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The variations 8r, hi, 8 sin 6, 8 ip can be readily 
incorporated into the computational scheme of 
section ii. 
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Abstract. In the present paper perturbations of six orbital elements of a close earth satellite moving in the gravita- 
tional field of the earth without air-resistance are derived as functions of mean orbital elements and time. No assumptions 
are made about the order of magnitude of eccentricity and inclination. However, it is assumed that the density distribu- 
tion of the earth is symmetrical with respect to the axis of rotation, that the coefficient of the second harmonic of the 
potential is a small quantity of the first order and that those of the third and the fourth harmonics are of the second order. 
The results include periodic perturbations of the first order and secular perturbations up to the second order. 

However, the solutions have some singularities for an orbit whose eccentricity or inclination is smaller than a quantity 
of the first order, and this case is treated in a different way. 

By using Delaunay’s canonical elements a theorem is proved that there are no long-periodic terms of the first order 
in the expression of the semi-major axis. 

I. The disturbing function. In the present paper 
it is assumed that air-drag is absent and that 
the gravitational field of the earth is axially sym- 
metric. Under these assumptions the gravita- 
tional potential of the earth at a point where 
the geocentric distance and the latitude are r 
and 8, respectively, is expanded into the series 
of spherical harmonics, 

(o 

torial plane. A2 is taken to be of the first order 
of small quantities, and A$ and A± are to be of 
the second order. The coefficients of higher har- 
monics may be of the third order of small quan- 
tities or less. (O’Keefe, Eckels and Squires 1959, 
Kozai 1959). 

The purpose of the present author is to derive 
the periodic perturbations of the first order and 
secular perturbations up to the second order. 
Therefore terms of higher order than the fifth in 
the potential series may be neglected. 

As the satellite is always on an ellipse, whose 
position and shape are variable, it is convenient 
to express r and ô in (1) by elliptical elements of 
the satellite by the following relations: 

a{i — e2) 
1 + e cos v ’ (2) 

sin 8 = sin i sin (^ + co), 

where G is the gravitational constant and M is 
the mass of the earth. The second and fourth 
terms in the expression of the potential are due 
to the oblate ness of the earth, and the third term 
is due to the asymmetry with respect to the equa- 

where a is the semi-major axis, e is the eccen- 
tricity, i is the inclination to the equator, œ is 
the argument of perigee and v is the true anomaly. 

The disturbing function due to the oblateness 
of the earth is then 
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R = U - GM/r 
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= GM 
[A2(aV I i i . 2 i . 2 . , 
I — I - I \   sin2 z H— sin21 cos 2(v + «) 
L a3 \ r / J 3 2 2 

+ Ï?6)‘I( 8 “•*-;) 
sin (v œ) — I sin2 i sin 3 (y + ai) [ sin i 

- sin2 ^' + g sin4 i + sin2 i ^ _ I • 2 A 
\ 7 2 Sm cos 2 (v + ai) 

+ - sin4 i cos 4(y + 
o 4]. (3) 

The true anomaly, v, is easily transformed to the mean anomaly, M, which is a linear function of time 
in non-perturbed motion, by the differential equation 

dv a- 
dM (4) 

r/a and v appearing in the disturbing function of (3) are then functions of e and M only, and are 
periodic with respect to ikf. Therefore, R is also a periodic function of M and co. In R, terms depending 
neither on M nor on co are called secular, terms depending on co but not on M are long-periodic, 
and terms depending on M are short-periodic. 

As the long-periodic perturbations originate from terms of the second order in R, we must retain 
secular terms and long-periodic terms' up to the second order. However, for short-periodic terms 
we need only terms of the first order. 

Using the following relations (Tisserand 1889) : 

dM = (1 — e2)- •3/2 

(7) sin* - (ï) 

u 

COS 2V = O, 

cos v = e(i — e2) •5/2 

(7) sinî; = (7) C0S 3V = (7) 

(7) = d-e
2)-^(l+le

2), 

sin 311 = o, (5) 

(7)' 
cos 2z> = — e2(i — e2)~7/2, 

4 

/¿Y . (a\ /<z5\ . 
I - I sm 2z) = I - I cos = I — I sin 4^ = o, 

we can pick up only necessary terms by the above criterion as follows : 
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where Ri, Rz and R^ are first-order secular, second-order secular, long-periodic, and short-periodic 
parts of the disturbing function, respectively. 

2. Perturbations of short period. The differential equations representing variations of orbital 
elements are : 

da 2 SR 
dt na dM ’ 

de i — e2 dR 
dt na2e dM 

Vi — e2 dR 
na2e du ’ 

du cos i dR Vi — e2 dR 

dt na2Vi — e2 sin i di na2e de 1 

cos i dR di c 
dt na2^l i 

dti 
dt na2^J i 

(7) 

e¿ sin i dcx) ’ 

e¿ sm t 

dR 
¿ di ’ 

dM 
dt 

= n 
i - g2 dR 2_dR 
na2e de na da ’ 

where n is related to a by n2az — GM. 
To derive short-periodic perturbations of the first order, after replacing R by R4 in (7), one may 

regard a, n, e, i and a> on the right-hand sides of equations (7) to be constant. However, n, appearing 
as the first term of the last equation without any factor, is variable, but it is a known function of 
time, after obtaining the expression of the semi-major axis. True anomaly, v, may be regarded also 
to be a known function of time on the right-hand side, and one can transform the independent variable 
from ¿ to y by 

dt 
dt = vTv dM 

dM 
_i(r\2 

n\a ) Vi 
dv. (8) 

Then, for example, the short-periodic perturbations of the inclination are obtained by, 

'2dR, 
dis = 

COS l 
n2a2(i — e2) sin i in)' do) 

dv. (9) 
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where the integrand can be expressed by a finite trigonometric series and is, of course, integrable 
analytically within the necessary accuracy. The results for the six elements are as follows : 

da. 
(“) 

(i — e2) 3/2 f + I ~ ) sin2 i cos 2(y + co) 
]■ 

des 
i — e2 A 

e a¿ ^ sin2 — i1 — ^2)_3/2| s^n2 ^ cos 2 ^ 

sin2 i A 2 

7 _ Al 
CiO^s ,0 

p 

+ 

2e ap 

^2 — ^ sin2 {v — M + e sin v) 

- e2] sin v 
4 / 

— j COS 2 (y + Cl)) A~ e COS (v + 2Cl)) + ~ ^ COS (3^ "t" 2w) 

1 . e . 
+ - sin 2v — sm 3^ 

2 12 
(, -Li

n,i
:)|i(I _ 

1 Í 1 • 2 ' I / 1 • 2 A 
e \ 4 V 2 16 / 

i / 5 . A . / , N , 1 ( 7 . , . 1 ( !9 . 2 A 
2\2 J J e \ 12 6 \ 8 / 

e2 [ sin (v + 2co) + — sin2 i sin (y — 2co) 1 lo 

e2 \ sin (3Z) + 2co) (10) 

3 ^ + - sin2 i sin (42/ + 2co) + — sin2 i sin ($v + 2co) 
o lo ]• 

dis = ^ sin 2Í I cos 2 (z; + co) + £ COS (y + 2co) + - COS (3^ + 2Cl)) [ , 
4 ^ l 3 

düo = 
,4s 

cos i \ v — M + e sin v — - sin 2 (z; + co) — - sin {v + 2a>) — - sin (3z; + 2co) [ , 

edMs —^Vi — g2|^— ^1 —^sin2^|^i —s^n v + “ sin 2z; + 
12 

sin 3Z) 

•iK'+ïA“' 
+ sin2 j - ( I + 7 e2) sin (v + 2œ) — — sin (z; — 2œ) — ^ ^ sin (3z; + 2co) 

3 ^ 
- e sin (4z; + 2cu) — — sin (5z; + 2co) 
ö lo ]■ 

where 
p = a(i — e2). 

As the mean values of cosjv (j = 1,2, • • •) with respect to M do not vanish, but 

COS JV 
(■ + v,g-70'(1 + ’'V7^î)' 

(11) 

mean values of these short-periodic perturbations are not zero, except for those of a. Their mean 
values with respect to M are : 
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-T- A2 i - e2  
aes = —r sirr t —^ cos 2V cos 2co, 

p2 6e 

dois 
i — e1 

6e2 COS 2V , COS2 Í COS 2V sin 2o), 

dis 
I a2 . .  
 -T Sin 21 COS 2V COS 2co, 
12 p2 

düs = 
i a2 .  . 

— 7—7 COS l COS 2V sm 2CO, 
6 

^Tfs 
A 2 

¥ 
V i — £2 sin2 7 sin 2co. 

(12) 

Therefore, ¿cos — ¿cos, dis — dis, dMs — dMs and — ¿A2S must be the short-periodic 
perturbations whose mean values with respect to the mean anomaly are zero. 

Expressions of the mean anomaly and the argument of perigee are rather complicated, so it is 
better to combine the four elements a, e, co and M into the radius vector r and the argument of 
latitude L = z; + co by the following relations : 

Putting 

dr e - i r da 
— = - -r . . sin v dm + — cos v de, 
a -yj i — ez a a 

a2 i  / r \ a 
dv = — 71 — e2 dM + sin z; I i + — )- de. 

r2 \ P / r 

da = — ^ sin2 7^ Vi — e2 + das, 

j j 3 A2 . 2 . . aco = dois — 7 77- sin21 sm 2co, 
O p¿ 

de — de s 

dM = ¿AT, + I ^ Vi e2 sin2 i sin 2co, 

the deviations of the radius vector and argument of latitude of the satellite, from those computed 
by mean orbital elements are obtained as follows : 

dr 
' a 

dL 

r I 
a Vi — 

i 1 • 2 • / 1 \ + 7 —- sm21 cos 2(v + oi), 
6 ap 

= “—7(1 — - sin2 7/1 — i — - (1 — Vi — c2) cos v + 
3 ap\ 2 J[ eK 

= 2 s^n2 7^ (fl — ikf + £ sin v) 

\ í / 2 \ 1 ^I3 

+ — I sin2 7^| ~e{^ ~ \ ~ ~~ sin z; + g (1 — Vi — e2) sin 2z;| 

— ^ — I sin2 ij e sin (v + 2co) ~ (2 ~~ S^n2 S^n 2 ^ ^ cos2 ^ s^n (3V 2w) J • 
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The secular perturbations of the first order are easily derived by putting R = Ri in (7), as 

A 2 
^2 — ^ sin2 t, ¿ô = coo + -^y^(2 — 7 sin2 i 

Ï2 = 120 — Ty ñt cos i p^ 

M = Mo T ñt, 

A 

P[ ñ ■= no + no (1 -Lin^-) v i — e% 

where co0, Oo and Mo are mean values at the epoch, that is, the initial values, from which periodic 
perturbations have been subtracted, no is the unperturbed mean motion, which is related to the 
unperturbed semi-major axis do by no2aoz = GM. 

It is more convenient to adopt as a mean value of the semi-major axis not do but 

a = do 

so that the following relation holds : 

n2dz = GM (h) 

And to derive the expressions of (13) this value of ä has been already adopted as a mean semi- 
major axis. 

3. A theorem on non-existence of long-periodic terms in the semi-mdjor dxis. As is well known, Poisson 
proved a theorem of non-existence of secular perturbations of the semi-major axis of a planetary 
orbit. However, there are some differences between theories of planetary and satellite motions. 
Because the perihelion and node of an ordinary planet moves around the sun with the period of 
some ten thousand years, one may expand e sin a>, e cos w, i sin 0 and i cos B into power series ol 
time in the planetary theory, so that terms depending only on w and 2 must be regarded to be secular, 
not long-periodic. From this point of view Poisson proved the theorem. Now we observe the motion 
of an earth satellite for a long interval of time, in which the line of apside makes several revolutions. 
So the corresponding theorem in the satellite motion is that there are no long-periodic terms in the 
expression of the semi-major axis. 

Let us transform variables from Kepler’s elements to Delaunay’s canonical ones : 

L = V/ia, 

l = M, 

G = V/xa(i — e2), 

g = w, 

H ~ ^¡¡j.d(\ — e2) cos 7, 

h — 2, 

where ¡jl = GM. 
These variables must satisfy the following canonical equations: 

dL 
dt 

dl 
dt 

d_F 
dl ! 

" dL ’ 

dG 
dt 

dg 
dt 

dF 

dF 
dG’ 

dH 
dt 

dh 
dt 

dF 
dh ’ 

dF_ 
dH’ 

where 

F = ^ + R- 

(15) 

(16) 
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Since F does not depend on h, there is an integral H = constant. Variations of the semi-major 
axis are represented by : 

dL dF dRi 
dt ~ dl ~dl’ 

where /¿2/2L2, Ri, R2 and Rz are omitted in F because they do not depend on /. 
Long-periodic perturbations of the first order of L will come from long-periodic terms of the 

second order of dR±/dl, which may be expanded into Taylor’s series, 

where terms of higher than the third order are neglected and in parentheses l, L, g and G are replaced 
by their respective mean values, l = ñt U, L = Lo, g := + go and G = G; dl, dL, dG and dg 
are deviations of instantaneous values from their respective mean values and are of the first order. 
ñ and g are secular motions of the mean longitude and the longitude of perigee, and are supposed 
to be known. 

In equation (17) one must consider only long-periodic terms of the second order, and after inte- 
grating with respect to time only such terms of the first order, omiting other terms. The first term 
of (17), dR±/dl, cannot have any long-periodic terms of any order, so must be omitted. As R± depends 
on t only through M within the accuracy of the first order, the following relations hold : 

dL 

J V dldG J ñ \ dG / ’ J \ dldg ) ñ\ dg )' 

Integrating dR^/dl in (17) with respect to time by parts using the relations (18), one has 

dR, , 

(18) 

i {[(dRAdL , (dRAfdl \ , ZdRAdG , fdRA/dg \ 
ñ J \ \ dL ) dt + \ dl )\ dt nj + VdG,U+\dg/L¿ g ) 

dt. (19) 

After integration the first part contains only terms of the second order, so can be omitted. The 
second part is transformed to 

+ 
(fXfMf )(f)] 

dt 

fdn(^)dt. (20) 
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By using the relation nU = const., this equation is written as 

- á - ¿z{Rfí- 
(21) 

Since the terms are all of the second order after integration, one can conclude that there are no long- 
periodic perturbations of the first order in the expression of the semi-major axis. Of course there 
are no secular terms in the semi-major axis. 

4. Secular perturbations of the second order and long-periodic perturbations. Let Ei be one of the six 
orbital elements of a satellite, and express its variation by the differential equation 

dEj 
dt ~ U' 

(22) 

A function /¿ may be expanded into a power series of deviations from the mean orbital elements as 

f(23) 

Secular perturbations of the second order and long-periodic perturbations of the first order will come 
from the terms of the second order on the right-hand side of (23). However, the complete first order 
expression of dEj is not yet known except for da. By integrating equation (23) by parts as in the pre- 
vious section, there holds, 

where 

L LF.jdEj-] 

F - = j ij dt. 

If Ei is the inclination, i, for example, 

U = 
cos i dR 

na2^I — e2 sin i 

(24) 

In this case dfi/dEj has neither long-periodic nor secular terms as far as the terms of the first order 
are concerned. As it is easily proved that i and e cannot contain any secular terms, ^jFijdEj can 
be omitted from the equation of the inclination, because this is of the second order and has no 
secular terms. 

Therefore all terms on the right-hand side of (23) for the inclination are known and long-periodic 
terms can be picked up by using the following relations (Tisserand 1889) : 
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(“) 

=(i - at9/2(i+3e2+f<?
4), 

cos v = 2e(i — e2)~9/2 ^ ^ > 

(t)' 
cos 2v = — e2{i 2 V - e2)_9/2 + i e2), 

(“)' 
cos 2)V = — {i — e2) 9/2, 

(;)' 
cos 4z> = — C1 — e2) 9/2, 

cos jv = o, (J > 4), 

(“J = (I - e2)_3/2, 

(7) cos» = (! _ g2)-3/2i 

cos> = o, (i > 1). 

Then the expression of long-periodic perturbations of the inclination are derived as : 

14-15 sin2 i A4 18-21 sin2 i — A 2 e2 sin 2i 
1,1 ~ ls ^)2 8(4-5 sin2 7) 

cos 2co — - -^-7 e cos i sin a>. (25) 
4 A 2p 

Now there is an integral, Va(i — e2) cos i — const., and it has been already proved that there are 
no long-periodic perturbations of the first order in the semi-major axis, so dei, the long-periodic 
perturbation of the eccentricity, is 

de i = 
— *2 e¿ sin 2 

cos t 
- dii 

des T 
A 2 e sin2 i f 14-15 sin2 i A4 18-21 sin2 i 
pa 4(4-5 sin2 i) 

i 3 ^3 ... , .v cos 2a> + - — sin t sin a?. (26) 
4^42a 

However, the same principle cannot be applied to obtain the expressions of the node and the 
argument of perigee, because in these cases dfi/di, dfi/de and dfî/da have secular terms. But 
fortunately complete expressions of di, de and da have already been derived. And since it is also 
proved that Ffadu and FjMdM do not include secular terms, the following expressions are derived : 

L 2 _ 
Ù = — — n cos ^ i + 

V2 L 
^2 f 3 , ^_2 

2 6 
2V1 

in2 i ^ A4 . 12-21 sin* 
— -—7 n cos t  

ÿ4 14 1+72 

)■ (27) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
59

A
J 

 6
4.

 . 
3 6

7K
 

376 

-4 2 _ 
u = ~^n p2 ^2 — ~ sin2 ^ + 
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ÿ2 + - - 2V7AT 

-sin’*(S“5“3Vi“9l]“Ä 
• cos4 7 

^4 
P* 

1 * 
[7 

12 Q3 . . 21 - — sin2 7 + — sin4 i + e2 

14 4 ^ 
/ 27 189 81 \1 
Vh“^81112^^81114^’ (28) 

where ï and e are mean values of the inclination and the eccentricity over all the periods, and 

p = ä(l — ë2). 

A2 è 

P* 2(4- 

?2 cos i r 
-5 sin2 i) [_ 

7-15 sin2 i A a 9-21 sin2 i 

+ 
5 sin2 i J 14-15 sin2 i A4 18-21 sin: 

2 (4-5 sin2 i) 
m2* 1 . , 3 243 cos* 
  M sin 2co H 7— ;—e cos co, (29) 

IJ 4 ^4 2/? sin * » \ 

dcoi — dcx)s 
3A2 . 
8 p2 sin2 i sin 200 

A 2 

~¥ L 4-5 sin2 i 

A±(l 

A2
2 V 

14-15 sin2 ¿ . , 28-158 sin2 ¿ + 135 sin4 í 
 sin21 — e2  24 48 

8—21 sin2 i . „ 36-210 sin2 7 + 189 sin4 7 
• sim i 

e2 sin2 ¿(13-15 sin2 i) ( 14-15 sin2 i 
(4-5 sin2 7)2 

) 

( I4-I5sin27 244 18-21 sin2 7 \ ~| . 

V 24 -^7 ^ jjsi 
sin 2co 

3 24 3 sin2 i — e2 cos2 * 1 . . 
+ - -rr  ^^ cos co. (30) 

4. A 2p sim e 

It is very difficult to derive the long-periodic perturbations of the first order of the mean anomaly 
because the long-periodic perturbations of the second order of the semi-major axis are not known. 
However, usually the atmosphere of the earth changes the mean motion of the actual satellite so 
much that any long-periodic variations of the mean anomaly cannot be detected from observations 
with good accuracy. 

The results are then : 

a — a das, a = do 

e = ë + des — des + dely 

* — * T dis — dis T di i. 

co — coo T T dois — dois T doiiy 

Œ = í2o T 4“ düs — düs T 

ikf = Mo ñt dMsj ?* = j i + ~ 2 s^n2 ^ 

no2a0
z = GM, 

(31) 
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where e and l are mean values with respect to M 
and cu, and ojo, and Tfo are initial values from 
which periodic perturbations have been sub- 
tracted. On the right-hand sides of these expres- 
sions one must always use constant mean values 
as a, e, i, a — œt, Q, — Ùt and M — ñt. 

5. The case when the inclination or eccentricity 
is very small. In the previous sections it is as- 
sumed that 4-5 sin2 i, i and e are not very small. 
If e is very small, periodic perturbations of M 
and co become very large. However, in the case 
of the short-periodic perturbations the difficulty 
will vanish, if elements are transformed from M 
and co to r and z; + co. 

For the long-periodic perturbations the vari- 
ables must be transformed from e and co to 

^ — e cos co, 

r] = —e sin co. 

These variables must satisfy 

di; dR 
dt 07] 

— COT] 
3^3 . Ys . ,. \ 
 sin ^ l -sm21 — I ), 
2 a* \ 4 / 

df] dR 
(32) 

where 
CO — cot COO. 

The variation of the eccentricity is expressed by 

3 ^3 ... . - e = — sm 2 + eo sm co. 
4 aA z 

In this case düx = dii = o, because they have a 
factor e. 

When the inclination is very small, instead of 
co, the longitude of perigee, tt = co + Í2 is adopted. 
The longitude of perigee moves secularly as 

where 
7T = 7T¿ + 7T 0, 

A 2 _ 
zr = n. pa2 

where co has the same value as in the previous 
section. 

The solutions of these equations are 

e cos co = 60 cos co, 

. - . 3 -43 . . 
e sin co = £0 sin co + — sm 1. 

4 2 

The variations of i sin Í2 and i cos Q are derived 
as in the previous case as 

• • o • • f> i 3 ^3 t sm 12 = t0 sm 12 + - —— e cos tt, 
4. A 2p 

O • Ô _1_ 3 -43 . i cos 12 = to cos 12 + - —7 e sm tt, 
4 A 2p 

where 
12 = 12¿ + 12o. 

If io is much smaller than 3eAz/4A2p, then 

4 A 2pio 
12 — tt T 900 

3 Az 
■ cos (tt — 12), 

eo and coo are constants of integration. 
If eo is much smaller than 3^3/40^2, which is 

of the first order, the argument of perigee cannot 
move around the earth completely, but oscillates 
around the value 900 as follows : 

4. aA2eo 
co = 90 + —^^—: cos co. 

3 A3 sm ^ 

• 3 ^3 , . . m i ^ ~ TT e + to cos (tt — 12). 4 A 2p 

I am grateful to Drs. Don A. Lautman and 
Gen-Ichiro Hori who kindly read the manuscript. 

REFERENCES 
Kozai, Y. 1959, Smithsonian Astroph. Obs., Special Rep. 

No. 22. 
O’Keefe, J. A., Eckels, A. and Squires, K. 1959, A. J. 64, 

24-5- 
Tisserand, F. 1889, Traité de Mécanique Céleste, Vol. 1. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 


	Record in ADS

