatic linear oscillations of a discrete model to the quasi-
adiabatic linear oscillations of the corresponding continuous model (the cal-
culation of the latter by ordinary methods of numerical integration of dif- .
ferential equations is not very difficult, since it amounts to the solution of a
boundary problem for a second-order differential equation). Since the afore-
mentioned proximity of the two models (i.e., in both models, the relative
amplitude of the linear adiabatic oscillations of the displacement ér/7, the
relative amplitude of the linear quasi-adiabatic oscillations of the energy
flow 6L/ L, and their changes along the stellar radius are close to one another)
was obtained as a result of the selection of the parameters of the discrete
model, one ought to expect (this is just ‘‘the principle of correspondence’’)
that the nonadiabatic and nonlinear oscillations of both discrete and con-
tinuous models will be close to one another).?

Although we have no doubt of the correctness of ‘‘the principle of cor-
respondence,”’ it has not yet been verified.* Therefore the integration of the
complete system of nonadiabatic equations by ordinary methods (for exam-
ple, with the help of an electronic computer) should be welcomed in every
possible way, although we do not expect that such an integration can alter the
results (14, 30, 31, 32) obtained with the help of four- and five-layer discrete
models of a stellar envelope by an amount exceeding the inaccuracy of our
calculations, which is caused by inaccurate data on the structure of the en-
velope. In our view, the most important result to be expected from such an
integration will be the verification of ‘“‘the principle of correspondence’ as a
basis on which discrete models with a small number of layers (four-five)

8 It must be noted that establishment of the proximity of the quasi-adiabatic
oscillations of the discrete model to those of the continuous model is basically equiva-
lent to the imposition of boundary conditions. If, in the continuous model, the
boundary conditions (the regularity of the solution in the center and at the pe-
riphery) are satisfled by the choice of a proper value of w? then in the corresponding
discrete model, where the regularity is provided by the discreteness itself, and w?
is determined to agree with that of the given continuous model, the boundary con-
ditions will be analogous to the requirement of proximity of the quasi-adiabatic linear
oscillations of a discrete model to those of a continuous model, attained by the choice
of layer widths and temperatures.

4 The fact that the discrete model reduces to the continuous model when the
number of layers increases without limit (more precisely when the thickness of the
layers approaches zero) implies that ‘‘the principle of correspondence’” is fulfilled
when the number of layers is sufficiently great. However, its correctness does not de-
pend (or at least depends weakly) on the number of layers, and only this circumstance
must be proved.
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may be applied to the calculation of nonadiabatic oscillations (30, 31, 32).°

It is not superfluous to point out in conclusion the following advantages
of the discrete method in comparison with Woltjer's method (40) and with
the ordinary methods of integrating differential equations.

(a) The convergence of the method is obvious: for a sufficiently large
number of layers, the discrete model has quite the same oscillations as those
of the continuous model, and the convergence does not depend on the degree
of nonadiabaticity or nonlinearity of the models’ oscillations.’

(b) The universality of the method is clear: it is plainly possible (as re-
gards volume of computation) to consider adiabatic, nonadiabatic, nonlinear,
and auto-oscillations.

(¢) The method has high accuracy for a relatively small amount of
computation.”

It should also be pointed out that there are factors limiting the applica-
bility of the discrete model and that it cannot treat such phenomena as
extraordinary oscillations and shock waves, which can only be handled in
the continuous model (14).

There is no need here to describe the calculations of nonadiabatic stellar
oscillations carried out with the help of the discrete model (21, 30, 31, 32)
and we therefore go directly to an account of the physical picture of the
origin and main peculiarities of the auto-oscillations of variable stars.

I11. PuaysicaL Basis oF THE THEORY OF STELLAR VARIABILITY

Calculations by the author in 1953 (unpublished) showed that a helium

5 Ledoux and Whitney express doubt as to the accuracy of such calculations:
“the model and the application of the method itself (for instance the whole critical
layer is one of the discrete shells) are still very rough so that the results fail to be
completely convincing’’ (3). In this connection we should again like to draw attention
to the fact that the parameters of the discrete model (30, 31, 32) were selected in
such a way that its quasi-adiabatic oscillations appeared close to those of the corre-
sponding continuous model. Therefore, if ‘“‘the principle of correspondence’ is ac-
cepted as correct, the results of calculation with a four-layer model must have high
accuracy [see also (32), where the critical layer is divided into two discrete layers
and an attempt is made to estimate the accuracy of the calculations with four- and
five-layer models, without appealing to the hypothetical principle of correspondence].

§ The rapidity of convergence in Woltjer’'s method (if there is any) is not clear
for those cases (real for the star’s periphery) when the oscillations are strongly non-
adiabatic. Moreover, it is surely incorrect to restrict Woltjer’s method to the first
approximation (29) as all authors have done up until now.

7 Of course, any method of numerical integration of the equations of motion of a
continuous model is nothing but the application of the discrete treatment. How-
ever, such application does not make use of the device that was introduced by physi-
cal intuition during the construction of the discrete model (the “principle of corre-
spondence”’) and therefore, in contrast to the discrete treatment supplemented by
the “principle of correspondence,” yields good quantitative results only when the
integration step is small.
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concentration of 7 per cent by numbers of atoms is not sufficient for the
excitation of auto-oscillations.

Since the efficiency of the zone of critical ionization of Het depends not
only on the helium content but also on the structure of the stellar envelope
(above all on the value of the ratio m,/m., as discussed below), which has
not yet been determined exactly, it is difficult now to estimate the lower
limit of helium content in a stellar envelope which (at the optimal value of
the parameter y,, see below) is sufficient for the excitation of auto-oscillations.
This lower limit of the helium concentration, which depends on the envelope
structure, is apparently between 10 per cent and 15 per cent (by number
of atoms). :

When the helium content is above 15 per cent, the opacity coefficient of
the hydrogen-helium mixture, the specific heat, and other thermodynamic
parameters of the He' critical ionization zone quickly reach saturation.
Therefore an increase of the helium content to more than 15 per cent has
little influence on the efficiency of the He' critical ionization zone, in ex-
citing oscillations. We note that the efficiency has a rather flat maximum at
helium content ~60 per cent.

Be that as it may, the problem of the helium content in the envelopes of
variable stars assumes paramount importance. Its quantity in the atmos-
pheres of variable stars has not yet been determined by direct analysis from
curves of growth, because of the high ionization potential of helium and the
relatively low temperatures of the atmospheres of variable stars. Hence we
must judge the helium content in the latter indirectly by that in the atmos-
pheres of the hot stars and the sun, for which it is about 15 per cent (49).

Recently (1957) direct proof has been obtained of the presence of helium
in variable-star atmospheres. Kraft found the emission of the helium line
X 5876 behind the shock-wave front in the envelope of the variable W Vir.
(50). Assuming that the level populations behind the shock-wave front are
appropriate to those in thermodynamic equilibrium, Wallerstein concluded
that the ratio of hydrogen to helium by number in W Vir. is between 3
and 10 (50).

Let us now proceed to set forth the physical basis of the theory of pulsa-
tional variability.

Calculations (9, 24, 30, 51, 52) have shown that the critical ionization
zone of He" lies at a depth in the star corresponding to T = 35000°-55000°.
For the sake of simplicity, let the star be divided into the region e internal
to the zone, the critical ionization zone of Het b, and the atmosphere ¢ above
the zone (Fig. 1).8

Let the star perform radial oscillations at the fundamental frequency.

8 In the papers (27-32), the critical ionization zone of Het, i.e., the zone b, was
taken conditionally as that zone of the stellar static model in which v, —1=(dIn
T/dln p)aa <0.26 (the helium content is 14.3%,).
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The dissipation of the mechanical energy of oscillations during a period will,
for small oscillations, be given by Equation 1:

vo-§f Too-§f Tu-[Tn

where the cyclic integrals are taken over the cycle of oscillation, and the
other integrals over the volumes of the regions a, b, and ¢; 6T/ T is the relative
temperature variation during the oscillations (sinusoidal in time), and dQ is
the heat entering the corresponding.regions a, b, or ¢ during the time dt.
Using the mean value theorem, we may rewrite Equation 4 as follows:

() [ $(D) fro-§ (D) fo
-+ () 1~ () - - () -
i C'v'xio- .ezg
25 |
20 H _—
5 Hel
Hell
10 |
’ N
] : Y
o Z 16 cl

F16. 1. Stellar regions a, b, ¢ (correct relative scale). At the bottom is represented
the variation of the specific heat at the constant volume ¢,, and the disposition of criti-
cal ionization zones of He™, He, and H along the stellar radius.
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where Tl

TN\ (TN [T
. (7 (),
are the values averaged over the regions a, b, ¢, and L,, Ls, L are the thermal
fluxes flowing respectively through the external boundaries of the regions
a, b, c
The first term of Equation 5, representing the dissipation of the oscil-
lation energy Wins of the internal part of the star, is (16)

8T 1 6T oL 1 sT
- = —Z {(—) 6L, 6.
Wine 9§ ( ) Ladt =5 2L 7 ) (Lo) 2T )

where (6T/T)or and 8L, are the amplitudes of the quantities (67/7T), and
L, at the internal boundary of the zone, and Z is the so-called factor of non-
homology of the stellar oscillations. For a model with a sufficiently high de-
gree of mass concentration to the center (the mass concentration of the
polytrope with index =3 is already sufﬁc1ent) Z=0.537 (16) with an ac-
curacy of about 4 per cent. :

It is clear from Equation 4 that‘ if negative dissipation is to arise in
region b, it is necessary that the ionized zone should absorb heat (d(Q >0)
during the compression of the star (and the zone) when 67/7T >0, and lose
it (d0»<0) during the expansion when 67/T <O0.

The occurrence of negative dissipation during oscillations of the ionized
zone, with radiative energy transfer,? is especially easy to understand from
examination of the quasi-adiabatic approximation.!® Since, in the critical
ionization zone of He™, the quanitity y1—1=(d In T/d In p)aqa <0.26 dimin-
ishes to values of y—1=0.22-0.35 (9, 24, 30), then, in the course of the stellar
oscillations, the temperature T changes insignificantly in comparison with
the density, for (6T/T)aa=(y1—1) (6p/p)aa, and the variations of the density

® It has been shown (25) that in spite of the convective instability of the critical
ionization zone of He* and the convection that it causes, in giants and supergiants
radiative energy transfer predominates over convective transfer in this zone, and
consequently the ionization zone of He* in giants and supergiants must be considered
to be in radiative equilibrium. On the other hand, convective transfer predominates
over radiative transfer in the ionization zones of dwarf stars, on account of the high
density of their atmospheres. For this reason, dwarfs and subdwarfs cannot pulsate.
[It has also been shown (25) that a zone with convective energy transfer cannot
maintain stellar auto-oscillations.] :

10 The quasi-adiabatic approximation is that in which the value of the density
of the radiation flux for the oscillation phase under consideration is determined from
the stellar temperature and density distribution, which is derived on the assumption
that the stellar oscillations are adiabatic.
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primarily determine those of the opacity coefficient k =ke™7* in the criti-
cal ionization zone of He™ [if the content of helium atoms is 15 per cent in
the zone of Het, m =0.85, s =~1.0 (53)]. Therefore, during compression, the
opacity coefficient of zone b either increases, or diminishes, if at all, not
so much as in region a. During expansion, the coefficient either diminishes,
or increases, if at all, more weakly than in region a. Consequently, during
star compression the radiation flux L, entering zone b from the internal part
of the star a and defined by the formula

4caT? dT

L=— —_
3kp  Or

will either increase, or diminish, if at all, not so much as in region a. On the
other hand, during star expansion it will either diminish or increase, if at all,
not so much as in region a. Therefore, during the contraction phase, zone b
will have to absorb the additional radiation flux emerging from region a,
and during the expansion phase it radiates energy more intensively (as com-
pared with the case when there is no zone at all). It follows from the calcu-
lations that this valve mechanism is preserved if the oscillations are not too
nonadiabatic. As a result, negative dissipation is created by zone b.

It is evident that if negative dissipation arises in region & due to the ab-
sorption of the energy issuing from region a, then the loss of this energy must
simultaneously lead to the onset of positive dissipation in region a.

Whether or not stellar oscillations are excited depends on which of the
two absolute values turns out to be greater (for the present we neglect dis-
sipation in region ¢ as small; we shall see later that this assumption is true
in the case of Cepheids and not in the case of long-period variables of the
o Ceti type). It might seem from a first glance at Equation 4 that, since the
value of the quantity (y;—1) in the ionization zone b is small in comparison
with that in the region ¢ (where vy —1~2/3), and consequently the tempera-
ture oscillations in the zone are relatively small, then taking into account
that dQ,= —dQs, we would find that zone b cannot create enough negative
dissipation for the excitation of oscillations. As a matter of fact, this is not
the case, owing to the effect of nonhomology of the oscillations, which causes
a rise in the relative amplitude of the density oscillations 8p/p in zone b in
comparison with that in region a, and a corresponding increase of 7/7T. The
effect of nonhomology is evident from the following estimates which, in
contrast to the numerical computations (14, 29-32), are merely illustrative
in character.

Assuming that the addition to the energy flux arising in region ¢ during
compression is either fully absorbed in zone b during compression (i.e.,
Ly=0) or is shifted in phase by /2 (which is energetically equivalent to
complete absorption), and using Equation 6, we may write the following
expression for the absolute value of the ratio of dissipation, W5 in zone b and
W, in region a:
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In Equation 8, y2=(d In p/d In p)aq and it is assumed with high accuracy
that va(6p/p) =const. along the stellar radius; more exactly, the relative am-
plitude of the pressure, (6p/p)ada =72(0p/p)ad, varies along the stellar envelope
nearly independently of the value of v, in the envelope; an analogous ap-
proach was used by Eddington in the calculation of nonadiabatic oscilla-
tions (54).

For the excitation of oscillations, it is necessary that

| Wo| _ (vi— Delyo)r
lw.| 2z >1
a 34 (yo)s

Since, in conformity with conditions in the critical ionization zone of He™,
(v1i—1)5 =0.30; (v2),=5/3; (v2)s 1.3 (9, 24, 29), then for homologous oscil-
lations for which Z =1, Equation 8 gives W3/ W,=0.577 <1, i.e., the uniform
density model cannot be excited by the critical ionization zone.

It is well known, however, that with increase of mass concentration to
the center of the star, the factor Z rapidly diminishes and, within an accuracy
of 4 per cent, becomes equal to 0.537 (16) for stars with central mass concen-
tration exceeding the concentration of the polytrope of index #n =3, regard-
less of the internal structure of the star and, to some extent, of the opacity
law. Therefore, oscillations of stellar models with sufficiently great central
mass concentration may be excited by the critical ionization zone if other
favorable conditions, of which we shall speak below, are realized. In such
cases we obtain the following estimate, according to Equation 8: [ Wb/Wa[
=0.577/0.537=1.07 > 1.

It is also evident from Equation 9 that when the values of (y;—1) in the
ionization zone are very small, the latter becomes ineffective for the excita-
tion of oscillations in any model; this will be particularly true for the hydro-
gen ionization zone for which the value of the quantity (y;—1) is typically
very small.

It is apparent that if the oscillations in zone b are strongly nonadiabatic,
then the zone cannot create sufficient negative dissipation, being incapable
of any appreciable absorption of the radiation flow. For, in this case, the
energy absorbed during the compression of the layer, having caused some
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nonadiabatic heating of the layer, would diminish the opacity coefficient of
this layer: k =kop? 37T °%. Consequently, the layer becomes transparent to
radiation and ‘‘releases’” the accumulated (as assumed) energy, thus not
creating negative dissipation:

It is necessary to estimate quantitatively the degree of nonadiabaticity
of the star layer under consideration, which is capable of maintaining auto-
oscillations of the helium zone. As the parameter for a sufficiently precise and
rather simple determination of the degree of nonadiabaticity, we introduce
the ratio of the nonadiabatic variation of the temperature (67/7T)naa, caused
by thermal influx to the layer during either its contraction or expansion and
calculated on the assumption of quasi-adiabatic, infinitesimally small oscil-
lations of the layer, to the adiabatic temperature variation (67/7T)aq, simul-
taneously arising as a result of contraction or expansion:

oL
T 5T A(ﬂ qsadL°P
Ve = (?) : <? = 5 10.
nad o rAMeT(y, — 1)(-”)
P /ad
Here P is the period, AM is the mass of the layer, ¢, is the specific heat of
the layer at constant volume, and (y1—1)(6p/p)ada =67/ T)ad.

Two remarks are pertinent relative to the determination of the parameter
¥, (10), as suggested in (9). First, the true nonadiabatic temperature change
during the oscillation of the star will be smaller than that calculated from
the quasi-adiabatic approximation on account of the Le Chatelier-Braun
principle. Second, the effective specific heat of the layer differs from that at
constant volume ¢,, since the layer changes its volume and performs mechan-
ical work. However, these circumstances in no way reduce the importance
of the parameter introduced above for the estimation of the nonadiabaticity
of the oscillations of the given stellar layer, and in particular for comparison
of the degree of nonadiabaticity both of the continuous models and of the
discrete models that correspond to them. If the oscillations of the ionization
zone b are strongly nonadiabatic (y,>2—2.5), then, as has been explained
above, and as calculations based on the discrete model show (21, 30, 31, 32),
the zone is incapable of creating sufficient negative dissipation for the exci-
tation of auto-oscillations. ,

In the other limiting case, when the oscillations of zone b are rather close
to the quasi-adiabatic case (y.<0.5), considerable negative dissipation oc-
curs, which, however, is more than compensated by the positive dissipation
occurring in the region ¢ lying above the zone and by the positive dissipation
in the quasi-adiabatic region a (the latter, in contrast to the dissipation in
region ¢, remains nearly unchanged during the variation of the parameter y,).
The fact is that if, for a star of given structure, the zone of critical ionization
of He™ is located so deep that the oscillations of region ¢ above it are also
close to adiabatic, then, since the adiabatic index of the oscillations is
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v1=5/3," the positive dissipation of the oscillation energy is so great that
auto-oscillations are impossible.

It appears from the above that the helium zone may turn out to be effec-
tive for the maintenance of stellar auto-oscillations only for a definite degree
of nonadiabaticity of its oscillations. Computation shows that the appropri-
ate range of values of the parameter y, of the He* zone is between 0.5 and 2.5.

The latter condition imposes definite limitations on the structure of stars
that are capable of auto-oscillations. '

It must be noted that besides this condition, one must also fulfill the
“rough’”’ condition demanding dominantly radiative transport of energy in
the ionized zone (25). For this purpose, the acceleration of gravity in the
stellar envelope must be sufficiently small, as observed in giants and super-
giants; dwarf stars cannot pulsate (25).

Because the parameter y, plays a central role in the whole theory—its
value determines both the onset and type of pulsational variability—, one
must know how this parameter and the fundamental parameters of the star
are interrelated (i.e., the mass M, the radius R, the luminosity L, and the
period P).

In order to form a general idea of the influence of these parameters upon
the parameter y,, we take as a stellar model a polytrope of index # and as-
sume, for the sake of simplicity, that the degree of ionization of the gas does
not depend on the pressure but is determined only by its temperature (14, 24).

As is well known, the temperature and density of polytropic spheres may
be found with the aid of the relations:

T = T.u, p = put

where # is Emden’s function of index #, and the central temperature and
density are given by the formulae:

_ nGMR' 1

® " Res(n+ 1)M'R '
1 /R\3 M

= L (RY 2,
4r \R] M’

In Equation 12, G is the gravitational constant, 7 is the molecular weight,
Rgqs is the gas constant, R’ and M’ are the radius and mass of the star in
Emden’s units, R and M are the radius and mass of the star in ordinary units.

Because of the assumption that the ionization is independent of pressure,
the temperature of the ionization zone must be the same for all stellar models.
Using Equation 11 we obtain

U The zones of critical ionization of He and H, for which y=1, are located in
region ¢. However, the masses of these zones are considerably smaller than that of the
layer with v, =5/3, which lies in region ¢ between the zones of critical ionization
of Het and He. Therefore, we may take the effective adiabatic index of the oscillations
of region ¢ to be v1=5/3.
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M
T =Twu =~ — u = const.
R

Thus, we have for the value of « in the zone:

R
U ~— 13.
M
Taking into consideration the fact that the temperature gradient dT/dr

is nearly constant in the stellar envelope, we find from Equations 11 to 13:

aT T. M
—_— N — N —— N g 14-
dr R R?
M M Rn
p~N—Ur ~— = YLl nRr3 15.
R3 R3 Mn

Here p is the density of the ionization zone.
The thickness of the ionization zone is
1 R? 1

d ~ ~ — ~
dT/dr M g

From this and from Equation 15 we obtain for the mass AM of theionization

zone:
2

AM = 47rR2pd ~ R2pr—nRn—3 ﬂ = M“-n_Rn-l-l 16.

Since the period P~1/+/M /R3= R¥2M12, then according to Equation 16
we obtain for y,:

PL,

yz ~ RS/ZM—1I2MnR—(n+1)LO —_ Mn_1/2R_”+5/2T4eff 17_
Numerical calculations, according to static theory, of the structure of stellar
envelopes with a composition of 85 per cent H and 15 per cent He show that
the effective polytropic index of Cepheid envelopes is # ~2.5, whereas for
long-period variables # =~1.5.

It is clear that in the case of oscillational instability, the increase of am-
plitude will not be unlimited, i.e., a certain finite amplitude of auto-
oscillations will be established. Actually, as the amplitude increases, the
positive dissipation arising in the internal region ¢ increases approximately
in proportion to the square of the amplitude (for oscillations of not very
large amplitude), whereas the amount of the negative dissipation created by
the zone of double ionization of helium is limited by the finite absorbing
capacity of the zone and rapidly approaches ‘‘saturation’” as the amplitude
increases.

On the basis of these considerations, it was shown (22, 24) that the bolo-
metric amplitude of auto-oscillations 6L, of the luminosity of Cepheids (and
in general of stars with relatively small dissipation in region ¢ may be esti-
mated from the formula:

E
6L, ~ 0.42— 18.
P
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where P is the period and E;=0.5 (x1eAM/mue) characterizes the energetic
capacity of the second ionization zone of helium (x is the second ionization
potential of helium; e is the relative helium content according to mass, AM
is the mass of the second ionization zone, mg, is the mass of the helium
atom). We note that Equation 18 determines, so to speak, the maximum
amplitude of the auto-oscillations, which is established when the structure of
the stellar envelope is optimal for the excitation of auto-oscillations. The
true amplitude of the auto-oscillations may be considerably lower or even
equal to zero, as a result of the deviation of the envelope parameters (es-
pecially y,) from the optimal values.

An estimate of the auto-oscillation amplitude of § Cephei according to
Equation 18 leads to the value 6L.=1.9-10% erg/sec, which is in agreement
with the observed value 6L,=2.15-10% erg/sec (22, 24).

It is appropriate to say a few words here concerning the problem of
asymmetry of the auto-oscillations, in particular, the problem of the asym-
metry of the observed radial-velocity curve.

After integration of this curve, it may be noticed that the acceleration
of the stellar surface is great near maximum compression and less near
maximum expansion. Eddington (7, 8) naturally assumed that this asym-
metry in the motion is caused by a variation in the elasticity of the gas,
which increases as the star is compressed. However, the attempt to explain
the asymmetry of the oscillations by means of a conservative (adiabatic)
model of a star with uniform density, performing homologous oscillations,
failed, since the observed asymmetry requires that the amplitude of the
radial velocity variation be nearly ten times larger than the observed value
(55). The same result was obtained in a number of papers (56-60) in which
the asymmetry of the adiabatic oscillations in models with different degrees
of mass concentration to the center was studied by the so-called Rosseland
method (1, 61). However, the latter method is inadequate, since it reduces
the problem of the oscillations of a given stellar model to equations which
have no relation to the description of the oscillations of this model (19, 29, 38).

The failure of these attempts led some authors to the conclusion that con-
sideration of the nonadiabaticity of the oscillations would probably explain
the magnitude of the asymmetry of the oscillations. This is not so, however,
because, in the computation of linear oscillations, taking account of the non-
adiabaticity makes very little change in the phase and the amplitude of the
displacement ér/r (21, 30, 32).12

Lautman (62) managed to obtain curves of adiabatic oscillations that
possess considerable asymmetry. But, in doing so, he solved the problem
with incorrect boundary conditions, which exclude the reflected wave in the

2 One cannot but agree, however, that the degree of nonadiabaticity of oscilla-
tions, without determining substantially the magnitude of the asymmetry, might
cause a noticeable deviation in the values of the radial velocity obtained for one and
the same degree of contraction but for different directions of motion of the stellar
surface. [See the phase patterns for § Cephei and 5 Aquilae, Fig. 46 of the survey by
Ledoux & Whitney (4).]
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linear approximation. If the boundary conditions are such that a standing
wave is formed, then Lautman does not obtain any asymmetry.

Aleshin (38) was the first to show, through calculation of nonlinear
adiabatic oscillations of a discrete five-layer model of a stellar envelope, that
for the observed value of the half-amplitude of the oscillations (about five
per cent of the stellar radius), the asymmetry will be of the order of that
observed only when the nonhomology of the oscillations is sufficiently large
[for example, if it is the same as that in modern models of supergiant
stars (63)].

To understand why considerable asymmetry may arise only when the
nonhomology is sufficiently large, let us consider the following idealized
limiting case. Let the oscillations be such that a sphere of radius 7, passing
through the external layers of the star, is motionless while a sphere of radius
re >71 performs oscillations with amplitude 672/7.~0.05 (in both cases we
deal with Lagrangian coordinates). Then, despite the smallness of the ampli-
tude, the degree of compression of the gas between the spheres »r=7; and
r =71, and consequently the asymmetry of the oscillations, may be very
large only if ro—7 is sufficiently small (i.e., if the nonhomology of the oscilla-
tions is sufhciently large).

Aleshin (unpublished) also carried out calculations of the auto-oscilla-
tions of several discrete stellar models. As a result, he obtained not only the
asymmetries of the brightness and radial velocity oscillations that are
demanded by the observations, but also, for some models, various kinds of
humps on the descending or ascending branches of the curve (similar to
those observed, for example, in the variable n Aquilae).

Let us proceed now to an account of the physical picture of the formation
of phase shifts between the oscillations of brightness and radius of variable
stars. The explanation of amplitude-phase interrelations between the oscilla-
tions of brightness and radius of variable stars has till now been a stumbling
block in the pulsation theory.

As was noted above and substantiated in detail in (25), the transport of
energy in the zone of second helium ionization is by radiation and not by
convection, i.e., it is determined by Equation 7. By logarithmic differentia-
tion, we obtain

8L 8  8(dT/or)

E__185—+365—+27+W 19.
where we have assumed that if the chemical composition of the star is 15 per
cent He and 85 per cent H (by numbers of atoms), the opacity coefficient of
the absorbing part of the He' ionization zone may be approximated by the
formula k=Ko p?¥7T6 according to the computations of Lyast (53).

To understand how the phase lag in the oscillations of the radiation flux
arises during its passage through the ionized zone, we examine the oscilla-
tions both of the star and of the zone by means of the vector dlagram in
Figure 2, at first in the quasi-adiabatic approximation.

In conformity with the fact that the adiabatic index defined by the
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F1G. 2. The vector diagram illustrating the occurrence in the ionized zone (i.e.
in region b) of the phase shift &> (7/2) between the oscillations of the relative dis-
placement &7/7 and those of the relative change of the radiation flux issuing from the
zone 8Ly/Lo.

relationship (67/7T)qsad = (Y1—1)(8p/p)qsaa becomes equal to y;=1.25—1.35,
the term —1.85(0p/p)qsaa (Which is represented in the diagram by a dotted
line, Fig. 2) may exceed in absolute value the sum of the terms [3.65(6T/T)
~+2(87/r)+8(dT/97)/(0t/37)|qsaa (also represented in the diagram by a
dotted line; it must be emphasized that this sum is determined by its first
term which considerably exceeds the other two terms).

In taking into account the nonadiabaticity of the oscillations, these vec-
tors change and occupy the positions represented by the continuous lines, as
illustrated in Figure 2; the geometric sum of these vectors 6L/ L, represents
the vector of the relative oscillations of the flux density issuing from the
ionized zone b (the absolute value of the vector represents the relative am-
plitude of the oscillations in the radiation flux when issuing from the zone,
and the angle ¢, is the phase lag of the epoch of the maximum radiation flux
when issuing from the zone, relative to the epoch of maximum contraction
of the star). One may see, from the diagram in Figure 2, that the phase
shift of the oscillations in the radiation flux, when issuing from the zone,
is¥1S /2, and that the amplitude of the oscillations at this point is several
times less than its value before entering the zone, for there

5T ot 8(0T/or)
3.65— —_t —
T +2 r + aT /or

)
>>!1.85 —"l
P

Thus, the ionized zone damps the amplitude of the radiation flux passing
through it, making it several times smaller. ,

The fact that, in the case of nonadiabatic oscillations, the wvectors
[3.65(8T/T)+2(87/7)+6(0T/0r)/(0T/9r)] and 1.85(8p/p) will occupy just
the positions indicated in the diagram in Figure 2 is confirmed “both by
computations (21, 30, 32) and by the following considerations. As regards
the quantity 3.65(67/T)+2(87/r)+8(0T/dr)/(0T)dr), we set forth the fol-
lowing reasoning. This quantity may be approximated with high accuracy
by its first term 3.65(37/T). We separate it into its adiabatic and nonadia-

batic parts:
365——— = 365 ( ) —|—365 (—~>

where (67/T)nad is caused by the absorption (or emission) of the radiation
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flux by the zone. If the displacement of the oscillations of the internal
boundary of the zone is expressed by é7/r =4, sin wt, then the time depend-
ence of the oscillations of the radiation flux at the internal boundary of the
ionized zone, where the oscillations may be regarded as quasi-adiabatic and
where v; =5/3, will be of the form 6L,/L = — By sin wt (i.e., at the moment of
maximum stellar contraction, the flux becomes maximal and the phase
shift Yy =0). At the external boundary of the zone

5L
—L—” = — Bisin (wf — ¢,), where Bi < By, (Ao, Bo, B> 0)
0

The amount of heat Q absorbed by zone b will be determined by the integral

Q= f ["‘BoLo sin wt + BiLo sin (wé — ‘)[’2)]‘”

B oLo B 1L0
= Ccos wl —
[63)

cos (wt — ;)

Since the quantity 3.65(67 /T )naq is proportional to the absorbed heat Q (for
small oscillations) and is in phase with it, then

6T
3.65 (——) ~ Bycoswt — By cos (wt — ¥,)
T nad

i.e., the vector of the quantity 3.65(67 /T )naq in the vector diagram will be
directed nearly vertically upwards, since B;<<B,. It follows that in taking
into account the nonadiabaticity of the oscillations the vector

3.65 6T—365(6T> + 3.65 (5T)
e T T/w ' T / saa

and, consequently, the vector

oT o  8(dT/ar)
35— +2 —+ ——
T T r T aT' /or

will occupy the position shown in Figure 2.

For an increase in the nonadiabaticity of the oscillations (which may be
achieved, for instance, by increasing the equilibrium value of the luminosity
Lo in our assumed stellar model) the vector 6L/L in Figure 2 will turn from
left to right and the angle of phase shift ¢, will diminish from = to 0. It is also
evident from Figure 2 that, in the case of a finite degree of nonadiabaticity,
the following condition must be realized, for the phase shift ¥, ~m/2 to occur
in the ionized zone:

oL

’ é
) > 0 when kil >0 20.
L qsad r

In our example this means that

(1ss) 1> (o 427+ 25227,
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Condition 20 will be sufficient provided that the nonadiabaticity of oscil-
lations y, is not too great [the greater the inequality (Eq. 20), the larger may
be the parameter v,].

The fact that either a delay or an advance in phase of the energy flux by
the angle ¥, ~ +7/2 can lead to negative dissipation even when there is no
absorption of the energy flux oscillations by the zone, i.e., the energy flux
passes through the zone without changing its amplitude, may be shown most
simply by using the example of homologous (homogeneous) oscillations of
the volume of the ionized zone (discrete model). If these oscillations of the
volume V follow the law § V' =4 cos wt and the oscillations of the energy fluxes
entering and issuing from the zone, which are equal in amplitude but shifted
in phase by ¥,= +#/2 (here and further, the upper sign is for the case of

delay, the lower one is for that of advance), are respectively 6 L,(wt) = — B
cos wt and

dLy(wl) = — B cos (wt-l—- %) = -F Bsinwt
then, in the case of quasi-adiabatic oscillations, (67 /T )aq = — C cos wt, while

in the case of fully nonadiabatic oscillations (i.e., when the temperature
variation is caused solely by the absorption or emission of heat):

(2 = o[on(o-T) —on(o-2)]
_ D[_B cos (wt - %) + B cos (“’”—r %):I

DB+/2 sin (wt - %r) if ¢.=+

21.

RN

' 3r\ .
DB~/2 cos (wt - Z) if ¢, = —

(4, B, C, D are constants >0). Therefore, for quasi-adiabatic oscillations in
the case of both delay and advance, the dissipation of the oscillation energy
will be given by

T
Wasaa = — ¢ (6Ls — 6Ly) (—) dt
T gsad

§ I:——B cos wt + B cos (wt? %)] (—C cos wt)dt

1
——BC<O0
2 <

(i.e., it will be the same as in the case of total absorption when §L;(wt) =0),
and for fully nonadiabatic oscillations, according to Equation 21.

5T
Winad = — gﬁ (Lo — 5Ls) (—-) dt =0
T fnad

both for ¥, = +n/2 and for Y,= —w/2.
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In the real case of nonadiabatic oscillations, the amount of negative
dissipation will evidently be intermediate between the values —3BC and 0
obtained in both limiting cases.

In connection with statements in the literature that the phase shift
Y~ t7w/2 is responsible for maximum negative dissipation (33, 34), it is
desirable to emphasize the two following circumstances:

(a) At fixed amplitudes of the energy fluxes, as one may easily ascertain
with the aid of analogous, elementary considerations, the maximum of
negative dissipation will arise when ¥, =7 but not when y,= +m/2.

(b) If the amplitude of the energy flux is not constant when it passes
through the ionized zone, i.e., assuming the possibility of absorption of the
oscillations, by the zone, then considerable negative dissipation will also
occur for the phase shift ¥, =

In general, for total (or nearly total) absorption of the oscillations by
the zone, i.e., when 6Ly(wf) =0 the amount of negative dissipation created
by the zone will not depend on the amount of the phase shift in the oscilla-
tions of the energy flux issuing from the zone. Therefore, there may be
stars for which ¥ =0 (see the more detailed consideration below).

We must emphasize that the condition 20 and the condition of a suﬁ”l-
ciently small parameter of nonadiabaticity ¥, in the zone are necessary and
sufficient conditions for the occurrence of the phase shift ¥,>m/2 in the
radiation flux issuing from the ionized zone. The phase and-amplitude of the
radiation flux on exit from the star will also depend on the value of the
parameter of the nonadiabaticity in those stellar layers which are situated
above the critical ionization zone of He". Calculation shows that if in the
given layer yS 2.5, then the layer is not able to absorb appreciably the radia-
tion flux and consequently to change the phase and amplitude of the radia-
tion flux passing through it (21, 30). This is also clear (23, 26) from the fol-
lowing considerations.

Let us assume that the parameter of nonadiabaticity of the Het critical
ionization zone is close to the limiting value ¥, ~2.5 when the zone is still
able to absorb the additional radiation flux that comes from the internal
quasi-adiabatic region a of the star during its contraction, and to create a
delay in the flux oscillations by the angle ¥, S /2. For example, let y,=1.5.
In such a case, the layer external to the He' critical ionization zone, being
considerably more rarefied than the zone, will be so strongly nonadiabatic
(y =4) that it will not be able to change substantially the amplitude and
phase of the radiation flux oscillations “‘formed” by the He™ ionization zone.
The radiation flux comes to the stellar surface with a phase shift ¥, ~ +/2
and with an amplitude of oscillation (diminished by a factor of 3-10 as com-
pared with the amplitude of oscillation of the radiation flux entering the
zone) as created by the Het zone. In conformity with the phase shift .
~-+4m/2, we obtain in this case a Cepheid-type variable.

We assume now that the parameter y, of the ionized zone is relatively
small (—0.35 <log v, <—0.2; i.e., 0.45 <y, <0.65, see Fig. 4), which is char-
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acteristic of stars with low surface temperature and with small acceleration
of gravity (such stars are the long-period variables of the o Ceti type). Then
the region ¢ lying above the He' critical ionization zone will turn out to
possess a relatively small nonadiabaticity (y, =~1—2). Therefore it is able to
“reform’ the radiation flux oscillations that were formed earlier by the
ionized zone.

Since in region ¢ the adiabatic index of the oscillations is close to y; =5/3,18
then, if the oscillations are nonadiabatic, this region, in contrast to the Het
ionized zone, will, during contraction, lose energy by means of radiation
(i.e., (6L¢/L)geaa <0 when d7/r >0) but will not retard it. In proceeding to
the examination of nonadiabatic oscillations, we must take into account the
fact that the He' ionization zone below region ¢ ‘“‘intercepts’’ the increased
radiation flux arising in internal region ¢ at contraction, and prevents it
from entering region ¢ (if there were no ionization zone, then the loss of
energy by region ¢ through radiation at contraction would be compensated
by an approximately equal amount of energy issuing from region b of the
star, i.e., the oscillations of region ¢, regardless of the small mass of the matter
contained in it, would prove to be close to adiabatic). Consequently, the non-
adiabatic oscillations in region ¢ will be such that, during contraction, region
¢ will lose heat but not gain it. Therefore, the nonadiabatic components of the
vectors 67/ T and 8p/p in the vector diagram will now be directed downward,
not upward as in the case considered earlier (see Fig. 2), and we will obtain
the vector diagram shown in Figure 3. It is evident that the oscillations of
the radiation flux issuing from the star will pass ahead of the epoch of maxi-

Fi16. 3. The vector diagram illustrating the occurrence of the phase advance of the
stellar radiation flux in relation to the phase of maximum stellar contraction for the
case when the amplitude and phase of the radiation flux are formed in region ¢ (the
case of long-period variables of the o Ceti type).

13 Although the critical ionization zones of He and H are located in region ¢, this
region may be characterized by an effective value of v;=5/3. The latter is connected
with the fact that the principal absorbing action is manifested by that layer of
region ¢ which directly borders the Het zone and where v; = 5/3, for this layer is con-
siderably more dense and massive than the critical ionization zones of He and H.~
These zones are located in such nonadiabatic layers of a giant star that they are
incapable of influencing vitally the phase and amplitude of the oscillating radiation
flux that passes through them.
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mal stellar contraction—y,, the angle of ‘“‘delay,”” will be negative: ¥,
~ —m/2. We obtain a phase shift between the oscillations in brightness and
stellar radius which is characteristic of long-period variables of the o Ceti
type.

Thus, in the case of variability of the o Ceti type, the amplitude and
phase of the radiation flux are mainly formed in region ¢, i.e., in the layers
lying above the He" critical ionization zone, but not in the zone itself, as in
the case of Cepheids. In this case, however, the zone takes a very consider-
able part in the formation of the amplitude and phase of the radiation flux,
intercepting the additional radiation flux coming from region ¢ during con-
traction. In conformity with this, the diagram in Figure 3 pertains to region
¢ above the Het zone, whereas the diagram in Figure 2 refers to the He™
zone itself. -

In the range of y, values intermediate between the intervals satisfying
both the case of Cepheids and that of long-period variables of the o Ceti
type, we must obtain a continuous transition of phase shifts from ¢, =~ —m/2
to Ye =~ +w/2. To the intermediate interval, where ¥, ~0, we assign the long-
period variables of the RR Herculis type, the short-period variables of the
B Can Maj type, and the semiregular variables of the RS Cancri and AF
Cygni types (21, 23, 27, 31).

Being guided by similar considerations, one may state straight away
that, owing to the effect of nonhomology of oscillations in the star envelope,
in the absence of nonadiabatic pulsations by the ionized zone there must
arise (as compared with the case of quasi-adiabatic pulsations) an advance
in the phase of the brightness curve relative to that of the surface displace-
ment 6R/R (i.e., Y. <0), but not a delay, such as Eddington has obtained
(54). Indeed, since the external layers oscillate more strongly than the
internal ones, then, during the compression phase, the layer under considera-
tion radiates more energy than it receives from the deeper-lying layers. For
this reason, the layer must lose energy during the star’s contraction, i.e.,
we obtain the same diagram (Fig. 3) as in the case of long-period variables of
the o Ceti type (with the difference, of course, that the cooling of the layer
and correspondingly the phase shift are considerably smaller, namely
Y.~ —1°), for there is no “‘interception’’ of the flux that issues from a region
lying deeper than the ionization zone. The corresponding calculation is
given in reference (21).

IV. UNIVERSAL INTERPRETATION OF THE DIFFERENT
TYPES OF PULSATING VARIABLE STARS

The physical picture of the formation of phase shifts in the envelopes
of variable stars given in Section II is confirmed by calculations (21, 30, 32);
it is set forth in particular detail in reference (32).

Figure 2 of (30), which is reproduced in Figure 4, represents the results
of calculations of nonadiabatic oscillations of three particular four-layer
spherical models of an envelope with a chemical composition consisting of
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F1G. 4. The phase shift ¢ (curves ) between the oscillations of the radiation
flux issuing from the star, and the stellar radius ( —ér/r) and the value d (the
curves—-+—) of the ratio of the amplitude of the radiation flux issuing from the
star to that of the radiation flux entering the zone, as a function of the logarithm of
parameter of nonadiabaticity of the oscillations of the He' critical ionization zone.
The dashes (— — —) denote those parts of the curves for which dissipation of the
total energy of stellar oscillations is positive and which therefore cannot be realized.
The curves are plotted for different values of the ratio m,/m.. Here m, is the mass
of region ¢ (the atmosphere) and m, is the mass of the He" critical ionization zone.

85.7 per cent hydrogen and 14.3 per cent helium. As our calculations have
shown, the phase-amplitude relations of the oscillations of brightness and
stellar radius and also the degree of pulsational instability are, for a given
chemical composition, chiefly determined by the value of the parameter v,
and the value of the ratio m,/m,, where m, is the mass of the atmosphere
(i.e., the mass of region ¢) and m, is the mass of the zone (i.e., the mass of
region b), and are rather slightly dependent on the remaining parameters of
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the envelope (30). Consequently, the diagrams in Figure 4 are universal, i.e.,
they are also applicable to models of other envelopes of the same chemical
composition.

In Figure 4, the continuous lines represent the phase shift =1, between
the epoch of maximum brightness and that of minimum stellar radius'* as
a function of the common logarithm of the parameter y,. The point-dash line
represents the dependence on log y. of the ratio d of the amplitude of the
radiation flux emerging from the star to that of the radiation flux entering
the He™ critical ionization zone (we recall that the Het zone is taken to be
the layer in which v —1=(dInT/dlnp).q <0.26). The quantity d character-
izes the damping action of the He' critical ionization zone upon the ampli-
tude of the radiation flux passing through the stellar envelope. The dash-
dash line represents those parts of the curves for which the total dissipation
of the energy of stellar oscillations is positive (see Fig. 5) and which there-
fore have no physical meaning. The curves are plotted for three values of
mq/m,=0.822, 0.894, 0.930.

It will not be amiss to explain that in reality the two points on the phase
shift curve for m,/m,=0.822 (see Fig. 4), for which¢ = +180° and ¢y = —180°,
are in fact only one, i.e., the two branches of this curve must be regarded as
joined at the point log y, = —0.23. In other words, to obtain a single-valued
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F1G. 5. The reduced dissipation W/L, of the total energy of stellar oscillations
as a function of the parameter of nonadiabaticity of the oscillations of the Het
critical ionization zone, when m,/m,=0.822; 0.930.

¢ For Cepheids y =90°; for long-period variables of the o Ceti type ¢ = —90°. The
scheme of reading angles with respect to the oscillations of the stellar radius é7/7 is
represented in the lower right corner of Fig. 4.
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relation the curves of Figure 2 should be represented not on a plane, but on
a cylinder, the magnitude of log v, being plotted along the generatrix of the
cylinder and the magnitude of the cyclic coordinate ¥ along the circumfer-
ence. :

In Figure 5, the dissipation of the total energy of the stellar oscillations
W /L, in luminosity units, is plotted against values of the logarithm of vy,
obtained with the aid of calculations on the four-layer discrete model (30).
The diagrams of Figure 5 are universal in the same sense as those of Figure 4.

As we now see, it follows from the diagrams in Figure 4 that, by using
different values of the two parameters m,/m, and y, of the same model, we
can obtain all of the main types of pulsating variable stars, differing from
one another by the phase relationships between the oscillations of brightness
and of radius. As the parameters of the envelope—the acceleration of grav-
ity g and the effective surface temperature Tesr—are varied (for fixed chemi-
cal composition), the parameter m,/m, remains almost constant. Therefore
the parameter v, is revealed as the principal one determining the appearance
of this or that type of pulsational variability (30).

As we proceed along the spectral sequence from A-type stars to M-type
stars, we find that the gravitational acceleration in the atmospheres of giants
and supergiants diminishes, and hence, according to the theory of stellar
atmospheres and also from Equation 17 (in which for Cepheids # =2, and
for long-period variables n ~1.5), the He% critical ionization zone must lie
in the deeper, denser layers of the star. Hence, the parameter y, must dimin-
ish and travel from right to left in Figure 4 (in the direction from early to
late spectra). As a result, we obtain the following sequence of different types
of stellar behavior (27, 30).

(a) log y.>0.4. The critical ionization zone of He' is extremely close to
the stellar surface; on account of its great nonadiabaticity, it cannot create
the negative dissipation necessary for excitation of stellar auto-oscillations.
The star does not pulsate.

(b) —0.1Zlog v,<0.4. The critical ionization zone of Het is located in
denser layers of the star, while the oscillations of region ¢ (the atmosphere)
above it are strongly nonadiabatic. Oscillations occur with a phase shift
¥ =~ 490°, which is typical of Cepheids and variables of the RV Tauri type.

In this case the phase shift predicted by the theory for Cepheids is not
exactly equal to +90°, but may occur, depending on the parameters of the
stellar envelope (see Fig. 4), between the limits 50° <y <120°. Just such lim-
its in the values of ¥ are obtained from observations of Cepheids.

(c) —0.25Z1log v,<0.1. Two cases are possible here:

(i) The amplitude and the phase of the radiation flux issuing from the
star are relatively stable. This case is realized if m./m, > (ma/m.)e'® and

15 Here (#14/m¢)er is the critical value when the transition from positive to negative
values of ¢ is most rapid. The critical value increases with increasing helium content.
For a four-layer model with 14.3%, helium (,/m,)e: =0.894 (Fig. 4).
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fluctuations in the variation of the parameter log v, (the origin of which is
not considered here) are essentially less than the width of the interval
A log y,, where the transition from ¢ =~ 490° to ¢ ~ —90° takes place. As the
width of this interval, for the given chemical composition of 14.3 per cent He
and 85.7 per cent H, is minimal when ma/m, < (ma/m.)e: =0.894 (it is then
Alog v,=0.1, see Fig. 4), case (7) is likely to arise in those stellar envelopes in
which m,/m, is appreciably greater than 0.894 (for example, when m,/m,
=0.930, then A log y.=0.2, see Fig. 4). According to Figure 4, the phase
shift will be comparatively stable and close to zero. We obtain the phase
relations between the oscillations of the brightness and radius that are ob-
served in long-period variables of the RR Herculis (64) and 8 Can Maj types.
Maximum brightness occurs at the time of maximum contraction of the star.

(23) The amplitude and phase of the radiation flux are unstable. This
case occurs only when fluctuations in the variation of the parameter log y, are
of the same order or greater than the width of the interval A log ¥, in which
the phase shift changes from ¢ =~ 4-90° to ¢ =~ —90°. Fulfillment of this case is
likely in those stellar envelopes where A log y, is minimal (this will occur for
M/ M, = (Ma/M,)er =0.894, when A log y,=0.1, see Fig. 4). Then, stars for
which log v, falls in the interval —0.25< log v, < —0.1 should exhibit vari-
ations in the phase shift of the radiation flux which are close to random, ap-
proximately from —90° to +90°, and variations in the amplitude of the radi-
ation flux by a factor of 3—4 (see Fig. 4), i.e., such stars will be subjected to ir-
regular variations in brightness. In this case the oscillations must take on a
‘““semiregular’’ character which means that although the time between two
brightness maxima (the “period’ of oscillation) may change greatly from one
cycle to another, yet it always fluctuates about a certain mean value, which
coincides with the period of oscillation of the inner region, and which is surely
constant to a high degree of accuracy. To this interpretation of “‘semiregular”
stellar variability, we assign the ‘‘semiregular’’ variables of the AF Cygni and
RS Cancri types (30).

(d) —0.35Zlog y,< —0.25. The critical ionization zone is located deep
under the stellar surface. Oscillations occur with a phase shift ¥ =~ —90° (see
Fig. 4), which is typical for variables of the o Ceti type.

(e) log y.< —0.35. The He* critical ionization zone is situated so deep be-
neath the stellar surface that, because the oscillations of the atmosphere are
to a high degree adiabatic, the envelope cannot create sufficient negative dis-
sipation for the excitation of stellar auto-oscillations.

V. COMPARISON OF THE THEORY WITH THE OBSERVATIONS

It follows from Figure 5 that, although the degree of pulsational in-
stability decreases as the ratio m,/m, increases, it depends on this parameter
rather slightly.

On the other hand, the value of the phase shift is essentially determined
by the parameter m,/m.. Thus, in the case of Cepheids, when the helium con-
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tent is 14.3 per cent and mq/m, > (ma/m,)e: =0.894, the phase shifty is always
less than +90°, whereas Cepheids do exist with phase shifts ¢ greater than
90° and as high as 120°.

Hence it follows from Figure 4 that for such Cepheids either m,/m, is
smaller than 0.894, or the helium content is much higher than 14.3 per cent.

It is obvious that the entire universal interpretation of different types of
pulsational variability set forth in Section III (provided that all variable
stars have the same helium content) is based on the fact that the ratio m./m,
may be smaller or greater than (m,/m.)cr.

In this connection it should be noted that until recently the pulsation
theory of stellar variability encountered the difficulty that our calculations
of the envelopes of classical Cepheids always led to the value (my/m,) ~I,
I-1, 2 (unpublished), which is considerably greater than the value (m,/m;)er
=0.894 obtained for a helium content of 14.3 per cent from calculation of
the nonadiabatic oscillations of the envelope with the help of a four-layer
discrete model (30). This difficulty has been removed by more exact calcula-
tions of the nonadiabatic oscillations of the envelope, which have been carried
out by V. I. Aleshin on the basis of a ten-layer discrete model of the envelope,
and a helium content of 14.3 per cent. The resulting new value of (m,/m;)cr
is about 1.1.

It would be highly desirable to carry out envelope calculations for a num-
ber of specific variable stars in order to ascertain their values of m,/m,. It goes
without saying that, in making these calculations, one must not use a static
theory of the envelope but should take into account, along with the turbulent
and radiation pressure, the diminution of the effective acceleration of gravi-
tation caused by the transfer of mechanical momentum by shock waves (65,
66), and the increase in the size of the zone of critical ionization of He't be-
cause of its erosion by turbulent convective currents. It should be noted that
the ordinary static theory of atmospheres gives m,/m,=1.1-1.2.

It is evident from Figure 4 that the theory gives the correct relationships
between the amplitudes of the brightness and radial-velocity oscillations for
all of the above-mentioned types of variable stars (30). To make certain of
this, we take as an example the case of § Cephei.

Let the mass of § Cephei be M =6.750. The bolometric amplitude is Amy
=0.58 (67), which corresponds to a relative amplitude of the luminosity
oscillations 6L/Ly=0.25 (because 0™ .58/2.5= log [(140.25)/(1—0.25)].
From integration of the radial-velocity curve, we have R =1.84-10%%km (68),
which, with Rscep =3.36-10%2, gives 6R/R=0.055. When the luminosity is
Lo=8.6-10% erg/sec (30) we have log y,= —0.022 according to the relation
y.=1.104-107%7 L,, which is valid for M =6.750 (30). From the curve of Fig.
4 with m,/m,=0.894, we find that for log y,= —0.022 (as it must be in §
Cephei), the phase shift ¢ =+90° and d ~0.16. Since on the surface when .
0R/R=1, 0L/Lo)r=8.4X0.16=1.34 [8.4 is the value of the relative ampli-
tude of the flux oscillations /L upon entry into the He™ critical ionization
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zone, see (29)], then we have, for 6R/R=0.055, (6L/L¢)r=1.34X0.055
=0.07. This value, as it should be, is smaller than'_theuobserved one 6L/L,
=0.25.

The fact is that, in the linear approximation which we use, the damping
action of the zone upon the amplitude of the radiation flux will always be
greater than it is in the presence of auto-oscillations. The auto-oscillations
are established just because, as the amplitude of oscillation increases, the
damping action of the zone upon the amplitude of the radiation flux (and also
on its phase-shifting action) diminishes and, as a consequence, the ratio of
the quantity of negative dissipation created by the zone to that of positive
dissipation produced by region a will also diminish. Therefore, in the regime
of auto-oscillations, the quantity (6L/Le)g turns out to be greater than the
value (6L/Lo)r =0.07 obtained in the linear approximation, and will probably
be close to the observed one.

If we had neglected the damping action of the zone upon the amplitude of
the radiation flux, the latter would be three to six times larger than the ob-
served value (21).

The fact that, for a mass of 6.75 ©, a radius of 3.36-10*2 cm, and a lumi-
nosity of 8.6-10% erg/sec, which according to the period-luminosity relation
with Baade’s zero-point corresponds to the period of 6 Cephei, P =5%37, we
obtain for our model of § Cephei pulsational instability and a phase shift
¥ ~90°, typical of Cepheids, means that for classical Cepheids (to which
& Cephei belongs) the theory leads to the correct value of the zero-point of the
period-density relation P\/ﬁ—/7‘76=0.041 (63) (i.e., masses which are ~1.6
times smaller than those from the mass-luminosity relation for stars of the
main sequence).

The inclination of the curve of the period-luminosity relation may be ob-
tained from the condition y,~PL,/AM =const. Eliminating AM by means
of Equation 16 and making use of luminosity relation Lo~M™ and the
period-density relation P~~/R3/M, we find

P ~ Lollm+3/(2n'-1) 22.

The theoretical period-luminosity relation, Equation 22, satisfies the ob-
servations (69) if, with m =3, we take the polytropic index of the Cepheid
envelope to be n=3, and that for the long-period variables to be n=2.5.1¢

From the circumstance that the interval A log v, =~0.5 (see Fig. 4) satisfies
the variables of the Cepheid type, it follows that, for a given value of the
period, the internal dispersion of Cepheid luminosity is about 1™, the bluer
variables corresponding to higher luminosities; the Cepheids of class C (ac-
cording to the Eggen classification) have a higher luminosity than those of
the same period in classes A and B (28).

16 The values of # obtained are close to the real ones: n~2—2.5 (Cepheids) and
n=1.5 (long-period variables). Taking into account the particularly tentative nature
of Equation 22, we may conclude, without more detailed calculations, that the
theoretical period-luminosity relation at least does not contradict the observations.

© Annual Reviews Inc. * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1963ARA%26A...1..367Z

FI9B3ARARA .- 17 "3672!

PULSATION THEORY OF VARIABLE STARS 399

The above agrees with the results obtained by Arp and Sandage from
observation (70, 71).

The theory also describes rather well the short-period variables of the RR
Lyrae type. From calculations on the envelope of RR Lyrae, using a radius
R=4.57-10" cm and an absolute bolometric magnitude M= —0.04 (L,
=2.82-10% erg/sec), Yang Hai Shou showed that when the mass is within
the limits 0.5M O <M <1M©(72), the star becomes pulsationally un-
stable with a phase shift ¢ ~ +90°.

Shortness of space does not permit us to dwell on a number of corrobora-
tions of the theory of maintenance of stellar auto-oscillations by means of the
He™ critical ionization zone, which were expounded in reference (30).

In conclusion we should like to state that although much work remains to
be done to clear up the applicability of the theory to particular types of vari-
able stars and to explain a number of effects (such as, for example, Blazhko’s
effect for short-period variables), we believe that the theory of stellar pulsa-
tional variability will scarcely undergo substantial changes in the future.
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