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THREE-DIMENSIONAL GALACTIC
STELLAR ORBITS

BY A. OLLONGREN

The properties of three-dimensional orbits of stars in the galactic system are studied with the objective of gaining more insight
into the dynamical properties of the system as a whole. The galactic potential function is taken to be a known time-independent
function with both an axis and a plane of symmetry. By means of the integral of angular momentum the problem is reduced to
the two-dimensional one of motion in the meridional plane. This is then solved by numerical integration.

One reason for undertaking the computation of these orbits was the discrepancy between the inequality of the meridional velocity
dispersions, observed for high-velocity as well as for low-velocity stars, and a theorem of Jeans. Under the assumption that there
are only two integrals of motion, this theorem predicts circular symmetry of the meridional velocity distribution for any axi-
symmetric stellar system in dynamical equilibrium. The present computations show that in the galactic field of force there is no
conversion between the two meridional components of the motion. They give empirical evidence for the existence of a third integral
of motion, though no explicit form has been found for this integral.

Analytical solutions can be obtained if the potential has a special form admitting separation of variables in a suitable coordinate
system. The most general separable case is that of elliptic coordinates; in this case the third integral of motion is quadratic in the
velocities. In practice separation is always possible for low velocities, but the method cannot be applied to the high-velocity orbits
treated in the present paper.

The numerical computations are concerned with only one family of orbits (i.e. 6ne value of the area constant and one energy).
A detailed phenomenology for the meridional motion of one class of orbits within this family is given; all orbits of this class have
been called box-type orbits, because the meridional trajectory, which is topologically equivalent to a Lissajous figure, fills a region
in the meridional plane having the shape of a box with rectangular corners. An existence theorem is given for those box-type
orbits which can be described in a curvilinear orthogonal coordinate system. The computed box-type orbits, however, are shown
to be more general. The properties of the box-type orbits are also discussed by means of the inclination diagram, in which the
inclinations of successive intersections of the orbit with the axis z = o are plotted as a function along this axis. Evidence for the
existence of a third integral of motion is provided by the characteristics of the box-type orbits in the inclination diagram. A more
g'eneral discussion of the inclination diagram reveals the existence of other types of orbits in the same family. They are not discussed
in the present paper.

The conclusions are necessarily prov1s1onal since they are based on only one famxly of orbits and only one type within’that
family. However, since the box-type constituents of a family form a non-trivial class of orbits, and since this class is increasingly
important for families of smaller energy than considered here, the inference can be drawn that, contrary to Jeans’ theorem, a tri-
axial distribution of velocities is possible in the field of force in the galactic system.

1. The need for numerical orbit computations case of orbits with relatively low energies; he was

forced to do this because the potential function which
he used is a good representation of the actual potential
function of the galactic system only in a limited region

In his book “Introduction to the Mechanics of Stellar
Systems”, RupoLr KurRTH (1957) writes (p. 140):

‘...there is very little known about the trajectories of
the elements of mass in stationary models with rota-
tional symmetry.... The general case will again be a
rozette-like orbit; the other possibilities are all special
cases. No investigations seem to have yet been made into the
general character of the orbits outside the equatorial plane.”

The investigation into the properties of the men-
tioned trajectories was undertaken independently by

ConrorouLros (1957, 1958) and by the author in col-
laboration with INGRID TORGARD.

In his work ConToPoULOS has limited himself to the

around the orbit of the sun. In collaboration with
P.O.LinDBLAD, and by means of the electronic com-
puter BESK, he has performed numerical integrations
for two orbits. The amplitudes of these orbits in two
mutually perpendicular directions are all smaller than
0.5 kpc; some relevant data for these orbits are given
in section 10 of the present work. On the basis of his
theory of the formal third integral of motion, Conro-
pPouLOs has succeeded in explaining analytically the
properties of the numerically computed trajectories.

However, for the more interesting case of the high-
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velocity stars, which have large meridional ampli-
tudes, the method of CoNTOPOULOS cannot be used.
The present investigation was undertaken to deter-
mine the general characteristics of three-dimensional
orbits of kigher energy. To attain this objective, a
rather extensive series of numerical computations was
performed, also by means of the BESK. The results
of a number of these computations are discussed in
this thesis.

1. The fundamental problem of stellar dynamics

Let (¢,, 4,5, 4,) specify the n generalised coordi-
nates of a conservative dynamical system with 2
degrees of freedom, and let (p,,p,,..., p,) be their
conjugate momenta; the state of the system is defined
by the representative point of the system in the phase
Space: (41 5Gss-++s Gus P15 P25+ sP,). The representative
point describes a path in the phase space, which satis-
fies the canonical equations of motion

. oH W,
d; o, bi = (t=1,2,..
in which H is the Hamiltonian function.

Inconsidering anassembly of such dynamical systems,
let the frequency function f (¢, G- Gys s 03 5-
represent the density of representative pomts at any
element of phase space at the time . The assembly
evolves in time as the representative points move in
phase space. Liouville’s theorem, which expresses the

(1.1)

OB
i

“conservation of these points, may be written

i
=0 (1.2)
This equation shows that the density of any element
of phase space consisting of a group of neighbouring
points moving similarly in phase space, is constant
during its motion.

f+ (@__E) a;{;

which is the fundamental equation of stellar dynamics.
It is also referred to as the equation of continuity, and
sometimes as the equation of Boltzmann by analogy
with that equation in the kinetic theory of gases (in
equation (1.6) the terms due to the interaction of the
particles during close encounters are absent).

The fundamental problem of stellar dynamics is to
find a solution of the equation of continuity. It ap-
pears in two forms: either it is supposed that the func-
tion @ is known or that the function fis known, the

dt — dpw’ dpz

W of

ubna ) !

I0

We have
(1.3)

4_2 N (b + 1)

FrAREYRS piapi+qiaqi )
i=1

Using the canonical equations (1.1), Liouville’s

| equation takes the well-known form

YN (LY MAY oy

ol p; g, _391' 0p;

Consider at a time ¢ the stars in an element of space
in the galactic system, moving in approximately the
same direction with approximately the same veloci-
ties. Under circumstances where stellar encounters
can be ignored, each star moving in the general gravi-
tational field of force of the galactic system may be
considered as a conservative dynamical system with
three degrees of freedom. The field of force will be
supposed to be due to the smoothed-out distribution
of mass and is derived from a gravitational potential
JSunction ®. The number of stars in the space element is.
given by the velocity-distribution function, which we de-
fine (following JEANS) as the number of stars in a space
element which have velocities in a given velocity
element; by this definition the velocity-distribution
function is identical to the frequency function—i.e.
the number density of the representative points of the
stars in the 6-dimensional phase space.

The theorem of Liouville can be applied directly to
this case.

Introducing cylindrical coordinates =, 9 and z as

the generalised coordinates and p_ = &, p, = w>$ and

i=

'p, =z as the conjugate momenta, the Hamiltonian

per unit of mass, which governs the motion of indi-
vidual stars, is

Het (2 1 p2) 100,050 (19
Liouville’s equation (1.4) now takes the form
20 ¥ Y Y
32 3. 9% 3y TP7ag Tl TE 39 =0 (1.6)

problem being the solution of the equation of conti-
nuity for f or ® respectively. The latter problem is
discussed briefly in section 3, but in the main in this
work the former point of view is taken.

It was pointed out by JEans (1916) that because
(1.6) is a linear homogeneous partial differential equa-
tion if @ is supposed to be given, f must be a function
of the mdependent mtcgrals of the Lagrangian sub-
sidiary equations

&y dv dz  d9

T e 0 20

© T —SZ

(1.7)
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The latter are equivalent to the equations of motion
for individual particle orbits in the canonical form
(1.1) with the Hamiltonian (1.5), viz.

dpg _0s* P do _

dt ~ w® Qo dt — f@

dps 2D s p,

&= "% @ o (1.8)
dp, P dz

di ~ 2z b

Thus the fundamental problem of stellar dynamics
in the form discussed here is equivalent to the problem
of determining the integrals of the equations of
motion (1.8).

We shall now make, and use throughout this thesis,
the simplifying postulate that the mass distribution of
the galactic system (and hence the potential function)
is independeént of time, and that it has an axis and a
plane of symmetry (the galactic plane). The intersec-
tion of axis and plane (the centre of the Galaxy) will
be taken as the origin of the coordinate system, and z
will be measured along the axis.

Under these conditions the equations of motion
(1.8) admit of at least two time-independent integrals
of motion:

(1) The Hamiltonian itself is constant in time as it
does not contain the time explicitly: =

2%

S+ 1 02) 400, =E, ()

in which E is the tofal energy; sometimes this integral
is denoted by ;.

(2) The integral of angular momentum is found by in- '

tegratmg the second of the equations of motion (1 8).
This gives

po=v2%=h, (1.10)
in which £ is the area constant, equal to twice the rate at
which the radius vector (=, 9, 0) sweeps out area in
the galactic plane; sometimes this integral is denoted
by I,.

Without further specification of the potential func-
tion, no other integrals of motion are known.

For any given @, let the (non-constant) function
I(py,ps,0,, ©,9, 2, t) be such that the derivative of
with respect to the time is zero along any solution path
of equations (1.8). Such a function, by definition an
integral of the dynamical system of differential equa-
tions (1.8), satisfies the equation

I=a,

where « is an infegration constant.
The complete solution of the system of equations

(1.11)

II

(1.8) is furnished by 6 mutually independent integrals,

| which satisfy the equations

.., 6)-

For a given set of integration constants «,, the solution
path is determined by solving (1.12) for p,pss 0,5,
% and z. By these solutions the o’s are related to the
initial conditions (pg, , p5°, £,°, ©°, 9°, 2°).

An integral is called conservative 1f it does not contain
the time explicitly; thus I, and I, are conservative
integrals of motion. The adjective.conservative may
be omitted when no confusion is possible. A conserva-
tive integral defines by the relation (1.11) an infegral
hypersurface in phase space which contains the initial
conditions as a point and the entire solution path
through that point. There are as many integral
hypersurfaces as there are independent conservative
integrals and the solution path is contained in the
intersection of the integral hypersurfaces.

There are at most 5 independent conservative inte-
grals (excluding the trivial case that each point in
phase space is a point of equilibrium). But there are
also not less than 5 independent conservative integrals
in the local sense, i.e. if the initial conditions are re-
stricted to some closed and bounded domain of phase
space and the time interval is supposed to be less than
a constant depending on this domain (WINTNER
1947). These integrals, which are obtained by elimi-
nation of the time ¢ from the equations (1.12), are
single-valued functions in the local sense.

From the non-local point of view, however, i.e. if
the initial conditions are no longer restricted to a
given domain and if the solution paths of the system
(1.8) are considered for — oo <<t < - oo, the situa-
tion is different. In general it will not be possible to
describe the system of solution paths completely by
equations (1.12) without encountering singularities:
some of the conservative integrals may be infinitely
many-valued and other divergencies from the local
situation may occur (LEvI-CiviTa 1927). Conservative
integrals which do not give rise to singularities will be
called isolating. Such integrals have the property of
isolating points on the solution path from neigh-
bouring points in phase space. For a rigorous general
definition of an isolating integral, involving the struc-
ture of the corresponding integral hypersurface, we
refer to WINTNER (0p. cit.). The energy integral I; and
the angular-momentum integral I, are single-valued
and isolating.

If all 5 conservative integrals are isolating, the
system of solution paths can be described completely
by the equations (1.12), and then the system (1.8) is
called imprimitive. In general, however, the total
number of isolating integrals will be less than 5; if the
system (1.8) has a total of / isolating integrals, it is
called (5—/!)-fold primitive.

L=a,(i=1,2,. (1.12)
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Besides the integral of energy and the integral of
angular momentum, there cannot be more than one
additional independent isolating integral of motion
containing the velocities & and 2. This integral (if it
exists) is called the third integral of motion I, . In the case
of a galactic stellar orbit which oscillates with small
amplitudes around a stable circular orbit in the
galactic plane, the third integral of motion can be
found analytically. The treatment is given in section 9,
where also the isolating property of the third integral
of motion is exemplified.

Formally the fundamental problem of the determi-
nation of the frequency function is solved by setting f
equal to any function of the 6 integrals of motion

f=g(11’12""316)' (1'13)

Throughout this thesis another simplifying postu-
late will be used. It will be assumed that the galactic
stellar system is in a state of statistical equilibrium.
This is expressed by the fact that fdoes not contain the
time explicitly; this postulate is referred to as the
steady-state hypothesis. Then f can be a function only
of the conservative integrals of motion; however, be-
cause the non-isolating integrals can have no influence
on the density distribution owing to their singular
character, they are of no use as arguments of f.
Hence the density distribution is a function only of the
isolating integrals of motion. '

2. A theorem of Jeans

With the ad hoc assumption that the potential func-
tion of the galactic system admits, besides the integrals
of energy and angular momentum, no other isolating
integrals of motion, the velocity-distribution function
S is, for the steady state considered, an arbitrary
function of two integrals only

f=g(E,h). (2.1)

In this case the velocity-components & and 2 (for
which we write Il and Z respectively) occur only in

F=f,exp [~ T2 — k2 (® — 0,)2 — 2 Z2

in which ® = =%, and the coefficients 4, &, [, m, n, p
are functions of = and z. The exponent of (3.1) defines
the velocity ellipsoid.

This function is inserted in the equation of conti-
nuity, and the general solution for the coefficients is
found to be

= +35e52% +¢52 2
P=c, + ;650" (3.2a)
m=pg =o )

—mII(®—0,) —nllZ—p(0—0,)Z],

12

the quadratic form I12 4 Z2, This means that the
meridional components of the velocities of stars in a
volume element at any point in the galactic system
are distributed with circular symmetry in the meri-
dional plane. This property, which should be valid
for any steady stellar system with symmetry around
the z-axis, was first expressed by JEANs (1916) and it
will be referred to as Jeans’ theorem. In particular
the meridional velocity dispersions or; and o, must be
equal, where oy (and similarly ¢,) is defined as

+ o0
cﬁzifffﬂzg(E,k) M dZ dO,  (2.2)

in which 7 represents the particle density at the point
considered and @ = /.

In section 4 the observations of velocity dispersions
for various groups of stars in the solar neighbourhood
are reviewed briefly and the well-known divergence
between JEANS® theorem and observation is illustrated.

3. The ellipsoidal distribution of velocities

In the previous sections (and in the main body of
this work) the potential function ® is considered to be
known, and a solution of the equation of continuity

"(1.6) for the frequency function f is sought.

Alternatively the equation (1.6) can be regarded as
a linear non-homogeneous partial differential equation
for @, supposing the function f to be known, e.g. from
data on stellar kinematics. This approach to the
fundamental problem of stellar dynamics has been
pursued in considerable mathematical detail, amongst
others by Jeans (1916), EppiNgTON (1916), OORT
(1928) and CHANDRASEKHAR (1942).

In Oorrt’s analysis it is supposed by analogy with
the maxwellian velocity distribution in the kinetic
theory of gases, that f has an exponential form and
that, in a coordinate system following the mean rota-
tional motion @, at the point considered, the exponent
is a homogeneous function of the second degree in the
velocities. Thus

(3.1)

n=—(;02—(w

B=c 4ot 35622+ ¢z )

¢
3
GO—k—Zm,

’ (3.2D)

in which ¢,,...,¢; are constants and ¢; = o since the
plane z = o is a plane of symmetry. Furthermore the
potential ® and the function f, must satisfy the re-
lations
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From the latter two equations we infer the integrabi-
lity condition for f

(22022 o

%13\ "z +(z _w)bmbz+

20 3P 2® (3-4)
—}—GZ(F—E)}—FZ(Q—Q)H:O.S

The last equation can be satisfied in several ways.
Fricke (1951) discussed all four possible cases:

€s=0 €= ¢4 (i)

€s=0 €~ ¢, (ii)
€; # 0 €, =104 (iii)
€5 # 0 €, 7y (iv)

If we put no other restriction on ® than that it is
rotationally symmetrical, we have case (i), treated by
Oort (0p. cit.) and reviewed recently by LINDBLAD
(1959); in this case A* = [?, which is JEANS’ theorem.

For all other cases the velocity ellipsoid is tri-axial
(h*£ %) and @ is restricted to special forms. Thus
case (ii) leads to the form (11.14) of ® mentioned in
section 11, case (iii) is the case treated in section 11a,
and case (iv) is the case of the quadpratic third integral
of motion, treated in section 7. ,

There are no further restrictions to the potential
function as long as the velocity distribution of a

certain class of stars, selected for instance by physical’

characteristics of its members, is considered. Such a
class of stars may be regarded as a sub-system which
moves under the general attraction of the galactic
system as a whole.

However, when considering the dynamics of the
Galaxy as a whole, the potential function ® must be
related to the mass-density p which produces it, by
Poisson’s equation

A® = —4nGop, (3-5)

i.e. the stellar system must be self gravitating.

Let f now refer to the fotal mass of matter (including
interstellar gas and dust) in unit volume of phase
space, and assume an ellipsoidal form for f; by sub-
stitution of finto the equation of continuity, the same
four cases mentioned above are obtained. Now, how-
ever, the potential function must also satisfy the
equation (3.5), for which we can write

AD = — 47~ch+foofde dZd®.  (3.6)

13

Camm (1941) and FRICKE (0p. cit.) discussed this
equation for the special forms of ® which follow from
the four cases mentioned above. Their conclusion is
that a steady-state self-gravitating star system of finite
mass with an ellipsoidal velocity distribution cannot
exist.

On the observational side the ellipsoidal form of the
function f represents remarkably well the distribution
of space velocities of the low-velocity stars, as was first
pointed out by K. ScawarzscHILD (1907). It does not
however, represent the observational fact, pointed out
by OoRT (1928), of the asymmetry of the high-veloc-
ity stars. The velocity distribution of the stars in the
solar neighbourhood with peculiar velocities higher
than 63 km/sec is asymmetrical in the sense that there
are no stars moving in the direction of the solar
motion with velocities higher than this value. FrRicke
(0p. cit.), discussing this criticism of the ellipsoidal
hypothesis, has shown that the asymmetry in the high
velocities can be represented to a degree by assuming
that the distribution function is of the form of a finite
double series of the two integrals E and k. Of course in
this case JEaNs’ theorem must be valid too.

It would seem that the study of the equation of
continuity starting from the ellipsoidal form of f, as
outlined in this section, far from solving all problems,
introduces new ones. We shall therefore adopt the
initial way of treating the equation of continuity, and
consider @ known. Thus we do not impose an a prior:
restriction on f. After specifying @, the function f may
be determined, but it will be possible to find an ana-
lytical expression for f only in exceptional cases be-
cause it involves the explicit expressions of all the
integrals of motion (see chapter IT). When the dynam-
ics of a stellar system as a whole are considered, ®
should be based on a model of the mass distribution
so that Poisson’s equation is satisfied. Also the func-
tion f should be specified in such a way that it is
consistent with this mass distribution; these questions
fall beyond the scope of the present investigation,
which is mainly concerned with individual trajecto-
ries of particles of mass in a stellar system, rather than
with the statistics of such trajectories.

4. The observed inequality of the meridional
velocity dispersions

A short review of the observational material on
space velocities of groups of stars of various spectral
classes in the vicinity of the sun has recently been
given by WooLLeEY (1960). From Table 1 in his
article we find for the ratio of the meridional velocity
dispersions the values given in the upper part of
the following Table 1.

Not only for thesc classes but also for high-velocity
objects, such as the RR Lyrae stars, the ratio of meri-
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TABLE 1
No. of o1 Gy
Spectral type stars | (km/sec) | (km/sec) oz/0u
A 475 18 8 0.44
F 84 29 13 0.45
G 136 38 19 0.50
K 190 37 16 0.43
M 292 40 18 0.45
RR Lyrae var. per
Solgl 34 89 46 0.52
) € > oP.25")
RR Lyrae var. per
> od.g 98 136 70 0.52

) ¢ is the duration of the increase of brightness divided by the
period (KukARKIN 1948).

dional dispersions is much smaller than unity. From
the work of PaviLovskava (1953) we cite the ratios
for two groups of RR Lyrae variables, also given in
Table 1. The uncertainty in these values is larger than
in the groups of low-velocity stars, since a mean
absolute magnitude is used to determine individual
distances of RR Lyrae variables.

For the long-period variables, which, judging from
their concentration towards the galactic plane, form
an intermediate population of stars, the data are
more scanty. But the velocity dispersion in the radial
direction is certainly larger than the velocity disper-
sion perpendicular to the galactic plane (cf. Oorrt
1928, Table 1).

The conclusion may be drawn that for groups of
stars in the vicinity of the sun ranging from extreme
population I to extreme population II, the ratio of the
meridional velocity dispersions has an approximate
value of o.5 instead of unity as predicted by Jeans’
theorem for any dynamically steady stellar system
with an axis of symmetry. Amongst many other in-
vestigations . supporting this conclusion, we may
mention the work by NorpsTrROM (1936) and
VyssoTsky (1957).

5. Suggested explanations of the inequality of
meridional velocity dispersions

In the first three scctions of this chapter some
properties of the velocity-distribution function for a
stellar system in statistical equilibrium were derived
on the basis of the equation of continuity. In the
course of the argument applied to the galactic system,
two important postulates have been made, which can
be summarised as follows:

(1) The mass distribution is stationary and has an
axis and a plane of symmetry,

(2) The velocity-distribution function is stationary.

14

In addition it has been assumed in section 2 that
besides the integrals of energy and angular momentum
no third integral of motion exists. However, it was im-
mediately noted that JEans’ theorem, which follows
from the latter assumption and postulates (1) and (2),
is not satisfied by the velocity distribution of actual
classes of stars in the solar neighbourhood (section 4).
It is the purpose of the present section to review some
of the suggested explanations for this discrepancy.

It is a matter of some importance to state first the
two points of view which can be taken concerning the
initial state of stellar motions: either one can make the
assumption that there was an excess of high II-veloci-
ties when the stars were formed —and then one must
inquire what could have prevented the velocity-
distribution function from settling to a situation in
which the meridional dispersions are equal, or one
can make the assumption that initially there was a
uniform distribution over II- and Z-velocities—and
then the question arises whether the II-dispersion
could  possibly have increased at the expense of the
Z-dispérsion.

For the high-velocity stars, the former point of view
may be taken. The present distribution of velocities of
these objects should closely resemble the initial one as
they move in orbits of high ellipticity and so have
spent a considerable part of their life-times in the
outer regions of the galactic system. However, for the
study of the kinematical evolution of old stars of high
velocity, an extra complication is the fact that the
steady-state hypothesis may not have held in the early
history of the Galaxy.

For the low-velocity stars there is not much in-
dication as to which point of view should be taken.
The rather poor statistics of motion of B stars (Norp-
STROM, 0p. cit.) suggest that stars of population I have
no preferential motion in the (w,z)-plane after forma-
tion from the interstellar gas. '

Returning now to the review of explanations for
the discrepancy between observed and predicted
meridional velocity dispersions, we can divide these
into three categories: )

(a) the postulate that the velocity-distribution
function is stationary does not hold,

(b) there is indeed no third integral of motion, but
certain conservative functions may be used as quasi-
integrals, i.e. the functions may be nearly' constant
along individual orbits for considerable time intervals.

(c) there is a third isolating integral of motion
after all.

The influence of none of these categories can be
excluded a priori. For, (a) over long periods of time the
distribution of mass in the Galaxy must have changed,
(b) possibly the galactic potential function may be
approximated in limited regions of space by specific
forms which admit more than two integrals of motion,
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and (c) even though the third integral of motion has
not yet been found for the galactic potential function,
it may exist.

On the other hand, none of the explanations pro-
posed in the literature indicate which effect is likely to
have had the greatest influence on the statistics of
stellar velocities since the stars were formed. In order
to see this we examine these explanations briefly. They

fall in line with above mentioned categories (a)
and (b).

(a) The possible influence of interstellar clouds

In two articles SPrTzER and ScHWARZSCHILD (1951,
1953) investigate the influence of encounters between
interstellar clouds and stars on the velocity distribu-
tion of the latter, and they show that this effect tends
to increase the velocity dispersion in the galactic
plane in the course of time.

Assuming first the masses of individual clouds with
radii of some 5 parsecs to be of the order of 10? solar
masses, and assuming for the solar neighbourhood the
same average density for clouds and stars, they find
that the #ime of relaxation—i.e. the time in which the
accumulated velocity differences for encounters be-
tween stars and clouds reach the order of magnitude
of the original velocities—is of the order of 10! years
for the low-velocity stars with an average peculiar
velocity of 20 km/sec. Encounters are idealized as
two-body problems.

Rather than regarding clouds as being individual
entities, OSTERBROCK (1952) considers the changes in
motion of a star moving in the fluctuating density
field of interstellar matter, proposed by CHANDRA-
SEKHAR and MUNCH (1950) in their study of the
fluctuating brightness in the Milky Way. The time of
relaxation of a star moving in this field with a velocity
of 20 km/sec comes out to be of the same order of
magnitude, which is long compared to the estimated
age of the Galaxy.

Consequently these small clouds cannot have been
an effective agency in speeding up the stars. How-
ever, observational data on the interstellar gas show
that much more massive cloud complexes also occur,
e.g. the Orion nebula, with a mass probably greater
than 10* solar masses. Under the ad hoc assumption
that most of the interstellar matter is gathered into
cloud complexes with masses of 10° or 10° solar
masses, the estimate of the time of relaxation for low-
velocity stars in star-cloud encounters goes down with
a factor 10° or 10* and it becomes shorter than the
probable age of the Galaxy. Original velocities of
population I stars may consequently have undergone
a considerable re-shuffling. Complete equipartion of
energy between clouds and stars is not to be expected
and observational evidence shows it is certainly not
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reached; this is indicated by statistical studies of the
Ca* and Na absorption lines and of the H emission
line at 21 cm which give 5 to 8 km/sec for the root
mean square velocity component in the line of sight,
for the smaller cloud complexes (masses up to 10*
solar masses). .

In the second article, SprTzER and SCHWARZSCGHILD
give a quantitative two-dimensional analysis of the
speeding up of stars in the galactic plane due to en-
counters with massive cloud complexes. In this
picture the stars moving in the fluctuating field of
force of massive cloud complexes rotating with
differential galactic rotation, gain momentum at the
expense of angular momentum of the clouds. Apart
from the rotational motion around the galactic centre,
the clouds are supposed to have a negligible random
motion. A complete three-dimensional analysis has
not been given, but in a qualitative way it is clear that
for the case of the low-velocity stars, where the am-
plitudes of the oscillatory motions perpendicular to the
galactic plane are small, there can be no gain in
kinetic energy from clouds which have no random
velocities perpendicular to the galactic plane. Hence,
since the stars are speeded up in the velocity compo-
nents in the galactic plane, a qualitative explanation
for the observed inequality of dispersions in the meri-
dional plane for the older stars is given.

The SPITZER-SCHWARZSCHILD mechanism works in
the right direction, but it is doubtful whether

1) there actually occur enough large cloud com-
plexes with masses of the order of 10° solar masses,

2) there has been enough time to increase the
dispersion in the II-component roughly by a factor 2,

3) the clouds actually have no random Z-velocities,

-cf. the case of the Orion nebula, which lies outside the

galactic plane. :

Encounters with interstellar clouds produce a time of
relaxation for high-velocity stars up to 1oo timeslonger
than for low-velocity stars. Therefore, the SPITZER-
ScuwarzscHILD effect cannot account for the ine-
quality in velocity dispersions for high-velocity stars.
Conversely the statement by these authors: “Velocity
dispersions for population I stars have not been altered
essentially by any encounters and must represent the
initial average velocities of these stars at their forma-
tion”, is in line with the point of view suggested at the
beginning of this section, namely that population II
stars have had excess II-velocities at their formation.
Thus we are led to consider especially categories (b)
and (c) of explanations ofunequal meridional velocity-
dispersions for this population of stars.

(b) The possible influence of a quasi third integral of
motion

A different explanation was suggested by VAN
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ALBADA (1952), in connection with the theory of the
third quadratic integral of motion. In section 7 we shall
review this theory briefly with regard to its conse-
quences for the galactic potential function. It is
pointed out in section 7 that the actual galactic po-
tential function cannot be represented exactly by the
form of the potential function which follows from the
theory of the third quadratic integral of motion,
Therefore this integral is not an exact integral of
motion, i.e. the quadratic function of the velocities
and the position coordinates is not exactly constant
along individual three-dimensional orbits of stars in
the Galaxy.

VAN ArBapa has suggested that the quadratic
function of the theory of the third quadratic integral
may figure as a quasi-integral for stellar orbits in a
galactic system in ‘which the potential function is not
exactly described by the form of @ belonging to the
theory of the third quadratic integral of motion.

A quasi-integral of motion is defined as a function
of the velocities and the position coordinates which is
not exactly constant but exhibits secular small varia-
tions along an individual orbit.

If there exists in addition to the integrals I, and I,
(see section 1) a quasi-integral of motion, an initial
equality of the meridional components of the velo-
city-dispersion function may evolve in one direction.
The rate of change in time of the original velocity-
dispersion function will depend on the character and
magnitude of the mentioned secular variations of the
quasi-integral.

‘The actual galactic gravitational field of force,
which deviates from the field of force derived from the
potential function described in section 7, can be
examined for this effect in two different ways:

1) Direct method. The actual galactic gravitational
force function is compared with the field of force
derived from the specific form of the potential func-
tion (see sections 7 and 11b) which follows from the
theory of the third quadratic integral. This has been
done by Kvzmin (1953). Some remarks on this com-
parison are made in section 7 of the present work.

2) Indirect method. A number of individual test
orbits of mass particles with various energies and
momenta in a model of the distribution of mass in the
Galaxy are computed numerically; for each orbit the
third quadratic integral could be computed along the
orbit and the changes of this function will give some
idea of the mentioned effect.

This method is not followed up in the present in-
vestigation as we shall be concerned with orbits of
mass particles with higher energy, which do not stay
in limited regions of space. For such orbits it is doubt-
ful whether the computation of the quadratic quasi-
integral of motion is of any use.

The explanation of a triaxial distribution of veloci-

16

ties on the basis of the quasi third (quadratic) integral
of motion may be adequate for low-velocity stars
since they stay within a limited region of space where
the galactic potential function could possibly be ap-
proximated by the specific function which admits of
the existence of the third quadratic integral. However,
for the high-velocity objects it seems hardly plausible.
In the first place because such objects reach widely
separated parts of the galactic field of force, so that
the orbits are formed by forces showing considerable
deviation from those corresponding to the theoretical
case of the third quadratic integral of motion. And
secondly because in this case we have seen that an
agency must be sought which is effective in keeping
up an initial inequality of meridional velocities.

Thus we are led to the consideration of the last
explanation, the investigation of which is best under-
taken by the numerical computation of a number of
three-dimensional stellar orbits in the actual field of
force of the Galaxy. The results of such numerical
computations, which are discussed in chapter III,
give an empirical proof of the existence of a third
isolating integral of motion in the galactic field of
force. This leads quite naturally to the explanation of
the triaxial distribution of velocities mentioned in
section 23.

6. Summary of reasons for the numerical computation of
three-dimensional stellar orbits

The discrepancy between theory and observations
on the statistics of stellar motions in the neighbour-
hood of the Sun, formulated in the preceding sections,
and the inadequacy of the suggested explanations in
accounting for it in terms of either star-cloud en-
counters or the possible effect of a third quasi-integral
of motion, form a sufficient motive for the numerical
computation of individual three-dimensional orbits
of test stars in the Galaxy. For we may hope that the
study of the relation between the II- and the Z-
velocity components for individual orbits of high-
velocity stars will give us some insight into the ques-
tions whether and how conversion of energy from one
component into the other takes place. Cases of large
amplitudes in the meridional plane and thus of
relatively large energies must be selected in order to
obtain (w, z)-coupled motions; for small oscillations
in the meridional plane the mutually perpendicular
w- and z-oscillations are independent and there is no
conversion of energy of motion from one component
into the other.

Another motive for numerical orbit computations
is furnished by the possibility of finding in this way
the place of origin of certain stars from their observed
space velocities and estimates of their age. Thus back-
ward orbit computations can be used to determine
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the association in which suspected run-away stars | any trajectory. The assumption that (7.1) is an inte-
might have originated (BLaauw 1961). A model of | gral of motion implies a condition for the gravitational
the distribution of mass not too much different from | potential ®; it is obtained by elimination of Q from
reality is evidently needed. Even then, however, due | equations (7.2) and takes the form

to the uncertainties in the determinations of the space

velocity, such computations cannot be expected to 2 (Ez_q_) . 32_(1)) + (o — o2 + 2%) lzq)_ +

yield a precise value of the place of origin, if carried de? 2R ' 5 dz

out over a long time interval. 20 20 (7:3)
Finally, numerical computations of orbits in a +3 (ZE - {2) =0.

given galactic force function (which should be based

upon a model of the distribution of mass in the galac- In order to solve the equations (77.2) and (7.3), we

tic system), provides knowledge of the length of time | introduce ellipsoidal coordinates £ and » defined by
spent by stars with different orbital parameters in
different parts of the (w, z)-plane. This knowledge,
combined with observational knowledge on the ve-
locity- and density-distribution of selected classes o '
of stars, such as the RR Lyrae stars, is a means for (see also section Iflb) '1 Th; surfaclzesug =.Z’1°n5t' dz;}nd
further study of the actual distribution of mass in the | 1 = const. are confocal orthogona! elupsoids and fiy-
Galaxy perboloids of revolution, centred at the centre of the
Not all of these applications are considered in this galactic .system.. For ar eal, the c1.rcle in the galactic
investigation, but the orbit computations have been plane with radms. o is the focal circle of the two sets
arranged so as to give all necessary data for a com- | of surfaces. Forocn:naglnary, th'ere are two.focal points
plete specification of the path in phase space as a | °® the z-axis at distances + i« and — i« from the

o+iz

7 +1& = arc sin (7.4)

functi f time. galactic centre.
tnction of time The equations (7.2) become
IL Analytical Solutions LS P L
% Y3
7. The third quadratic integral >® (7.5)
o — sinh?t <=
. The theory has been outlined independently by m sinh? m’
VAN ALBADA (1952) and KuzmiN (1 . Itis assumed
that the integ'(ra?s ) (x953) and the condition (7.3) becomes
' LR
IS = (GZ—ZH)2+22®2—OC2 (ZZ— ZQ), (71) (COShZE_, —sinz-n) ¥ m =
quadratic in the three velocity components, exists; _ . 2D N 20 (7.6)
« is a parameter with a real or imaginary value which = —2sinh§cosh§ — + 2sinv cosn — .
: : " M i3
may be chosen in accordance with the characteristics | -
of the field of force in the region of space considered; | The solution of (7.6) is
a? has the dimension of the square of a length; Q is a
rotationally symmetrical function of the space coor- = FE) + G.(v;z -, (7.7)
dinates, satisfying the partial differential equations cosh?E — sin’7
Q. 2230 wzHd in which F and G are arbitrary functions of £ and v
o T2 v o respectively, and the solution of (7.5) is then
22wz 20 | (3 |20 (7:2) o SnRPE.C(m)—costn. F(5) o
2 o o 2 )z o cosh?£ — sin’y ) )

The ekpression (7.1) for the third integral of motion

dl
which follow from the condition that —> = oalong

dt becomes in ellipsoidal coordinates
2 d 2 t h2
IL=ad g (%) sinh*§ — (?l%) cos? ; (cosh?E — sin’®w) + h? ngTYI—a +2a2Q () . (7.9)

The form (7.7) of the potential function had been 5 (18)) although the assumptions were different, namely
given already by EDDINGTON (0p. cit. p. 46, formula | that the principal velocity surfaces generated by the
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mutually orthogonal axes of the assumed ellipsoidal
distribution of velocities should be ellipsoids and
hyperboloids of revolution. The form was rediscovered
by Camm (1941) in his discussion of the ellipsoidal
distribution of velocities. In section 11 we will show
how the form (7.7) for ® and the form (7.9) for
I, can be found as a result of the assumption that
the equations of motion can be integrated by the
method of separation of variables. The ellipsoidal
distribution of velocities with three unequal axes in
the field of force derived from ® of the form (7.7), is
given in section 3 (see formulas (3.1) and (3.2) with
case iv).

In the classical theory of two-dimensional dynami-
cal systems—to which the case of three-dimensional
motion in an axially symmetric field of force can be
reduced, cf. section 8 —possessing a quadratic integral
other than the energy integral, the equivalent form of
the potential is known (WHITTAKER 1904, p. 323).
The potential of the Newtonian field of force of two
fixed centres of mass is also described by (7.7). Finally
we remark that VINTI (1959 a, b) has shown that the
potential outside an oblate spheroid can be approxi-
mated by (7.7); his investigations were concerned
with the description of the drag-free motion of an
artificial satellite under influence of the gravitational
attraction of the earth.

It was remarked in section 3 that the form (7.7) of
the potential function cannot be an exact solution for
the potential function of a self-gravitating galactic
system, since the Poisson equation cannot be satisfied;
this was first shown by EppingTon.
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Dz, f (24, + 222, + 1"+ 1/7)* —

By imposing on @ the condition that for large
distances r from the galactic centre

o M

r

(7.10)

where M is the total mass of the Galaxy, vAN ALBADA
showed that G (%) = o; he takes a real and then ® is
singular in the galactic plane on the focal circle. By
taking o imaginary, KuzmiN finds that @ is only
singular in the two focal points on the z-axis, but in
this case @ +> — M/r for large r.

These considerations show that the form (7.7) of ®
is certainly not exactly satisfied for an actual stellar
system. But in limited, not too large regions of the
galactic field of force, (7.7) may be an approximation
of the actual potential function, and then the quadra-
tic third integral of motion I, may be used as a quasi-
integral: instead of being constant along an orbit it
varies slowly with time.

KuzMiN (0p. ¢it.) has considered the question of ap-
proximating the galactic potential function over large
regions in and near the system, by the form (7.7). He
proposed for the functions F and G the expressions

F() =— Eﬁ— x,2 — sinh*&
o - (7.11)
® o
G) = - I/xo2 + cos? y

in which ®° and x, are constants and z, is equal to
¢« in our notation.

In this case the form (7.7) of @ rewritten in the co-
ordinates's and z becomes

®= \/z[

in which r, and r, are the distances of the point con-
sidered from the focal points (z = + z, , w = 0).
From this expression the following partlal derivatives
in the plane z = o are obtained

() -5
3 Jpne | 02 Sk R

20 ®°z, (20" — 42
z=0 .
v —wn? w?
T ox —v—d)—) (7.13)
2P D° 2z, zvz—l—Sm
45’

in which v* =%+ 22, and @® = n2 + 2,2 + %2

—(2x2—2zz,+ 12 —rm)t
£ =) ; (7-12)

T,

For z=o, (77.12) becomes

(o]
D°z, w—x,

Q= (7.14)

v v

The left-hand sides of equations (7.13) are known
in terms of OorT’s dynamical constants 4 and B and
the third dynamical constant C:

()., a=m

() =—4—B Ga+B

220 ,
(a‘z?)m—c :

Kuzmin (op. cit.) has suggested the following values

(7.15)
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of the constants ®°, z, and x, in expression (7.12) for
the galactic potential function:

V' —@° =425 km/sec
z,= 3.6 kpc (7.16)
%, = 0.6 kpc

Substituting these values in equations (7.13) and
taking = = 8.2 kpc and z = o for the solar neighbour-
hood, we obtain the results shown in Table 2. For
comparison the values given by the model of the dis-
tribution of mass by ScHMIDT (1956) are given.

TABLE 2

Comparison of some quantities following from Kuzmin’s formula
(7.12) with ScumipT’s values, at @ = 8.2 kpc, 2= o (units as in
section 14).

KuzMin ScHMIDT
(D(I)) 6
3w/, e 4.79 57-15
2P
B_c)‘f o —11.06 —13.6
()
—_— . .50
Y2 25.72 52.5
A . 1.68 1.95
B A —1.13 —0.69
c¢ 5.07 7.25
Voo = Vi—2 D552 36.9 28.6
Z=0
M = total mass 6503 3012

In Table 3 the same comparison is made for the
rotational curve, defined as

o]/ (2)

hln}

(7.17)

for z = o. The table shows that the Kuzmin formula
(7.12) yields a rotational curve which shows approxi-
mately the same run as ScEMIDT’s curve for & from
about 2 to about 7 kpc although it is systematically too
high for the adopted values of ®°, z_ and x, . For larger
& the similarity between the two curves breaks down,
and the sharp descent of the ScHMIDT curve is not
followed by Kuzmin’s. This is partly a consequence of
the fact that the total mass M in Kuzmin’s model,
which is equal to —®°z_, is about twice as large as the
total mass in ScamipT’s model. For large & both rota-
therefore KuzminN’s rotational velocities will tend to
be about V2 times as large as ScHMIDT’s.

Comparison of KuzMIN’s rotational curve with the curve given

TABLE 3

by ScHMIDT (units as in section 14).

— 0, 0, o 0, 0,

“ (KuzMIN) | (ScuMIDT) * | (Kuzmiy) | (SceMIDT)
2.050 16.9 17.8 g.225 22.5 20.2
3.075 21.1 19.9 10.250 21.8 19.2
4.100 23.2 21.1 11.275 21.2 181
5.125 23.9 22.0 12.300 20.6 17.1
6.150, 239 22.5 14.350 19.5 15.4
7.175 23.6 22.4 16.400 18.5 14.2
8.200| 23.1 21.6

It can be concluded that Kuzmin’s formula (7.12)
gives a good approximation of the galactic potential
function as given by ScuMipT’s model over large
regions within the orbit of the sun around the galactic
centre. However at larger distances the agreement is
not so good. Also it does not give a good approxima-
tion for the potential function outside the plane, since
the constant C is somewhat too small. Some adapta-
tion may be possible by variation of the numerical
values of the constants @°, z, and x,, but this question
will not be pursued here.

The physical meaning of the third quadratic inte-
gral is not obvious. The function

I+ 12+ 202 (I, — D) (7.18)
has been investigated by vaAN ALBADA and termed
the integral of combined angular momentum; for real values
of a, the expression

LI 4202, —0—Q)  (7.19)
corresponds to the mean of the squares of the angular
momenta with respect to the points z =« and z = —a,
% = o. '

For the limiting case a = o, the expression (7.19) is
equal to the square of the angular momentum vector
with respect to the centre of the system, and @ is
spherically symmetrical.

For the limiting case a— oo, the restriction on the
potential which follows from (7.3) is

2o
5—052 =0, (7.20)

which is the case considered by LinpBLAD (1933,
1959) for a highly flattened stellar system. The po-
tential then has the form

®=F(n)+G(2) (7.21)
and LINDBLAD’s integral is the following limit:
I
lim J=—22—20(w,z) +2® (5,0). (7.22)

a—o00 %
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Returning to the general case, we write equation (7.1)
as follows

2
(6Z—2zI)? — a?Z2 =1, —22%—2012(2. (7.23)

We note that the right-hand side of this equation is
independent of the velocity components, and there-
fore the expression

(vZ—zII)2 —a2Z? (7.24)
is the same at the beginning and end points of a
“loop” in the (w, z)-plane, i.e. at those points where
the projection of an orbit on the (&, z)-plane inter-
sects itself. Therefore in each such point only four
velocity vectors are possible (two of these are realised
when the orbit is traversed in one sense, and the two
opposite vectors are realised when the orbit is travers-
ed in the opposite sense). These properties of meridio-
nal motion hold both for periodic and non-periodic
orbits. They have also been found in a number of the
numerical computations (see section 18a); these,
however, were carried out in a field of force which
does not admit of the third quadratic integral of
motion.

8. Reduction of the three-dimensional problem
by one dimension '

A particular solution of the equations of motion
(1.8) is circular motion in the galactic plane
M=o
Z=o0,

7= e (8.1)

Z=0

with the condition (derived from the first of the six
simultaneous equations)

n (b(l))
13'3— Poj w=m’c,z=0 :

c

(8.2)

Physically this is the condition of equality of the
centrifugal and centripetal forces in circular motion.
The relation between 4% and o, for the model of the
distribution of mass in the Galaxy according to
ScHMIDT (1956), is illustrated in Figure 1.

By introducing the reduced potential function defined as

1 kz
U=;3+90, (8.3)
the equations of motion become
¢o_ W
Y™
dz_ W (84
az =z

FiGure 1

Weg joac =

i
: |
° I ! I [k 1 1 1 1 1 |

0 4 8 12 16 20 26 kpe W

(a) Square of the area constant for ScuMIDT’s model (unit
100 km?kpc?/sec?). Inflection points at @ = 6.2, 9.7 and
14.0; discontinuities in the second derivative at & = 8.68,
12.3 and 16.4 (coincident with the boundaries of the
Schmidt spheroids).

(b) Asymptotic approximation with total mass concentrated

at centre.

In this way the problem of the computation of three-
dimensional orbits in the gravitational field of force
described by the potential function & is reduced to
the computation of two-dimensional orbits in the
field of force derived from the reduced potential U.
The orbit in the (w,z)-plane will be called the
meridional orbit. It can be regarded either as the path
of a particle in the moving meridional plane (angular

< h
velocity & = 9> , or as the cylindrical projection of the

three-dimensional orbit in a fixed plane. The third
velocity and position coordinates of the space orbit
are found from

t
h
¥= J"c‘y‘z' dt + g
fo (8-5)
h
0=—.
w
Without further specification of U, the equations of
motion (8.4) admit only of the energy integral

(W% 4+ 27) + U=E, (8.6)
in which E is the total energy as before.

The function U contains & explicitly (or w, im-
plicitly) as a parameter. For the galactic system some
equipotential curves U = const., for &, = 5.2 and
8.2 kpc, are drawn in Figures 2 and 3. They were
derived from the interpolation formula for the poten-
tial of the Galaxy discussed in section 15. The cor-
responding values of % are given in Table 4. The
function U for z = o is illustrated in Figure 4 for the
values of »_ in Table 4.
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FIGURE 2 Ficure 3
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Equipotential curves for various values of the reduced potential U (unit 100 km?/sec?) in the meridional plane for @, = 5.2
(k=114) and @, = 8.2 (h=177) based on the interpolation formula IF.

FI1GURE 4
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Reduced potential function U in the galactic plane for various
w,, based on the interpolation formula IF (unit 100 km?/sec?).
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TABLE 4

Values of the area constant &, and, for small amplitudes around
the point of equilibrium (& = ®,, 2 = 0), values of the periods of
oscillation in the radial direction and perpendicular to the galac-
tic plane, derived from the interpolation formula (section 15).

h Py pPe
e (kpc) (10 km. kpc/sec) (108 ;"ears) (108 ;ears)
3.2 63.49 0.6528 0.2816
5.2 114.45 0.9245 0.4007
8.2 177.12 2.1002 0.8229
1.2 203.58 43797 1.7959

The reduction of the three-dimensional problem by
one dimension is known in classical mechanics as the
ignoration of the coordinate 9. This is possible because
the Hamiltonian function does not contain § explicitly
(for the three-dimensional dynamical system of the
star moving in the galactic field of force the angular
momentum integral exists).

For unspecified U, the system (8.4) contains no
further ignorable coordinates, and further reduction

by another dimension is not possible. However, by
elimination of the time ¢ from the fwo equations of
motion (8.4), a single (non-linear) second-order differ-
ential equation for the meridional orbit is obtained, which
relates z to ©.

- In order to obtain this equation consider z as-a
function of w, and write the derivatives of z with
respect to & as z’ and z". Differentiating the equation

z= z{ © (1) } twice with respect to ¢ we have

Z=71
dZ dZ
Zt—f =7z —dt—? + 2" 112, (8.7)
d2 2
‘Elimination of the variables II, Z, 75? and%g

from (8.4), (8.6) and (8.7) gives

U U
2(E—U)Z = (1+2?) (z%—ab—z) . (8.8)

This differential equation for the orbit in the (w,z)-
plane cannot, in general, be integrated by quadra-
tures. As the original equations of motion did not
contain any further ignorable coordinates, there are
no integrals of motion without further specification of
the function U. For numerical integration the form of
this second-order equation is inconvenient, the system
(8.4) is to be preferred.

However, some properties of the meridional orbit
can be found from this equation. For instance, let us
assume, near the point (= = w,, z = 0), the expansion
(9.1) of the U function (see next section), retain only
the terms up to the third degree, and substitute the
expression into the differential equation. The solution
near this point may be written as

z= len (v —w,)".

(8.9)
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By substitution in the equation and comparing equal
powers of (v — w,), the following relation is obtained

(x4 £2) (— 6o o+ a, by h?)
4(E—U,—306h?)

and a recurrence relation for successive coefficients
k,. On including more terms of the expansion (9.1)
the form of the above equation for %, remains the
same, except for higher powers of #, which appear in
the second factor of the numerator and in the denom-
inator. The quantities £, and %, may be chosen as
integration constants and then all %, are fixed. In

hy =

(8.10)

U= Uc+§a0(m—wc)z—{—%coz?—|—a1(w—wc)z2+cl(w—wc)3—|— ce

For the coeflicients of the terms of the second degree
we have

h? (DZCD)
Gy = 3Uc4 + 32 ) ey, im0

(%)
o= \|—7F =
0 222 W=Wg,2=0

in which 4 and B are OorT’s constants of differential
rotation, and C is the third dynamical constant.

For infinitesimal oscillations around the point of
equilibrium we retdin in expression (9.1) only.the
quadratic terms. In this approximation the equations
of motion become

—4B(4—B) (9.2)

(9-3)

d*s

W = —4a (O’ - t‘-yc)

dzz (9'4‘)
"a,t—z = —¢(y2.

These are the equations of motion of a two-dimen-
sional harmonic oscillator around the point of equili-
brium. The solution of (9.4) is

o —w,=Msin (Va,t+q,)

2= Nsin (Vi t4e), O
and the velocities are given by
II=MVa,cos (Va,t+e,) (0.6)

Z= NV, cos Ve, t+9,),

in which M, N, ¢, and ¢, are the independent integra-
tion constants. In the approximation treated here, the
equipotential curves U = const. are ellipses with the
constant axial ratio of V'a,/c,, centred on the point
of equilibrium. The periods P,° and P of the two
(independent) oscillations are equal to 2w /V'a, and
2n/V¢,, and are given for the galactic system in
Table 4, for various w, .

The meridional orbit is a Lissajous figure. Depend-

22

particular if /i, is chosen equal to zero, that is tosay
that the integral curve (the orbit) passes through
(v = w,, z = 0), it follows that A, is equal to zero and
hence the orbit can have an inflection point at this point.

9. Linearisation for small oscillations

Near the point of equilibrium for two-dimensional
motion (corresponding to circular motion in the
galactic plane with the area constant derived from
(8.2)), we may develop the function U in a double
power-series in (v — w,) and z

(9.1)

ing on whether or not V a/c, is rational, it is either a
closed curve or it fills a rectangular region the four
corners of which lie on the curve U = E (E is again
the total energy of the orbit).

The phase space for meridional motion is four-
dimensional, so there are at most 3 isolating integrals
of motion (see section 1). The first two of these are

E =:11?4;a, (v —5,)?
E,=3 7?4 3¢, 2*

and the total energy is the sum of U,, E, and E,.
These two integrals are isolating, because for any
given set of initial conditions (or for any set of inte-
gration constants) the meridional orbit is confined to
a sub-region of the region bounded by the ellipse
U = E. Either integral can be used as the third inte-
gral of motion for the three-dimensional orbit.

From (9.7) we find with (9.5) and (9.6) the depen-
dence of E, and E, on the integration constants

E =za,M? ,
E:=_10:: N2z, (98)

The remaining independent integral of motion,
which contains the position coordinates o and z and
no velocity components, is obtained by elimination of
t from the equations (g.5). It takes the following form

(9-7)

7 1 . T—0, I .z

= 7= arc sin ——+— — 7= arc sin —
Va, M Vi, N

and the dependence of the integral on the integration

constants is .

(9.9)

_ P P

| =V Vi (9-10)
Whether or not the integral F is isolating depends
upon whether or not the ratio Vay/, is rational. If
the ratio is rational, (9.5) describes a closed Lissajous
figure which does not fill the whole of the rectangular
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Ficure 3

(b

Z=0 —

W=,

Meridional oscillation for small amplitudes; E, and E, isolating.

(a) ratio of frequencies irrational: non-periodic orbit, E, non-
isolating.

(b) ratio of frequencies rational: periodic orbit, E, isolating.

region specified by the values of E; and E, . In this
case the integral F is isolating, and the system (9.4)
is o-fold primitive.

However, if \/ao/co is not rational, the whole of the
rectangle is filled eventually by the meridional orbit;
then the integral is not isolating and the system (9.4)
is 1-fold primitive. The two cases are illustrated in
Figure 5.

10. Conrorouros: third integral

The theory of the formal third integral of mofioﬁ,
proposed by ConTorouLos (1960), is based upon the

expansion (9.1) of the reduced potential function U.
It may be summarized as follows.

Consider first the special case in which the function
U can be written as

U= U;l—%ao (v —w,)2+3622+a (v —w,) 2% (10.1)

For this case the energy integral of the equations of
motion (8.4) can be written

E=U,+E +E,+a (s —u)2,

in which E, and E, are given by the expressions (9.7).
After introducing F, and F, defined by

Fo:Uc+E1 ‘i‘kEz

(10.25

Fi=(w—mu,)2 (Io'.3)
the equation (10.2) can be written
E=F+a/F,. (10.4)

In the expansion (10.1) the last term can be treated
as a perturbation term if a, is sufficiently small. ConTo-
pouLos has sought for a time independent integral,
other than the energy integral E, of the form '

K=K,+a K +a?’K,+ ... (10.5)
in which K, K,, K, ,... are polynomialsin (v — &),
z, Il and Z.

A necessary and sufficient condition for K to be an

integral of the equations of motion (1.8) is, that the
Poisson bracket of K and E is equal to zero, viz.:

WK dE JdK YE XK JE 3K dE
K ) = o—w) 3 T2z 52730 dw—5) 2Z 3z ° (106)
Making use of the relation (10.4), this condition can be written
(K5 Fy) +a1': (Ko» F1) + (Ky, Fy) : +ees +an‘1H'= (Kas 1) + (Kngrs Fo): +....=o0. (10.7)

The equation (10.7) must be satisfied for a range of
values of a, . Therefore each of the terms must vanish
separately and we have the equations

From (10.8) it is seen that K, must be an integral of
the unperturbed system (i.e. ¢, = o) treated in section
9, and so it can be put equal to £, or E,. For known
K,, (10.8.0) is a partial differential equation for the

(K,, F,)=o0 (10.8) unknown polynomial K,. ConrtorouLos gave the
(Kos Fy) + (K, Fo) =0 (10.8.0) | general solution of this equation and for the poly-
nomial K, he found
(Kn’F1)+(Kn+laFo) =0 (10.8.72)
K= 0= 30) (o m) 2= a(m - 20 4 2T122) (109)

ao_4"o(

When the function K, is known, the function K, ;
can be found from the general solution of (10.8.n).
ConTtopouros proved that if X, is a polynomial, K, |,
is also a polynomial. Besides the expression (10.9) for
K,, he also derived the explicit expression for K, .

5 .
The convergence of the series (10.5) has not been
established. A method of studying the properties of K
defined by (10.5), would be to write it as a quintuple

power series and to substitute the series in Poisson’s
condition (10.6). The resulting diflference equation
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for the coefficients is a linear homogeneous partial
difference equation of the third order; the analytical
solution of this equation has not been found.

ConToprouLos has also discussed the general case,
in which U has the expanded form (g.1). He assumed
that a third integral K exists and can be expanded
into a series, each term of which is a polynomial in
(v —w,), 2z, I and Z, and the coefficients of which
are the coefficients of (9.1) and their cross products.
The series for Kissubstituted into Poisson’s condition
(10.6) and the discussion of the resulting equation is
similar to that of the case discussed above.

For each value of «; the equation E == «, defines a
three-dimensional integral hypersurface in the four-
dimensional phase space. The intersection of such an
energy surface with the meridional plane is a curve of
the form shown in Figures 2 and 3. If the series (10.5)
is convergent, the equation K = «, defines likewise a
three-dimensional surface in phase space. The inter-
section of this surface with an energy surface is a two-
dimensional surface containing all paths in phase
space which have the integration constants «, and a,
in common.

The boundary in the meridional plane of all
meridional orbits which have «, and «, in common,
can be shown to be defined by

E=o K=a, J=o,

in which Jis the Jacobian of K and E with respect to:
II and Z.

Contorouros and P. O. LinpBrap (1958) have
computed two orbits numerically using the electronic
computer BESK. For comparison with the numerical
computations reported in the present investigation,
we give some data on these two orbits.

In the expansion (g9.1) for U, ConTorouLos and
P. O. LinpBrLaD have retained only the terms up to
the third degree in the variables (¢ — 5,) and z. The
following numerical values of the coefficients in (9.1)
were used:

(10.10)

a,= 729 km?[sec?.kpc?
¢, = 5250 km?[sec?.kpc?

a, = — 1970 km?[sec.kpc?
¢, = — 170 km?[sectkpc’.

Both orbits have the same area constant (correspond-
ing to »,=8.2kpc), and both orbits have small
w- and z-amplitudes.The initial position (for ¢ = o) is
for both orbits w,= 8.2 kpc and z = o; the initial
velocities are the following:

Orbit A Orbit B
(Sun’s orbit)
II, | — 9.6 kmfsec | + 5.0 km/sec

Z, | + 7.3 km/sec

Orbit A was computed over 5.10° years and orbit B over 1.10°
years.

+ r1.0 km/sec

The motion in the meridional plane is best described
as a slightly distorted two-dimensional harmonic
motion. CoNTorouros indicated that each of the
orbits may be enclosed accurately by an equilaterial
trapezium defined by the straight lines (the unit of
length is 1 kpc):

Orbit 4 (1) o — o, = — 0.322
(2) z=+ 0.022 (5 — w,) + 0.102
(3) 5 — ——-+O4.I6 (IO.II)
(4) z= — 0.022 (v — ©,) — 0.102,

Orbit B (1) 5 —w,= — 0.154
(2) z=+ 0.031 (v — ®,) + 0.152
(3) & — &, =+ 0.238 (r0.12)
(4) z= — 0.031 (v — w,) —0.152.

The trapezia are only approximations for the actual
envelopes of the orbits (provided they exist, which is
qualitatively indicated by these computations) be-
cause the four corners of an envelope must be rec-
tangular. (cf. section 18c).

Conrtorouros has found that the empirically ob-
tained envelopes (10.11) and (10.12) agree very well
with the envelopes defined by (10.10) on the basis of
the formal third integral of motion. The latter gives,
instead of the straight lines (1), (2), (3) and (4),
quadratic curves which fit even better to the graphs
of the meridional trajectories. The quadratic curves
replacing (2) and (4) are both slightly convex to the
- axis. This phenomenon appears magnified in the
computations reported in the present investigation.

Summarizing, it can be stated that the good fit be-
tween the predicted and empirically obtained envel-
opes of the orbits computed by ConTtorouLos and
P. O. LinpBLAD gives strong support to the conjecture
that the third integral of motion K exists!). Its use-
fulness is limited to motions which are confined to the
vicinity of the point of equilibrium (& =w,, z = 0).

When we are, however, concerned with orbits of
higher energy, the reduced potential function U can
no longer be approximated by a few terms of the
expansion (9.1), and consequently the formal third
integral of motion loses its usefulness. The region of
the meridional plane to which an orbit of higher
energy is confined cannot then be found from the
series (10.5) for K. Since the radius of convergence of
the series is not known, the formal third integral of
motion in these cases also fails to give an answer to the
question whether or not a given orbit is confined to a
certain region within the curve E = «, in the meri-
dional plane.

) Because the integral has the form of an infinite series, the
convergence of which has not been established, ContorouLOS
has called the function K a formal third integral.
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11. Application of the Hamilton- Jacobi theory

In this section we investigate the possibilities of
solving the equations of motion (8.4) by the method
of separation of variables in the Hamilton-Jacobi
equation. We begin by writing the equations of motion
(8.4) in the canonical form

dn oM g oM
dit g dt ~ " w
: (11.1)
dz _H dp, M
dt_sz dt — 2z’
in which the Hamiltonian is given by
H=%(Pw2—|—p22)+ U(w,z) . (1.1.2)

The momenta p,, and p, are equal to & and 2 re-
spectively. The value of H, which is constant in time,
is equal to the total energy E.

We introduce new orthogonal curvilinear coordi-
nates (A,u) by considering the conformal represen-
tation of the plane (w, z) on the plane (A, ), by means
of the analytical function ¢ = F (w, 2) + i G (w, 2) , viz.

K+ip.=g(w—|—iz) . (11.3)
We have by definition
F 26 oF_ 36
w2z’ w2~ w (11.4)
For the functional determinant, defined as
20w
J= d(w,2)
ax dp Y W
"E=J-l’z 7;= iy (62 + 1.5 .

The Hamilton-Jacobi method of solving these equa-
tions of motion consists of searching for a solution for
the characteristic function W from the Hamilton- Jacobi
equation; this equation is obtained by replacing the

WW
momenta p, and p, in the Hamiltonian K bya— and

w . . . .
Erespectlvely and equating the resulting function

to E, viz. :

DWN\2 - W)\?
%J{(—F)\—) +<—b:>§+U(7\.u)=E. (11.11)
We write the solution, which is a function of A, p, and,
apart from the constant E, of an additional constant
ay,as W=W(\,u,E, a,). This function solves the
equations of motion as it generates a canonical trans-
formation in which all the new coordinates are cyclic

we have

AF\? AF\?2 WG \? G \?
7=() +(G2) =)+ (5) - o
Finally, orthogonality given by
WF G  dYFG
wowm ez oz
follows from (11.4).
From the coordinates @ and z and the conjugate
momenta . and p, we transform to new variables

A, &, p, and p, by means of the transformation gener-
ated by the function (GoLDSTEIN 1957)

(11.6)

P(w>z’Pl:pu)=F'pﬂ+G'pu . (11'7)
The transformation equations are then
2P _F 30
bo =35 = 3ali TGl
_dP OF G
b=7, =300t 57t
5P (11.8)
A=—=F
Y
==
This is a point transformation and therefore it is
canonical, whence the new Hamiltonian becomes
i 250 22
=3J (62 +p2) +URu) , (11.9)
making use of relations (11.5) and (11.6).
The new equations of motion—which may be more
complicated than the original ones—are
dp. - dp, Y VR 1/
87_-]'?11 Tjt—-_—;a;(pl +.p/4 _-bl"" (II'IO)

(cf. e.g. GOLDSTEIN 19357); the solution of the equations
of motion is

1114 W

'tu=3E BT
oW oW (11.12)

“s=373 l’r—“‘gl;-

Of course the complete three-dimensional problem is
solved too, with the 5 integration constants E, A, «,,
o4, @5, the 6th integration constant «4 being the ad-
ditional constant which determines the zero point in
azimuth for the third space component (see the first of
equations (8.5)).

The solution of the Hamilton-Jacobi equation
(r1.11) is feasible only if the occurring variables are
separable. This is the case if a function of the form

W=W M E o) + W, (1, E, &)  (11.13)
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splits the equation (11.11) into two separate equa-
tions. In general this is not the case, unless some
restriction is imposed upon the function U and hence
on the potential function @. The form to which @ is
restricted when (11.11) is demanded to be separable,
depends upon the choice of coordinates (A,p). For
instance if we take A and . to be © and z themselves it
is easily found that ® must be of the form

®=F(v)+G(2), (11.14)

if the corresponding Hamilton-Jacobi equation is to
be separable. For this case the equations of motion
can be integrated completely by quadratures, by
methods much simpler than the present one. The case
of small oscillations treated in section 9 is a special
case of this. The conditions under which the solution
of the Hamilton-Jacobi equation (11.11) is possible
can be formulated as follows (we do not give the
rather lengthy but straightforward derivation, see
HaMEL 1949): .

There exists a point (A, @,) for which the following
relations hold

26

We shall examine three coordinate systems which
are of interest for the problem of stellar orbits in the
Galaxy and we shall find the form of the potential
function @ to which condition (11.16) leads for each
of these cases. Also the form of the third integral of
motion is obtained.

(a) Polar coordinates

The coordinate transformation

r+io=In(z+iz) (11.17)
gives
©=¢CcosQ osr<<-+oo
z=¢"sin ¢ o<¢@< 2w (11.18)
with the Jacobian  J=¢?. (11.19)

The condition (11.15) is satisfied for all (r,, ¢.);
the condition (11.16) is satisfied if @ is a function of
r only, with a suitable zero point depending upon the
ch01ce of r, and ¢, .

The Hamiltonian becomes

I I 1 I
+ — =, (11.15)
Thu) T T0ew)  TOgrtg) T 1 . 2
U :) U(xou) U\ u; BP0 (11:20)
) _ s 40 09 .
J T TNe) T J(R,e) (1(1.16) and the equations of motion
dr -, e 20(r) dp uy U R2sin ¢
a= "t G =W Y aee T W T T T v (112

We have here the case of the spherical galaxy and in
this case three-dimensional motion can of course be
treated in a much simpler way. It is, however, inter-
esting to note that the Hamilton-Jacobi equation is
separable for the case of the Spherical Galaxy, and
that a simple solution for the velocities of the meridi-
onal motion is obtained from this equation, in the
following way:

The Hamilton-Jacobi equation is
1 (d Wl) 2 1
i\ ) T

and the dependence of this equation upon ¢ isinvolved
in two terms only so that if the equation is to hold
identically it must be true that

. dW2)2 h?
d ( do +zcos2<p

from which

dW2 2 i 2r — p2r
(dcp) +2cosch+e O(r)=e¢*.E

(11.22)

=const=a,, (11.23)

w,= f V' 2a,—h*[cos?p dyp . (11.24)

The Hamilton-Jacobi equation can now be solved for

W, , from which the characteristic function is obtained

W= [V2(E—0{) " — za,dr +

+f\/20c3—h2/cosch dp.  (11.25)
Finally from (11.12) we find the momenta
W ,
by=—,=V2(E—0(r)) e — 20 :
W (11.26)
Po= o = V 2, —h*[cos? ¢
from which the velocities follow:
d
E;— =e¥V2(E—D(r)) e — 2a,

d (r1.27)
d—q; =¥V 20, — h*[cos?q .

Also the coordinates r and ¢ are implicitly determined
as functions of E, «,, «,, s and 7, but owing to the
elliptic integral occurring in (11.25), they cannot be
evaluated explicitly. Along similar lines as discussed
in the next case (of elliptic coordinates) we can see
that the meridional orbit is bounded by two arcs of
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circles and two line sections determined by two angles
Pmin = Pmax (Cf. Figure 6); a non-periodic orbit fills the
whole of this region, which has the shape of a dis-
torted rectangle in this case. As in section 7, only four
velocities are possible in each point because the expres-
sions for the velocities are two-valued.

By squaring equations (11.27) and adding, we ob-
tain the energy integral

E={(‘dit)+(§)§+ e tO0). (1138)

The third integral of motion is obtamed by solving
one of the equations (11.27) for a, . As afunction of r
only it can be written

I _§ (%) e2r+q>(r)—E§e2r= —a,. (11.20)

(b) Elliptic coordinates

The coordinate transformation!)

27

where (o =4, z=0) or(E:o,n=i§) are the

focal points of the confocal ellipses £ = constant, and
hyperbolas v = constant ; the Jacobian is
I 5

J = Gilcosh?E —sinty) (11.32)

For any &, and v, the relation (11.15) is satisfied; from
(11.16) it is found that

F(€) + G(n)

= cosh?E — sin?y’ (11.33)

in which F and G are arbitrary functions of £ and v
respectively, with suitable zero points depending upon
the choice of £, and v, .

Thus, the assumption that the Hamilton-Jacobi
equationisseparable in elliptic coordinates leads to the
form of the potential function (7.7) obtained in section
7 in connection with the theory of the third quadratic
integral.

The Hamiltonian becomes

. . @+iz P+ b h
1 +1& =arcsin (11.30) 2a?(cosh? £ — sin?7) + 2a? cosh?g sin?y -
gives F(E) + G ) (11.34)
 p= o cosh £ sin 7 0<f <+ +cosh2E sin?y,
z=-Fasinh £ cos —n=n<+=w (11:31) and the equations of motion can be written
- dE De dpe 3] 1
7= (ool E —smig) &t = i WA T3
d_.,) _ b, dp,, 3J ( , £j (11.35)
| & (o E —simiy) At iag PE T T,
. The complete solution for the meridional motionis | Jacobi equation, which can be brought into the
now obtained through the solution of the Hamilton- | form
dW,\? (dW,\? h? h? ‘ '
121 ! 2y _ 2 2 — 2 28 in2:
( a’E) +z( dn) zcoshza+zsinzy,+°‘ F(E) + a2 G(q) = E«?(cosh?£ — sin?7) . (11.36)

The solution of this equation is

w, =f\/Vl by a0, ) dE

From (11.12) the complete solution is obtained; the
momenta are

W W
(11.37) =g =VV p=7-=VV, (1139
W, = f VIV, (E b oyas,m) dn from which, with the first two equations of motion,
with the velocities are found
‘ dE V Vi
Vi=2Ea?cosh?é — 202 F(E) + ——5% + 2« s
® coshzi (131 8) dt ~ o? (cosh?E — sin®n)

23 3 i vV (11.40)

V,=—2Ea?sin’?n — 202G (n) — ——5— —24¢3. o _ 2

smn® 7 dt — o?(cosh?§ — sin?y) °

Also the coordinates £ and » are implicitly determined
as functions of E, «,, a,, a5 and ¢, but not explicitly for
general functions F and G. Nor can the orbital equation
(the solution of (8.8)), which should be found by eli-
mination of the time ¢, be written out explicitly. The
interest of the Hamilton-Jacobi method lies in the
explicit evaluation of the velocity components (11.40).

') It is assumed here, as in section 7, that the two axes of sym-
metry of the elliptic coordinate system are the @-and the z-axis.
However, the assumption that the vertical axis of symmetry of
the coordinate system in the meridional plane coincides with
the rotation axis, is an unnecessary restriction (van be HuLst
1962a). This restriction can be removed by replacing @ in
(11.30) by @ + a constant. The derivation in this section then
remains precisely the same, but the results are more general.
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For an attractive force which decreases with
distance from the centre of the Galaxy, the orbit will
be limited and therefore quasi-periodic in the limited
region where the galactic potential function can be
approximated by the form derived above. For chosen
values of /1, E and «, the equations (11.40) determine
the limits of £ and » between which the orbit is con-
fined: the expressions ¥, and ¥, must be non-negative
for real velocities. Consequently a non-periodic meri-
dional orbit fills a region which has the shape of a
distorted rectangle (cf. Figure 6). In this case of
separability of the Hamilton-Jacobi equation in ellip-
tic coordinates the region is bounded by sections of
ellipses and hyperbolas. Again only four velocities are
possible at each point (£, ) within the region. For
chosen % and E, the integration constants «, and o,
determine the shape of the orbit, the integration
constant «, the permissible rectangular region and the
magnitude of the velocity components. Meridional

() (2 ot s
=1q a’t>+ 7 (cosh? § — sin n)+2u2cosh22sin—2n

Subtraction of the two equations gives the relation
L, =—20,— k2 —20%F, (11.43)

in which I is the third quadratlc integral of motion
in the form given by expression (7.9).

As there are 3 integration constants for given 5 and
E, there are oo® meridional orbits. Of these only co?
are geometrically different, since there are oo! orbits
which are geometrically identical but have a different
zero point in time. From the fact that for a given «,
the permissible region is fixed, we find that there are
oo! different orbits which fill this region. Non-periodic
orbits are of course asymptotically the same, as each
will come arbitrarily close to each point within the
permissible region. We shall return to these questions
in section 18, where the phenomenology of the
numerically computed orbits is briefly reviewed.

( RU
22

BU
(b.m'_b‘g" & = werz=0 =Ly, (Bo,B1,B25B5572) = 24,

2T
( G

Suppose that we can solve these 4 linear equations for
B,,8,,P; and v,. In considering the three 4th-order
derivatives which are not equal to zero, only two new
coefficients B, and vy, appear in the linear expressions
Ly,,L,,,L,. In order that they may be solved as
functions of the expansion coefficients of (9.1), there

T)m’:mc,z=o=L30(BO’BI’BZ’B3’Y2) =601 .

motion which fills a region as sketched in Figure 5, is
termed librational (see also ConNTOPOULOS 1957, P. 31
and KuzmIN 1953, p. 379); rofational meridional
motion, in which the orbit fills the whole of the space
between two ellipses, can also occur (GOLDSTEIN 0.
cit. p. 290). Such motion is only possible if 4 = o.
Whether the whole of the permissible regions are
filled or not in these cases, depends upon the commen-
surability of the frequencies in the £ and » oscillations.

In order to obtain an expression for the third inte-
gral of motion, which is obtained by solving one of the
equations (11.40) for «;, we write for these equations

dE\? :
V,=a (—E) (cosh?§ — sin?7)?
dn\ 2 . (11.41)
V,=a (E) (cosh?f — sin?7)2.
Addition of these equations gives the energy integral

2

+ @ (& ). (11.42)

If we assume, near the point of equilibrium

(e =w,,2=0) Or (E =£,n= ;) the expansion

F(E) =By 4B, (E—E) + By (E—E)2+.... -
G) =1, (n—7/2)? + vy (—m/2)* +...., T H

in which B, is determined by the value of U,, we find
that the second partial derivative of U with respect to
& in the point of equilibrium is a linear combination
of the coeflicients 8, 8,, 8, and vy, ; we designate it by
a, in view of the expansion (9.1) of U:

RU
(E—Z—)w=wc %=o =L20(Bo:ﬂl:p2!Y2) =da,.

For the other partial derivatives of the 2nd and 3rd
order which are not equal to zero, we have in the
same way

(11.45)

) _ _ =L02(Bosﬁ1,ﬂz:Y2)=€0
W=Wer2=0

(11.46)

/

must exist a relation between the coefficients of the
terms of the 4th degree in this expansion.

In general: only if specific relations exist between
the coefficients of the terms of the nth degree in the
expansion (9.1) of U, the quadratic integral holds
exactly in the field of force belonging to it.
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The relations are not simple and we have made no
attempt to derive them !).

(c) Parabolic coordinates

The above-mentioned relations between the coef-
ficients of the expansion (9.1) of U take a simple form
if we assume the Hamilton-Jacobi equation to be sepa-
rable in parabolic coordinates.

The coordinate transformation

u-tiv

\/; =\/w—-4——?2 (11.4.7)
gives
u2_02 )
w = o=u<+oo - (11.48)
z=duw 0=<0<+oo. ’ ‘

The w-axis is the axis of u and » parabolas. The
Jacobian is
I

J=wt

For any (4, ,v,) the relation (11.15) issatisfied; (11.16)
gives

(11.49)

(w40 .U(u,v) =
= (@402 . Uu,0,) 4 (4 +0%).
or (u+ %) . U(u,v) =
with F(u,) = o, G (v,) =o.
Similarly as in the previous case the Ham11ton1an

U (4, ,0)

(11.50)
F(u) + G(v)

and the equations of motion can be written down,
and the Hamilton-Jacobi equation can be integrated.
Of the result we write only the velocities

du V2 (Ev>~F(u)+ o)

dt u? 4 02 (11.51)
& VI(EAP—Gh)—a,) '

dt u? + v? :

By taking the square of equations (11.51) and
adding, the energy integral is obtained

E_-g(%)z—y— (%)2§ (4+0v¥)+U(u.v) . (11.52)

The third integral of motion is obtained in two forms
by solving -equations (11.51) for «,. These two forms
are linearly dependent upon each other.

The permissible region to which the orbit is con-
strained is now bounded by sections of parabolas, see

‘Figure 6. Note that the horizontal sections are con-

cave to the w-axis, as they are in case (b) too, and
contrary to the sense of curvature of the envelopes of
numerically computed orbits (section 18). In the case
treated by Kuzmin (cf. section 7), where the horizontal
sections are formed by confocal hyperbolas with the
focal points on the z-axis, they are convex to the w-axis.

We shall assume now the expansion (g9.1) for U and
retain all terms up to-the fourth degree. In order that
the function U may be of the form (11.50), we have
the condition

(@40 {U, +5a, (0 — v — 25,)2 + ;6,00 + 30, (12— 0?2 — 25,) uP0® + L, (02— v* — 25,) +

++5

From this condition we find the relations

and for the function U we find

= (402 (U,+je,52— )5

a, (W2 —v* — 25,)* + 1b, (4 — v* — 255,) 2020 + ¢, utv*}

= F(u) + G(0) . (x1.53)
8, — 46, +w,(82,— 60,) =0
(11.54)
D) @ +0) + 2 (36,5, — ) (u* = 0*) — -

—i(3em,—a) (@ +

This case clearly cannot represent the force field of
an actual Galaxy. The relations are so simple, how-
ever, and the equations for the orbit so lucid, that
they may be of use for the study of stellar motions near
the point (m =w,, z=0) in a higher approximation
than that of the small oscillations treated in section 9.
For the vicinity of the local centroid CoNTOPOULOS

') After this thesis was written, this has been done by vaN DE
Huwst (19622) in an investigation concerned with the appli-
cability of ellipsoidal coordinates for the description of the
motion of low-velocity stars.

06)+%”1(u — ).
(1958) estimates ¢, »a,, which means that this
approximation is of no use there.

12. General separation variables

By specifying a coordinate system and requiring
that the Hamilton-Jacobi equation (11.11) be sepa-
rable in that system, we have found in section 11 the
corresponding forms of the potential function U and
the solutions of the differential equations of motion.
Conversely, in case the function U (w, z) is given
(based for instance on a model of the distribution of
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FiGURE 6
(a)
({)
(b) | :
e (>
(© - >
| U
4
N

Schematic drawing of the region in the meridional plane

filled by the orbit when the Hamilton-Jacobi equation is

separable in {a) polar coordinates, (b) elliptic coordinates,
(c) parabolic coordinates.

mass in the Galaxy), we may ask whether the cor-
responding Hamilton-Jacobi equation can be made
separable in some coordinate system by choosing
appropriate curvilinear coordinates (A, ).

In order to bring this problem into the form in
which it has been discussed by StAcker (1891) and
WEINACHT (1923), we start as in section 11 from the
equations of motion (rr.r) with the Hamiltonian
(11.2), and we introduce new curvilinear coordinates
(A, w) by (11.3). Since now general separation vari-
ables are sought, we do not suppose the function

g =F(w,z) 4+ iG (v, 2) to be analytical. For the line
element in the new coordinate system we have

ds? = g, d¥ + 28y, dhdp + gy dy?  (12.1)
in which
1 (RGN G\
fn= g( ) +(bz) § '
DG AR\ (3G
812= — g (bz) <E)} (12.2)
1 2
. 7{( ) ( %)
with
_WF G F G
T 3w 2z 0z dm (12.3)

We apply now the point transformation (r1.7),
(11.8) to the Hamiltonian (11.2) and obtain for the
new Hamiltonian (see also (11.9) ):

K=]* (':‘gzzpzz—glzpzpy+‘;gzzpn2) + UM, p) .
‘ (12.4)

W w
By replacing p, by and p,, y b—y‘ln this expres-

sion for K, and equatmg Kto E, we obtam the Ha-
milton-Jacobi equation.

STACKEL (0p. cit.) has shown that the Hamilton-
Jacobi equation K = E in which the occurring poten-
tial function is not constant and not dependent on
one variable only, is separable if and only if it has the
following form

(5)+ (%)_ MO +N@_

AN +B(W AN +B(w

In this equation 4, B, M and N are arbitrary func-
tions of A or . The line element is then given by

ds? = { (A(N) + B ()| (0 +du?) .

WEINACHT (0p. cit.) has shown that the most general
coordinate system (A, u) with this line element, satis-
fying the condition of Euclidean geometry in the
(A, w)-plane, is the elliptic coordinate system. It can
be defined by (11.30) with the generalization speci-
fied in the footnote on page 27.

This result shows that the variables of the elliptic
coordinate system are the most general separation
variables for the meridional motion of a star in a
Galaxy. In section 11 the case of these coordinates
was treated; it is the case in which the three-dimen-
sional motion admits of the third quadratic integral
of motion. In section 7 we have seen that the field of
force of the galactic system in general does not admit
of the third quadratic integral of motion.

(12.5)

(12.6)
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TABLE 3

Reduced potential function

Integrals besides energy integral

l Usefulness of integral and comparisons

SERIES EXPANSION:
(1) U=U,+ Ya(m—a.)* + t¢, 2 (9.1)
E,=3Z%+ }¢,2°

I H. - %
F_‘/ao ’ |/00

(2)as (1) + a, (m—m,) 2 (zo0.1)

(3) as (2) + ¢, (@—,)°

(4) as (3), but with all terms of higher
degree included

E =31+ }a,(z—w,)

K=Ko+a1Kl—|¥glzK2+....

Formal third integral in the form of a
polynomial expansion

Approximation only valid for small

(9-7) oscillations. E, or E, can be regarded as
the third integral of motion. Only

(9:10) isolating if Va,/c, is rational.
(10.5) Formal third integral of motion; expli-

cit expressions for K, (10.9) and KX,
(ConToPoOULOS 1960).

Numerical results of Conrorouros (cf.
section 10) indicate validity of assump-
tion of existence of third integral of
motion.

Formal integral of limited use for orbits
of higher energy.

POLAR COORDINATES: .
2 . : .
() U=15+00) I, given by (11.29) Spherical galaxy.
ELLIPTIC COORDINATES: :
F(E) + G(n) ~  (7.9) Third quadratic integral of motion (7.1) Physical meaning given by (7.19).
©) U= cosh?€ — sin’% ~ (11.33) |- or(7.9);Q defined by (7.8). Comiparison with (1) at end of section?.
() as (6) with special forms (7.11) of F Lasin (7.1) Comparison of potential function in the
and G (Kuzmin). - galactic plane with the ScaMIDT model

: made in Tables 2 and 3.
PARABOLIC COORDINATES: .

F(u) + G(v) Two forms of third integral obtained Horizontal sections of permitted region
B U= — (11.50) )

Pt from (r1.51)

(9) as (8) with relations (11.54) and
(11.55)

v I, as in (8) with F and G given by (11.55)

concave to w-axis; only useful in limited
regions of space where U can be ap-
proximated by (11.50).

Not valid in vicinity of sun.

OFF-CENTRE ELLIPTIC

COORDINATES:

(see footnote page 25)

(10) as (6), with F and G in form of
series expansion (11.44) near point
of equilibrium.

I, asin (7.9)

Relation to (4) derived by vaN DE
Huvst (1962a).

The conclusion is that if the potential function of
the Galaxy does not admit of the third quadratic
integral of motion (or one of the limiting forms men-
tioned in section 7) the Hamilton-Jacobi equation
cannot be integrated, in any coordinate system ob-
tained from the cartesian coordinates w and z by a
point transformation, by the method of separation of
variables.

13. Summary of analytical solutions

We summarise in Table 5 the various forms
which have been proposed as suitable approxima-
tions to the galactic potential function in a limited
region of space. We mention also the integrals which

have been derived for each of these forms. These in-
tegrals could be used as quasi-integrals of the actual
motion in the Galaxy.

II1. Numerical computations
14. Units

Throughout this chapter a unit of length-of 1 kpc
and a unit of time of o.1 kpc. sec/km will be used. The
resulting units of some quantities together with the
most frequently occurring symbols of that quantity
are listed in Table 6, in which G is the constant of
gravitation, with the dimension of (force) (length)?
(mass)-2.
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TABLE 6
Units

time ¢ o.1 kpc. sec/km

= 0.97749 - 10° years

length w,Z kpc
velocity II,Z,0 10 km/sec
energy per

unit mass E 100 km?/sec?
potential energy per

unit mass o, U 100 km?/sec?
OorT’s constants 4, B 10 km/sec.kpc

third dynamical

constant 4 10 km/sec.kpc
acceleration K5, K, 100 km?/sec?.kpc
= 0.324 » 10”° cm/sec?
area constant h 10 km.kpc/sec
1 ‘
mass density o G (100 km?/sec®.kpc?)
= 1.578 . 10 gr/cm’
=2.32.1020 /pc
mass M = é kpc (100 km?/sec?)
= 4.63 . 10" gr
=2.32.10'0

Some numerical values for the local centroid, based
on the well-known model of the mass distribution in
the galactic system developed by M. ScamipT (1956),
are given in Table 7. Potential and kinetic energies
are per unit mass.

, TaBLE 7
Some numerical data for the local centroid. Units are as specified
in Table 6.
distance from gal. centre 8.2
potential energy ) —410.2
kinetic energy of circular motion 234.4
circular velocity 21.65
area constant 177.5
period in circular motion 2.38
centripetal force —57.2
QOoRT’s constant 4 1.95
OoRrT’s constant B —o0.69
third dynamical constant ¢ 7.25

15. Representation of the galactic potential
JSunction by an interpolation formula

(a) Introduction

As a basis for the computation of three-dimensional
orbits of particles of mass in the Galaxy, the model of
the distribution of mass in the galactic system
developed by Scumipr (1956) will be used. The
“ScuMipT Model”, hereafter referred to as SM, con-
sists of 4 inhomogeneous and 9 homogeneous ellip-
soids of revolution with various ellipticities and
density laws as specified in Table 4 of ScHMmIDT’s
publication.

Numerical computation of the force components
parallel and perpendicular to the galactic plane

‘ )
K, = —2—
il (15.1)
x - 2
z bZ 3

from the formulae given by ScHMIDT presents some
difficulties to an automatic computer. These may be
summarized as follows:

(i) For each inhomogeneous spheroid, the expres-
sions for K and K, contain an arcsin function if
(w, z) is an external point (the solution for y of the
last of the definition equations (15.3)); the expression
for K, contains a logarithmic function.

(ii) Computation of K and K, in the model must
be preceded by an administrative programme to
determine for which spheroids the point (w, z) is an
external point, and for which an internal point.

In order to circumvent the last difficulty, it would
be possible to use a simplified model of the mass
distribution consisting merely of one inhomogeneous
spheroid (ScaMipT’s first model, ¢bid.). That intro-
duces however, a region in the plane of symmetry of
the force field where the criterion for stability of
circular orbits is not fulfilled. We give a short dis-
cussion of this matter as follows:

The criterion for stability of circular orbits is:

d(w*K,) dh?

o dw =

(15.2)

For one inhomogencous spheroid, in ScEMIDT’s no-
tation, we have the definitions

a,=— % , semi-major axis;
¢, , semi-minor axis;

p=p+ 1 , density in plane of symmetry, where p
®  and ¢ are constants; p = o for 5 =a,;

2
¢ . .
e = 1/1 — a——’z , eccentricity;
r

sin y =¢, for internal points, ¢ (,z) <aq, ;

w2sin?y + 22tg?y =a2¢? , for external points,
a(v,z)>a,. (15.3)

From condition (15.2) the region of instability can be
derived by simple analysis. The result is

3a,6(1—V 1—¢%) a.e

<v< 0.9816°

2 (arcsine — eV 1— ¢2) (15-4)

in which the constant 0.9816 is the value of sin y
satisfying the equation

2y +siny(cosy—3) =o, (15.5)
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Ficure 7

Tin dw
+160

+120)

* 401 -

1 1 1 1 1 1 1 1 1 1 1
0 4 e 12 16 20

T
Curves demonstrating regions of instability of circular orbits
in the galactic plane for each of the four inhomogeneous
spheroids separately. Numbers of the curves refer to spheroids
in ScumipT’s designation. Unit in ordinate: 100 km?kpc/sec?.

while at = =a,, the function d(c*K_)/dw has a
turning point, with a two-valued derivative!).

The formulae in (15.4) give for ScHMIDT’s first
model the region of instability 9.32 < & << 9.74. For
each of the four individual inhomogeneous spheroids
of the final model SM, the (narrow) regions are
illustrated in Figure 7. In the final model obtained by

" superposition of the spheroids and the addition of cor-

recting homogeneous spheroids, all circular orbits are
stable, corresponding to the absence of extrema in the
function #? (w) (cf. Figure 1); this is illustrated by the
behaviour of the derivative of 42. In Figure 8 the
left-hand side of (15.2) for the SM is compared with
the same quantity derived from the “Interpolation
Formula” to be described in this section (and referred
to in the sequel as IF). Also for the IF all circular
orbits are stable.

Fi1cure 8

800)

A [l 1
0 4 L] 12 16 20

1 1
% kpc w

Curve demonstrating the absence of unstable circular orbits
in the final ScuMipT model and in the force function K of the
interpolation formula. Unit in ordinate: 100 km?®kpc/sec?.

1y From (15.4) we find that instability of circular motions at
the periphery of an inhomogeneous ellipsoid occurs when the
ratio of the axes is smaller than o.191.

The absence of a region of instability implies that
the envelope of the characteristic lines in the (E, h?)-
diagram satisfying for each &

h2

22’

E=®(z,0) + (15.6)
and drawn for SM in Figure g, for & > 2 kpc, has no
singular points.

From the energy equation (1.9) it is clear that not
every combination (E, /?) is possible for actual orbits
with a positive kinetic energy. This means that in the
characteristic diagram of Figure g a possible point
must lie to the right and below the characteristic envel-
ope. Points on the envelope correspond to circular
orbits.

Ficure g
1 ) ¥ ] L] 1] L) E
" -800
L 4600
B , -400
- 4-200
. = , 7 16 ? ‘4 1 /3 1 lz
h2=1x 6 5 4 3 2 1 0

Characteristic diagram for the ScamipT model. The open circle

represents the family of orbits for which numerical computations

were performed. Unit in the abscissa: 100 km?.kpc?/sec?. Unit in
the ordinate: 100 km?/sec?.

We return now to the discussion of the problem
how the numerical computations of K, and K, by the
automatic computer should be arranged. The im-
perative demand for the evaluation of these quantities
in a relatively short computation time, which is
brought about by the necessity of computing orbits
for a long period of time in the Galaxy, suggests that
we discard a method which would require computa-
tions on all 13 spheroids of the SM.

As we have seen, it is not possible to use the sim-
plified model consisting of merely one inhomogeneous
spheroid, due to the occurrence of the region of in-
stability for circular orbits. Using a model consisting .
only of the 4 inhomogeneous spheroids of the SM,
and thus discarding the g correcting homogeneous
spheroids, would avoid this difficulty. This method
has been considered but was not used for the following
reasons: (1) the SM would not have been used any
longer and that might have reduced the usefulness of
the orbit computations for astronomical purposes,
(2) the evaluation of the arcsin and logarithmic
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functions and the extraction of 5 square roots per
spher01d would have caused the computatlon time to
remain high.

(b) Curve fitting

Two alternative means of computing the force
components in the SM by an automatic computer
seemed acceptable in pr1nc1ple

(1) The storage in the memory of a suﬁ‘icwntly
large two-dimensional table of ScumipT’s @, from
which K, and K, would have to be computed by two-
dimensional numerical partial differentiation.

(2) The development of an interpolation formula
for @, of which the analytical partial derivatives are
suitable for computation (preferably no transcen-
dental functions), and which approximates @,
rather closely.

Neither of the two methods seemed to be evidently
better, and a decision as to which method to follow
was made with a view to the possibilities of the com-
puters to be used, first the ARMAC of the Mathema-
tisch Centrum, Amsterdam, and later the BESK of
Matematikmaskin Namnden, Stockholm. Some dis-
advantages of both methods may be mentioned:

Method (1): the table of @ given by ScHMIDT is not
extensive enough for simple interpolation so that
either it would have to be enlarged to (say) 5 points
per kpc, or an elaborate interpolation method would
have to be used, which takes us in the direction of
method (2). In’the former case this would mean, for
the family of orbits later to be described, the storage

34

of about 600 values of ®; this is more than half of
BESK’s fast memory (the ARMAQC. has no fast
memory), thus necessitating storage in the slow (drum)
memory plus an administrative programme for perio-
dic transport, during the orbit computation, of the
relevant. part of the table from slow to fast memory.
Also, the numerical partial differentiation in two
variables is a complicated matter.

Method (2): even if it is possible to find a simple
formula, suitable for use in an automatic computer,
which represents @, to a high degree of accuracy,
it must be expected that the force components are re-
presented less well, and the density distribution still
less or not with any accuracy at all. This disadvantage
however, was considered to carry no great weight, for
it is the potential function which forms the orbit.
Variations in the potential function (i.e. systematic
differences between ®,, and ®,) will have a pro-
nounced effect on the shape of the orbits in one or the
other force field; variations in the force function will
show up less in the orbits, and variations in the den-
sity function still less.

It was decided to use method (2) and to represent
the potential function @, by an interpolation formula
of the type

. 1000
O, =— 17—

" ‘VQIF ’

in which Q , is an algebraic function of the variables

& and z. The rest of this section is devoted to a brief
description of the considerations leading to the form:

(15.7)

P, P, P P :
—pP e ey Te — _te .
Q.m n+P Pk+Pk+zz+Pm R+Pk+ZZ+P”" (158)
in which P, =n,o*+n,u%+n, TABLE 8
P, = 48:58 The numerical values of the 14 constants occurring in the
P, =o*4b,62+b, interpolation formula IF.
P, =csob+c,o*+¢, (15.9) : :
P, =k, +kv?+Ek, n, + 0.34178 ‘, — 0.6607 * 107
P —=mz* 4 am o222+ m, 22 n + o0.14023 7 — 0.9516 - 107°
" 2 4P ;— 27 nj + 0.1184 * 1072 k: + 0.2
a + 0.139 - 107" | k + 0.1043 - 107
and R=P, + Fa - FE s (15.92) b: + 4.21937 - 10° k:o + 0.12464 - 107"
. b k b, + 0.7857 - 10 m, + 0.59
which depends on © only. ¢ — 0.4 107 m, + 0.15084 - 10™

The adopted values of the 14 constants are listed in
Table 8.

For @ — oo, z—> oo we have
Q.= (n,+ a5) o* + 2m, 5?22+ m, 2* (15.10)
= m, (a® + 2%)? )
Thus for large @ and z the potential function is that
of a mass point with mass
1000

M=—= \/m4 . (15.11)

n,+ a,= m, ; M= 1000/{/m, = 2852 units = 66.5.10° m@ .

Two features of the SM which rest on considerable
observational material must be represented well by
the IF:

(1) the rotational curve 0, (w),
(2) K, (& = 8.2) for small z.

Examination of the function @y *(z=o0) sug-
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gested the form Q  (z =0) = P,. It was, however,
impossible to represent the SM curve

0=—wkK_ (15.12)

using this simple expression, and therefore the correc-
. a
tion term P,/P, was added. The latter behaves as b_s ot
. b,

for small » and as a; »* for large = !).
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The best values of the 6 constants ng, 7, 7, , ag, b, ,
b, on which Q . (z = o) depends, were found by fitting
@ to d}, and @2, to B2, . Table g shows these
comparisons. The value of m, was obtained as the
sum of n, and a@;. Substitution of the value of m, in
(13.11) givesfor M, 959%, of M,, . Therefore the value
of @, will tend to be 5% higher than @, for large
values of = and/or z. Table g shows that this effect

is unimportant in the plane for o < 16 kpc.

_ TABLE ¢
Comparison of Q (unit 10* sec’/km?), ® and ® (unit 100 km?/sec?) for SM and IF, for 2 =o.
@ (kpc) Qom Qi Dy Dy @)cz.sm ®c2.|r
o 0.235 0.342 —1436 —1308 o )
2.050 0.953 0.953 —1012 —1012 318 337
3.075 1.754 1.796 — 869 — 864 394 390
4.100 3.105 3.225 — 748 — 746 447 431
5.125 5.814 5.792 — 644 — 645 482 482
6.150 10.616 10.639 — 5§54 — 554 504 510
7-175 19.643 19.644 — 475 — 475 502 503
8.200 35.386 35.385 — 410 — 410 467 467
9.225 60.864 61.025 — 358 — 358 406 419
10.250 97.752 100.174 — 318 — 315 369 371
11.275 151.56 156.846 — 283 — 283 327 331
12.300 225.68 235.405 — 258 — 255 293 295
14.350 451.06 477-37 — 217 — 214 237 243
16.400 800.60 868.27 - — 188 — 184 202 203
Ficure 10 FIGURE 11
6. T T T T T T T et T T T T T
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1
ke & W
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12

Rotation curve for Scamipt’s model and for the interpolation
formula. Unit in ordinate: 100 km?/sec?.

In Figures 10 and 11 the comparison of the circular
velocities is illustrated in a linear scale (w = o t0 14.35)
and in a reciprocal scale (& = 4 to o). Around w ~ g
the steep gradient of @2 ,, is not reproduced by the

c,SM
IF. This shows up in the comparison between K,

and K . for z = o (cf. Figure 14).

@, IF

1) There is of course no reason to restrict oneself to even powers
of @ only, as long as this behaviour is complied with. However,
more terms besides b, m* were not needed in P;. Also in P,
and Pj, odd powers of @ might have been added, but the
dependences P, ~ @® and P, ~ & for large =, are per-
emptory, and from there on we have searched for a repre-
sentation with as few terms as possible.

1
250

1 1 ] 1

200 150 100 050 & o
Rotation curves as in Figure 10. Abscissa is 1/@ to show be-
haviour at large .

kpe=!

Next we consider z+o0, and, in order to find the
form of Q, outside the galactic plane, we examine
Figure 12, in which Q, (v = const.) is drawn as a
function of z2. In the next schematic Figure 13, some
formulae have been written to show how the form
(15.8) was arrived at. The curve Q, (2?) for a fixed
& has an inflection point at z = z,, which was found
by graphical determination of the minimum of

2 Q.
D22

as a function of z. Table 10 gives the values of z, found
in this way.

= ; Iolsz-.m(I)sM_5 (15'13)
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FIGURE 12

0 H
/| 1 ; Lo 1 ! } ! 1 1 L
0 ) A 6 8 10 12
Function used in finding the interpolation formula for the
potential outside the galactic plane.
Inflection points at 2,2 Unit in ordinate: 1o*ec®/km®,

1
kpcZ 2°

TABLE 10

The inflection points (@, 2,) of the curves @g, ™ (@ = const.) as
found by graphical determination.

@ (kpc) z, (kpc) @ (kpc) z, {kpc)
2.05 1.575 8.20 3.45
3.075 1.92 9.225 3.70
4.10 2.24 10.25 3.65
5-125 2-575 11.275 3.30
6.15 2.875 12.30 2.95
7.175 3.16 14.35 2.275
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Through the inflection point of each curve Q ,(2?)
the tangential line was drawn.
The dependence of the gradient of this line on w,

D'Q-m Pc 2 2
2 ), =—W+zm4m +m,4+2m,z*~

(15.14)
gives a straightforward determination of m,. The
intersection of the tangential line with the Q-axis
gives, for each w, a preliminary determination of R
(see Figure 13), which we designate by R, .

Remains to be found the form of P (w) and P\ (w).

We approximate (15.8) for small z by leaving out
the term m, z*

~2m,wi+t+m,,

P,
Q'IPNR_l—W —I— (2m4m'2_|_m2)22 . (15.15)
Then
(Qp—R~—(2myw*+m,) 28" (15.16)
should be a linear function of z? for each w. From
graphs of (15.16) using Q ,,, the already determined

function R, and the constants m, and m,, it was

found that
P =c¢;u’+c,5+¢,

(r5.17)
of which the coefficients were readily determined.

FiGureE 13
a
(62}
T e N e Recemne e =4
¥ Q) ~2mm®+m
2 (2, =2metms
i
)
1
]
]
]
]
. E
]
Rep E
i
'
22,

.22

Schematic illustration of the derivation of the form of the

interpolation formula outside the galactic plane, Tangent is
drawn through the inflection point.
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The quantity P,/P, could also have been determined
from these graphs, and hence P, , but it was considered

better to derive P, by curve fitting such that the
' quantity (K,/z),.,1in the SM is represented well. We
have
K 1000 20
Sz )y £ %
> " QO v (15.18)
from which (for z= o)
2 (K P\ P
Zz il 2) ¢
IOOO( z )Z=O(P"+Pb) + (my +2m,w?) = P2
Finally, in
K -1
szpckg_z(_z) Pn+_Pa/Pb+ (m,+2m,o?){ ,
 "\z/ico @, |
(15.19)

ScuMDT’s values of @,_, and (K,/z),_, were used
in combination with m,, m, and the coefficients in
P,+ P,/P, determined earlier; it was found that P,
can be represented by

P, =k, w" + kyo? + k, (15.20)

and the values of the coefficients giving best fit were
determined.

(c) Comparison with ScHMIDT’s model

Equations (15.8) and (15.9) imply that the potential
function is represented in the galactic plane by 6
constants, and that 7 additional constants are needed
for the representation outside the galactic plane.In
the previous section only the method of deriving the
values of the coefficients of the polynomials (15.9)
was discussed, but not the extensive calculations
which gave these values. It is now appropriate to
inspect the final representation of ®, which is after all
the only thing of interest.

Table 11 gives a comparison between @, and @, —
the fitis very good over the whole range of 10 X 10 kpc2.
In Figure 14, K, and K . are compared for various
z. For z = o the high gradient of X, ,, at o ~ 9 is not
reproduced by K .. In Figure 13, X, ,, and X, are
compared for various &, and in Figure 16 K, . is com-
pared with the recent determinations of K, by HiLL
(1960) and Oort (1960) at w =8.2 (cf. Table 6 in
the latter paper). The occurrence, in the K, curves for
the IF, of three inflection points instead of only one,
for a rather large range in w, is the weakest point of
the representation of the potential function by (15.8).
Attempts were made to eliminate this feature by the
addition of ““correcting terms’ of various kinds but it
was not possible to find a simple term, with one or
two additional constants. In view of the fact that local
irregularities in K, will not greatly affect the general
properties of orbits — which are obtained by integration
of the forces —, this point was not pursued further and
the subsequent numerical orbit computations have

FI1GURE 14
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Radial force components in and outside the galactic plane

(unit roo km?/sec’.kpc), in the ScHMIDT model and in the
interpolation formula.

- L
-2 4 [3 [) 10 12

TABLE 11

Comparison of the potential function given by the interpolation formula with the potential
function in ScuMIDT’s model. The unit of potential is 100 km?/sec?.

@ (kpc) 2.05 4.1 6.15 8.2 10.25 12.3

z (kpc) =gy — O | —Dgyy —Ppp| —Dgyy —Ppp| — Py —Ppp | — Dy —Ppp| —Pgyy —Pye
o 1012 1012 | 748 746 554 554 410 410 318 316 258 255
o.I 1003 1008 | %745 745 553 553 410 410 318 316 258 255
0.2 991 997 | 740 740 | 551 551 | 409 409 | 318 316 | 258 255
0.4 950 965 | 725 725 | 544 544 | 497 406 | 317 315 | 258 253
0.7 904 911 | %700 ‘700 531 531 402 400 315 312 257 254
1.0 851 857 | 675 673 | 518 s17 | 396 304 | 312 309 | 257 253
1.5 775 771 | 630 629 | 495 495 | 386 384 | 308 304 | 256 250
2.0 706 696 | 591 585 | 473 473 | 376 374 | 304 299 | 254 248
3.0 605 580 | 522 508 433 428 354 351 292 288 247 241
4.0 520 496 | 460 446 | 395 387 | 332 327 | 280 275 | 239 234
5.0 458 433 | 414 396 361 351 312 304 268 261 229 225
7.0 362 343 | 339 321 | 306 204 | 273 264 | 243 234 | 212 207
10.0 270 259 | 260 248 247 233 228 217 208 199 188 182
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been carried out using the interpolation formula (15.8)
with the constants of Table 8. Extensive calculations
have been performed on the ARMAC in order to de-
termine the positions of the inflection points and the
magnitude of the differences between K, . and X .
As these differences have had no apparent effect on
the orbits to be described in this thesis, these compu-

tations are not discussed here.

FiGURE 15

<Ky T T T T T T T T Li— T T

I 1 1
F] 10 1
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2 kpc 13 2

Force components perpendicular to the galactic plane at
various w (unit 100 km?/sec’.kpc), in the ScHMIDT model and
in the interpolation formula.

FiGure 16
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Comparison between the force components K, at the sun

given by observations (HmL and Oorrt), by the SceMIDT
model and by the interpolation formula.

16. Some notes on the programme for the integration
of orbits by the BESK

Programming both for the ARMAC and for the
BESK was done jointly by Dr INGrip TorRGARD and
the author of this paper. In a forthcoming paper the
method will be discussed more fully. It may suffice to
mention here some properties of the programme for
computing orbits on the BESK, and the programme

38

for computing the curves U =.const. in the (w, z)-plane
on the ARMAG, as these programmes are still in use
for additional calculations. A programme for the com-
putation of orbits on the ARMAC was used only a few
times, after which it was decided that the ARMAC is
too slow for the extensive series of orbits which was
planned.

All computations in the programmes are done
with floating-point arithmetic, which is necessitated by

(a) the fact that orbits with high initial I and Z
velocities are to be computed, which can travel over
considerable ranges in w and z, with considerable
ranges in I and Z.

(b) the occurrence of high powers of = in the inter-
polation formula IF, described in section r3.

The programme for the BESK uses built-in floating-
point orders, thus ensuring optimal computing speed;
for the ARMAG use was made of existing subroutines,
while new ones were developed where necessary to
avoid the time-consuming interpretative floating-
point programme.

The BESK programme for the computation of
orbits makes use of the standard subroutine MF4
which integrates a simultaneous system of differential
equations as (1.8) by the method of Runge-Kutta,
including the 1/15 correction term and automatic
step control. The method is described e.g. in CoLLATZ
(1955); the automatic step control used in the BESK is
mentioned by P. O. LinpBLAD (1960). For all orbits
the tolerances which govern the step size 2x were
taken equal to o.0002, for all variables ¢, =, z, &, II
and Z. Not only the positions but also the angle § and
the velocities were used for automatic control of the
step size.

The mean value of the step size is for each of the
orbits discussed in this thesis about equal to o.01 time
units (or about 10° years).

The computation time for one Runge-Kutta step
is determined mainly by the time it takes to compute
K, and K, with the aid of the IF, which must be done
twelve times per step. The mean computation time
per accepted RK step for a particular orbit depends
upon the proportion of rejected to accepted steps
controlled by the set of tolerances. For the orbits
discussed here values between 0.8 and 0.9 sec were
found. This means that for the computation of an
orbit over a time interval of 5.10° years, where about
5000 steps must be taken, about 70 minutes net
computation time were needed. To this must be
added the time needed for output of results on tape,
asin the BESK the computations and the punching of
tape are carried out serially. The result tapes are
printed out off-line on a telex-printer!). The addi-

') Copies of result tapes can be made available on request.
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tional time needed for output varied between 10 and 20
percent depending upon the amount of resultsretained.

The standard sequence MF4 is left after each
accepted RK step, and the programme entered then
contains the energy check. If the difference between the
energy E after an accepted step and the initial value
E, (at t = t,) is larger than a given tolerance (taken
always as 5.107* units), a stop occurs. Thus derange-
ment of the programme is detected by this mathema-
tical check. Recently, energy control, in which the size
of the step is also controlled by the change in energy,
was programmed by Dr TorcArp, but it will not
be reported upon here.

The standard sequence MF4 is also left at regular
intervals ¢{,+n.%,(n=1,2,...) where », must be
specified beforehand. In the programme entered then,
the computed quantities

Lw,2,%11,Z,0and @, E, S = (12 4+ Z2)">  (16.1)

are transported to result registers. When §? is less than
a certain limit, E and $! are replaced by I12 and Z2.
For most computations ;= 0.04 was used, some-
times », = 0.08. As soon as the reserved result registers
in the slow memory are filled, their contents are
punched out in teleprinter code by means of a stan-
dard subroutine, so that the result registers can be
used again. At the end of a computation all data
necessary for a possible continuation later are
punched out on tape. Most orbits were computed in
several parts in this way.

39

The ARMAC programme for the computation of
curves U = E in the (@, z)-plane ‘is based on the
Newton-Raphson iterative process, in which for a
given & the value of zis found as the limit of a series,
between the successive terms of which the recurrence
relation

U(z,)—E
(32).
20z/,,
holds.

The end of the iterations is detected by:
if abs (U(z,) — E) < tol U then ready. The value of
tol U determines the accuracy in which z is obtained,
to be estimated as follows: from the relation

Zm+]=zm—

(16.2)

_ 2U

Y
we obtain the approximationtol U~ |7 |.|8z|, and by
estimates of z as a function of & along the part of the
curve U = E to be computed, tol U and 3z can be:
found from one another. For small | % |, i.e. near the
w-axis, this method of computing the curve is evident-
ly not so suitable. For the curve U= -- 250.108
(&, =135.2), Table 12 gives z as a function of w, ac-
curate to 5 decimal places, computed by the ARMAC
programme. In this table the potential @, the accele-
rations & and z, and the quantity (&/z) are also glven
for the same curve.

TABLE 12 »
The boundary in the (@ , z)-plane for m,= 5.2 kpc, E = — 250.108 (100 km?*/sec?).
& km? z (100 km? .
= (kpc) z (kpc) @ (100 km?/sec?) mst(ezg.ipc) / zsg(azz.kpc) / /% -
3.40 19128 —816.66 217.545 — 71.541 —3.04085
3.45 .31804 —800.35 207.714 — 92.880 —2.23636
3.50 42312 —4784.74 198.291 — 99.114 —2.00063
3:55 -51997 —769.79 189.365 —100.546 —1.88338
3.60 61204 —1755.46 180.962 —100.361 —1.80310
3.65 70050 —%41.70 173.060 — 99.667 —1.73639
3.70 78579 —728.50 165.621 — 08.813 —1.67611
375 .86818 —1715.84 158.600 — 97.883 —1.62029
3.80 .04788 —4703.66 151.953 —~— 96.882 —1.56844
3.85 1.02509 —691.96 145.646 — 95.799 —1.52033
3.90 1.09998 —680.70 139.646 — 04.627 —1.47574
3.95 1.17271 —669.86 133.928 — 93.371 —1.43436
4.00 1.24346 —659.44 128.470 — 92.037 —1.39586
4.05 1.31234 —649.40 123.255 — 90.637 —1.35988
4.10 1.37948 —639.72 118.267 ~— 89.184 —1.32610
4.15 1.44498 —630.38 113.492 — 87.602 —1.20421
4.20 1.50893 —621.38 108.918 — 86.172 —1.26396
4.25 1.57140 —612.70 104.533 — 84.635 —1.23511
4.30 1.63246 —604.32 100.329 — 83.001 —1.20746
435 1.69217 —596.22 96.296 — 81.548 —1.18084
4.40 1.75056 —588.40 02.425 — 8o.014 —1.I§511
445 1.80769 —580.84 88.709 — 78.494 —1.13014
4.50 1.86359 —573.53 85.139 — 76.992 —1.10582
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TABLE 12 (continued)

o 2 z m? ve fon
@ (kpc) z (kpc) @ (100 km?/sec?) mséz:;;:;l/ zsc(sf:?.(l)q]){c) / /7
4.55 1.91828 —566.46 81.710 — 75.512 —1.08207
4.60 1.97180 —559.62 78.413 — 474.058 —1.05881
4.65 2.02417 —553.00 75.244 — 72.632 —1.03597
4.70 2.07540 —546.59 72.197 — 71.235 —1.01350
475 2.12552 —540.38 69.265 — 69.869 — .99135
4.80 2.17454 —534.36 66.443 — 68.534 — 96948
4.85 2.22248 —528.54 63.726 — 67.232 — .94787
4.90 2.26933 —522.88 61.111 — 65.961 — .92647
4.95 2.31513 —517.40 58.501 — 64.722 — .90527
5.00 2.35986 —512.08 56.163 — 63.516 — 88424
5.05 2.40355 —506.92 53.822 — 62.340 — .86336
5.10 2.44620 —501.90 51.566 — 61.196 — .84263
5.15 2.48782 —497.04 49.389 — 60.083 — .82202
5.20 2.52841 —492.32 47.288 — 58.999 — .80152
5.25 2.56797 —487.72 45.261 — 57.944 — #8112
5.30 2.60652 —483.26 43.304 — §6.917 — 46083
5.35 2.64406 —478.92 41.414 — 55.918 — 74061
5.40 2.68058 — 474770 39.588 —~ 54.946 — 472048
5.45 2.71611 —4/70.60 37.822 — 54.000 — 70042
5.50 2.75063 —466.61 36.116 — 53.078 — 68043
5.55 2.78415 —462.73 34.466 — 52.181 — .66050
5.60 2.81668 —458.95 32.869 — 51.307 — 64064
5.65 2.84821 —455.27 31.324 — 50.456 — .62082
5.70 2.87876 —451.69 29.829 — 49.627 — .60106
5.75 2.90832 —448.20 28.380 — '48.819 — .58134
5.80 2.93690 —444-80 26.978 — 48.031 — .56167
5.85 2.96449 —441.48 25.618 — 47.263 — .54203
5.90 2.99110 —438.25 24.300 — 46.513 — .52244
5.95 3.01673 —435.10 23.022 — 45782 — .50287
" 6.00 3.04139 —432.03 21.783 — 45.068 — 48334
6.05 3.06507 —429.04 20.580 — 44.371 — .46383
6.10 3.08777 —426.12 19.413 . — 43.690 — 44434
6.15 3.10950 —423.27 18.280 — 43.024 — 42488
6.20 3.13026 —420.48 17.179 — 42.374 — .40542
6.25 3.15004 —417.77 16.110 — 41738 — .38599
6.30 3.16886 —415.12 15.071 — 4I.115 — .36656
6.35 3.18670 —412.53 14.061 — 40.506 — 34713
6.40 3.20357 —410.00 13.078 © — 39.909 — 32770
6.45 3.21047 —407.53 12.123 — 39.325 — .30828
6.50 3.23440 —405.12 11.193 — 38.753 — .28884
6.55 3.24835 —402.76 10.288 — 38.101 — 26939
6.60 3.26134 —400.46 9.407 — 37.641 — .24902
6.65 3.27334 —398.21 8.549 — 37.100 — .23043
6.70 3.28437 —396.00 74713 — 36.570 — .21091
6.75 3.20443 —303.85 6.898 — 36.050 — 19136
6.80 3.30351 —391.74 6.104 — 35.538 — 17177
6.85 3.31161 —389.69 5.330 — 35.035 — 15214
6.90 3.31873 —387.67 4.575 — 34540 — .13245
6.95 3.32485 —385.70 3.838 — 34.054 — 11270
7.00 3.33000 —383.77 3.119 — 33.575 — .09289
7.05 3.33414 —381.88 2.417 — 33.103 — .07301
7.10 3.33730 —380.03 1.731 — 32.638 — .05305
7.15 3-33945 —378.22 1.062 — 32.180 — .03300
7.20 3.34059 —376.44 .408 — 31.728 — .01285
7.25 3.34073 —374.71 — 231 — 31.283 + .00740
7.30 3.33985 —373.01 - 856 — 30.843 + .02776
7-35 3-33795 —371.34 —1.467 — 30.408 + .04825
7.40 3.33502 —369.71 —2.065 — 29.979 + .06888
7.45 3.33106 —368.11 —2.649 — 20.554 -+ 08964
7.50 3.32606 —366.54 —3.221 — 29.134 + .11057
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“TABLE 12 (continued)

5 (100 km? 7 (100 km? e
@ (kpc) z (kpc) ® (100 km?/sec?) msgz kpc) 1| 2 sfac’.kpc) ! &z
7.55 3.32000 —365.00 —3.781 — 284719 + .13166
7.60 3.31289 —363.50 —4.329 — 28.308 + .15203
7.65 3.30471 —1362.02 —4.866 — 2/7.900 + .17440
770 329544 —360.57 —5.301 — 27.497 + .19608
775 3.28509 —359.15 —5.906 — 27.096 + 21798
7.80 3.27364 —357.76 —6.411 — 26.700 + 24012
7.85 3.26108 —356.39 —6.905 — 26.306 4+ 26251
790 324739 —355.05 —7-390 — 25.914 + .28518
7-95 3.23256 —353.73 —17.865 — 25.525 + .30814
8.00 3.21657 —352.44 —8.332 — 25.139 + 33142
8.05 3.19941 —351.18 —8.789 — 24755 + .35503
8.10 3.18106 —349.93 —09.237 — 24.372 -+ .37900
8.15 3.16151 —348.71 —0.677 — 23.9092 + 40335
8.20 3.14072 —1347.51 —10.109 — 23.613 + 42811
8.25 3.11869 —346.33 —10.533 — 23.235 + 45330
8.30 3.09539 —345.18 —10.949 — 22.859 + 47896
8.35 3.07078 —344.04 —11.357 — 22.483 -+ .50513
8.40 3.04486 —342.93 —11.758 — 22.109 + .53182
8.45 3.01759 —341.83 —12.152 — 2I1.735 + .55909
8.50 2.98894 —1340.76 —12.538 — 21.361 + .58696
8.55 2.95888 —339.70 —12.918 — 20.988 + 61549
8.60 2.92738 —338.66 —-13.291 — 20.615 + .64472
8.65 2.89440 —337.64 —13.657 — 20.242 + .67469
8.70 2.85990 —1336.64 —14.017 — 19.869 + 70546
8.75 2.82384 —335.65 —14.370 — 19.496 + 73709
8.80 2.78617 —334.68 — 147717 — I19.122 + 76964
8.85 2.74686 —333.73 —15.058 — 18748 + .80316
8.90 2.70584 —332.79 —15.393 — 18.374 + 83774
8.95 2.66306 —331.87 —15.721 — 17.999 + 87345
9.00 2.61847 —330.96 —16.044 — 17.624 -+ .91036
9.05 2.57201 —330.07 —16.361 — 17.248 . + .94856
9.10 2.52359 —329.20 —16.671 — 16.872 + .98814
9.15 2.47317 —328.33 —16.976 — 16.495 +1.02918
9.20 2.42065 —327.49 —17.275 — 16.118 +1.07177
9.25 2.36596 —326.65 —17.568 — 15.742 +1.11601
9.30 2.30902 —325.83 —17.855 — 15.366 +1.16199
9.35 2.24973 —325.02 —18.136 — 14.991 +1.20978
9.40 2.18801 —324.23 —18.411 — 14.618 +1.25945
9.45 2.12376 —323.45 —18.680 — 14.248 +1.31106
9.50 2.05687 —322.68 —18.943 — 13.882 +1.36461
9.55 1.98726 —321.92 —109.200 — 13.520 +1.42008
9.60 1.91483 —321.18 —19.450 — 13.165 +1.47740
9.65 1.83949 —320.44 —19.694 — 12.818 +1.53641
9.70 1.76117 —319.72 —19.932 — 12.482 -+1.59690
9.75 1.67979 —319.00 —20.165 — 12.158 +1.65854
9.80 1.59530 —318.30 —20.392 — 11.849 +1.72097
9.85 1.50768 —317.61 —20.613 — 11.556 +1.78381
9.90 1.41602 —316.03 —20.832 — 11.280 +1.84682
9.95 1.32300 —316.26 —21.047 — I1.019 +1.91010
10.00 1.22589 —315.60 —21.263 — 10769 +1.97452
10.05 1.12549 —314.95 —21.481 — 10.518 +2.04232
10.10 1.02152 —314.31 —21.706 — 10.248 +2.11820
10.15 91339 —313.68 —21.942 —  9.923 +2.21124
10.20 79983 —313.06 —22.196 —  0.490 +2.33889
10.25 67834 —312.45 —22.473 — 8.856 +2.53767
10.30 54345 —311.84 —22.780 — 47855 -+2.90013
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17. Some general properties of meridional orbits

Before reviewing the results of the numerical com-
putations, we shall consider some of the properties of
the solutions of the equations of motion which can be
formulated without numerical computation.

The equations of motion of a particle of mass in the
galactic field of force are (1.8). The solution of these
equations is the (solution) path described by the par-
ticle in phase space. In the three-dimensional con-
figuration space the particle describes a three-dimen-
stonal trajectory and in the meridional plane it describes
a meridional trajectory. We use the word “trajectory”
when the geometrical properties of a dynamical curve
are considered (KASNER 1913). An orbit corresponds
to a unique parametrization of the path, with the
time as the parameter. We use the word “orbit”
when the motion of a particle in a configuration space,
whether it be the ordmary threedimensional space
or the meridional plane, is considered. The adjec-
tives “three-dimensional” and “meridional” are
omitted when no confusion is possible.

As the coordinates of each point in phase space
(corresponding to all points in configuration space
with at each point all combinations of the three
velocity components), may be taken as initial condi-
tions, the system of all particle orbits is sextuply in-
ﬁmte The system of paths in phase space forms a
qumtuply infinite system of curves, since the same
curve is described by the partlcle if it is started from
any of the single infinity of points on any path (this
corresponds to the fact that one path is determined
by each set of given values of the five integration
constants figuring in the complete solution of (1.8)).
This system of paths fills phase space. The correspond-
ing system of co® three-dimensional trajectories fills
the three-dimensional configuration space.

A path in phase space cannot intersect itself. If a
path is closed, the corresponding orbit is periodic. A
periodic orbit is stable if every solution path which is,
at a certain time, sufficiently near to the closed path
corresponding to the periodic orbit, will stay in the
neighbourhood of the closed path for all time. A
periodic orbit is unstable if every solution path, no
matter how near to the closed path of the periodic
orbit at a certain time, will digress from it eventually.

The system of all meridional trajectories is quad-
ruply infinite, since in a field of force which has ro-
tational symmetry, the same meridional- curve is
obtained by starting orbits in points of space which
have identical cylindrical coordinates (defined as in
section 1) except for the azimuth.

The system of those meridional trajectories which
have the same area constant 4, is obviously a triply
infinite subsystem of the system of all meridional
trajectories; the corresponding motion is described by

the two second-order equations (8.4) or the four
first-order equations (11.1). The phase space is four-
dimensional and it is filled by the triply infinite
system of trajectories obtained by considering each
point in the meridional plane and in each point each
combination of the velocity vectors, as initial condi-
tions. In the complete solution of the equations of
motion (8.4) or (11.1) there are four integration con-
stants; one of these is the energy constant E.

If we consider meridional trajectories with the
same E and h, we restrict ourselves to a doubly in-
finite system of trajectories. Such a system will be
called a family of trajectories. The family can also be
defined as the system of integral curves defined by the
orbital equation (8.8). The corresponding triply in-
finite system of meridional orbits is called a family of
orbits.

There are some general properties of the meridional
orbit which can be proved prior to computation and
to which the computed orbits should comply. The
properties mentioned here do not form a complete list.

The conservation of energy may be written

UtiS*=E,
§2= T12 4 22

(17.1)
(17.2)

is twice the kinetic energy. When the kinetic energy
becomes zero, the potential energy U is equal to the
total energy E; hence all orbits in the selected family
must stay inside the egg-shaped region in the meri-
dional plane enclosed by the boundary U = E. Some
of ‘the equipotential curves U= FE are given in
Figures 2 and 3. In three-dimensional space the
orbits must remain inside the torus-like volume ob-
tained by rotation of the boundary around the z-axis.

If an orbit reaches a point on the boundary (say at
¢t = 0), the velocities II and Z become zero (but not
the accelerations). Therefore, shortly before and
after reaching the boundary at (w,, z,), we can write

where

tipr T—pe

T =,

Z=Zo+%qt2 qut, (17'3)
it follows that
W
()imo=p=—(53)
ot (17-4)

from which

@.. 5~ G, w9

and this proves that the motion to and from the
boundary is perpendicular to the boundary. The bound-
ary point is an end point of the trajectory.

l
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The radius of curvature of the meridional orbit in an
arbitrary point can be written

i g

=
or (17.6)
(124 Z2)

P (—sZrIm

with the equations of motion in the form (8.4), and
the energy equation (8.6) we find

o= (2E—2U)"
- U
(ZSE—HDZ>

and thus (1'7;7)
l1 4 (2)2fh2(E—U)
- AU U ’
(+5-%)

which gives, with the first of equations (17.6), the
orbital equation (8.8).

? W
we have — =oand — = o,

For (v =w, - Y

,Z2=0),
and hence p = oo; in words:

in the point of lowest potential energy the trajectory
can possess an inflection point. This property is men-
tioned in section 8 as a special result. In Figures 21.1
and 23 the property is illustrated for two computed
orbits.

Trajectories which intersect the w-axis perpendicu-
larly are symmetrical with respect to this axis.

Generally speaking we can divide all meridional
orbits of a family into two classes:

(1) periodic orbits, subdivided into

(1a) Non-symmetrical orbits with two end points
on the boundary,

(1b) Symmetrical orbits with two end points on
the boundary,

(1c) Symmetrical orbits with two perpendicular
intersections with the w-axis.

(2) non-periodic orbits.

The existence of orbits in each sub-class of periodic
orbits has not been proved for the galactic field of
force, but an empirical proofis given by the numerical
computations by the BESK discussed in section 18. An
example of classes (1a) and (1b) is the (trivial) case of
an orbit with Z = o. An example of class (1b) is the
orbit which is started on the boundary and on the
first intersection crosses the w-axis perpendicularly.
This case is discussed later on in this section.

Which subdivision is to be made in the class of the

non-periodic orbits depends on the form of the re-
duced potential function U. We make no attempt to
divide these orbits in sub-classes prior to numerical
computation.

One orbit of any of these classes cannot fill the
point set (i.e. approach arbitrarily close to every
point formed by the region within the curve U = E,
as the orbit cannot come arbitrarily close to more
than two points on the boundary.

All oo? trajectories of the family fill the region. It is
a question of some concern how to choose the initial
coordinates and velocities for numerical computations
such that a good representation of the members of the
family is obtained. Not every orbit actually reaches
the boundary—orbits of class (1c) do not. But every
orbit passes the w-axis (infinitely often), therefore the
complete family is obtained by taking as initial con-
ditions all oc! points on the section of the m-axis con-
tained between its intersections with the boundary,
and in each point all ! directions of motion. This is
the reason why most orbits in our numerical compu-
tations were started with z = o. ,

The issue can be studied converiently for the
numerical computations by studying (II/Z),., asa
function of = (see also section 20). Consider all orbits
of a given family. The boundary U = E in the meri-
dional plane defines a section o, <w <w, of the
w-axis in which all intersections of the orbits are con-
tained. Each intersection with the w-axis defines one
value of = and one value of II/Z. This corresponds to
one point in the inclination diagram, which has = and
I1/Z as coordinate axes. All co? orbits of the family
together fill a domain § in the (w, II/Z)-plane,
bounded by the lines v =, and v = ,.

Any point P; in the domain § can.be used as an
initial point for a meridional orbit. The points of S,
considered as initial conditions, together generate the
oo? orbits of a family. Consider an orbit defined by
the coordinates of a point P, in § as initial conditions
at ¢ =t¢,. When the moving particle crosses the &-axis
again, at time ¢ = ¢, the values of & and I1/Z define
a point P, in §. By considering all orbits of the family
a transformation T is set up which transforms § into
itself, namely the transformation which takes uniquely
any P, over into the corresponding P,'). We shall now
consider some properties of this transformation, which
can be formulated prior to numerical computation.

By a (finite) set of invariant points of S is meant a
number of points Py, P,, ..., P, _; which go over into

!) This reduction of the dynamical problem to a transformation
problem is similar to the reduction originally suggested by
PoincarE (1892) and studied by BirkHOFF (1922). In these
theories the existence of a “surface of section” in phase space
is supposed, which is intersected by the moving point and
which is taken over into itself by a (surface-preserving) trans-
formation obtained in the same way as described above.
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each other under T. This can be expressed sym-
bolically by

P=T(P,) P,=T(P) Po=T(Py—).

It follows that each point P, is invariant under the
k-th iterate of 7. To a set of invariant points in §
corresponds a periodic meridional orbit of one of the
subclasses (1). Each orbit of subclass (1a) gives a set
of at least two invariant points, of which none lie on
the w-axis. Each orbit of subclass (1b) gives a set of at
least three invariant points, of which one lies on the
w-axis, and the rest are situated in § symmetrically
with respect to the w-axis. Each orbit of subclass (1c)
gives a set of two invariant points, both lying on the
w-axis.

We shall distinguish between stable and unstable in-
variant points. Stable will mean that a point P very
close to the invariant point, will stay quite close to it
under successive applications of the k-th iterate of
T, unstable will mean that P departs from the inva-
riant point. The corresponding periodic orbits will
also be called stable or unstable.

A single invariant point of § goes over into itself under
T. To each single invariant point corresponds a
periodic orbit of class (1b), intersecting the w-axis
perpendicularly in one point. Therefore all single in-
variant points of § must lie on the w-axis section
o, < & < »,. We can make plausible the existence of
at least one single invariant point as follows. We con-
sider the locus of points in § which are defined by the
first- intersection with the w-axis of a particle
“dropped” from the boundary U = E in the meri-
dional plane; we assume that this locus is a continuous
curve. Starting the particle from (=, o) in the meri-
dional plane gives the point (w;, + o) in § and start-
ing the particle from (w,, o) in the meridional plane,
gives the point (w,, — o) in S. Since the locus is a
continuous curve each value of II/Z must be taken at
least once; in particular there is at least one value &,
of w for which II/Z = o. The point (w,, 0) of §is a
single invariant point. The corresponding orbit will
be called a central orbit.

In the same way we can make plausible the exist-
ence of at least one set of two invariant points lying
on the w-axis. We consider the locus of points in §
which are defined by the first intersection with the
w-axis of a particle started in the meridional plane
from the w-axis with II = o and Z > o; we assume
that this locus is a continuous curve. Reasoning as
before it can be seen that (w,, -+ o) and (v,, — o)
must lie on the locus. Obviously the locus must pass
through each single invariant point (w,, 0). If it does
not intersect the w-axis in any other point, each single
invariant point can be regarded as a degenerate set
of two invariant points. If the locus intersects the

w-axis in points other than thesingle invariant points,
it must be in at least two more points, and then there
exists at least one set of two invariant points.

In the same way the existence of a set of £ invariant
points (k= 3) may be demonstrated, either by start-
ing meridional orbits from the boundary, or by start-
ing them from the w-axis with II = o and studying the
appropriate intersection with the w-axis. Degenera-
cies of various degree and complexity may be present,
depending upon the function U (w, z). We may men-
tion that for the case of small oscillations around
(v =w,, z=0) in the meridional plane, treated in
section 9, all sets of invariant points in § degenerate
into the point (w = w,, II/Z=0) if Va,[c, is irra-
tional.

A non-periodic orbit gives a set of co! different
points in . They are obtained by successive applica-
tion of T to the initial point P,. None of these points
belongs to the set of ! points of any other orbit in
the family. If the single infinity of points of a given
orbit is arranged along a closed curve in the domain
S, this curve goes over into itself under T If two closed
curves exist which transform into themselves under
T, they cannot intersect one another.

We shall return in section 20 to the discussion of the
properties of meridional orbits, by studying the trans-
formation T of the inclination diagram (w, II/Z) into
itself, after having reviewed the results of the numer-
ical computations.

18. Phenomenology of orbits of the box type

In this section we discuss a rather small part of all
orbit computations performed so far: we restrict our-
selves to orbits of the box type (to be defined presently)
of one family, and the phenomenology is concerned
only with the meridional orbit.

A complete analysis of the results of the computa-
tions, including other types of orbits, will be given in
a forthcoming paper by Dr INGRID ToRGARD and the
author. All necessary data for a complete specification
of the motion in three dimensions were computed by
the BESK and subsequently stored on telex-tape (see
section 16). Some remarks on the angular-momentum
vector are made in section 21.

The selected family of orbits is characterized by

E= —250.108 w,=15.2 (h=114.449) (18.1)

It is an arbitrary family, except that the area constant
has been chosen smaller than the area constant of the
sun’s circular motion, and that the energy value has
been chosen so high that orbits passing through thesolar
neighbourhood correspond to orbits of high-velocity
stars. This is shown by the following data for the neigh-
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TABLE 13
Initial and auxiliary data for some numerically computed orbits of the box type.
initial conditions (¢ = 0; 2 = 9 = o) break-off time
Orbit no. ¢ t no. of rev
/] . -
@ I z viijz| @ (units)  (109%years) olutions
13 3.43 o +  5.2461 ) + 33.3670 12.1 1.18 15.5
2 6.20 + 15.2734 +  4.9872 1.750 + 18.4595 10.8 1.06 13
36 4.37 — 14.0041 +  7.3803 1.3775 + 26.1897 26.6 2.60 30
5 5.20 + 15.2479 +  7.6239 1.4142 + 22.0004 72.2 7.05 76
4 5.10 — 12.5077 + 11.5641 1.040 + 22.4410 37.3 3.64 31.5
10 4.00 o + 13.9584 o + 28.6122 19.0 1.86 14.5
19 6.70 +  8.1322 + 12.7065 0.80 + 17.0819 19.1 1.87 13.5
3 5.20 o + 17.0477 o + 22.0094 44.2 4.32 30
30 6.52 — 3.1219 + 15.1465 0.454 + 17.5535 39.5 3.87 27
6 5.80 o + 16.6563 o + .19.7326 54.8 5.36 37
9 6.00 o + 16.3875° o + 19.0748 19.8 1.04 13
bourhood of the sun, taken at (o =8.2,z=0): | lution times. The mean revolution time, averaged
over a number of revolutions, tends to a limit as the
0 =h/o =13.96 number of revolutions increases. This limit is de-
VIIZ+Z2=8 = 35.00 (18.2) | signated by P,. ‘
VIE+ 22+ 02 =17.88, _For dec.reaS}ng energy the amplitudes of the meri-
dional oscillations decrease and we have
while the escape velocity is
S lim P =P} 18.
V=V —20=2864. (18.3) e e (x8.4)

Each orbit computed was given a serial number.
Orbits 13, 2, 36, 5, 4, 10, 19, 3, 30, 6 and ¢ are
discussed here, in this order. Table 13 gives the
initial data, the values of V/|TI/Z] and © for the
starting point, and some data concerning the point
where the computation was broken off.

(a) Characteristics of box-type orbits

We propose to use the following terms for motions
in the meridional plane:

By a meridional revolution will be understood the part
of the orbit contained between two successive crossings
of the w-axis with the same sign of Z. In general the
value of the third space coordinate $ will not differ by
2 7 at the beginning and at the end of a meridional
revolution, so the meridional revolution does not
correspond to a revolution in three-dimensional space.
Usually the adjective “meridional” is left out in the
term meridional revolution, as we are concerned in
this section only with revolutions in the (w, z)-plane.

The rotational direction of motion in a given revo-
lution can be clockwise, anti-clockwise, or of the
figure of eight (switching) type, changing from clock-
wise to anti-clockwise motion, or vice versa.

The time difference between the beginning and the
end of a revolution is called the revolution time. Succes-
sive revolutions of an orbit will have different revo-

E— E;

in which P} is the period of oscillation perpendicular
to the w-axis introduced in section g; E, is defined as

B2
) +q)m'=t.7c .

- 2
20, z=0

E=U,=

[4 c

(18.5)

A periodic meridional orbit is said to have a period
of n revolutions, in which # is the number of revolu-
tions which separates two successive identical cross-
ings of the w-axis (i.e., crossings at the same point =,
with the same velocities IT and Z).

The phenomenological characteristics defining the
non-periodic box-type orbits, are:

1) The trajectory is topologically equivalent to a
Lissajous figure. Some of the following characteristics
are consequences of this equivalence.

2) The orbit has an envelope. The envelope is sym-
metric with respect to the axis z = o, consists of four
curved line sections called sides, and the region en-
closed by it forms a simply-connected region, called
the box. The sides meet at the boundary in the four
corners C, D, C' and D’ of the box, and intersect at right
angles there (this property is proved under (c) of this
section). The envelope and the region of a box are
shown schematically in Figure 17. In Figure 31 the
envelopes of the computed box-type orbits are
sketched.
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Schematic drawing of the region in the meridional plane filled
by a box-type orbit, showing the fundamental points of the box.

The two sides connecting the boundary point C
with €’ and D with D’ intersect the w-axis perpen-
dicularly; the intersections define the points A and B
on the w-axis (o, < »,). The orbits of Tables 13 and
14 are ordered according to increasing values of &,
(the value of w, given in the corresponding column
has been determined graphically). The four corners
C, D, C’ and D’ of the box, and the points A and B
are called the 6 fundamental points of the box.

The two sides connecting two boundary points
situated at the same side of the w-axis, may be folded
(see Figure 28 for orbit 6, where the envelope is not
(yet) folded, and Figures 29 and 30 for orbit 9, where
folding occurs).

Both during a clockwise and during an anti-clock-
wise motion the orbit connects all sides of the envel-
ope in succession. “Crossing over” from one side of the
envelope to the oppositeside occursonlyin a revolution
of the switching type. The trajectory is tangent to
the sides for each of these types of revolutions.

3) The whole of the trajectory is contained in the
box and the box is filled by the trajectory.

In other words, the orbit cannot come outside the
envelope and each point of the region within it, in-
cluding the four corner points, is approached arbi-
trarily closely.

4) In each point where the trajectory intersects
itself two velocity vectors of equal magnitude are
defined. (For periodic orbits there could be four
velocity vectors, the two additional ones being op-
posite to the others). This property is the same as that
mentioned in section 7 in connection with the theory
of the third quadratic integral.

The points of self-intersection lie everywhere dense
within the box. The trajectory cannot intersect itself

46

in a point on the envelope (where it is tangent to the
envelope).

Within an arbitrarily small region around any
point of self-intersection, there is another point of self-
intersection in which the velocity vectors are nearly
opposite to the ones defined in the first point. Con-
sider a series of such pairs of points converging to a
point in the box (not necessarily one through which
the trajectory passes). By taking the limit we find that
in each point within the box four velocity vectors are
defined, two being opposite to the other two. The
permitted directions of motion can be characterised
by two angles a and B, both << =, measured in the
(w, z)-coordinate system. For points in the box on the
axis z = o, « -+ f = =n. The trajectory can be tangent
to the envelope in at most one of the two points of the
envelope with z =o0; then « ==/2. For all other
points of the trajectory with z = o, « # /2, B#=/2.

5) If the envelope is folded (i.e. intersects itself and
possesses two cusps) a triangular region is formed. For
points of intersection of the trajectory with itself
within the triangular region more than two velocity
vectors are possible.

(b) Review of computed box-type orbits

We shall now describe the individual orbits of this
family in the order in which they have been arranged
in Table 14. The data for these orbits which are col-
lected in the table have been obtained as follows:

The fundamental point B has in all cases been
determined graphically, as were the fundamental
points C and D. If Il # o at the start, the fundamen-
tal point A was also determined graphically.

The quantity As is the length of arc along the
boundary between the corners C and D of the box. It
has been obtained by a numerical integration on the
basis of the data given in Table 12.

The column labelled “switching occurs at revolu-
tion no” gives the number of the first revolution of the
switching type counted from a w-axis crossing close
to the point A.

The quantity P, is the mean revolution time defined
earlier in this section. We may remark that the in-
dividual revolution times are not constant. The
dispersion of the distribution of these around the mean
value diminishes with increasing value of @, .

Finally, the quantity P,/P, represents the ratio of
the frequencies of oscillation of the Lissajous figure to
which the box-type trajectory is topologically equiva-
lent. This ratio has been derived by comparison with
this Lissajous figure, by a graphical method. The
attainable accuracy is smaller for the higher ratios
than for the lower ones, since the number of revolu-
tions computed is relatively lower. In the quoted
values of P /P, all figures are significant.
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TABLE 14
The fundamental points and some other data of the box-type orbits discussed
Switching P
[
Orbit @\ I P e 2 2 Ty | pooite 2 | (intime | PP,
units)
no.

Z= o 3.37 10.40 7.03 10.30 3.366 ° o 10.403 — - —
13 3.43 10.30 6.87 9.45 3.431 0.273 0.645 10.263 I 0.748 0.487 .

2 3.46 10.24 6.78 9.24 3.455 0.329 0.779 10.209 I 0.821 0.513

36 3.52 10.16 6.64 8.77 3.513 0.450 1.075 10.074 1 0.886 0.593

5 3.56 10.10 6.54 8.34 3.548 0.513 1.305 9.960 1 0.946 0.604

4 3.78 9.74 5.96 .01 3-838 1.007 2.039 9.510 1 1.185 0.754

10 4.00 0.45 5.45 5.72 4.064 1.333 2.696 8.910 2 1.300 0.824

19 4.35 9.10 4.75 418 4.463 1.822 3.165 8.137 3 1.405 0.882

30 5.20 8.25 3.05 1.56 5.342 2.639 3.201 6.733 5 1.468 0.947
3 5.20 — — — — - 3.2911 6.7327 5 1.468 0.947")

6 5.80 7.60 1.80 0.45 - | 5.798 2.935 3.127. 6.195 11 1.488 | o0.977

6.00 7.40 1.40 0.18 5.911 2.997 3.077 6.073 14 1.491 —

limiting 6.10 7.30 1.20 o 5.992 3.037 3.037 5.092 — —_ 1

1) This ratio is equal to 18:19 for the periodic orbit 3.

With increasing value of w, the orbits have in-
creasing values of the z-amplitude. Arranging the
orbits in order of increasing @, , it is convenient to
distinguish between low orbits (large range in &, small
range in z), intermediate orbits (about equal ranges in
w and z) and high orbits (small range in w, large
range in z).

Orbits 13, 2 and 36 are examples of low orbits. For
these orbits each revolution drawn in Figures 18, 19
and 2o is of the switching type. For orbit 13 only g.5

‘revolutions have been drawn in Figure 18, as the

trajectory almost repeats after that. For orbit 2 only
9.5 revolutions have been drawn in Figure 19 for the
same reason. :

In the case of orbit 36 the initial conditions have
been so chosen that the fundamental point C is nearly
reached: see Figure 20.1, in which the first 13.5 revo-
lutions have been drawn. After these 13.5 revolutions
the orbit has almost reached the fundamental point
B; in Figure 20.2 the next 13.5 revolutions have been
drawn: the fundamental point C’ is now nearly
reached and the figure is approximately the former
figure reflected with respect to the w-axis.

Orbit 5 is also an example of a low orbit (see
Figures 21.1 and 21.2, in which 10 revolutions have
been drawn). The sense of rotation is clockwise in
revolutions 1 and 6, anti-clockwise in revolutions 2,
5, 7 and 10, while the revolutions 3 and 8,and 4 and 9
respectively, are of the switching type of opposite sense.

The slow development of orbit 4 is illustrated in two
figures. In Figure 22.1 the first 4 revolutions are
drawn, and it is seen that the orbit is almost periodic
with 3:4 as the ratio of the frequencies of oscillation
of the corresponding Lissajous figure. In this part of
the orbit the fundamental points C and D are nearly

reached. Seventeen revolutions after the start the orbit
has almost the shape of the periodic orbit with the fre-
quency ratio 3:4, which goes through the fundamental
points A and B. This is shown in Figure 22.2, where
the revolutions 17, 18, 19 and 20 are drawn.

In orbit 10, also of the low type (see Figure 23,
where 8.5 revolutions are drawn), the sense of rotation
is clockwise in revolutions 1, 6, 7, anti-clockwise in
revolutions 3, 4, 8, while the revolutions 2 and 5 are of
the switching type of opposite sense. Here series of
either clockwise or anti-clockwise revolutions appear.
In the 5th revolution the fundamental point D is
nearly reached, after which the trajectory is almost
retraced. In the 1oth revolution the fundamental
point D’ is nearly reached. After 15.revolutions. the
orbit has approximately the shape of a distorted
Lissajous figure with 14:17 as the frequency ratio.

In orbit 19, which is of the intermediate type (see
Figure 24, where 11 revolutions are drawn), the sense
of rotation is clockwise in revolutions 2, 3, 4, 10 and
11, anti-clockwise in revolutions 6, 7, 8 and 9, while
revolutions 1 and 5 are of the switching type of op-
posite sense. The series of clockwise or anti-clockwise
revolutions are longer compared to orbit 0. This is
also seen from the column in Table 14 giving the
number of the switching revolution, counted from a
close passage to the point A. The higher the value of
5, , the longer the series of revolutions of a givensense.

Orbit 3 is periodic to a high degree of approxima-
tion. It approaches the fundamental point

D’ (o = 6.7327, z = — 3.2911)

in the 5th revolution. The period of this orbit is 19
revolutions (see the definition in part (a) of this sec-
tion) and D’ is approached again in the 24th revo-
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FiGure 23

ORBIT 10

kpc 19 w

| 1 i 1

Orbit 10, low, special, frequency ratio near 14 : 177. In revolution 5 the fundamental
point D is approached closely, after which the previous path is nearly retraced back
to the starting point (& = @, , 2 =0).

FiGURrE 24

-

4 5 6 7 8 9 ke 10 W
L i 1 1 1 1 1

Orbit 19, intermediate. In revolution 11 the fundamental point A is approached

closely. Motion of orbital plane is shown in Figure 33.
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Ficure 25 Ficure 26
Z ! | ! T T Z T T T T T
kpe kpc
-+3 ORBIT 3 RS ORBIT 30 |
oo |
| ‘Q
-+2 ' 4| F+2 .
_+1 - _-.|.1 -

) 6 7
1 ! 1

?kch?

kpc wg
L L [ 1 |

Orbit 3, special, periodic. Time interval between two dots:
%7.8.10° years.

lution. D is approached in the 15th revolution. In
Table 15 some data, interpolated for §? = I12 4 Z2? =
minimum, are given for these three approaches. The
table was prepared by Dr TORGARD.

From Table 15 it is seen that the numericalaccu-
racy of computation is less than the accuracy of ap-
proach to the boundary: E — E_ is in all three cases
considerably larger than $2; .

In Figure 25 the meridional trajectory for the first
5 revolutions of orbit 3 is drawn. The time interval
between two dots in the figure is 0.08 units or 7.8 - 10°
years.

Orbit 30 was computed in order to study the
development of a box-type orbit “near” orbit 3. The
starting data were obtained from an arbitrary point
on the smooth curve joining the points in the inclina-
tion diagram corresponding to orbit 3 (see section 20).
The development proved to be extremely slow. The
orbit is not periodic, but after the 27 computed rev-
olutions the meridional trajectory is still very much
like that of orbit 3 (see Figure 26).

Orbit 30, intermediate, close to. orbit 3. The trajectory departs
only slowly from the trajectory of orbit 3.

TABLE 15
‘Three successive approaches of orbit 3 to the boundary
D’ D D’

t 6.972503 20.917509 34.862521

- 82 21078 15'107° 3107
12 1’1078 14'107° 41°107°
VA 0107 1’1078 2107
E—E, 201078 471078 91107

Orbits 6 and 9 were both started perpendicularly
to the w-axis at z = o with » = 5.8 and 6.0, so that
o, = 5.8 and 6.0 respectively. For orbit 6 the meri-
dional trajectory is shown in Figure 27; for orbit 9 no
meridional figure is given as the computation was not
completed owing to a failure of the BESK, which also
destroyed the data needed for a continuation. The
regions near the boundary for orbits 6 and g9 are
drawn in some detail in Figures 28, 29 and 30. Broken
lines are sections of the trajectory for negative z. For
orbit 6 the numerical data do not show clearly
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Ficure 27
Z T T T T
kpe
a3 ORBIT 6 |
AN G
|
L +2 _
-+ 1
s$171]9
1
L -1 ;
L2 i
R\l 4
4
L -3 ',',’,”1,?; 28 1
5 ; 7 8 we w9

Orbit 6, high, special. Sense of rotation of all revolutions drawn
is clockwise, except for revolution 11, which is of the switching
type. Region within the boundary for |z| > 2.75 enlarged in
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whether the envelope is folded or not, the figure was
drawn on the assumption that it is not folded. For
orbit g the fold in the envelope is clearly illustrated in
Figures 29 and 3o0.

With increasing value of w,, the range in & for
z = o, given by (v, — w,) in Table 14, decreases.
Also the length of arc along the boundary between
the fundamental points G and D decreases. It is given
by the values of As in the same table. We note, how-
ever, that As has almost vanished for orbit 9, whereas
the fundamental points A and B are still 1.40 kpc
apart. Therefore it may be expected that when As be-
comes zero in the limit, the quantity (v, — »,) has
not vanished but has attained a minimum vaiue (see
also Figure 31, where all envelopes of the orbits
discussed here are sketched). Orbits which possess a
perpendicular intersection with the w-axis within this
minimum range will be of a different type. Sub-
sequent computations, not reported here, have shown
this conjecture to be correct: the orbits of different
type are the shell-type orbits, also mentioned in section
20. The orbit which separates the box-type orbits and
the shell-type orbits will be called the limiting orbit.
It is obtained by starting an orbit with II =o at
(w=wv, ,z=0)orat(w=uw, , z=0). The
corners C and D of the limiting orbit coincide. In
Table 14 some data for this orbit are given; they were
found by extrapolation of data obtained from numer-
ical computations of orbits close to the limiting orbit.
These computations will be discussed in a joint pub-
lication with Dr ToRGARD.

With decreasing range (o, — »,) the ratio P,/P,
increases and approaches the value 1; this value is

Figure 28. reached for the limiting orbit.
FiGurk 28
5.70 5‘|8O 5.|90 , 6.IOO . 6.[10 | 6.|20 ke w
lz1}
kpc
310 -
ORBIT 6
300
AN
AN
290t l‘\\k\
Ao
_ ’f"‘\‘v,‘o;w
R
2801 " XN/
/ A ARVAND WAV ND N NN

Orbit 6 near the boundary; solid lines: positive z, broken lines: negative z. Horizontal section
of the envelope shows incipient dent, developed more fully in orbit 9.
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FiGURE 29
i T T T 1
121
kDC l///—’-:\STS‘\
pr e RN
305} ‘_,_--\-‘—\.\Ze,\\bg
. ’_‘_,_——:\-\—sl\,\t‘
” ’_“—"""‘_‘5"\-—}3\
e TR |
300 - iy
- —m e
- —1_\§“
";]\‘“—«—\ 1
T

295 ‘ .
290F ]

ORBIT 9

285 \ Y (A WA L 1 1

5.90 595 6.00 6.05 610 ke TI

Orbit 9 near the boundary; solid lines: positive z, broken lines: negative z. Horizontal
section of the envelope is folded. Computations carried out for revolutions 1 to 14 only.

F1GURE 30
T T T T T
1zl
ORBIT 9 ]
kpe ¥
L
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A
g /,/’
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C z7 7 /
\ /// ’ 7 l’
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R / 1
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’ /
/ 7
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{ /
k] 4 2
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Enlargement of the triangular region formed by fold in envelope
of orbit g; within this region more than four directions of motion
are permitted.

As shown in Table 14 the value of P, increases as
@, increases. The value given for orbit g is uncertain
because of the small number of revolutions computed.

The periods of oscillation P and P; for orbits of
small amplitudes, given by 27/V a, and 27 /V'¢, in
section 8 (Table 4) depend only on the dynamical
constants 4, B and C (formulas (9.2) and (9.3))
and not on the initial conditions. Thus for all box-
type orbits of a fixed low energy P /P, is a constant.
Lissajous figures corresponding to box-type orbits of

and if this is not a rational number, there are no
closed Lissajous figures (excluding the periodic mo-
tions with Z = o and II = o respectively).

The situation is very different for the box-type
orbits of the family with the larger energy value con-
sidered here. From the estimates of the ratio P [P,
given in Table 14 it is seen that the ratio is not a
constant for the various orbits in the family. Its value
depends, as we have seen, on the value of &, ; if this
dependence is a continuous one, we may expect that

. .
this low energy have the same ratio ¢ vV
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FiGurE 31
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Envelopes of each of the orbits discussed in this thesis; corners of each envelope are rectangular, mutual intersections of the

envelopes are not rectangular. Broken line marked L: limiting orbit. Broken line marked C: central orbit

rational values for P /P, also occur. An example of this
isgiven by thé case of orbit 3.

(c) Further properties of box-type orbits

Some general properties of meridional trajectories
were formulated prior to numerical computation in
section 17. After having reviewed the results of the
numerical computations, we can now formulate some
properties a posteriori for the meridional trajectories of
box-type orbits.

Consider one box defined by any non-per1od1c box-
type orbit. The six fundamental points of the box
which belong to the envelope of the trajectory are:

the four corners (C, D, C’, D) on the boundary
U=E;

the two perpendlcular intersections (A, B), of the
envelope with the w-axis. The defining orbit may not
actually reach any of the fundamental points, as it
does not reach a given point in general. Ifit does reach
one of the fundamental points, it will be called a

special orbit. The defining orbit cannot reach more
than one fundamental point, for an orbit which
reaches two (or three) fundamental points is a
periodic orbit (with two or no end points).

Suppose the defining orbit is not a special orbit.

in the box and the two permitted directions of motion
at each of these, it approaches arbitrarily closely to
any fundamental point and to the one permitted
direction of motion in the points A and B. This state-
ment is equivalent to the statement that, by a suitable
choice of the zero point in time, the defining orbit can
be made to stay arbitrarily closely to any special orbit
for a given length of time. This is also true if a
periodic orbit passes through the fundamental point
considered. Eventually, as time goes on, the defining
orbit moves away from the special orbit; this means
that periodic box-type orbits are unstable according
to the definition given in section 17.

Consider now the singly infinite system of orbits
generated by taking. the points on a side of the
envelope of a non-periodic box-type orbit and the
one permitted direction of motion in each of these
points as initial conditions. Again, by a suitable
choice of the zero point in time, the defining orbit can
be made to stay arbitrarily close to any orbit of the
system for a given length of time. But then the
trajectory of an orbit of the system cannot come out-
side the box, and (if it is not periodic) it defines the
same box. Therefore each box contains a singly in-
finite system of trajectories. All trajectories of the box

Since it approaches arbitrarily closely to all points |

are included in this system of trajectories, which fills
the box.
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The property of the defining box-type orbit of ap-
proaching any special orbit arbitrarily closely for any
given length of time, makes it possible to consider one
of the non-periodic special orbits of the box as the
defining orbit.

Let us consider the case of a ‘box defined by the
special orbit which passes through the fundamental
point C. We must remark here that the results of the
numerical computations discussed show that there
exist such cases; however, it has not been shown, nor
is it true, that any point on the boundary U = E can
be regarded as the fundamental point C of a box.
Subsequent numerical computations, not reported
here, have shown that there are certain “sections of
avoidance” on the boundary, where no box-type
orbit can approach the boundary. In the following we
assume for the case considered that C lies well outside
these sections of avoidance, as indeed lie all points C
of the boxes discussed here.

If C is varied continuously along the boundary in
the vicinity of the corner of the box considered, a
system of co! boxes is generated. Therefore the system
of all box-type orbits is doubly infinite.

The same conclusion is obtained by considering the
fundamental point A on the w-axis of the box con-
sidered, and varying it continuously in a small section
of the w-axis. We must restrict ourselves to such a
section since the numerical computations have shown
that a part of the w-axis cannot be occupied by the
fundamental point A of box-type orbits.

We conclude this section by giving a proof that the
four corners of the envelope of a box-type orbit are
rectangular.

One of the corner points on the boundary U = E is
taken as the origin of a cartesian coordinate system
(%, y) with the x-axis tangent to the boundary and the
y-axis perpendicular to the boundary, inwards being
taken as positive. In a sufficiently small region con-
taining the corner point, we may approximate U by
the linear equation

U=E—uw, (18.6)

(18.7)

Here E is the energy of the orbit and « is positive.
Further we assume that the points §2;, lie on a
straight line x = py. This assumption is justified on the
same grounds as the assumption that there is an
envelope to the orbit at all, namely by referring to the
illustrations of the computed orbits, especially Figures
28 and 29. More detailed figures on the behaviour of
the orbits near the boundary will be published later.

The equations of motion ¥ = o, » = — a are solved
by x=vy.t+3
y=zat*+at+B.

so that

Mm+22=982=2a.

(18.8)

By elimination of ¢ the orbital equation is obtained

—3
_y=§a(xY ) +a (18.9)

which shows that each loop of the orbit in this re-
gion may be approximated by a parabola. The mini-
mum of §'is reached at the same time as the minimum
of y, namely in the vertex of the parabola, at time

x—3
+8,

t = — a/a. In this vertex we have
Xyertex =6 = — %Z +3
aZ
Fvertex = € = — -+ P (18.10)
Xiortex = Smin =Y = :}:\/—271_0
Dvertex =0~

These equations determine the integration con-
stants &, 3, vy and 3 except for the value of « (which
may be chosen arbitrarily to define the zero of ¢)
and the sign of y (which depends on the sense of
motion in the parabola). From (18.10) we find

2
B=c(1 +$2->, )

and upon substitution into (18.9) we find without
ambiguity

a(ﬁ—i— —25—() » Y2=2ac, (18.11)

y=—(x —pe):4c. A (18.12)

4¢

The two lines through the origin which are tangent
to this parabola are found from the condition that the
equations y = bx and (18.12) have coincident roots.
The condition is

b2+pb—1=0. (18.13)
This equation shows that
(1) the values of b are real, so the tangents exist;

(2) the values of b are independent of ¢, so the
tangents are common to all parabolas in this region
and hence they form the envelope (more precisely:
the tangents to the envelope close to the corner point);

(3) the product of the roots of (18.13) is equal to
— 1, so the tangents are mutually perpendicular.

This completes our proof.

19. The energy check

In the BESK programme, briefly described in sec-
tion 16, the energy value is computed after each
computed Runge-Kutta step, according to the formula

EI:%(H12+Z12+®IZ)+(Dr’ (lg.I)
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where the subscript ¢ indicates instantaneous values
at time ¢. For each printed point the energy value E,
was printed too, and therefore the energy of the orbits
can be checked for constancy by plotting the printed
values as a function of time. It appeared that for all
computations treated here the energy increased grad-
ually as a result of truncation errors; the depen-
dence of E, on the number of revolutions 7, after the
start can be represented approximately by a linear
relation (except in the case of orbit 6, where the values
of E, behaved erratically). We write for this relation

E,—E,
E

o

=—k.n, (19.2)
in which £ is a positive constant, #, is a function of ¢
and E, is the energy value at ¢t = ¢,.

If all computed revolutions are taken into account
for the determination of & from relation (19.2), £ is
equal to the mean value of the relative error per revo-
lution. For the orbits treated here, the constant k
determined in this way is given in Table 16.

Itis seen from the quoted values of £ that the energy
is constant with a high degree of approximation. For
orbit 10, for instance, the value of k£ implies that the
energy would differ by one percent from E; after
about 14.10° revolutions—provided the approximate
linear behaviour of the changes continued.

Also in Table 16 is given the maximum difference
in energy found for the interval in time for which the
orbit was computed. Usually this occurred shortly
before or at the break-off value of .

TABLE 16
. k (E,~E,
Orbit no. (107) (16 un)i'{'s“)x
13 4 21
2 5 16
36 6 45
5 23 400
4 10 83
10 Vi 32
19 g 26
3 13 97
30 8 56
6 — 122
9 5 15

20. The inclination diagram

Some properties of meridional orbits can be discus-
sed conveniently by studying the representation of
these orbits in the inclination diagram (see section 17).
For practical purposes we shall not consider (I1/Z), _,
as a function of &, but the quantity / = (V' II/Z),_.,
which we shall call the inclination. This means that the
domain § used in section 17 is transformed into a

56

Ficure 32

vm T T T T T T T

il L L2 ggl \/ W
%% 7

1
o 4 5 8 S ke 10

Inclination diagram for the box-type orbits. A filled circle
indicates the starting point. Orbit 3 (periodic) is represented
by a series of 10 points. Inclination curve of orbit 3o is not
drawn but passes close to these points. For orbit 9, not computed
long enough to give the entire curve, the broken line indicates
the missing section. Broken lines marked L: limiting orbit.

domain bounded by the lines & = &, and » = w, for
positive Z only. When no confusion is possible we shall
designate this domain also by §.

For each of the box-type orbits computed the in-
clination curve (I, ») is drawn in Figure 32. Each
orbit gives a single simple curve in S. This curve inter-
sects the w-axis (perpendicularly) in two points only:
v =v, and 5 = w,, in which &, and &, are the
values of & for the two fundamental points of a box-
type orbit on the w-axis. No two curves intersect each
other: this property was already mentioned in
section 17.

The periodic orbit 3 gives a set of 10 invariant
points in S. Orbit 30, which is a non-periodic orbit
close to orbit 3, yields a simple curve in § passing close
to the points representing orbit 3 (see Figure 32).
According to the definition of stability of invariant
points given in section 17, the invariant points of
orbit 3 are unstable.

Later computations have shown that sets of stable
invariant points in § also exist. Orbits which at a
given time are in the vicinity of the corresponding
periodic orbit, will stay near this orbit for all time.
These orbits, which have characteristics fundamen-
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tally different from those of the box-type orbits, have
been called fube orbits. The discussion of these orbits is
postponed to a future publication.

For each given inclination in S there are fwo cor-
responding values of & in orbits 13, 2, .... 6. But for
orbit 9 there are inclinations which occur for jfour
values of &. A suggestion of a minimum in the hori-
zontal section of the inclination curve is also present
in the case of orbit 6. With increasing value of w,
(and, as we have seen, decreasing value of the arc-
length along the boundary U = E between the cor-
ners G and D of the boxes) the minimum deepens; for
the maximum value of », and coinciding points
C and D, it reaches the w-axis in a point (=, , 0). Then
the inclination curve has become two arcs corre-
sponding to the limiting orbit (cf. section 18b). The
point (w,, o) is an unstable single invariant point
corresponding to the central orbit in the meridional
plane (see section 17), which intersects the w-axis
perpendicularly in (w,, 0) and reaches the boundary
in the coincident corner points G and D of the
limiting orbit. Orbits started perpendicularly to the
w-axis at o > »,, give two arcs in the inclination
diagram; they correspond to an orbit which has
characteristics fundamentally different from those of
box-type orbits. These orbits, which have been studied
by subsequent numerical computation, not reported
here, have been called shell orbits. The discussion of
these orbits is postponed to a future publication. .

Figure 32, in which only the inclination curves of
box-type orbits have been drawn, is not a complete
inclination diagram. Neither the sets of stable inva-
riant points, nor the cases of inclination curves which
are not simple single curves have been discussed.
However, Figure 32 does show that the box-type
orbits form an important class of meridional orbits in
this family.

We cannot deduce the importance of box-type
orbits in general from a discussion of one family of
meridional orbits only. However, for smaller energies
than considered here, box-type orbits must be in-
creasingly important. For those cases of galactic stellar
motion in which the meridional motion is separable
only box-type orbits exist, as was shown in previous
sections.

21. The angular-momentum vector

The three-dimensional orbit is completely specified by
w, 2,9, II, Z and @ as functions of ¢. The position of
the meridional plane is given by $, the angular veloc-

ity by § = 0®/w. Until now we have been concerned
with the two-dimensional meridional motion only;
the third component may be included by studying the
motion of the meridional plane. We shall instead

study the motion of the orbital plane, defined by the
position vector r and the velocity vector V.

Let %, y and z be cartesian coordinates in a fixed
frame of reference, with the galactic centre as origin
and the galactic plane as the plane z = o. Then

¥x=wcosdy y=wsind

and the angular-momentum vector R, defined as
r X v, has the components

R.,= sind(cZ—zI)—2z0cosd
R,=—cos% (v Z—2zIl)—20sind
R, =o?9=h.

(21.1)

Denoting by {3, the longitude of the ascending node, -
and by ¢ the angle between the orbital plane and the
galactic plane, we have further

tg b = —R,/R,
tge =(VRZ+RE/R,. (21.3)

Usually at the starting point % = o, and z.= o0, whence

(21.2)

R,=0,R,=—wZ. (21.4)
When the orbit crosses the galactic plane (z=0), &
and &) are related by

=& +n,. 2%, (21.5)

in which #, denotes the number of meridional revo-
lutions since the start. For z=o the tilt € of the
orbital plane is determined by & and Z only since
htge=uwZ. (21.6)
For orbit 19, the behaviour of the components R,
and R, of the angular-momentum vector is shown in
Figure 33 for 5 revolutions after the start. The values
of &b and tg € can be found from the figure, as illus-
trated for the first passage through the galactic plane
(t ~ 1.0). The sharp maxima of the curve for times of
passage through the galactic plane are cusps, as

dige _ddb _
" dr = °

for these times.
As it can be proved that

d 1 ZN&
‘de ~ sine cose O (w7 —Z6 + 20%w)’ (21.7)

lim
zZ—>0
the tangential line in the cusp passes through the
origin of the coordinate system (R, ,R,), for [I =o.
This is the case for ¢ = o in orbit 19.

The motion of the meridional plane is direct since
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Ficure 33
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Projection of tip of angular-momentum vector on the galactic
plane for orbit 19. Motion of orbital plane is retrograde. Time
interval between two dots: 0.04 time units = 3.9.10° years.
Every 10 time intervals the dot is marked with the time in time
units. Longitude of ascending node §} can be found graphically
as illustrated for the first passage through the galactic plane
(¢ ~ 1.0). Length of line section in which ktge is written, is
equal to this quantity. Units in both coordinates:
10 km.kpc/sec.

we have chosen the positive value of # which means
dy . )

that 7 > 0; it can be shown that the motion of the

orbital plane is direct or retrograde according to the

sign of

z@%(wZ—zH)—(aZ—zH)%(z@), (21.8)

the negative sign corresponding to retrograde motion.
Figure 33 shows that the motion of the orbital plane
of orbit 19 is retrograde in general.

IV. Provisional conclusions
22. Theory of distorted Lissajous motion

It was remarked in section 18 that the meridional
trajectory of a box-type orbit is topologically equiva-
lent to a Lissajous figure, i.e. it can be obtained from
this figure by a continuous deformation. The rectan-
gular envelope with straight sides is distorted into a
rectangular envelope with curved sides, and in these
sides folds may occur. The centre of the distorted
Lissajous figure does not coincide with &, ; in fact the
whole range in & for z=o0 may be contained in
© > w, (see orbits 6 and 9, Figure 27 and Table 14).

The similarity between box-type orbits and Lissa-
jous figures gave rise to the definition of the ratio of
frequencies of oscillation in two directions (deter-
mined by comparison between box-type orbit and
corresponding Lissajous figure, see section 18b). It
was noted in section 18b that this ratio is not constant
for the family of orbits of the energy value considered,
contrary to the case of orbits of small energy (i.e.
oscillations around (w =w,, z=0) with small am-
plitudes). The ratio increases with increasing value of
@, , from about 0.5 to 1.0 (see Table 14).

These properties of the box-type trajectories have
been formulated gfter numerical computation, and the
question presents itself whether they could have been
predicted beforehand. The present section contains an
attempt to discuss this question; the complete answer
is not obtained, because we have been forced to in-
troduce certain simplifying assumptions with which the
results of the numerical computations do not comply.

We shall discuss the following aspect of the analyt-
ical prediction of the geometrical properties of box-
type orbits: can motion occur in a given two-dimen-
sional potential such that the trajectory istopologi-
cally equivalent to a Lissajous figure?

At the suggestion of Prof. van pe Huwist this
question is studied by “starting at the wrong end”,
considering at the outset a given Lissajous figure in
the cartesian (X, Y)-plane, with time 7. The given
figure is deformed continuously in an arbitrary man-
ner such that (X, Y) become curvilinear coordinates
in the cartesian (x, y)-plane, and the time # is chosen
as some function of T} so that the motion in the (x, y)-
plane is fixed. We shall attempt to choose the various
transformations in such a manner that the motion in
the (x, y)-plane is a motion in a field of force which

. can be derived from a gravitational potential function.

Let the Lissajous figure in the (X, Y)-plane be
given by
X=sinaT Y=sinbT.

As we shall distort the figure there is no loss of gener-
ality putting both amplitudes equal to unity and both
phases equal to zero provided a and b are not com-
mensurate. Let the transformations of coordinates and
time be written

#=f(X,Y) y=g(X,Y) t=s(T). (222)

On applying the transformations (22.2) to equations
(22.1) the variables x and y are determined as func-
tions of ¢, as are the velocities and the accelerations;
we write for these last functions the vector equations

(6)-Gw)

()= Cara)

(22.1)

(22.3)
and

(22.4)
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If the particle passes through a point (x, y) at time ¢,
and again at time ¢, , the square of the velocities must
be the same in both cases, i.e.

W (4) F (L) =2 (5) + v (h).  (22.5)
This is the first condition which must be imposed.
The accelerations must also be the same in both

cases i.e.
dx dx
(&), = (),
dy. dp.
(&), = (),
This is the second condition which must be imposed in
order that the motion in the distorted figure may have

5 (22.6)

d?x

de ((f f T
i =z(gj:)acosaT+ (g;)bCOSbT;‘d_t{_
dt*

0

In the expressions on the right-hand side in the latter
formulae, we must eliminate ¢ and 7. This can be done

po's Exy

T 2
XX) a’cos?aT + 2 (fXY) abcosal cosbT + (fYY) b?cos? b T% (d—) .

physical meaning. When both conditions are fulfilled,
dx

T and—}; can be written as functions of position and

then the question can be considered whether the forces
which govern the motion can be derived from a poten-
tial function.

- ) -
Writing f for S;—;, etc. we have for the velocities

dx

dt ((f fy dT

&y =z(g’;)a Cos aT—l—(gy)b cos bT%—d—t (22.7)
dt

and for the accelerations

g (‘];);) a*>sin aT -+ (Jg:y,) bzsiang (%)2

(22.8)

di

witha =+ 1and B =+ 1. The two values each of «
and B correspond to the fact that a given point of a

I$%¢

by making use of the first condition. From (22.1) wefind | Lissajous figure can be passed in 2 X 2 ways.

cosaT =aV1—X? (22.9)
coshT=pV'1— Y2 229

V2=

or

vzz(%)z(M+apN), (22.11)

where M and N are functions of position only. From
the first condition we infer that

(%) =POr—asn),

(22.12)
in which P is a function of position only.

At this stage we make a simplification, by supposing
the curvilinear coordinates (X, Y) to form an orthogonal
set of curves in the (x, y)-plane. Then N vanishes and

the first condition means that N is a function of

position only. This simplification is not essential al-
though it clarifies the mathematical treatment im-
mensely. In fact the unsimplified case (22.12) has
raised as yet unsolved analytical difficulties'). The

) Since this was written vaN DE Hurst (1962b) has solved
the general case (in which the assumption of orthogonality
is not made) by a different method.

Using (22.7) and (22.9) we find for the square of
the velocity :

(D) {0 0 X+ U D B ) 2 U + e ab BV (= X (1= T

(22.10)

FicURE 34
f ' I ! I ' [

2l
kpc|

33—

......

| i
0~ W ke
Curvilinear coordinates (X, Y), in the theory of distorted
Lissajous motion (broken lines), obtained from the inter-
sections of the periodic orbit 3 with itself.
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assumption of orthogonality can be checked by
sketching the set of curves connecting intersec-
tions of a periodic orbit with itself. This has been
done for orbit 3 in Figure 34, and it is seen that
the broken lines do ot form an orthogonal set of
curves. Near the envelope at the vertical sections and
near the corners, the broken-line curves are more
nearly orthogonal than elsewhere, but near the hori-

60
orbits, the deviation from orthogonality is strongest.
Writi dT\?
rhng (71?) —k(X,Y) (22.13)
we have
aaT
TE= s(kyacosaT +kybcoshT) ,
and with (22.9), the right-hand side of (22.8) can be
written as a function of X and ¥, viz.

zontal line section, where the fold appears for higher

&
de? N
d%y B z 8x Y
s
(@) (Do (7)o

From the second condition it follows that the coef-
ficient of « § must vanish, so that

Sxky+Srkx+ 4fxrk=0 ; (22.15)
Sxky+ grky+ 485k =o0. '

These formulae are the final forms of the earlier
imposed conditions for physical reality of the motion
in a distorted Lissajous figure.

Wemaynotea (trivial) solutionof equations (22.15):

k = constant (¢~ T) )
- (22.16
Syr=o0and gyy=o0. ) ( )

We have here the case that f and g are functions of
X and Y respectively. The motion in the (%, y)-plane
is then a distorted Lissajous figure consisting of
mutually independent anharmonic oscillations in the
x and y directions, having a rectangular envelope
consisting of four straight line-sections.

Writing I, and [ for k/k and k,/k respectively in
(22.15), Iy and [, can be solved from the linear system
to which (22 I 5) can be reduced. The solution is

Lo e — 4frfxr+ 8r8xy
X f 2+gyz
(22.17)
o — fxfxr+ Ex&xy
Y Ktet
for which we can write
?
be=— 25108 (f*+ &
) (22.18)
ly=— 257108 (f¥+ 8 -

The necessary and sufficient condition for a solution
of the latter equations to exist, is the compatibility
relation

byy=lyx - (22.19)

John G. Wolbach Library, Harvard-Smithsonian Center for Ast

( X) aaV 1— X2 + (?) bV 1— 72 ; (kyaaVI— X2+ ky b BV 1— T2) —

(22.14)
=T (7))

Using (22.18) this condition can be written

2(§§i>aﬁab\/(1—X

2 .
bXbY%log (ff—l—g,?)——log(fX2_|.gX2)}=o, (22.20)
from which it follows that
S+ ed
. =F(X).G(Y), .
Pt el (X) . 6(Y) (22.21)

in which F and G are arbitrary functions of X and Y
respectively.

Until now we have adapted the coordinate system
(%, y) to the particular given Lissajous figure in the
(X, Y)-plane and the corresponding given distorted
Lissajous figure. We shall now remove this restriction
by introducing a new coordinate system (£, v), defined
by the (as yet unspecified) transformation

X=X(E) Y=Y

the derivatives of which are X, and ¥, .

By application of this transformation, the Lissajous
figure in the (X, Y)-plane defined by (22.1) is trans-
formed into a distorted Lissajous figure in the (&, 7)-
plane. The latter is obtained from the original figure
by separate distortions in the horizontal and vertical
directions. We can now study the mapping of the
(¢, m)-plane into the (x, y)-plane. The mapping is
given by the functions f and g and the transformation
(22.22); fand g are functions of £ and v by this trans-
formation. The condition (22.21) is written in the
coordinates & and 7

fitad Ty
£2+gﬂ }'—_2 {Y(Vl)}-

By a suitable choice of the transformation (22.22) we
can make the right-hand side of this equation equal
to unity. Then (22.23) reduces to

fEregt=fr e =H(E,n), (22.24)
in which H (&, ») is an arbitrary function. The condi-

(22.22)

FlX®)|. (22.23)

rophysics ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1962AnLun..18....5O

BT D750

1
1
1<)
15

r=l
[<¢]
oy
£9,

L

61

tion (22.24) means that the mapping of the (&, 7)-
plane into the (x, y)-plane is conformal.

We have shown now that the conformal mapping
of the (&, n)-plane into the (, y)-plane is a necessary
and sufficient condition for the existence of a solution
to the equation (22.15) or to its equivalent (22.17).
The distorted Lissajous figure in the (x, y)-plane will
be bounded by simple curve sections which meet at
right angles in the four corners of the box. This isindeed
the case for the computed orbits. However, the sides
of the box of high orbits are not simple curves when-
ever the phenomenon of a fold occurs. The description
of these orbits is not possible on the basis of the theory
of distorted Lissajous motion given here.

Before obtaining the potential function U as a func-
tion of £ and v , we shall first give an existence theorem
for it, in terms of the coordinates X and Y.

For (22.14) we write

d*x d?
e ﬁ (22.25)

in which p(or ¢) is equal to the right-hand side of
(22.14), without the term containing af. We must
investigate now the question whether there exists a
(potential) function U(x,y), such that

=—p(X ¥) —q(X, Y),

d% d%y
i.e. Zt_z__'_Ux ﬁz—UY
U,=p U=¢q (22:26)

By the transformation (22.2), U is a function of X
and Y written (X, Y), and

uX= Ufo—I_ Ung

22.
or, with (22.26) Uy = (;xffy :— U, gy (22.27)
' Uy=pJx + 98
.28
uy="pfr + qgy- (22.28)

in which all functions are expressed in X and Y.

2 2
V=E—§kéi%£&@

The function £ is found from the solution of (22.18).
The first of these equations can be written

d
——2~a—glogH,

l&-:

with the solution

= — 2 log H + constant,

1 (a?(1—X(§)?)

V=E— 5

— X(£)?) A

In order that the potential function U may exist, it
must be solvable from equation (22.28), which entails
the condition

pyfx+ 9v8x = bxfy+ 9x8&y - (22.29)

By fairly lengthy but straightforward analysis, it can
be proved that this relation holds for p and ¢ asde-
fined in (22.14), making use of the conditions (22.15)
and the orthogonality relation mentioned before.
The fact that motion in a distorted Lissajous figure
is a physically possible motion in a field of force,
provided that the (first) velocity condition and
(second) acceleration condition hold, can also be
obtained by deductive reasoning: along each part
Q
of the orbit fa .ds =3 (v4—13),in which a is the
4
acceleration vector, s the position vector and v the
total velocity. Therefore around a closed “loop” of

the orbit §a .ds = o. Finally along any path which

intersects itself this integral is also zero, as the path
can be made up of orbit sections. But this means
that a must be derivable from a potential function.

Having proved the existence of the potential func-
tion U(x, y), we shall now obtain it as a function of
£ and 7. In order to do so we use the definition

U=E—:1», (22.30)

in which E is a constant equal to the total energy
of motion in the (x,y)-plane, and v is the total
velocity as before. By (22.11) we can write for this
definition

u=FE— kM
and writing ‘¥ for the function U expressed as a func-
tion of £ and v, we have

T%‘éﬁbz(l—y(ﬂ)z)g‘- (22.31)

which gives
=

absorbing the constant into the arbitrary function H.

Substituting this expression for £ in (22.31), and using

(22.24) we find finally for the potential function ex-
pressed in the coordinates £ and v

+b2(I—Y(‘n)2))

2H|( X2

Van peE HuLst (op. cit.), who obtained the same
equation by different reasoning, has given the form of
H for which the potential V takes STACKEL’s standard
form for separable systems. For such dynamical sys-

Y2 i (22.32)

tems the form of the potential function is given in
section 11 of the present work for various coordinate
systems of interest in connection with the field of force
of the galactic system.
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However, not fully separable systems can also be
described by the potential function (22.32). For the
form of H for this case and further particulars the
reader is referred to the article by Prof. van b HuLsT
already cited.

23. Inferences for the velocity ellipsoid

Since the present discussion of the orbits of particles
of mass in the Galaxy is confined to one type of orbit
and one energy value, any inferences concerning the
velocity ellipsoid are necessarily provisional. The box-
type orbits, however, would seem to form an impor-
tant class of orbits, while on the basis of distorted
Lissajous motion we have derived an existence theo-
rem of box-type orbits in a field of force derivable
from a potential function. Therefore a tentative re-
view of the influence of this type of orbit on stellar
statistics, does not seem out of place.

In section 18c it was pointed out that of the co?
orbits in a family, co! are asymptotically equal be-
cause each of the co! orbits in a box will be reached
asymptotically by an arbitrary non-periodic orbit of
the box. Since all orbits of the box are thus obtained
from the special orbit started at (w = w, , z=0), with
Il =0 and Z=V'2(E—®), the coordinate , is a
parameter, the value of which defines the oo! orbits of
the box.

That it is possible in this way to select co! asymp-
totically equal orbits, which are different from all
other orbits in the family, is contrary to the ad hoc
assumption of section 2 that the galactic potential
function admits no other time-independent integrals
of motion besides the integral of energy and angular
momentum. Under that assumption, which was used
in deriving JEAaNns’ theorem of the equality of the
meridional axes of the velocity ellipsoid, all co? orbits
in the family are asymptotically equal.

The conclusion is that the ad hoc assumption is
erroneous and must be replaced by the assumption
that, if the potential function of the Galaxy can be
represented by an analytical formula such as the
formula IF discussed in section 15, it admits, besides
the energy- and angular momentum integral, a third
integral of motion. The analytical form of this integral
for the formula IF has not been found, but the conse-
quences of its existence, for the selected family of
orbits, are found in the inclination diagram of
Figure 32. The transformation 7" of the inclination

diagram into itself, which was introduced in section 17
as a means of discussing properties of meridional
trajectories, has the special properties described in
section 20, and these reflect the existence of the third
integral of motion.

The question, raised in section 6, whether and how
conversion of energy from z-motion into w-motion
takes place for individual orbits of high-velocity stars,
can also be answered now: there is temporary ex-
change during a revolution, but 7o systematic con-
version. Stars which have low II-velocities passing the
galactic plane, will not gain II-momentum at the cost
of Z-momentum.

The inference for the velocity ellipsoid can now be
drawn. As the proof of JEANS’ theorem rests upon an
erroneous assumption, the dispersions of the velocity-
distribution function in the meridional plane need not
be equal. Our result can also be formulated as follows:
Numerical computations of orbits of particles of mass
in the Galaxy indicate that the field of force of the
Galaxy may for indefinite time admit of a tri-axial
distribution of velocities in a large region of space.

A large part of the work connected with the in-
vestigation, such as the coding of the programme for
the numerical computations, was done in collabora-
tion with Dr INGRID TORGARD.

During an eight months’ stay in Lund in 1959, the
author enjoyed the hospitality of Prof. Dr C. ScHALEN
of Lund Observatory and his staff. At Lund Observ-
atory many computations—all of those upon which
the inclination diagram is based —were performed by
Miss INngEBORG OLssoN; many photographic repro-
ductions and some drawings were made by Mr M.
ViELOCH.

Discussions with Dr P. O. LinpBLAD during the
1960 NUFFIC Summer School at Nyenrode Castle in
the Netherlands, led to the formulation of section 21.

The Mathematisch Centrum, Amsterdam, has put
the electronic computer ARMAGC at the disposal of
the author for many hours computing time, free of
charge. At the Matematikmaskin Namnd, Stockholm,
the large Swedish electronic computer BESK was
occupied for many hours with the computation of the
orbits reported upon in this work, also free of charge.

Finally the author wishes to record his feelings of
obligation to the Netherlands Organisation for the
Advancement of Pure Research (Z.W.O.) for finan-
cial support.
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