SURVEY OF ASTEROIDS* G. P. Kuiper, Y. Fujita, T. Gehrels, I. Groeneveld, J. Kent, G. Van Biesbroeck, and C. J. Van Houten Yerkes and McDonald Observatories Received December 31, 1957 #### ABSTRACT A systematic survey of asteroids down to photographic magnitude 16.5 is described. The ecliptic belt was photographed nearly twice around in 1950–1952, to a width of 40° . The 10-inch f/7 Ross-Fecker telescope on loan from the Cook Observatory was used, and 1094 pairs of plates were taken, each 8×10 inches in size and covering $6^\circ 5\times 8^\circ.1$. In addition, 149 plates were taken on Selected Areas for magnitude calibration, as were special sequences for the determination of field corrections, etc. The plate pairs were blinked independently of previous knowledge and only afterward were re-examined for known objects missed. The asteroids found were measured for position, daily motion, and magnitude; and the subsequent identification work with the Ephemeris asteroids and objects having provisional designations was done with great care. The statistics of the Survey are summarized in Table 1. Previously announced objects, not found in the Survey and either below the plate limit or, in some cases, probably spurious, are listed in Table 2. Asteroids missed because they were outside the 40° belt are given in Table 3. Ephemeris asteroids not found, presumably because they were too faint, are listed in Table 4; in addition, 182 objects were not observed because they were definitely too faint. Six new objects are probably Trojans. For 2 of them and for 2 other new asteroids, circular orbits are given in Table 5. For 33 additional new objects our data suffice to compute circular orbits; they are listed in Table 6A. The measures resulting from the Survey are contained in Table A. The positions have a probable error of about $\pm 3''$. The Survey magnitudes of Table A are combined with other magnitude data in Table 7. This table is on the International Photographic System and represents the final compilation of this paper; both the mean photographic opposition magnitude, p_0 , and the absolute magnitude, p_0 , are given. The resulting magnitude system was calibrated photoelectrically afterward, and the scale was found to be precise over the entire range, 7–16 mag. Table 7 is recommended for future use, with one reservation: for some three hundred fainter asteroids, present data are still inadequate; for these objects new measures will be published as Paper VIII. It was found that magnitudes derived during a single opposition are not representative, no matter how accurate, because of fluctuations due to the aspect of the asteroid amounting to about ± 0.11 mag. (p.e.). This comparatively large effect indicates that a good fraction of the asteroids have large obliquities. The importance of good magnitudes in future identification work is stressed. Numerous controls and re- visions were made which are described in Section IX. The results of the Survey are not limited to an inventory for the years 1950–1952 of asteroid positions, identifications, and magnitudes on the photometric system. Since the blinking was carried out independently of previous knowledge, the *completeness* of the Survey could be determined in two independent ways: from overlapping Survey regions and from comparison with the Ephemeris asteroids. The degree of completeness of different Survey fields is found in Table 11; the asteroid numbers corrected for incompleteness are given in Table 12; and a quadratic interpolation formula representing these numbers as a function of apparent photographic magnitude is given in equation (5). The representation of the data by equation (5) is shown in Table 13. The counted numbers in the 1957 Ephemeris, arranged by mean opposition magnitude, p_0 , are found in Table 14. The figures are essentially complete for $p_0 < 14.5$. The representation by two interpolation formulae, equations (6) and (7), is also given in Table 14. These formulae are estimated to give approximate minimum and maximum numbers of asteroids for 14 < $p_0 < 18$, and lead to estimates of the completeness factors of the Ephemeris asteroids for this interval (Tables 16 and 17 and Fig. 4). These factors, in turn, are used in Tables 15 and 19 to derive the distributions in absolute magnitude, g, for six distance groups of asteroids 1.85–2.00–2.60–3.00–3.50–4.30 astronomical units and the Trojans. The results for the three main zones, between 2.0 and 3.5 a.u., are plotted in Figure 5. Remarkable population differences are found, and the frequency-curves appear to consist of two parts, separated by a flat portion near g = 11, which corresponds to asteroid sizes near d = 30 km. One could surmise that this flat portion separates two modes of asteroid formation (condensation by accretion and collisional breakup), but it is considered premature to conclude this. Because of the population differences between the zones (Fig. 5), the center of gravity of the asteroid zone shifts toward the larger a-values for increasing ^{*} Contributions of the McDonald Observatory, No. 284. g (smaller sizes). The ring 3.0 < a < 3.5 contributes 23 per cent of the 2.0 < a < 3.5 ring for 4.0 < g < 8.0; 39 per cent for 8.0 < g < 10.0; 70 per cent for 10.0 < g < 11.0; 89 per cent for 11.0 < g < 12.0; and 95 per cent for 12.0 < g < 13.0; the geometric-mean diameters of these five subgroups are about 300, 80, 40, 25, and 15 km. This result has important implications for the collisional production of meteorites. 80, 40, 25, and 15 km. This result has important implications for the collisional production of meteorites. The results for the fringe zones are as follows. The 3.5 < a < 4.3 group, of which 27 members are known, allows a fair analysis, which shows this group to have the same composition with g or diameter as the main asteroid zone (range $8\frac{1}{2} < g < 12$), with an abundance of 3 per cent of the main zone. The 1.85 < a < 2.00 group, with 11 known members, is inadequate for statistical treatment. Around g = 14 the abundance appears to be about $\frac{1}{2}$ -1 per cent of either the 2.0 < a < 2.6 or the 2.6 < a < 3.0 zone, but at g = 15 the fraction seems smaller. The Trojans ($a \cong 5.2$) are represented by 13 members, but their degree of completeness is uncertain because of special searches that have been made for them. Because of the rapid increase of faint asteroids, it is not possible at this time to estimate the total mass of the asteroid ring. ### I. PURPOSE AND PLAN OF SURVEY A very large amount of observational and computational work has been done on asteroids, particularly during the last half-century; but this great effort has not included a systematic photographic survey, coupled with a determination of the asteroid magnitudes on a photometric system, as is required for statistical studies of the asteroids. The present Survey was organized by Mr. Kuiper with the aim of supplying such information. The photographic survey became feasible through the co-operation of Dr. Charles Olivier and the University of Pennsylvania, who agreed to make the 10-inch (f/7) Ross-Fecker telescope of the Cook Observatory available on a loan basis. A 5- and a 4-inch telescope of the same design are placed on the same mounting. The instrument was transported by our staff to the McDonald Observatory in the summer of 1949. After complete overhaul, largely by Mr. A. Shatzel, and the installation of a new crystal-controlled drive, the telescope was put into operation in June, 1950. The cost of shipment and repairs, as well as that of a new fireproof housing equipped with a sliding roof, was covered by a grant made by the Research Corporation of America. Two brief preliminary reports on the Survey have been published. The first is incorporated in the 1952 Report of Commission 20 of the International Astronomical Union (1954), which had appointed a subcommittee under Professor A. Kopff concerned with the improvement of the magnitude system of the asteroids. Professor Kopff recommended that no changes in the Ephemeris magnitudes be introduced prior to the completion of the present Survey (op. cit., p. 291). The other report was issued by Groeneveld and Kuiper (1954, pp. 200–201). ### II. OBSERVATIONS Tests of the remounted telescope in June, 1950, showed that the four components of the objective were not aligned. Later it was found that this had been caused by shrinkage of the hard-rubber separators between the lenses. Mr. Kuiper spent about a week at the McDonald Observatory in efforts to realign the components, after which the performance was considered adequate for a program using plates no larger than 8×10 inches. Since the full 20×24 -inch plates for which the telescope was designed could not be used in the blink comparators at the two observatories in any case, it was decided to proceed with the program, using 8×10 -inch plates. This plate size, covering 6.5×8.1 of the sky, plus the requirements of overlap between consecutive monthly oppositions, led to the following observing program. During each dark of the moon, a field $40^{\circ} \times 40^{\circ}$, centered on the opposition point computed for new moon, was to be taken, covered by approximately 48 plate pairs. The number was not quite constant because of the eccentricity of the moon's orbit and the resulting non-linear motion of the above-mentioned opposition point. The long dimension of the plates was always placed north-south, and 8×6 adjacent plate fields sufficed to cover the $40^{\circ} \times 40^{\circ}$ field. This provided an overlap of about 10° in R.A. between consecutive months and some overlap between adjacent plates. Twelve $40^{\circ} \times 40^{\circ}$ fields covered the entire ecliptic belt to a width of 40°; thereafter, the opposition fields would essentially repeat themselves. The oppositions were called A, B, \ldots, X
, and the plate fields were designated by two digits, the first for right ascension and the second for declination. The plate field B26 meant the southernmost field in the second strip of R.A. of opposition field B. It was found that 10-minute exposures caused very little trailing of the asteroid images and that an interval of 1 hour was adequate for the discovery of asteroids in the blink comparator. Accordingly, 10-minute exposure times on 103-aO plates were used, which led to a limiting magnitude of 16.5-17.5 pg for the faintest visible stars and 16.0-17.0 for discoverable asteroids. This limit did not include the faintest known asteroids, but this was regarded as inevitable. The plates were taken in the order, e.g., B11, B12, B13; B11, B12, B13; B14, etc. This allowed 10 minutes for changing between fields. Later, as the observer became more experienced, four or even five plates would be taken consecutively before the second set was started. The plate centers were selected on suitable guiding stars, preferably not fainter than the eighth magnitude. This made the plate centers depart slightly from the desired geometric pattern, but this caused no serious problem. The roughly 430 plate centers were selected by Mr. Kuiper, and the observing charts were prepared under his supervision. The plates of each pair were designated by the field number, followed by a and b. The displacement of consecutive monthly opposition fields being about 30°, two of the eight plate strips in R.A. were repeated as part of the next month's program. Plate fields may thus have two designations: e.g., E83 = F23. After the ecliptic had been covered once, the plate fields were repeated with their new designations; thus field B became field N during the second cycle. In all, 23 consecutive monthly oppositions were covered, called B-X, the surveys on field A were too incomplete to be useful, and even the B and C fields were only about two-thirds complete. Since the synodic period of an asteroid at 2.8 a.u. is 15 months, nearly half the asteroids in the 40° zone were covered twice by the present Survey. The selected belt width of 40° was, of course, a compromise. Some objects of high inclination were thus not included; but increasing the width for complete coverage would have meant a disproportionate increase in the amount of work. The observations were made almost entirely by two night assistants—first, Mr. W. C. Braun and, after February, 1951, Mr. H. Rubingh. The observing program for each opposition field had to be carried out within 2 or 3 hours from midnight, during an interval of about 2 weeks (the dark of the moon). Since about 96 asteroid plates and at least 10 calibration plates on Selected Areas had to be taken, this meant that, depending on the declination, 7–9 perfect nights were needed for each monthly quota. Periods of bad weather, of course, caused difficulties, and it was only just possible to maintain a record of unbroken observations for the entire period of 23 months. With a climate less satisfactory than that at the McDonald Observatory, this assignment would have been impossible. However, the record is by no means perfect. The observers had often to compromise and use nights which were not of standard quality. This has resulted in some loss of uniformity in the Survey. This trouble would have been reduced if larger plates could have been used. Another source of lack of uniformity is the variability of the photographic emulsion. Five opposition fields were taken on plates that showed chemical fog (M-Q). While the image quality and the guiding were, on the whole, satisfactory, the images near the corners of the plates were not good, and this will have led to some loss of limiting magnitude. The total number of plates taken between August 10, 1950, and May 26, 1952, is 2404. This includes 1094 pairs of plates taken with time intervals varying between 50 and 90 minutes and 149 plates centered on Selected Areas. The latter were taken for magnitude calibrations of the asteroids; at least one was taken each night. The remainder consists of rejected plates and incompleted pairs, usually caused by intervening clouds. The statistics of the entire material are found in Table 1. It will be clear that the unbroken series of observations extending over about 2 years required unusual energy on the part of the observers. We are much indebted to Messrs. Braun and Rubingh for their devotion to this project. # III. THE BLINKING OF THE SURVEY PLATES The asteroids were found by blinking the plates in the blink-comparator. The blink observers are listed in Table 1. The number of asteroids found on one plate varied between 0 and 18, and the average was 3. In these numbers the results of reblinking are included. The efficiency of the blinking depended on the scanning speed; high speed resulted in the missing of faint asteroids. Plates taken in regions with a dense star background took 3–5 hours to blink; far from the Milky Way the time approached 2 hours. As expected, the probability of finding the asteroids showed a magnitude dependence, but TABLE 1 STATISTICS ON THE ASTEROID PROGRAM | | | | Овл
Fou | | | Asteron
Found† | | | FAINT- | | | |--|---|--|---|---|---|--|--|--|--|--|------------------| | FELD | Opposition | PLATE
PAIRS | Total | By
Re-
exam. | Ident. | Un-
ident. | Per
Cent
Un-
ident. | Av.
PER
PLATE‡ | EST
MAG.
MEAS-
URED | BLINKED
BY§ | Re-
marks | | B
C
D
E | 1950 Aug.
Sept.
Oct.
Nov. | 32
30
52
50
45 | 83
88
143
128
119 | 10
13
29
21
15 | 53
55
95
74
75 | 8
17
25
21
12 | 15
24
21
22
14 | 2.6
2.9
2.7
2.5
2.6 | 16.1
16.3
16.4
16.5
16.3 | Fu
Fu
Fu
Fu
Fu | | | F G | Dec.
Dec.\
1951 Jan.∫ | 51 | 153 | 31 | 82 | 29 | 26 | 3.0 | 16.5 | Ke | | | H | Feb. Mar. MarApr. AprMay May-June June-July July-Aug. AugSept. SeptOct. OctNov. | 59
37
62
46
49
50
48
48
45
50 | 131
123
191
159
130
108
95
105
65
90 | 21
07
18
16
14
31
25
15
22
| 78
67
114
90
74
78
69
65
47
61 | 22
31
31
18
30
09
03
10
06
04 | 22
32
21
17
29
10
06
13
12
06 | 2.2
3.3
3.1
3.5
2.7
2.2
2.0
2.2
1.4
1.8 | 16.6
16.9
16.8
16.6
16.2
16.4
15.8
15.9 | Th, Ge Gr Gr, Th Gr VH Th VH Th VH Th VH | 1
1
1
1 | | R S T | NovDec. Dec. 1952 Jan Feb. | 32
41
73 | 160
238
207 | $egin{array}{c} 60 \\ 20 \\ 64 \\ \end{array}$ | 59
103
112 | 69
81
46 | 54
44
29 | 5.0
5.8
2.8 | 17.0
17.4
17.6 | Th
VH
Th | 1
2
2
2 | | $egin{array}{c} U \ldots \ldots \ V \ldots \ldots \ W \ldots \ldots \ X \ldots \ldots \end{array}$ | Feb.
Feb.
Mar.
Apr.
May | 55
36
- 53
50 | 254
128
223
126 | 54
27
26
| 138
72
110
71 | 69
21
65
26 | 34
23
37
27 | 4.6
3.5
4.2
2.5 | 16.7
16.6
17.2
16.6 | Th
Th
Th, VH, Gr
Gr, VH | 3 3 3 | | Total program | | 1094 | 3247 | | | | 26 | 3.0 | | | | ^{*} All objects numbered on the plates. [†] Asteroids found, excluding recurrences within an opposition field. [‡] Refers to number of Objects. [§] Fu = Fujita; Ge = Gehrels; Gr = Groeneveld; Ke = Kent; Th = Thorson; VH = Van Houten. ^{| 1 =} poor plates; 2 = excellent plates; 3 = some poor nights. [#] See text. personal effects played a role also. A dense sky background was a disturbing element, and especially in the southernmost fields (near 18^h R.A.) this posed a problem. Also the quality of the images (fuzziness, trail), the proximity of stars, and local plate fogging had their influence. Under favorable conditions and with proper care it was possible to get an almost complete inventory down to about 1 mag. above the plate limit. This was accomplished only rarely, however. Further, there was some difference in appearance between the left and the right fields of the blink microscope, which could not be readily corrected. Besides, for plates taken at low altitude, differential refraction caused some scale variation. In a program of this size it is not possible to avoid all spurious objects. The working lists of suspected asteroids were made to include, obviously, only such image pairs as seemed real by careful inspection at the blink microscope and as showed retrograde, asteroidal-type motions. About two-thirds of the image pairs recorded could be checked afterward because of overlapping plate fields, either within the same opposition field or between consecutive monthly oppositions. These checks were always made when possible and resulted in the rejection as spurious of about 2 per cent of the image pairs. In some cases the check was inconclusive because of differences in the limiting magnitudes of the plates; these objects were retained if they looked real, in spite of their absence on the companion plates. Any remaining spurious image pairs will appear as unidentified objects in our tables; on the basis of the overlapping fields, their total number may be of the order of 20. The counterpart of inclusion of spurious
image pairs is the omission of real asteroids. The completeness of the Survey may be checked from the overlapping areas and by comparison with the lists of previously known asteroids. Table 1 shows that 74 per cent of the retained image pairs can be identified with asteroids that are either numbered or had previously assigned provisional designations. However, a number of objects with provisional designations could not be detected on our plates in spite of the fact that the published magnitudes indicated that they should have been present. This matter is discussed in Section V. The total task of blinking the nearly 1100 pairs of plates was very large and arduous, and more than one-third of it was carried out by Mrs. Helen E. Thorson. We are much indebted to her for her great contribution to this program. ## IV. THE TEN-DAILY MOTIONS The ten-daily motions were determined with an eyepiece micrometer attached to the blink comparator, from measurements of the displacements in polar co-ordinates. The screw value was calibrated three times independently, with accordant results. However, the measures show small systematic plate errors in R.A. The angles were measured with respect to one edge of the plate; this assumes that the non-parallelism of the meridians may be neglected up to $\pm 40^{\circ}$, which is a rough approximation, although not too serious if the motions are used for identification only. The B, C, D, E, and F fields were measured by Mr. Kent; and the remaining 18 fields by Mr. Van Houten and Miss Groeneveld. The measures are recorded in Table A, below, the main table of observations. Survey numbers followed by X were found by reblinking; the column "VAR" gives O-C in declination computed from O-C in R.A. by using the variation. In a few fields (e.g., G, H, I, R, and S) some Survey numbers were inadvertently used twice, in separate observing runs; e.g., G76.3 = 1136; G76.3 = 667. ### V. THE IDENTIFICATION PROBLEM Approximate positions (to about $\pm 1'$) were determined for nearly all asteroids found, by comparing the plates with the BD or CD charts or by measuring the plates with a scale, starting from a known BD star. These positions, together with the measured daily motions and rough magnitudes, were compared with the Ephemeris positions of the "numbered" asteroids (i.e., those in the Ephemeris); for 1950 and 1951 the Cincinnati edition was used, and for 1952 the Russian edition. Uncertain identifications are given in Table 6B. In some cases improved ephemerides were available and used; these are contained in Table 6C. The positions for the Survey dates were computed from the Ephemeris graphically or by using second differences in the interpolation. Account was taken of the variation line. Additional criteria for identification were the daily motion and the magnitude, though the latter was not very reliable. The largest O - C found was 29 minutes, and several were in excess of 20 minutes. The ten-daily motions for the fields B-F are of low accuracy; they were in part remeasured, when special identification problems arose. In addition, comparisons were made with published positions of "unnumbered" asteroids (i.e., asteroids having provisional designations). When these objects had not been found during the blinking of the plates and should have been above the plate limit according to the published magnitudes, the plates were re-examined, provided that the time interval was less than 5 days, unless these objects had published motions as well, in which case the allowed interval was increased. These positions were taken from the Minor Planet Circulars (MPC) issued by the Minor Planet Center at Cincinnati. Furthermore, ephemerides for unnumbered asteroids were occasionally available, also taken from the MPC's. Finally, Dr. Herget generously made available his "Index" of asteroid positions, arranged in order of asteroid number. This Index has proved most helpful in both the identification work and the study of the magnitudes. Within the list of Survey asteroids itself, there were many cases of the same object, known or unknown, having been observed more than once. Identities of objects found on different plates of the same opposition field were established by superposing the overlapping regions and correcting for motion where necessary. For identities of new objects in successive opposition fields, the ten-daily motion was extrapolated. Miss Groeneveld and Mr. Van Houten shared equally in the identification work and are responsible for the identifications assigned; preliminary work on the first five opposition fields had been done by Messrs. Fujita and Kent. Table A contains the results. After the plates had been blinked and all identifications made, the plates were reexamined for the following groups of missing objects: (a) "numbered" asteroids that were not found on the plates and (b) "unnumbered" asteroids, found at other observatories but missed on our plates, although taken within 5 days from the published positions (cf. three paragraphs above). For group a the plates were reblinked around the Ephemeris position and, if necessary, along the variation line up to a distance of roughly 3° in each direction. If the asteroid was still not found, it may have been too faint or covered by star images or have an ephemeris that was grossly in error (say, more than 8^m in R.A.). For the good fields, objects looked for in the re-examination included all asteroids, numbered and unnumbered, which were expected to be 16.5 photographic or brighter on the International scale. For the Q field, which had strong chemical fog, the limit 15.5 was used, and for the M-P fields, which were less fogged, 16.0 mag. A similar limit was used on some inferior plates of other fields. For objects in group b the searches were confined to about 1° from the expected position. Several of these objects could not be found, in spite of the fact that the time difference was small enough and the magnitudes probably bright enough; a list of such objects (not claimed to be complete) is given in Table 2. Some of these published objects may not have been real. The measurements are collected in Table A, which was printed at the Cincinnati Observatory under the direction of Dr. Herget from the data sheets prepared at Yerkes. The statistics of the Survey are shown in Table 1. The number of "objects found" includes recurrences within the same opposition field, while the number of "asteroids found" counts each object only once. The column "Ident." gives the number of asteroids that could be identified within a given opposition field (either "numbered" or "unnumbered"); recurrences between different opposition fields may occur, so that the total of the column "Ident." is larger than the total number of identified asteroids. Also, the numbers listed under "Unident." refer to different objects of the same opposition field, because adjacent plates were always sufficiently close in time to identify new objects common to both plates. The percentages of unidentified objects are therefore correct, except for the occasional inclusion of a spurious image pair, already referred to. The Q and X fields were only partly blinked; most of the Q plates were badly fogged, while 12 pairs of the X field appeared to have been tilted during the exposures, causing them to be partly out of focus. These defective plates were not blinked independently but were used only to locate the known asteroids. For these reasons, only the total numbers of asteroids found are given for these fields; and the percentage of unidentified asteroids is not representative, particularly for the Q field. TABLE 2 UNNUMBERED ASTEROIDS ANNOUNCED BY OTHER OBSERVATORIES BUT NOT FOUND IN SURVEY | Preliminary
Designation | Mag.* | Institution | Preliminary
Designation | Mag.* | Institution | |----------------------------|---|---|----------------------------|--|--| | 1950 OE | 15.5 pg
14.2 astr.
15.5 pg
15.2 pg
14.9 pg
14.8 pg
14.2 pg
15.1 pg | Indiana Indiana Indiana Indiana Heidelberg Indiana Indiana Indiana Indiana Indiana Indiana Uccle Uccle Nice Nice Johannesburg | 1951 WF | 14.0 astr. 12.5 astr. 15.6 pg 14.3 astr. 14.5 astr. 14.4 astr. 14.0 astr. 14.4 astr. 14.0 astr. 14.6 astr. 14.6 astr. 14.1 astr. 14.5 astr. 14.5 astr. | Nice Nice Indiana Heidelberg Nice Nice Nice Nice Heidelberg Heidelberg Heidelberg Heidelberg Heidelberg Heidelberg Heidelberg La Plata | ^{*} pg is approximately on the International scale; astr. on the Ephemeris scale (needs correction of about +2 mag.). If the recurrences in Table 1 are allowed for, a total number of asteroids, numbered, unnumbered, and new, is estimated to be 1550. Of this total, 1167 are numbered asteroids. The 1952 Ephemeris contains 1568 numbered asteroids; the 1956 Ephemeris, 1605. By February, 1956, the count had reached 1615. These additions to the numbered objects could be included as such, because of the current information supplied by the MPC's, including observations and ephemerides of unnumbered objects. It should be pointed out that not all 1615 numbered asteroids have published ephemerides. In the 1956 edition there are 15 objects without ephemerides (155, 330, 452, 473, 525, 531, 612, 682, 719, 724, 831, 843, 864, 879, and 903), most of which have not been observed for decades and may in fact be identical with unnumbered or even numbered asteroids. As stated before, 23 monthly oppositions were taken, although the synodic period of
an asteroid at 2.8 a.u. is 15 months. As a result, some asteroids were covered twice by the Survey, while others were covered once; further, they must have been either inside or outside the Survey fields and, if inside, either above the plate limit or below it (outside, bright, or faint). For asteroids at longitudes covered twice, all six combinations between o, b, and f occur; the three oo, bb, ff are classified as o, b, f, occurring singly; while ob and bf were counted in Table 1 as b and of as f. Of the 1615-15 = 1600 asteroids, 111, or 7 per cent, were outside the regions photo- graphed in the Survey, according to the ephemerides; they are listed in Table 3. Further, 182, or 12 per cent of the 1489 objects within the boundaries of the Survey, are found to have been too faint for our plates at the time of observation by the magnitude criteria stated before. It is noted, in this connection, that asteroids marked 15.0 mag. in the Ephemeris are, in reality, about 17.0 pg. Two asteroids (561, 920) appear to have been lost between adjacent plate fields. There remain 137 numbered asteroids within the boundaries of the Survey (9 per cent of the 1489) that were at least once above the supposed plate limit but were not found. They are listed in Table 4. It appears that most of these objects are close to the plate limits; none of them were expected to be brighter than 14.0 and only 11 were expected to be brighter than 15.0 mag. Intrinsic variability plus the large accidental error of the magnitudes in the Ephemeris, coupled with the rapid increase of asteroid numbers with increasing magnitude, will have caused some objects actually below the plate limit to have come out above it according to the reduced magnitudes. The five fields M-Q account for 38 per cent of the cases; the limiting magnitude TABLE 3 ASTEROIDS OUTSIDE REGIONS PHOTOGRAPHED | | | | | | 1 | Ī | |-----|-----|-----|-----|------|------|------| | 2 | 323 | 605 | 768 | 978 | 1166 | 1362 | | 25 | 329 | 617 | 771 | 998 | 1170 | 1373 | | 36 | 372 | 626 | 779 | 1019 | 1191 | 1437 | | 85 | 386 | 634 | 785 | 1025 | 1208 | 1474 | | 89 | 391 | 663 | 787 | 1031 | 1215 | 1477 | | 99 | 413 | 679 | 806 | 1035 | 1222 | 1508 | | 130 | 433 | 692 | 849 | 1036 | 1241 | 1509 | | 132 | 434 | 697 | 860 | 1049 | 1252 | 1521 | | 157 | 471 | 704 | 862 | 1050 | 1263 | 1547 | | 164 | 475 | 706 | 880 | 1093 | 1264 | 1548 | | 170 | 483 | 714 | 881 | 1101 | 1276 | 1566 | | 176 | 493 | 729 | 911 | 1103 | 1303 | 1568 | | 181 | 536 | 733 | 926 | 1108 | 1310 | 1584 | | 225 | 564 | 747 | 930 | 1139 | 1317 | 1585 | | 290 | 594 | 751 | 950 | 1140 | 1318 | 1612 | | 292 | 596 | 754 | 977 | 1146 | 1341 | | | - 0 | | | | | | | on these fogged plates may have been slightly overestimated. Other objects may have large O-C compared to the Ephemeris and may instead be listed among the unnumbered asteroids. A few objects may have been missed even in the reblinking. From the daily motion, 6 new objects were suspected to be Trojans: N73.1, R36.5, R46.3, R54.15, S13.11, S26.2. Mr. Van Houten has derived circular orbits for two of them, Nos. 3 and 4, based on two observations each, separated by 18 days, made in December, 1951. The circular elements are given in Table 5. He has also computed circular orbits for two non-Trojans given in Table 5. Finally, he computed ephemerides for 1606, identical with B41.2; 1614, identical with G36.1; and 1605, probably identical with H64.1. Miss Groeneveld computed an ephemeris for 1586, identical with L13.4. Table 6A lists additional new objects for which circular orbits could be computed on the basis of our observations. Table 6B lists asteroids in Table A with uncertain identifications; and Table 6C lists asteroids identified from special ephemerides. ### VI. THE MEASUREMENTS OF POSITION The original Survey plan did not include the determination of accurate positions for the more than 3000 asteroids on the plates. The task of such a determination was considered beyond the available resources in time and manpower. This situation changed when Mr. Van Biesbroeck (1955) developed the simple method of measurement with a TABLE 4 NUMBERED ASTEROIDS NOT FOUND | No. | Field,
Year | Mag. | No. | Field,
Year | Mag. | No. | Field,
Year | Mag. | |---|---|--|--|--|---|--|--|--| | 343 603 616 630 641 698 699 725 730 745 765 802 810 812 821 822 833 837 840 842 855 857 869 870 890 897 942 959 963 968 970 983 988 993 1000 1017 1020 1022 1026 1037 1052 1064 1068 1069 | M 51 J 51 Q 51 N 51 DC 51, V 52 PO 51 W 52 K 51 T 52 P 51 G 51 KJ 51 E 50, U 52 S 51 K 51 F 50, T 52 QR 51 F 50, T 52 QR 51 F 50, T 52 QR 51 F 50, T 52 G 50 O 51 J 51, X 52 F 50, T 52 G 50 O 51 P 51 F 50 D 50 N 51 P 51 F 50, V 52 H 51 DC 50 G 51 M 51 F 50, V 52 H 51 DC 50 G 51 M 51 F 50, V 52 H 51 DC 50 G 51 M 51 F 50, V 52 H 51 DC 50 G 51 M 51 F 50, V 52 H 51 DC 50 G 51 M 51 F 50, V 52 | 16.1
14.7
14.3
15.7
15.9, 16.5
16.0
16.5
16.4
16.2
15.1
15.9
15.5
15.8
14.9, 16.4
14.9
15.2, 16.1
14.8
16.3
15.9
15.8
16.4, 16.3
15.9
15.8
16.4, 16.1
15.9
15.8
16.4, 16.1
15.9
15.8
16.3, 16.5
16.4, 16.3
16.5
16.4, 16.5
16.5
16.4, 16.3
16.5
16.4, 16.3
16.5
16.4, 16.3
16.5
16.4, 16.5
16.5
16.4, 16.5
16.5
16.6, 16.5
16.6, 16.5
16.6, 16.5
16.6, 16.5
16.7
16.0, 15.7
16.0, 15.7
16.0, 15.7
16.0, 15.7
16.2
15.6
16.2
15.6 | 1081
1082
1095
1127
1138
1151
1152
1156
1168
1181
1190
1192
1209
1224
1225
1226
1228
1231
1233
1234
1260
1265
1285
1290
1311
1313
1314
1328
1330
1332
1335
1337
1342
1355
1357
1358
1359
1360
1361
1371
1371
1392
1401
1392
1401
1392
1401
1392 | H 51
G 51, U 52
M 51
F 51
M 51
O 51
D 50, VU 52
S 51
N 51
IJ 51
O 51
M 51
O 51
KL 51
F 50, U 52
I 51
O 51
K 51
H 51, W 52
T 52
T 52
T 52
P 51
B 50
U 52
T 52
T 52
F 50, U 52
T 51
D 50, V 52
T 51
D 50, V 52
T 51
D 50, V 52
T 51
D 50, U 52
T 52
T 52
T 52
T 52
F 50
U 52
T 52
T 52
T 52
T
51
B 50
U 52
T 52
T 52
T 52
T 52
T 52
T 52
T 52
T | 14.9 16.4, 16.5 14.2 16.3 15.5 16.3 15.3 16.0, 15.8 16.2 15.7 16.4 16.0 15.8 15.5 15.9 16.0 16.3, 15.9 15.8 15.1 16.0 15.3 14.7, 15.0 16.3 16.3 15.5 16.2 15.8, 15.1 16.1 16.5 15.6 15.7 15.3 15.7 15.3 15.7 15.3 15.7 15.3 | 1406
1408
1408
1414
1420
1425
1430
1431
1433
1442
1444
1446
1449
1451
1456
1462
1463
1466
1471
1475
1481
1488
1495
1497
1514
1517
1526
1529
1531
1533
1535
1540
1559
1561
1573
1576
1579
1588
1595
1598
1610
1611 | G 51
N 51
I 51
G 51, U 52
O 51
EF 50
T 52
Q 51
M 51
W 52
H 51
I 51
I 51
F 50
H 51, X 52
O 51
M 51
C 50
N 51
D 51
M 51
F 50
H 51, X 52
I 51
M 51
F 50
H 51, X 52
I 51
M 51
F 50
F 51
M 51
F 50
F 51
M 51
F 51
I 51
I 51
I 51
I 51
I 51
I 51
I 51
I | 16.0 16.0 16.2 16.4, 16.4 16.0 16.4 15.2 15.7 15.5 15.4 15.7 15.3 16.5 15.9 16.0 16.4 15.3 16.2 15.7 16.0 15.9 16.2 16.4 15.3 15.2 15.6 15.5 15.7 16.0 16.3 16.3 16.2 17.6 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9 | TABLE 5 NEW ELEMENTS, CIRCULAR ORBITS (VAN HOUTEN) | Object | a | i | Ω | u_0 | t_0 | |---|-------|-------|--------|--------|----------------------| | D75.4 = E16.3
= 1950 TH ₂ | 3.066 | 14°21 | 175°56 | 209°61 | 1950
Oct. 13,2299 | | B63.2 = C14.6
= 1950 OC1 | 4.220 | 4.09 | 346.22 | 345.63 | 1950
Aug. 18.3389 | | R54.15 = S54.3
= 1951 XK | 5.076 | 18.55 | 85.6 | 346.8 | 1951
Dec. 5.2535 | | R46.3 = S46.2
= 1951 XJ | 4.912 | 21.38 | 106.6 | 317.9 | 1951
Dec. 4.2104 | precision theodolite which gave equatorial co-ordinates with an accuracy of about 2''-3'', satisfactory to the computers of asteroid orbits. It was then decided that systematic position measurement, which would greatly enhance the value of the Survey, was feasible, and Mr. Van Biesbroeck was interested to undertake this task himself. Much of the uncertainty in the positions was found to be due to the lack of reliable proper motions for the comparison stars. For declinations from -30° to $+30^{\circ}$ these were usually taken from the Yale Zone catalogues; for declinations north of $+30^{\circ}$ from the AGK2 catalogue or Prager's catalogue; and for zones south of -30° from the Cordoba AG catalogue. Occasionally, near plate edges or corners, these brighter stars were not suitably located, and fainter stars had to be used, taken from the Astrographic Catalogue. The asteroid positions, for the equinox of 1950.0, are given in Table A to $0^{\circ}1$ in R.A. TABLE 6A ASTEROIDS FOR WHICH CIRCULAR ELEMENTS CAN BE COMPUTED (Found in Overlaps of Opposition Fields) | 1950 QB 1
QD 1
QE 1
QF 1
QG 1
SS | 1950 ST
TV 3
TZ 3
TB 4
WB
WC | 1950 WD
WE
WF
XS
1951 EY
EX 2 | 1951 WL
XR
XW
XX
XX
XY
XB 1 | 1951 XD 1
XE 1
XF 1
YR 2
1952 CB
HU 3 | 1952 HW¶3
HY 3
HZ 3 | |---|---|--|---|--|---------------------------| |---|---|--|---|--|---------------------------| TABLE 6BAsteroids with Uncertain Identifications | 285, <i>U</i> 24.2 | 1053, T32.2 | 1505, W66.1 | |---------------------|--------------|-------------| | 428, <i>X</i> 34.2 | 1113, R41.1 | 1505, W76.1 | | 428, <i>X</i> 35.2 | 1183, U73.4 | 1532, X16.1 | | 580, <i>C</i> 34.1 | 1218, R33.11 | 1605, H64.1 | | 603, <i>I</i> 44.10 | 1218, R34.5 | 1605, H65.1 | | 1053, T31.2 | 1321, S12.3 | | TABLE 6CASTEROIDS IDENTIFIED FROM SPECIAL EPHEMERIDES | 350, M75.2 Russ. Eph. 1951 | 1590, T45.5 MPC 660 | |--|------------------------------| | 396, J54.3 Russ. Eph. 1951 | 1599, E34.4 MPC 704 | | 919, D12.4 MPC 460 | T82.3 | | 1099, S41.3 MPC 602 | 1601, X14.6 MPC 736 | | 1349, B13.5 MPC 595 | X23.2 | | B14.1a | 1603, X42.2 MPC 736 | | 1523, R32.1 MPC 727
1560, S53.8 MPC 528 | X52.1
1604, U95.5 MPC 659 | | 1569, W21.1 La Plata Circ. 9 | V16.3 | | 1570, K34.3 MPC 659 | V25.2 | | 1572, U73.8 Astr. Circ. U.S.S.R., 120, | 1605, X21.4 MPC 736 | | 1578, U63.9 MPC 692 | 1607, T93.5 MPC 697 | | 1589, T92.1 MPC 731 | U13.12 MPC 697 | | U12.2 | 1951QA, P43.1 MPC 671 | | U13.7 | P53.1 | and 1" in declination; they have probable errors of 2"-3". The measurements and reductions were made by Mr. Van Biesbroeck; the preparatory selection of most of the comparison stars was made by Miss Groeneveld and Mr. Van Houten. ### VII. THE MEASUREMENTS OF MAGNITUDE During the Survey a calibration plate on a Selected Area was usually taken each night. In addition, of course, all opposition fields north of -19° declination contained Mount Wilson Selected Areas among the Survey plates themselves; and on nights on which fields south of -19° were taken, plates north of this limit were usually taken also. The Selected Areas on the Survey plates themselves were, on the whole, more satisfactory than the special plates (always taken at $+15^{\circ}$ declination) because they were closer to the asteroids and the sequences occurred at random positions on the plates, so that field corrections were reduced. For the first three opposition fields, August 10-November 7, 1950, the asteroid magnitudes were derived as follows. Fifteen stars were selected on each of the overlapping edges, five each near the fifteenth, thirteenth, and twelfth magnitudes, and the system was transferred outward, starting with the Selected Area field, until all plate fields were covered. The overlapping edges are about 2 cm wide. Obviously, the differences in the quality between the different plates, as well as changes in the over-all absorption due to haze, are thus eliminated; differential extinction corrections were applied separately. A less laborious method was followed for the remaining opposition fields, in which the asteroids were compared directly with the nearest available Selected Area sequence. Actually, two sequences could be used for most nights, and they were both measured. This transfer method relies, of course, on the approximate constancy of the atmospheric transparency, developing, etc., for the plates to be compared. In case no Selected Area sequence was available, a special sequence was set up afterward. Such sequences were established photographically with the Yerkes 24-inch reflector by Mr. Gehrels and with the 10-inch Survey telescope at McDonald by Mr. Van Houten. The latter were taken at -28° during the summer of 1955, by matching 10-minute exposures in this zone with similar plates of Selected Areas at -15° , but taken at the same zenith distance. From these plates seven special sequences near -28° were set up by Mr. Gehrels. For purposes of identification, charts had to be prepared for 68 Selected Areas, each showing about four stars per magnitude interval between magnitudes 10 and 17. When bright stars were lacking in the Mount Wilson Catalogue of Photographic Magnitudes, such stars were taken from the Bergedorfer Spektral-Durchmusterung, with a magnitude correction of +0.04 mag. applied. The measures were all made by Mr. Gehrels with the Ross (1936) photometer of the Yerkes Observatory, after it was found that intercomparisons with a fixed scale of images (a "flyspanker") were unsatisfactory, apparently because such a fixed scale does not reproduce the effects of different image qualities. Since the thermopile of the Ross photometer gave only small deflections for the darker plates, it was replaced by a gas-filled cell; its output was fed through an M.I.T. amplifier to the galvanometer. The quotient, galvanometer reading of star-plus-sky to sky-only, was plotted for the Selected Area stars against their magnitudes; similar quotients for the asteroids could then be converted to observed magnitudes. The diaphragms employed in the Ross photometer were 0.15 and 0.25 or 0.28 mm (projected diameters). Stars fainter than photographic magnitude roughly 13 were measured with the 0.15-mm diaphragm, those brighter than 13 with one of the two larger diaphragms. The observed magnitudes require four corrections to become apparent magnitudes: (1) differential extinction; (2) field effects; (3) asteroid trailing; and (4) a small correction to the system of the Selected Area magnitudes. For 1 a mean extinction coefficient of 0.30 mag. per unit air mass was used. The field correction of the 10-inch Survey telescope, 2, was determined from the existing calibration plates taken of Selected Area 68, sup- plemented by a new series of 24 exposures of 20 minutes each, taken with the 5-inch Cook Observatory telescope at McDonald during the summer of 1953. The 10-inch plates had the Selected Area in the center; and sequences were selected elsewhere on the plates and calibrated by means of 5-inch plates, taken with different centers. In the reductions it was assumed that all field corrections are radially symmetrical and linear with distance from the center. On this basis the plot of Figure 1 was obtained, which gives the field correction for a standard distance interval of 10 cm and its dependence on the photographic magnitude. The interpretation of Figure 1 is probably approximately as follows: images near the edges of the plate will differ from those near the center in being slightly elongated; furthermore, there is a vignetting effect which becomes appreciable only near the
corners of the plate. For faint objects the field effect will be small; it will increase, beginning about 2 mag. above the plate limit, as is true for the trail correction; but for bright objects, having large images, the effect will decrease, and for very bright objects vignetting in the extra-focal disk becomes effective. The trail correction, 3, could not be determined from plates taken with the 10-inch Survey telescope because its optics were being overhauled after completion of the Survey; Fig. 1.—Field correction, 10-inch Survey telescope. Abscissae, photographic magnitudes; ordinates, field correction for difference of 10 cm distance to plate center. Vertical lines are probable errors. instead, the similar 5-inch telescope was used; and it was assumed that the trail corrections were the same for a given length measured in millimeters on the plate. Fourteen plates were taken with the 5-inch, each bearing three exposures which were, respectively, trailed, non-trailed, and trailed. The separate exposure times were either 10 or 20 minutes. The trail lengths used were 0.22, 0.043, and 0.086 mm, made by using a Zeiss micrometer on the guiding telescope. In the reductions it was assumed that the corrections depended on trail length and photographic magnitude only and that they were linear with trail length. The average trail length of the asteroids on the Survey plates was 0.054 mm. For this value the trail effect was found to be a brightening of the image by 0.09 mag., except within 2 mag. from the plate limit, where the effect was negligible (less than 0.04 mag.). This correction was applied to the measured asteroid magnitudes except when the asteroid trail was appreciably above the 0.054-mm value, in which case it was increased proportionally. Correction 4 was applied to the system of the Mount Wilson catalogue of Selected Areas as found by Baum (1956), namely, +0.1(SA-14.0) for SA > 14.0 mag. Both the special sequences and the determinations of field and trail corrections were made on 103a-O plates. Stars of exceptional color, such as No. 72 in Selected Area 68, showed on the Survey plates no systematic deviation from the characteristic curve of the sequence based on the system of Stebbins, Whitford, and Johnson (1950). It was concluded that the color correction to our magnitude system is negligible. The apparent magnitudes, p, are listed under MAG in Table A. They are reduced to absolute magnitudes, g, in column G, except where no orbital elements were available. The quantity $g = p - 5 \log r\rho - F(a)$, where r and ρ are the heliocentric and geocentric distances in astronomical units, respectively, and F(a) is the phase function. The method used for the reduction of p to g is described in Asteroid Paper VI (Gehrels 1957), and the phase correction applied was taken from Table 4 of that paper. The reductions to g were mostly made by Mr. W. D. Caldwell, to whom we are indebted for his careful work. The best 2 per cent of the magnitudes in Table A are marked with A. These are objects which occurred on the same plate as, and within about 2° from, a Selected Area; further, the difference between the determinations on the two plates was less than 0.20 mag. and p was at least 0.5 mag. above the plate limit. The worse 21 per cent of the magnitudes are marked with C; for these the difference between the two determinations was greater than 0.5 mag., or the quality of the night was unsatisfactory, or else the object was close to the edge of the plates. If the reduction to "zero phase" by means of Table 4 of Paper VI was uncertain (phase angles ≤ 1 .0) the class of p was lowered from p to p to p to p to p magnitude determinations were made on plates taken on the poorest nights used in the Survey or for the brightest dozen or so asteroids; photoelectric observations are available for the latter. The precision of the magnitudes was derived from internal evidence. In the first place, a determination could be made from the two Survey plates taken at each epoch. Other determinations could be made from asteroids in overlapping areas or those observed at consecutive oppositions. The latter, however, involved differences in aspect and also uncertainties due to the reduction to absolute magnitude; they were not used here but are considered in Section VIII. The determination from overlapping areas is somewhat uncertain and not entirely typical, since the images are of lesser quality; nevertheless, the result so obtained was consistent with the determination from the plate pairs. The plate pairs give an internal probable error of ± 0.09 mag. for the weighted mean; most of this amount is attributed to variable atmospheric effects. However, part of it must be due to rotational variation of the asteroids and to accidental errors in the zero points of the different Selected Areas, since often two different Areas were used during one night and an effort was made to make the two reductions for the image pair as nearly independent as possible. The probable error of the zero point of a Selected Area, after removal of the systematic effect mentioned before, is estimated to be ± 0.06 mag. (probable error) on the basis of Baum's measures for nine Selected Areas. Other sources of uncertainty, which must be added to the probable error of ± 0.09 mag. mentioned above, are differential extinction and the uncertainties in the field and trail corrections. It is estimated that these have contributed the following respective probable errors: ± 0.04 , 0.03, and 0.02 mag. Not all image pairs were reduced with separate Selected Areas; we therefore add the full uncertainty of the Selected Area zero points in computing the total uncertainty of the average Survey magnitudes; this value is found to be 0.12 ± 0.02 mag. In the comparison of the Survey magnitudes with other data it seems advisable to increase this value further for two reasons: (1) There have been some gradual changes in the quality of the Survey plates, and these changes somewhat affect the visibility of the asteroid trailing; the empirical trail corrections were found from a more homogeneous set of plates. (2) The pairs of Survey plates were taken at 1-hour intervals, and the rotational magnitude variations (cf. Papers I-V and VII) will have been less than between random epochs on the light-curves; it is the latter quantity which is needed in comparing Survey magnitudes with other values. The two effects are roughly allowed for by increasing the average probable error of the Survey magnitudes from ± 0.12 to ±0.15 mag. For the three categories in Table A the probable errors are then estimated to be ± 0.10 , ± 0.14 , and ± 0.20 mag. These values still do not include variations due to the asteroid aspect or uncertainties due to the reductions to absolute magnitude. The measurements and the discussion of the magnitudes were carried out by Mr. Gehrels. #### VIII. THE COMBINATION OF MAGNITUDES One of the main objectives of the Survey was to derive a table of accurate asteroid magnitudes on the International Photographic Scale. Since not all numbered asteroids were observed in the Survey, it was necessary to consider other available magnitude sources and reduce them to the International scale. Furthermore, since the asteroid magnitudes are variable, not merely because of rotation and phase variations, but because of aspect, data obtained during a single opposition are not necessarily representative. The reductions involved three steps: - a) From intercomparisons of Survey magnitudes at the same opposition, a probable error of ± 0.15 mag. is derived for a Survey magnitude of unit weight, while intercomparisons at different oppositions give ± 0.22 mag. These values are obtained in the discussion accompanying Table 8. The increased probable error determined from different oppositions, amounting to an additional variation of ± 0.16 (p.e.), is found to be due to aspect variation. - b) In Paper VI, comparisons were made between Survey and Ephemeris magnitudes, from which the probable error of the latter was found to be ± 0.29 mag. This value includes variations due to aspect. The systematic error is about 2.0 mag. at 15th mag. - c) Also in Paper V1, the systematic and accidental errors of magnitude series made at several other observatories were derived with the aid of Survey magnitudes. Intercomparisons were made from observations made within one month, so that aspect variations were not appreciable. For 22 of the brightest asteroids (Nos. 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 14, 15, 16, 17, 20, 25, 39, 44, 321, 354, 511, 532), photoelectric light-curves and colors had been derived previously, mostly at the McDonald Observatory, and accurate magnitudes, averaged over a rotational cycle, were available for them (Papers I–V and VII). Usually more than one opposition was covered. These values were reduced to photographic magnitudes with the relation $$p = V - 0.176 + 1.090 (B - V), \tag{1}$$ and to zero phase angle by means of the phase coefficients listed in the papers referred to. The resulting p_0 - and g-values are included in Table 7, weight 2.0 having been assigned to the mean magnitude derived at one opposition (see below). For all other asteroids, data from the various sources referred to were combined with the proper weights, including photoelectric data for 38 additional asteroids, given in Tables 9 and 10. Unit weight corresponds to a probable error of \pm 0.22 mag.; this definition is appropriate, as is seen from the discussion under a above. From the discussion referred to under b above, the weight of the reduced Ephemeris magnitudes is then found to be 0.6. This comparatively large weight results from the systematic effects due to aspect, present in even the best measures made during a single opposition. It was therefore decided to include the reduced Ephemeris magnitudes for all asteroids not having photoelectric
light-curves, which is essentially those fainter than 10 mag. However, the aspect variation of ± 0.16 mag. found above was derived from magnitudes at consecutive oppositions. These are, on the average, 5/4 years apart and will, on the average, show the largest aspect effects. If the aspect variation is assumed to be sinusoidal, the average aspect variation will be $1/\sqrt{2}$ times ± 0.16 or ± 0.11 mag. (p.e.). Unit weight will now correspond to a probable error of ± 0.19 mag. instead of ± 0.22 mag., while the weight of the Ephemeris magnitudes will be 0.5 and of the italics magnitudes 0.4, slightly less than adopted in Table 7. Additional magnitude determinations for many asteroids will be needed before an accurate value of the aspect variation can be found. The systematic correction applied to the Ephemeris magnitudes is $$p_0 = 1.136 \, m_0 - 0.16 \, . \tag{2}$$ TABLE 7 MEAN PHOTOGRAPHIC MAGNITUDES OF THE ASTEROIDS AND THEIR WEIGHTS | No. | Po | g | wt | No. | P _o | g | wt | |-----------------------|---------------------------------------|--------------------------------------|--------------------------|----------------------------|---|--------------------------------------|---------------------------------| | 1
2
3
4
5 | 7•45
8•45
9•60
6•74
10•98 | 4.00
4.99
6.36
4.20
7.94 | 4.0
4.0
4.0
4.0 | 56
57
58
59
60 | 12.58
12.42
13.03
11.97
12.57 | 9•49
8•25
9•72
8•63
9•95 | 3.4
2.4
3.1
2.6
2.1 | | 6 | 9•29 | 6.60 | 3•5 | 61 | 12.45 | 8 • 59 | 3.2 | | 7 | 9•35 | 6.76 | 6•0 | 62 | 13.77 | 9 • 66 | 4.0 | | 8 | 9•56 | 7.45 | 4•0 | 63 | 10.96 | 8 • 34 | 2.3 | | 9 | 9•77 | 7.17 | 5•5 | 64 | 12.03 | 8 • 75 | 1.8 | | 10 | 10•61 | 6.45 | 4•0 | 65 | 12.44 | 7 • 87 | 2.5 | | 11 | 10.43 | 7.67 | 4.3 | 66 | 13.64 | 10.44 | 3.9 | | 12 | 11.17 | 8.71 | 2.2 | 67 | 12.40 | 9.72 | 1.2 | | 13 | 10.94 | 7.90 | 1.0 | 68 | 11.67 | 8.19 | 2.2 | | 14 | 10.37 | 7.31 | 2.0 | 69 | 12.04 | 8.18 | 1.8 | | 15 | 9.25 | 6.08 | 4.0 | 70 | 12.18 | 9.05 | 1.8 | | 16 | 10.48 | 6.74 | 4.1 | 71 | 11.80 | 8.38 | 3.5 | | 17 | 11.39 | 8.59 | 4.0 | 72 | 12.52 | 10.23 | 2.5 | | 18 | 10.11 | 7.74 | 4.1 | 73 | 13.43 | 10.19 | 1.7 | | 19 | 11.23 | 8.50 | 1.9 | 74 | 13.49 | 10.02 | 3.6 | | 20 | 10.03 | 7.38 | 2.0 | 75 | 13.15 | 2.90 | 2.2 | | 21 | 11.30 | 8.58 | 2.3 | 76 | 13.43 | 8.88 | 1.9 | | 22 | 11.08 | 7.35 | 2.1 | 77 | 12.75 | 9.51 | 2.6 | | 23 | 11.40 | 8.24 | 3.9 | 78 | 12.14 | 9.00 | 2.6 | | 24 | 12.20 | 8.08 | 2.5 | 79 | 11.92 | 9.18 | 2.1 | | 2 5 | 11.60 | 8.98 | 4.0 | 80 | 11.56 | 9.19 | 2.6 | | 26 | 11.80 | 8.58 | 2.6 | 81 | 13.26 | 9.65 | 2.2 | | 27 | 10.96 | 8.46 | 2.2 | 82 | 12.79 | 9.35 | 1.9 | | 28 | 11.56 | 8.09 | 2.2 | 83 | 12.43 | 9.72 | 2.1 | | 29 | 10.15 | 7.16 | 4.4 | 84 | 12.73 | 10.19 | 2.3 | | 30 | 11.23 | 8.68 | 4.8 | 85 | 12.23 | 9.02 | 1.6 | | 31 | 11.91 | 7.73 | 1.8 | 86 | 13.84 | 9•75 | 2.5 | | 32 | 11.72 | 8.65 | 2.4 | 87 | 13.03 | 8•34 | 2.8 | | 33 | 13.35 | 9.70 | 1.6 | 88 | 11.57 | 8•12 | 2.6 | | 34 | 12.83 | 9.55 | 3.4 | 89 | 11.35 | 8•37 | 1.3 | | 35 | 13.52 | 9.64 | 1.9 | 90 | 13.40 | 9•25 | 3.1 | | 36 | 13.33 | 9•92 | 1.0 | 91 | 12.71 | 9.64 | 2.1 | | 37 | 11.55 | 8•36 | 5.1 | 92 | 12.19 | 7.95 | 2.2 | | 38 | 12.83 | 9•1վ | 2.1 | 93 | 12.12 | 8.70 | 2.9 | | 39 | 10.75 | 7•30 | 8.6 | 94 | 12.88 | 8.72 | 1.8 | | 40 | 10.64 | 8•35 | 2.4 | 95 | 12.80 | 8.79 | 1.8 | | 41 | 11.76 | 8.33 | 2.1 | 96 | 12.97 | 8.98 | 2.2 | | 42 | 11.43 | 8.70 | 2.2 | 97 | 11.81 | 8.57 | 2.1 | | 43 | 11.20 | 9.08 | 2.1 | 98 | 13.81 | 10.53 | 1.6 | | 44 | 10.59 | 7.91 | 3.9 | 99 | 14.81 | 11.58 | 1.0: | | 45 | 11.79 | 8.44 | 2.5 | 100 | 13.14 | 9.08 | 2.2 | | 46 | 12.21 | 9.28 | 2.4 | 101 | 12.30 | 9.24 | 1.8 | | 47 | 12.75 | 9.08 | 2.4 | 102 | 13.63 | 10.40 | 3.2 | | 48 | 12.16 | 8.08 | 2.4 | 103 | 11.76 | 8.45 | 2.3 | | 49 | 12.55 | 8.51 | 3.6 | 104 | 13.62 | 9.48 | 3.2 | | 50 | 13.50 | 10.30 | 3.0 | 105 | 12.23 | 9.66 | 1.4 | | 51 | 11.12 | 8•57 | 4.1 | 106 | 12.91 | 8.73 | 2.6 | | 52 | 11.50 | 7•14 | 4.2 | 107 | 12.79 | 8.10 | 2.0 | | 53 | 12.81 | 9•67 | 2.6 | 108 | 13.47 | 9.21 | 2.2 | | 54 | 12.05 | 8•72 | 2.2 | 109 | 13.33 | 10.03 | 2.0 | | 55 | 12.38 | 8•95 | 3.3 | 110 | 11.74 | 8.36 | 1.7 | TABLE 7-Continued | No. | р _о | g | wt | No. | р _о | g | wt | |--------------------------|---|--|---------------------------------|---------------------------------|---|---|----------------------------------| | 111 | 12.04 | 8.96 | 3.6 | 171 | 13.78 | 9.66 | 1.7 | | 112 | 13.33 | 10.62 | 2.6 | 172 | 12.11 | 9.53 | 2.6 | | 113 | 12.15 | 9.58 | 2.6 | 173 | 12.29 | 8.89 | 1.9 | | 114 | 12.67 | 9.41 | 3.6 | 174 | 13.10 | 9.47 | 3.6 | | 115 | 11.60 | 9.02 | 1.5 | 175 | 13.78 | 9.50 | 2.8 | | 116 | 12.13 | 8.68 | 2.6 | 176 | 13.61 | 9•42 | 1.3 | | 117 | 12.94 | 9.07 | 2.4 | 177 | 13.96 | 10•50 | 2.2 | | 118 | 12.57 | 9.85 | 2.6 | 178 | 13.33 | 10•55 | 2.6 | | 119 | 12.35 | 9.30 | 2.3 | 179 | 13.79 | 9•95 | 2.6: | | 120 | 12.93 | 8.83 | 3.2 | 180 | 14.80 | 11•44 | 2.0 | | 121 | 12.87 | 8.23 | 1.7 | 181 | 13.05 | 8.95 | 2.0 | | 122 | 13.08 | 8.81 | 2.0 | 182 | 12.48 | 9.13 | 2.6: | | 123 | 13.40 | 10.10 | 2.7 | 183 | 14.37 | 10.87 | 2.5 | | 124 | 12.18 | 9.02 | 2.6 | 184 | 13.76 | 9.56 | 2.1 | | 125 | 12.91 | 9.51 | 2.1 | 185 | 11.82 | 8.43 | 3.1 | | 126 | 13.04 | 10.31 | 3.3 | 186 | 12.82 | 10.28 | 2.4 | | 127 | 12.90 | 9.48 | 4.0 | 187 | 12.80 | 9.42 | 1.8 | | 128 | 12.06 | 8.65 | 4.6 | 188 | 13.80 | 10.36 | 2.0 | | 129 | 11.35 | 7.70 | 2.2 | 189 | 13.09 | 10.34 | 2.3 | | 130 | 11.96 | 7.85 | 1.8 | 190 | 13.81 | 8.48 | 2.6 | | 131 | 13.65 | 10.94 | 2.6 | 191 | 13.59 | 9.90 | 3.2 | | 132 | 13.33 | 10.21 | 1.8 | 192 | 10.94 | 8.30 | 1.9 | | 133 | 12.97 | 8.97 | 2.6 | 193 | 14.26 | 11.16 | 2.1 | | 134 | 12.39 | 9.37 | 2.2 | 194 | 11.85 | 8.72 | 4.0 | | 135 | 11.68 | 8.98 | 2.3 | 195 | 13.83 | 10.16 | 2.3 | | 136 | 12.94 | 10.60 | 1.9 | 196 | 11.67 | 7.58 | 2.1 | | 137 | 13.00 | 8.89 | 1.1 | 197 | 14.24 | 10.85 | 2.0 | | 138 | 13.35 | 10.60 | 2.0 | 198 | 12.33 | 9.56 | 1.8 | | 139 | 12.59 | 9.11 | 1.5 | 199 | 14.03 | 9.86 | 2.6 | | 140 | 12.74 | 9.36 | 3.8 | 200 | 12.73 | 9.34 | 1.6 | | 142
143
144
145 | 12.79
14.02
13.89
12.10
12.62 | 9.55
11.34
10.45
8.88
9.37 | 2.0
2.2
2.4
2.6
1.8 | 201
202
203
201
205 | 12.64
12.87
13.50
13.47
13.83 | 9.38
8.85
10.11
10.23
10.36 | 2.6:
3.4
2.8
2.3
2.1 | | 146 | 12.49 | 9.14 | 3.2 | 206 | 13.37 | 9.98 | 2.7 | | 147 | 13.97 | 9.84 | 2.6 | 207 | 13.24 | 10.90 | 2.4 | | 148 | 12.12 | 8.66 | 2.2: | 208 | 14.05 | 10.36 | 2.1 | | 149 | 14.22 | 12.18 | 2.0 | 209 | 12.98 | 8.83 | 2.2 | | 150 | 13.01 | 9.15 | 2.0 | 210 | 13.82 | 10.46 | 2.2 | | 151 | 13.48 | 10.40 | 2.4 | 211 | 12.87 | 8.91 | 2.1: | | 152 | 13.70 | 9.58 | 2.0 | 212 | 13.47 | 9.37 | 3.5 | | 153 | 14.16 | 8.80 | 2.3 | 213 | 13.34 | 9.92 | 2.2 | | 154 | 12.57 | 8.37 | 2.3 | 214 | 13.46 | 10.34 | 2.5 | | 155 | 15.18 | 11.45 | 0.6 | 215 | 14.22 | 10.78 | 3.1 | | 156 | 12.86 | 9.49 | 2.4 | 216 | 11.49 | 7.99 | 1.4 | | 157 | 15.39 | 12.34 | 1.2 | 217 | 14.61 | 10.97 | 2.6 | | 158 | 14.20 | 10.56 | 3.3 | 218 | 13.04 | 9.80 | 2.6 | | 159 | 13.36 | 9.29 | 1.6 | 219 | 12.89 | 10.37 | 3.1 | | 160 | 13.38 | 10.01 | 3.4 | 220 | 14.84 | 12.34 | 2.6 | | 161 | 12.74 | 10.16 | 2.1 | 221 | 12.89 | 8.97 | 2.6 | | 162 | 13.89 | 9.97 | 3.2 | 222 | 14.47 | 10.33 | 1.8 | | 163 | 12.92 | 10.37 | 4.1 | 223 | 15.10 | 11.04 | 2.6 | | 164 | 12.82 | 9.65 | 1.0 | 224 | 13.07 | 9.88 | 3.1 | | 165 | 12.74 | 8.62 | 3.1 | 225 | 14.08 | 9.59 | 2.0 | | 166 | 13.94 | 10.66 | 1.8 | 226 | 14.31 | 10.97 | 2.8 | | 167 | 14.27 | 10.65 | 2.6 | 227 | 14.21 | 10.05 | 3.4 | | 168 | 13.61 | 9.09 | 2.6 | 228 | 15.99 | 13.88 | 2.6 | | 169 | 13.05 | 10.52 | 1.8 | 229 | 15.01 | 10.43 | 2.2 | | 170 | 13.61 | 10.62 | 1.21 | 230 | 11.09 | 8.51 | 1.9: | TABLE 7-Continued | No. | p_{o} | g | wt | No. | р _о | g | wt | |---------------------------------|---|--|---------------------------------|------------------------------|---|--|---------------------------------| | 231 | 14.22 | 10.48 | 2.0 | 291 | 14.87 | 12.70 | 2.0 | | 232 | 14.55 | 11.55 | 2.6 | 292 | 13.89 | 10.95 | 1.1 | | 233 | 12.68 | 9.45 | 2.6 | 293 | 14.60 | 10.97 | 2.0 | | 234 | 12.92 | 10.32 | 3.6 | 294 | 15.16 | 10.99 | 1.8 | | 235 | 13.51 | 9.84 | 2.0 | 295 | 14.96 | 11.45 | 1.6 | | 236 | 12.97 | 9.46 | 1.8 | 296 | 15.65 | 13.46 | 2.8 | | 237 | 14.15 | 10.71 | 2.3 | 297 | 14.82 | 10.61 | 1.8 | | 238 | 12.96 | 9.24 | 2.6 | 298 | 14.83 | 12.55 | 1.7 | | 239 | 15.52 | 11.69 | 1.9 | 299 | 15.76 | 13.04 | 1.8 | | 240 | 12.93 | 9.69 | 2.6: | 300 | 14.69 | 10.44 | 1.8 | | 24:1 | 12.66 | 8.68 | 2.5 | 301 | 14.48 | 11.12 | 2.2 | | 24:2 | 14.12 | 10.48 | 3.6 | 302 | 14.97 | 12.32 | 2.3: | | 24:3 | 14.72 | 11.09 | 1.7 | 303 | 13.93 | 9.81 | 2.6 | | 24:4 | 15.44 | 13.40 | 2.2 | 304 | 13.77 | 11.13 | 2.2 | | 24:5 | 13.74 | 9.68 | 1.6 | 305 | 14.27 | 10.22 | 2.6 | | 2146 | 13.14 | 9.84 | 2.1 | 306 | 12.66 | 10.13 | 2.4 | | 2147 | 12.49 | 9.10 | 2.0 | 307 | 14.60 | 10.88 | 2.3 | | 2148 | 14.22 | 11.42 | 3.2 | 308 | 12.25 | 8.84 | 3.0 | | 2149 | 15.02 | 12.44 | 2.2 | 309 | 14.63 | 11.39 | 2.6 | | 250 | 12.80 | 8.66 | 2.0 | 310 | 15.04 | 11.60 | 2.5 | | 251 | 15.27 | 11.21 | 2.1 | 311 | 14.93 | 11.23 | 2.0 | | 252 | 14.71 | 10.54 | 2.0 | 312 | 13.65 | 10.17 | 1.9 | | 253 | 14.69 | 11.49 | 2.6 | 313 | 12.09 | 9.52 | 3.6 | | 251 ₄ | 15.24 | 13.15 | 1.8 | 311, | 15.27 | 11.10 | 2.0 | | 255 | 14.76 | 11.36 | 2.1 | 315 | 15.97 | 13.75 | 1.3 | | 256 | 14.85 | 10.96 | 2.6 | 316 | 14.89 | 10.69 | 2.3 | | 257
 14.23 | 10.13 | 2.1 | 317 | 13.64 | 11.30 | 2.1 | | 258 | 12.56 | 9.43 | 2.1 | 318 | 14.53 | 10.28 | 2.5 | | 259 | 13.12 | 8.99 | 2.6 | 319 | 15.80 | 11.25 | 1.2 | | 260 | 15.07 | 10.43 | 2.7 | 320 | 15.55 | 11.63 | 2.4 | | 261 | 12.97 | 10.51 | 2.6 | 321 | 14.93 | 11.26 | 5.1 | | 262 | 15.72 | 12.73 | 1.0 | 322 | 13.81 | 10.33 | 2.3 | | 263 | 15.19 | 11.51 | 2.6 | 323 | 13.89 | 11.30 | 1.3 | | 264 | 13.43 | 9.92 | 2.2: | 324 | 11.30 | 8.02 | 2.0 | | 265 | 15.37 | 12.69 | 1.3 | 325 | 14.23 | 10.00 | 2.0 | | 266 | 12.99 | 9.47 | 2.6 | 326 | 12.46 | 10.04 | 0.9 | | 267 | 15.47 | 12.01 | 2.0 | 327 | 14.73 | 11.27 | 3.1 | | 268 | 13.59 | 9.53 | 4.1 | 328 | 13.99 | 9.91 | 1.7 | | 269 | 14.35 | 11.22 | 2.1 | 329 | 13.45 | 10.64 | 1.5 | | 270 | 12.22 | 10.12 | 3.0 | 330 | 15.18 | 13.40 | 0.6 | | 271 | 14.59 | 10.69 | 2.4 | 331 | 14.25 | 10.31 | 2.0 | | 272 | 15.15 | 11.68 | 1.7 | 332 | 13.93 | 10.47 | 2.6 | | 273 | 13.70 | 11.08 | 1.8: | 333 | 14.48 | 10.37 | 2.3 | | 274 | 15.14 | 11.18 | 2.1 | 334 | 13.58 | 8.33 | 2.1 | | 275 | 13.40 | 9.95 | 2.6 | 335 | 12.82 | 10.01 | 3.0 | | 276 | 13.41 | 9.31 | 2.1 | 336 | 13.14 | 10.89 | 2.6 | | 277 | 14.72 | 11.04 | 2.1 | 337 | 12.53 | 9.95 | 1.8 | | 278 | 13.89 | 10.47 | 3.1 | 338 | 13.28 | 9.55 | 2.0 | | 279 | 15.42 | 9.68 | 4.6 | 339 | 14.29 | 10.37 | 3.6 | | 280 | 15.58 | 11.79 | 1.6: | 340 | 14.45 | 11.04 | 1.7 | | 281
282
283
284
285 | 14.88
14.67
13.39
14.09
16.17 | 12.81
12.19
9.43
11.56
12.14 | 1.8
1.6
2.4
2.5
1.6 | 34:1
34:2
34:3
34:5 | 14.68
14.17
15.08
12.41
12.57 | 12.58
11.11
12.12
9.32
10.13 | 4.3
2.6
0.8
2.6
2.1 | | 286 | 14.49 | 10.26 | 3•3 | 34.6 | 12.57 | 9.06 | 2.0 | | 287 | 11.90 | 9.38 | 1•8 | 34.7 | 13.25 | 10.13 | 2.1 | | 288 | 14.28 | 10.86 | 2•4 | 34.8 | 14.49 | 10.65 | 2.2 | | 289 | 14.38 | 10.72 | 2•0 | 34.9 | 10.95 | 7.20 | 4.7 | | 290 | 15.63 | 13.15 | 1•2 | 350 | 14.01 | 9.92 | 2.2 | TABLE 7-Continued | No. | р _о | g | wt | No. | р _о | g | wt | |----------------------------------|---|--|---------------------------------|---|---|---|----------------------------------| | 351 | 13.67 | 10.23 | 2.3 | 411 | 13.55 | 9•78 | 2.6 | | 352 | 13.57 | 11.48 | 2.6 | 412 | 13.65 | 10•21 | 2.6 | | 353 | 15.66 | 12.28 | 2.2 | 413 | 13.70 | 10•64 | 0.6 | | 354 | 10.98 | 7.47 | 3.8 | 414 | 15.17 | 10•145 | 1.8 | | 355 | 14.60 | 11.64 | 2.0 | 415 | 13.77 | 10•28 | 3.6 | | 356 | 12.47 | 9.04 | 2.0 | 416 | 12.74 | 9.26 | 2.5 | | 357 | 13.56 | 9.42 | 1.7 | 417 | 14.14 | 10.63 | 2.5 | | 358 | 13.86 | 10.20 | 2.6 | 418 | 13.78 | 10.70 | 2.6 | | 359 | 13.82 | 10.45 | 2.6 | 419 | 12.44 | 9.36 | 3.0 | | 360 | 13.38 | 9.49 | 2.3 | 420 | 13.87 | 9.28 | 2.5 | | 361 | 14.81 | 9.50 | 1.5 | 421 | 15.89 | 12.93 | 1.0 | | 362 | 12.77 | 9.72 | 1.8 | 422 | 14.18 | 12.00 | 2.6 | | 363 | 13.28 | 9.87 | 2.6 | 423 | 12.43 | 8.42 | 2.6 | | 364 | 13.19 | 11.02 | 3.4 | 424 | 14.15 | 10.69 | 2.3 | | 365 | 13.83 | 10.32 | 2.2 | 425 | 14.58 | 10.90 | 2.6 | | 366 | 13.87 | 9.73 | 2.2 | 426 | 13.18 | 9.49 | 1.8 | | 367 | 14.13 | 11.96 | 2.6 | 427 | 14.33 | 10.49 | 2.6 | | 368 | 15.04 | 11.03 | 3.4 | 428 | 15.30 | 12.91 | 1.4 | | 369 | 12.72 | 9.52 | 1.8 | 429 | 13.93 | 10.82 | 2.2 | | 370 | 14.09 | 11.65 | 3.1 | 430 | 15.26 | 11.66 | 2.4 | | 371 | 13.23 | 9.86 | 3.1 | 431 | 14.17 | 10.05 | 2.3 | | 372 | 12.20 | 8.03 | 1.2: | 432 | 12.65 | 10.09 | 1.6 | | 373 | 14.35 | 10.25 | 1.8 | 433 | 11.43 | 12.31 | 2.1 | | 374 | 13.52 | 10.05 | 3.9 | 434 | 13.24 | 11.92 | 0.6 | | 375 | 12.40 | 8.28 | 3.6 | 435 | 13.90 | 11.15 | 2.5 | | 376 | 12.80 | 10.45 | 2.8 | 436 | 15.21 | 10.97 | 2.1 | | 377 | 13.01 | 9.72 | 4.1 | 437 | 14.12 | 11.52 | 3.6 | | 378 | 14.35 | 10.89 | 2.2 | 438 | 13.52 | 10.53 | 1.6 | | 379 | 14.26 | 10.11 | 2.5 | 439 | 14.72 | 10.60 | 1.5 | | 380 | 13.74 | 10.48 | 4.1 | 140 | 14.94 | 12.80 | 1.7 | | 381
382
383
384
385 | 13.71
13.74
14.87
13.94
12.32 | 9.48
9.62
10.75
10.73
.8.72 | 2.3
1.2
1.3
2.0
2.1 | 1442
1443
1443
1444 | 13.15
13.56
13.63
12.76
14.28 | 9.62
11.06
11.48
9.31
10.08 | 2.4:
2.1
2.4
2.9
2.4 | | 386
387
388
389
390 | 12.00
12.29
13.13
12.29
14.59 | 8.30
8.90
9.23
9.18
11.38 | 0.8
1.9
2.6
1.3
2.0 | րիզ
Իր
17
17
17
17
17
17 | 13.39
14.15
15.09
13.63
15.15 | 9.90
10.29
10.95
10.64
11.24 | 2.4
3.1
3.1
2.5:
1.6 | | 391
392
393
394
395 | 14.67
14.20
12.59
14.42
14.73 | 12.24
10.52
9.12
10.98
11.25 | 1.7
1.6
2.1
2.6
2.1 | 451
453
454
455 | 12.16
16.99
13.92
12.89
13.18 | 8.16
13.35
11.86
9.73
9.96 | 1.9
0.6
3.1
1.4
2.6 | | 396 | 14.56 | 11.16 | 2.4 | 456 | 14.36 | 10.87 | 3.5 | | 397 | 13.34 | 10.17 | 2.2 | 457 | 16.99 | 12.94 | 0.6 | | 398 | 15.25 | 11.86 | 0.8 | 458 | 14.36 | 10.49 | 2.6 | | 399 | 14.45 | 10.47 | 2.0 | 459 | 14.95 | 11.81 | 2.5 | | 400 | 15.34 | 11.22 | 1.9 | 460 | 15.26 | 11.91 | 3.6 | | 40 1
403
404
405 | 14.64
12.89
13.72
12.88
12.56 | 10.18
9.89
10.19
9.81
9.50 | 2.1
2.1
2.5
1.1
2.4 | 461
462
463
465 | 15.62
14.48
15.47
13.80
14.92 | 11.52
10.83
12.84
10.28
10.87 | 2.0
2.3
1.4
2.1
1.8 | | 406 | 15.06 | 11.32 | 2.6 | 466 | 13.60 | 9.09 | 2.3 | | 407 | 13.35 | 10.20 | 2.6 | 467 | 15.80 | 12.02 | 3.6 | | 408 | 14.90 | 10.74 | 2.2 | 468 | 14.66 | 10.53 | 2.2 | | 409 | 11.59 | 8.55 | 2.3 | 469 | 14.05 | 9.89 | 2.6 | | 410 | 12.98 | 9.62 | 1.8 | 470 | 13.94 | 11.30 | 3.0 | TABLE 7-Continued | No. | р _о | g | wt | No. | P _o | g | wt | |-------------|----------------|-------|------|-----|----------------|-------|------| | 471 | 11.44 | 7.76 | 2.2 | 531 | 15.74 | 12.22 | 0.6 | | 472 | 13.46 | 10.49 | 2.6 | 532 | 11.33 | 7.88 | 3.4: | | 473 | 14.95 | 11.10 | 0.6 | 533 | 14.92 | 11.06 | 1.1 | | 474 | 14.62 | 11.86 | 2.0 | 534 | 14.54 | 10.87 | 2.6 | | 475 | 15.40 | 12.32 | 1.2 | 535 | 13.46 | 10.43 | 2.3 | | 476 | 12.86 | 9.66 | 2.l4 | 536 | 14.02 | 9•31 | 1.5: | | 477 | 14.04 | 11.37 | 3.6 | 537 | 14.08 | 10•07 | 2.1 | | 478 | 12.59 | 8.67 | 2.0 | 538 | 14.66 | 10•48 | 3.1 | | 479 | 14.26 | 10.91 | 2.l | 539 | 14.41 | 11•02 | 2.6 | | 480 | 13.05 | 9.86 | 2.l | 540 | 14.07 | 11•91 | 4.1 | | 481 | 13.13 | 9•74 | 3.6 | 541 | 14.63 | 11.09 | 2.3 | | 482 | 13.83 | 9•94 | 2.3 | 542 | 13.91 | 10.20 | 2.6 | | 483 | 14.17 | 9•57 | 1.7 | 543 | 14.51 | 10.51 | 3.5 | | 484 | 14.61 | 11•37 | 2.3 | 544 | 14.30 | 11.22 | 2.6 | | 485 | 12.90 | 9•49 | 1.9 | 545 | 13.72 | 9.53 | 2.2 | | 486 | 14.69 | 12.18 | 3.6 | 546 | 13.87 | 10.78 | 2.3 | | 487 | 12.77 | 9.52 | 3.4 | 547 | 14.33 | 10.88 | 2.6 | | 488 | 13.10 | 8.94 | 2.6 | 548 | 14.80 | 12.47 | 2.3 | | 489 | 13.79 | 9.63 | 2.5 | 549 | 15.18 | 11.90 | 0.6 | | 490 | 13.64 | 9.44 | 4.4 | 550 | 13.36 | 10.29 | 2.9 | | 49 1 | 14.13 | 9.89 | 1.5 | 551 | 14.27 | 10.14 | 2.6 | | 492 | 14.94 | 10.85 | 3.5: | 552 | 14.33 | 10.18 | 1.6: | | 493 | 16.00 | 11.90 | 1.5 | 553 | 15.56 | 13.37 | 2.0 | | 494 | 13.85 | 9.99 | 3.2 | 554 | 12.06 | 9.50 | 2.5 | | 495 | 14.29 | 11.45 | 1.8 | 555 | 15.81 | 11.63 | 2.0 | | 496 | 15.03 | 12.92 | 3.8 | 556 | 13.24 | 10.46 | 2.6: | | 497 | 14.73 | 11.12 | 2.1 | 557 | 15.65 | 12.92 | 2.2 | | 498 | 13.09 | 9.88 | 4.6 | 558 | 13.68 | 9.96 | 3.5 | | 499 | 15.47 | 10.12 | 2.6 | 559 | 13.91 | 10.58 | 1.3 | | 500 | 13.54 | 10.42 | 2.0 | 560 | 15.12 | 11.70 | 1.8 | | 501 | 14.39 | 10.22 | 2.2 | 561 | 16.06 | 11.87 | 0.8 | | 502 | 14.81 | 12.22 | 2.3: | 562 | 14.74 | 10.82 | 2.6 | | 503 | 13.46 | 10.10 | 2.6 | 563 | 12.79 | 9.45 | 2.5 | | 504 | 14.36 | 11.01 | 2.1 | 564 | 15.36 | 11.95 | 0.8 | | 505 | 13.35 | 10.08 | 1.3 | 565 | 14.75 | 12.01 | 1.4 | | 506 | 13.84 | 9.87 | 2.0 | 566 | 13.59 | 9.05 | 3.0 | | 507 | 14.54 | 10.39 | 3.0 | 567 | 14.54 | 10.41 | 2.7 | | 508 | 13.59 | 9.42 | 2.4 | 568 | 14.00 | 10.33 | 2.1 | | 509 | 13.35 | 9.35 | 2.4 | 569 | 14.04 | 10.82 | 3.3 | | 510 | 14.06 | 10.94 | 6.4 | 570 | 14.54 | 9.94 | 2.6 | | 511 | 11.26 | 7.02 | 6.5: | 571 | 15.50 | 12.84 | 2.6 | | 512 | 14.13 | 12.05 | 2.5 | 572 | 14.46 | 11.83 | 4.5 | | 513 | 14.33 | 10.42 | 3.6 | 573 | 14.54 | 10.62 | 2.2 | | 514 | 14.10 | 10.13 | 1.7 | 574 | 16.08 | 13.83 | 0.6 | | 515 | 16.65 | 12.63 | 0.5 | 575 | 15.26 | 12.26 | 2.6 | | 516 | 12.68 | 9.42 | 1.6 | 576 | 14.51 | 10.63 | 2.3 | | 517 | 14.56 | 10.42 | 3.0 | 577 | 14.89 | 10.81 | 2.6 | | 518 | 15.14 | 12.19 | 2.5: | 578 | 13.85 | 10.43 | 1.7 | | 519 | 13.68 | 10.18 | 2.1 | 579 | 13.17 | 9.25 | 3.1 | | 520 | 15.85 | 11.94 | 2.6 | 580 | 15.22 | 10.95 | 2.6 | | 521 | 13.26 | 9.86 | 2.1 | 581 | 15.14 | 10.88 | 2.5 | | 522 | 14.81 | 9.90 | 3.6 | 582 | 13.49 | 10.38 | 3.1: | | 523 | 14.44 | 10.61 | 2.1 | 583 | 14.46 | 10.25 | 2.6 | | 524 | 13.85 | 10.68 | 2.9 | 584 | 12.52 | 9.95 | 3.1 | | 525 | 15.52 | 11.06 | 0.6 | 585 | 14.09 | 11.38 | 2.1 | | 526 | 14.83 | 10.70 | 2.1 | 586 | 14.35 | 10.35 | 2.2 | | 527 | 14.57 | 11.21 | 3.1 | 587 | 15.95 | 13.48 | 0.8 | | 528 | 14.32 | 9.77 | 2.3 | 588 | 16.04 | 9.33 | 8.1 | | 529 | 14.83 | 10.90 | 2.1 | 589 | 14.11 | 9.98 | 2.2 | | 530 | 14.17 | 9.91 | 2.4 | 590 | 14.95 | 11.07 | 2.0 | TABLE 7-Continued | No. | р _о | g | wt | No. | p _o | g | wt | |---------------------------------|---|---|----------------------------------|---|---|--|----------------------------------| | 591 | 15.09 | 11.83 | 2.2 | 651 | 15.09 | 11.15 | 2.6 | | 592 | 14.44 | 10.52 | 2.3 | 652 |
15.29 | 12.29 | 2.0 | | 593 | 13.71 | 10.40 | 3.2 | 653 | 14.46 | 10.55 | 2.3 | | 594 | 16.63 | 13.47 | 1.0 | 654 | 12.15 | 9.78 | 2.0 | | 595 | 13.41 | 9.16 | 2.0 | 655 | 14.37 | 10.50 | 1.8 | | 596 | 13.43 | 9.67 | 1.5 | 656 | 15.37 | 11.19 | 3.0 | | 5 97 | 13.94 | 10.69 | 1.6 | 657 | 15.04 | 11.93 | 1.8 | | 598 | 13.25 | 9.80 | 2.6 | 658 | 15.26 | 11.64 | 4.6 | | 599 | 13.44 | 9.98 | 2.0: | 659 | 16.31 | 9.59 | 6.6 | | 600 | 14.60 | 11.37 | 2.6 | 660 | 12.82 | 9.87 | 2.4: | | 601 | 14.48 | 10.35 | 2.lı | 661 | 14.46 | 10.54 | 2.4 | | 602 | 13.63 | 9.59 | 1.8 | 662 | 14.69 | 11.70 | 3.0 | | 603 | 16.45 | 13.46 | 1.3 | 663 | 14.51 | 10.51 | 0.8 | | 601 | 14.40 | 10.23 | 1.9 | 661, | 15.69 | 11.51 | 2.0 | | 605 | 14.41 | 10.52 | 2.3 | 665 | 13.85 | 9.70 | 2.0 | | 606 | 14.50 | 11.43 | 2.0 | 666 | 15.03 | 11.95 | 2.6 | | 607 | 14.38 | 10.77 | 4.1 | 667 | 14.80 | 10.57 | 2.2 | | 608 | 15.72 | 11.78 | 2.6 | 668 | 16.78 | 13.28 | 1.6 | | 609 | 14.95 | 10.90 | 3.1 | 669 | 15.24 | 11.33 | 3.6 | | 610 | 17.24 | 13.21 | 0.8 | 670 | 14.68 | 11.16 | 2.0 | | 611 | 14.35 | 10.50 | 2.1 | 671 | 15.10 | 11.04 | 2.0 | | 612 | 16.43 | 12.29 | 0.6 | 672 | 15.19 | 12.19 | 1.4 | | 613 | 14.64 | 10.90 | 2.3 | 673 | 14.76 | 11.22 | 2.6 | | 614 | 15.28 | 11.99 | 2.6 | 674 | 12.14 | 8.39 | 1.3 | | 615 | 14.18 | 11.02 | 2.8 | 675 | 12.53 | 9.08 | 3.6 | | 616 | 14.21 | 11.22 | 0.8 | 676 | 14.47 | 10.48 | 2.6 | | 617 | 15.79 | 9.09 | 8.2: | 677 | 14.62 | 10.81 | 2.0 | | 618 | 13.78 | 9.55 | 2.8 | 678 | 13.56 | 10.52 | 2.2: | | 619 | 14.04 | 11.12 | 2.6 | 679 | 12.20 | 9.13 | 1.0 | | 620 | 15.11 | 12.40 | 1.8 | 680 | 14.93 | 10.81 | 2.6 | | 621 | 15.66 | 11.54 | 2.4 | 681 | 15.94 | 11.86 | 1.6 | | 622 | 14.36 | 11.69 | 1.8 | 682 | 16.65 | 13.47 | 0.6 | | 623 | 14.21 | 11.44 | 1.5 | 683 | 13.80 | 9.71 | 2.3 | | 624 | 15.17 | 8.55 | 8.8 | 684 | 14.76 | 12.05 | 3.3 | | 625 | 14.18 | 10.98 | 2.3 | 685 | 15.07 | 12.86 | 2.2 | | 626 | 13.03 | 9.99 | 1.2 | 68 6 | 14.50 | 11.43 | 2.1: | | 627 | 14.70 | 11.00 | 2.6 | 687 | 16.30 | 12.95 | 1.6 | | 628 | 13.42 | 10.36 | 2.1 | 688 | 14.94 | 11.63 | 2.6 | | 629 | 14.91 | 10.80 | 2.6 | 689 | 15.70 | 13.28 | 2.6 | | 630 | 15.57 | 12.42 | 1.5 | 690 | 12.96 | 8.79 | 1.6 | | 631 | 13.55 | 10.06 | 2.1 | 691 | 14.34 | 10.43 | 2.6 | | 632 | 16.41 | 13.18 | 1.8 | 692 | 14.83 | 10.34 | 0.8 | | 633 | 14.93 | 11.01 | 2.6 | 693 | 14.16 | 10.37 | 3.2 | | 634 | 15.01 | 11.04 | 1.3 | 694 | 13.32 | 10.07 | 3.6 | | 635 | 14.22 | 10.08 | 2.5 | 695 | 12.68 | 9.72 | 2.3 | | 636 | 14.33 | 10.61 | 2.6 | 696 | 14.52 | 10.28 | 4.1 | | 637 | 16.04 | 11.87 | 2.0 | 697 | 13.96 | 10.29 | 1.0 | | 638 | 14.54 | 11.17 | 2.6: | 698 | 15.43 | 11.77 | 1.0 | | 639 | 13.21 | 9.30 | 3.1 | 699 | 16.16 | 13.03 | 0.8 | | 640 | 14.48 | 10.30 | 1.7 | 700 | 14.62 | 12.43 | 1.7 | | ९७२
९५३
९५३
९५२ | 16.28
14.82
14.86
14.78
15.22 | 14.12
10.64
10.40
11.69
11.01 | 0.8
1.8
2.6:
2.6
2.0 | 701
702
703
7014
705 | 14.41
12.84
15.63
11.50
13.46 | 10.50
8.62
13.60
7.50
9.72 | 3.2
2.2:
0.6
1.1
2.0 | | 646
647
648
649
650 | 16.64
15.31
14.89
17.08
16.18 | 14.20
12.58
10.71
14.10
13.41 | 1.0
1.8
2.6
1.0 | 706
70 7
708
709
710 | 15.41
15.41
14.99
13.51
16.28 | 12.00
13.36
11.74
9.77
12.15 | 1.3
1.7
2.0
2.0
3.2 | TABLE 7-Continued | No. | $\mathbf{p}_{\mathbf{o}}$ | g | wt | No. | р _о | g | wt | |-----|---------------------------|-------|------|-------------|----------------|-------|------| | 711 | 14.75 | 12.54 | 1.7 | 771 | 15.06 | 11.85 | 0.6 | | 712 | 12.51 | 9.47 | 2.3 | 772 | 13.54 | 9.65 | 1.0 | | 713 | 14.44 | 9.85 | 2.2 | 773 | 14.16 | 10.53 | 2.3 | | 714 | 12.85 | 9.90 | 1.6 | 774 | 13.86 | 9.89 | 2.1 | | 715 | 14.53 | 11.08 | 2.6 | 775 | 15.19 | 11.28 | 2.6 | | 716 | 15.29 | 11.76 | 2.6 | 776 | 12.63 | 8.86 | 1.7 | | 717 | 16.0h | 11.91 | 3.6 | 777 | 15.53 | 11.28 | 2.2 | | 718 | 14.71 | 10.73 | 2.6 | 778 | 15.68 | 11.50 | 1.8 | | 719 | 19.83 | 16.77 | 0.6 | 779 | 12.89 | 9.65 | 0.8 | | 720 | 14.5h | 10.86 | 2.1 | 780 | 14.23 | 10.14 | 2.6 | | 721 | 15.23 | 10.42 | 2.2 | 781 | 14.75 | 10.45 | 2.0 | | 722 | 15.08 | 13.05 | 2.0 | 782 | 14.59 | 12.54 | 2.3 | | 723 | 15.32 | 11.44 | 1.3 | 783 | 14.64 | 12.16 | 2.3 | | 724 | 17.45 | 14.74 | 0.6 | 784 | 14.36 | 10.30 | 3.4 | | 725 | 15.30 | 12.27 | 1.5 | 785 | 13.50 | 10.46 | 1.4: | | 726 | 15.14 | 12.12 | 2.1 | 786 | 14.21 | 10.02 | 3.1 | | 727 | 14.20 | 11.18 | 3.0 | 787 | 14.28 | 11.32 | 1.3 | | 728 | 16.08 | 13.78 | 0.6 | 788 | 13.56 | 9.46 | 2.1: | | 729 | 14.38 | 10.95 | 0.8 | 789 | 15.55 | 12.27 | 2.4 | | 730 | 16.89 | 14.66 | 1.4 | 790 | 13.81 | 9.27 | 1.8 | | 731 | 14.37 | 10.51 | 2.6 | 791 | 14.73 | 10.62 | 2.1 | | 732 | 14.65 | 11.88 | 1.1 | 792 | 14.21 | 11.07 | 1.3 | | 733 | 14.64 | 10.09 | 0.8 | 793 | 14.26 | 10.76 | 1.7 | | 734 | 15.07 | 10.91 | 3.1 | 794 | 16.42 | 12.29 | 2.4 | | 735 | 14.23 | 10.86 | 2.0 | 795 | 14.10 | 10.69 | 2.7 | | 736 | 14.19 | 12.08 | 2.0 | 796 | 13.46 | 10.29 | 2.2 | | 737 | 12.75 | 9.67 | 2.3 | 797 | 14.50 | 11.55 | 2.6 | | 738 | 14.95 | 11.00 | 2.2 | 798 | 14.50 | 10.58 | 2.6 | | 739 | 13.38 | 10.00 | 1.9 | 799 | 14.39 | 11.42 | 3.6 | | 740 | 14.28 | 10.30 | 2.2 | 800 | 14.70 | 12.61 | 2.4 | | 741 | 14.60 | 11.25 | 2.0 | 801 | 15.51 | 12.40 | 2.0 | | 742 | 14.38 | 10.46 | 2.1; | 802 | 15.42 | 13.32 | 0.8 | | 743 | 14.70 | 11.20 | 3.1; | 803 | 14.79 | 10.54 | 1.8 | | 744 | 15.35 | 11.14 | 2.1; | 801 | 12.76 | 9.17 | 2.2 | | 745 | 15.35 | 11.05 | 0.8 | 805 | 14.78 | 10.50 | 2.4 | | 746 | 14.60 | 10.51 | 2.6 | 806 | 15.32 | 11.09 | 1.0 | | 747 | 12.66 | 8.78 | 1.8 | 807 | 15.65 | 11.72 | 3.1 | | 748 | 15.13 | 9.82 | 3.4 | 808 | 14.36 | 10.96 | 1.8 | | 749 | 15.08 | 12.85 | 1.0 | 809 | 15.41 | 13.08 | 2.6 | | 750 | 15.71 | 12.98 | 2.0 | 810 | 16.20 | 14.15 | 0.6 | | 751 | 12.95 | 9.96 | 1.6 | 811 | 15.35 | 11.65 | 2.6 | | 752 | 14.19 | 11.41 | 2.0 | 812 | 15.63 | 12.41 | 0.6 | | 753 | 14.26 | 11.81 | 2.6 | 813 | 15.28 | 13.11 | 2.0: | | 754 | 14.30 | 10.43 | 1.4 | 814 | 14.05 | 9.85 | 2.4 | | 755 | 14.77 | 10.59 | 1.9 | 815 | 15.15 | 11.93 | 3.0 | | 756 | 15.46 | 11.16 | 0.8 | 816 | 15.20 | 11.30 | 2.6 | | 757 | 14.05 | 11.48 | 1.8 | 817 | 15.00 | 11.93 | 2.0 | | 758 | 13.48 | 9.23 | 2.4 | 818 | 14.52 | 10.32 | 2.3 | | 759 | 15.10 | 11.96 | 2.0 | 819 | 15.18 | 13.08 | 2.6 | | 760 | 13.62 | 9.47 | 2.9 | 820 | 15.26 | 11.14 | 1.8 | | 761 | 15.49 | 11.85 | 2.0 | 821 | 15.69 | 12.22 | 1.0 | | 762 | 13.34 | 9.18 | 2.0 | 822 | 15.06 | 12.80 | 0.6 | | 763 | 15.95 | 13.73 | 1.6 | 823 | 14.85 | 12.68 | 2.6 | | 764 | 14.86 | 10.66 | 2.0 | 824 | 14.87 | 11.37 | 3.1 | | 765 | 16.99 | 14.01 | 0.6 | 825 | 15.21 | 13.03 | 4.6 | | 766 | 14.72 | 10.79 | 2.6 | 826 | 15.72 | 12.38 | 1.8: | | 767 | 15.35 | 11.26 | 1.7 | 827 | 16.20 | 13.89 | 1.6 | | 768 | 15.38 | 11.26 | 1.0 | 828 | 15.36 | 11.14 | 2.6 | | 769 | 14.24 | 10.02 | 2.0 | 829 | 14.94 | 11.89 | 2.6 | | 770 | 14.26 | 12.09 | 2.0 | 8 30 | 14.74 | 10.50 | 2.0 | TABLE 7-Continued | No. | P _o | g | wt | No. | p _o | g | wt | |---------------------------------|--|---|----------------------------------|---------------------------------|---|---|---------------------------------| | 831 | 15.63 | 13.48 | 0.6 | 891 | 114.95 | 11.32 | 2.1 | | 832 | 15.67 | 12.04 | 2.6 | 892 | 114.81 | 10.51 | 2.1 | | 833 | 16.14 | 12.23 | 1.2 | 893 | 114.72 | 10.74 | 3.4 | | 834 | 14.56 | 10.39 | 3.1 | 894 | 114.99 | 10.89 | 2.5 | | 835 | 16.13 | 11.89 | 2.3 | 895 | 114.08 | 9.83 | 2.0 | | 836 | 16.35 | 14.27 | 0.8 | 896 | 15.32 | 12.99 | 2.0 | | 837 | 15.18 | 12.81 | 0.6 | 897 | 15.13 | 12.16 | 1.0 | | 838 | 14.90 | 11.20 | 3.0 | 898 | 16.76 | 13.39 | 0.8 | | 839 | 14.79 | 11.66 | 2.0 | 899 | 15.10 | 11.38 | 1.7 | | 840 | 14.61 | 10.50 | 0.6 | 900 | 15.96 | 13.15 | 1.2 | | 841
843
844
845 | 15.60
15.43
16.514
14.86
14.89 | 13.34
11.17
11.22
10.64
11.11 | 1.6:
0.8
0.6
3.1
1.8 | 901
902
903
904
905 | 15.34
16.31
15.06
15.22
14.39 | 12,59
13,56
10,75
11,34
12,24 | 2.2
0.6
0.6
1.3
1.8 | | 846 | 15.54 | 11.42 | 2.4 | 906 | 14.32 | 10.62 | 2.7: | | 847 | 14.81 | 11.33 | 2.2 | 90 7 | 14.15 | 10.64 | 2.9 | | 848 | 15.92 | 11.84 | 2.0 | 908 | 14.83 | 12.02 | 3.0 | | 849 | 13.05 | 8.90 | 1.5 | 909 | 14.31 | 9.54 | 2.0 | | 850 | 14.51 | 10.62 | 2.6 | 910 | 15.02 | 11.25 | 3.0 | | 851 | 15.04 | 12.86 | 2.6 | 911 | 15.44 | 8.81 | 2.7 | | 852 | 13.85 | 11.31 | 1.8 | 912 | 13.40 | 9.27 | 2.4 | | 85 3 | 14.93 | 12.53 | 2.6 | 913 | 15.79 | 13.69 | 1.0 | | 854 | 15.90 | 13.35 | 4.3 | 914 | 13.14 | 10.39 | 1.6 | | 855 | 15.39 | 12.68 | 2.4 | 915 | 15.30 | 13.12 | 2.3 | | 856 | 14.73 | 12.02 | 2.0 | 916 | 15.11 | 12.57 | 1.3 | | 857 | 14.68 | 12.60 | 1.2 | 917 | 15.16 | 12.57 | 3.0 | | 858 | 15.01 | 11.48 | 2.2 | 918 | 15.53 | 11.89 | 2.1 | | 859 | 15.11 | 10.86 | 3.6: | 919 | 15.76 | 12.30 | 2.4 | | 860 | 14.34 | 10.83 | 1.0 | 920 | 15.07 | 11.93 | 1.7 | | 861. | 14.95 | 10.81 | 2.4 | 921 | 15.35 | 11.15 | 2.3 | | 862 | 14.74 | 11.23 | 1.4 | 922 | 16.30 | 13.01 | 2.6 | | 863 | 14.45 | 10.22 | 1.8 | 923 | 15.77 | 12.65 | 1.0 | | 864 | 15.86 | 13.09 | 0.6 | 921 | 14.15 | 10.37 | 3.6 | | 865 | 15.72 | 13.05 | 2.9 | 925 | 11.95 | 8.64 | 2.4 | | 866
867
868
869
870 | 14.39
15.70
14.37
16.34
15.15 | 10.28
11.71
11.05
13.05
12.72 | 2.2
0.8
3.6
1.0
0.8 | 926
927
928
929
930 | 15.60
12.15
14.90
15.54
15.08 | 11.75
7.90
10.75
13.32
12.37 | 1.0
1.6
1.8
1.6 | | 871 | 15.95 | 13.78 | 0.8 | 931 | 14.62 | 10.45 | 2.2 | | 872 | 14.55 | 11.18 | 2.1 | 932 | 13.36 | 10.68 | 2.3 | | 873 | 15.44 | 12.28 | 1.8 | 933 |
16.02 | 13.47 | 2.2 | | 874 | 15.03 | 10.87 | 1.6 | 934 | 15.51 | 12.10 | 0.8: | | 875 | 15.72 | 12.73 | 1.6 | 935 | 16.43 | 14.27 | 2.0 | | 876 | 15.77 | 11.86 | 2.0 | 936 | 15.23 | 11.09 | 4.1 | | 877 | 14.59 | 11.75 | 2.3 | 937 | 15.27 | 13.07 | 2.6 | | 878 | 19.04 | 16.50 | 0.6 | 938 | 16.47 | 12.29 | 0.8 | | 879 | 15.63 | 12.67 | 0.6 | 939 | 15.52 | 13.29 | 2.0 | | 880 | 16.85 | 12.96 | 0.8 | 940 | 14.96 | 10.40 | 2.0 | | 881 | 16.65 | 13.53 | 0.6 | 941 | 16.20 | 12.72 | 0.6 | | 882 | 15.66 | 11.55 | 2.1 | 942 | 15.63 | 11.44 | 0.6 | | 883 | 15.78 | 13.57 | 1.5 | 943 | 14.97 | 10.88 | 2.5 | | 884 | 16.48 | 9.77 | 4.3: | 944 | 19.16 | 11.95 | 0.9 | | 885 | 15.80 | 11.75 | 2.2 | 945 | 14.50 | 11.32 | 2.5 | | 886 | 14.32 | 10.17 | 1.8: | 946 | 15.40 | 11.30 | 2.0 | | 887 | 19.27 | 16.35 | 0.6 | 947 | 14.27 | 10.85 | 1.8 | | 888 | 14.18 | 10.85 | 2.2 | 948 | 16.22 | 12.27 | 2.6 | | 889 | 14.93 | 12.19 | 2.2 | 949 | 14.76 | 10.88 | 2.6 | | 890 | 15.21 | 11.27 | 1.5 | 950 | 14.96 | 12.41 | 1.0 | TABLE 7-Continued | No. | р _о | g | wt | No. | P_{o} | g | wt | |---------------------------------|---|---|--------------------------|--------------------------------------|---|---|---------------------------------| | 951
952
953
954
955 | 15.14
14.18
14.98
15.82
15.71 | 13.01
10.30
11.49
11.70
12.63 | 2.3
2.3
2.6
1.0 | 1011
1012
1013
1014
1015 | 17.70
15.95
13.70
16.65
14.47 | 15.09
13.13
10.43
13.12
10.23 | 0.8
2.0
1.4
1.1
2.6 | | 956 | 15.90 | 13.53 | 1.8 | 1016 | 15.34 | 13.18 | 1.8 | | 957 | 14.71 | 10.97 | 2.5 | 1017 | 15.34 | 12.24 | 0.8 | | 958 | 16.10 | 10.79 | 1.1 | 1018 | 14.55 | 11.59 | 3.0 | | 959 | 15.99 | 11.80 | 0.8 | 1019 | 15.06 | 13.85 | 0.6 | | 960 | 16.28 | 14.04 | 2.8 | 1020 | 15.55 | 12.07 | 0.8 | | 961 | 15.59 | 12.30 | 1.3 | 1021 | 13.27 | 9.89 | 3.1 | | 962 | 16.30 | 12.59 | 4.0 | 1022 | 14.77 | 11.24 | 0.8 | | 963 | 15.96 | 13.73 | 0.9 | 1023 | 15.24 | 11.05 | 2.8 | | 964 | 15.92 | 11.94 | 1.4 | 1024 | 15.51 | 11.87 | 1.4 | | 965 | 16.04 | 11.87 | 1.7: | 1025 | 15.48 | 14.04 | 0.8 | | 966 | 14.43 | 11.08 | 1.4 | 1026 | 16.75 | 14.52 | 0.8 | | 967 | 15.42 | 13.24 | 2.0 | 1027 | 16.65 | 12.47 | 0.6 | | 968 | 14.96 | 11.32 | 0.8 | 1028 | 14.90 | 10.33 | 2.6 | | 969 | 16.11 | 13.33 | 1.3 | 1029 | 15.56 | 11.88 | 3.1 | | 970 | 16.50 | 13.49 | 1.1 | 1030 | 15.64 | 11.54 | 1.8 | | 971 | 14.23 | 11.05 | 2.1 | 1031 | 14.66 | 10.69 | 1.2 | | 972 | 14.65 | 10.64 | 2.0 | 1032 | 15.13 | 11.01 | 1.5: | | 973 | 15.13 | 10.84 | 3.6 | 1033 | 16.02 | 12.13 | 3.6 | | 974 | 14.61 | 11.66 | 2.2 | 1034 | 16.21 | 13.85 | 1.0 | | 975 | 14.57 | 10.99 | 2.0 | 1035 | 15.78 | 11.64 | 1.0 | | 976 | 14.66 | 10.46 | 4.1 | 1036 | 13.98 | 10.76 | 1.8 | | 977 | 14.77 | 10.67 | 1.5 | 1037 | 17.12 | 15.05 | 0.8 | | 978 | 15.15 | 10.90 | 1.4 | 1038 | 16.88 | 11.59 | 0.6 | | 979 | 15.20 | 11.05 | 1.3 | 1039 | 15.74 | 10.45 | 3.3 | | 980 | 12.59 | 9.19 | 1.6 | 1040 | 15.62 | 11.53 | 1.5 | | 981 | 16.03 | 11.96 | 1.8 | 1041 | 14.94 | 10.93 | 1.8 | | 982 | 15.28 | 11.27 | 2.6 | 1042 | 15.20 | 10.95 | 2.3 | | 983 | 14.71 | 10.52 | 0.8 | 1043 | 15.03 | 10.98 | 4.6 | | 984 | 14.15 | 10.63 | 3.6 | 1044 | 15.16 | 12.12 | 2.6 | | 985 | 16.53 | 14.15 | 1.9 | 1045 | 17.12 | 14.60 | 1.3 | | 986 | 14.82 | 10.70 | 3.4 | 1046 | 15.40 | 11.54 | 2.6 | | 98 7 | 14.83 | 10.70 | 3.4 | 1047 | 15.61 | 13.39 | 1.8 | | 988 | 16.52 | 12.39 | 0.8 | 1048 | 13.98 | 10.60 | 2.6 | | 989 | 16.54 | 13.32 | 0.6 | 1049 | 15.81 | 11.75 | 0.8 | | 990 | 16.10 | 12.85 | 1.6 | 1050 | 16.99 | 13.84 | 0.6 | | 99 1 | 15.95 | 11.83 | 1.0 | 1051 | 15.45 | 11.19 | 2.2 | | 992 | 16.09 | 12.15 | 1.6 | 1052 | 14.49 | 12.28 | 0.6 | | 993 | 16.65 | 13.02 | 0.6 | 1053 | 16.56 | 13.43 | 1.8 | | 994 | 14.44 | 11.50 | 1.4 | 1054 | 15.38 | 11.63 | 3.6 | | 995 | 14.53 | 11.40 | 3.1 | 1055 | 14.73 | 12.63 | 2.4 | | 996 | 15.68 | 11.63 | 1.8 | 1056 | 14.98 | 12.79 | 1.8 | | 997 | 16.60 | 13.35 | 0.8 | 1057 | 15.57 | 11.88 | 2.6 | | 998 | 16.20 | 12.11 | 0.6 | 1058 | 15.22 | 13.12 | 2.8 | | 999 | 15.48 | 12.36 | 2.0 | 1059 | 15.45 | 12.27 | 2.4: | | 1000 | 15.52 | 11.29 | 0.6 | 1060 | 16.46 | 14.25 | 0.8 | | 1001 | 14.73 | 10.51 | 2.6 | 1061 | 16.14 | 12.03 | 1.6 | | 1002 | 15.53 | 12.04 | 1.2 | 1062 | 15.18 | 11.27 | 2.6 | | 1003 | 15.31 | 11.17 | 1.1 | 1063 | 14.70 | 12.28 | 1.6 | | 1004 | 15.23 | 10.70 | 2.6 | 1064 | 15.23 | 12.25 | 2.0 | | 1005 | 15.03 | 10.86 | 2.2 | 1065 | 16.96 | 14.42 | 0.8 | | 1006 | 16.91 | 12.79 | 2.6 | 1066 | 16.74 | 14.10 | 1.2 | | 1007 | 15.91 | 12.58 | 1.6 | 1067 | 15.69 | 12.03 | 2.4 | | 1008 | 15.91 | 11.79 | 1.6 | 1068 | 14.83 | 11.10 | 1.0 | | 1009 | 19.95 | 16.62 | 0.6 | 1069 | 14.84 | 10.73 | 0.6 | | 1010 | 15.42 | 11.66 | 1.8 | 1070 | 16.34 | 12.08 | 1.6 | TABLE 7-Continued | No. | p _o | g | wt | No. | р _о | g | , wt | |--------------------------------------|---|---|---------------------------------|--------------------------------------|---|---|----------------------------------| | 1071
1072
1073
1074
1075 | 14.78
15.89
16.66
15.33
15.40 | 11.68
12.47
11.17
11.48 | 2.6
1.3
2.0
1.1
1.8 | 1131
1132
1133
1134
1135 | 17.50
15.10
15.17
18.56
14.89 | 15.32
11.82
13.10
15.29
11.65 | 1.0
1.7
2.5
1.6:
2.0 | | 1076 | 15.97 | 13.16 | 2.8 | 11.36 | 15.18 | 12.16 | 2.6 | | 1077 | 16.54 | 13.93 | 0.6 | 11.37 | 14.69 | 12.00 | 2.1 | | 1078 | 15.09 | 12.79 | 3.3 | 11.38 | 16.41 | 12.26 | 1.2 | | 1079 | 15.69 | 12.03 | 3.0 | 11.39 | 15.58 | 14.25 | 1.1 | | 1080 | 16.22 | 13.55 | 1.6 | 11140 | 14.82 | 11.37 | 0.8 | | 1081
1082
1083
1084
1085 | 16.43
15.67
16.36
15.01
15.03 | 12.37
11.55
13.91
11.72
10.83 | 0.6
1.0
1.0
2.6
3.1 | 11/12
11/13
11/15
11/11 | 16.81
15.59
16.00
15.97
14.91 | 14.51
11.39
9.32
10.90
12.22 | 0.8
2.0
4.5
2.1
2.6 | | 1086 | 14.81 | 10.62 | 2.6 | 1146 | 14.92 | 10.93 | 0.8 | | 1087 | 14.81 | 10.89 | 2.3 | 1147 | 15.75 | 13.45 | 2.0 | | 1088 | 14.79 | 12.68 | 2.6 | 1148 | 15.25 | 11.34 | 1.2 | | 1089 | 14.96 | 12.82 | 2.6 | 1149 | 15.12 | 18.42 | 3.6 | | 1090 | 16.43 | 13.90 | 0.6 | 1150 | 16.99 | 14.91 | 0.6 | | 1091 | 16.65 | 12.07 | 0.6 | 1151 | 17.45 | 14.81 | 0.6 | | 1092 | 15.34 | 11.63 | 2.2 | 1152 | 15.06 | 12.37 | 1.0 | | 1093 | 13.77 | 9.63 | 0.8 | 1153 | 15.42 | 13.32 | 2.6 | | 1094 | 15.91 | 12.93 | 1.8 | 1154 | 15.91 | 11.35 | 2.4 | | 1095 | 14.53 | 12.56 | 1.1 | 1155 | 15.78 | 13.00 | 2.5 | | 1096 | 14.39 | 11.30 | 2.1 | 1156 | 16.08 | 13.81 | 0.6 | | 1097 | 16.26 | 13.08 | 1.8 | 1157 | 15.38 | 11.13 | 2.3 | | 1098 | 15.16 | 11.88 | 1.6 | 1158 | 15.18 | 12.17 | 1.8 | | 1099 | 15.83 | 11.67 | 1.3 | 1159 | 15.54 | 12.96 | 2.4 | | 1100 | 16.06 | 12.36 | 2.0 | 1160 | 15.78 | 12.77 | 1.5 | | 1101 | 16.44 | 12.10 | 0.8 | 1161 | 16.88 | 12.70 | 0.6 | | 1102 | 14.86 | 10.85 | 3.2 | 1162 | 15.53 | 10.16 | 1.5 | | 1103 | 14.79 | 13.51 | 1.2 | 1163 | 15.83 | 11.58 | 3.1 | | 1104 | 16.53 | 13.37 | 1.0: | 1164 | 16.42 | 14.03 | 1.3 | | 1105 | 15.07 | 11.16 | 2.0 | 1165 | 15.62 | 11.49 | 1.8 | | 1106 | 15.96 | 12.87 | 1.0 | 1166 | 15.53 | 12.58 | 1.5 | | 1107 | 14.27 | 10.04 | 2.6 | 1167 | 15.53 | 10.93 | 2.6 | | 1108 | 15.04 | 12.34 | 1.6: | 1168 | 16.31 | 13.32 | 0.6 | | 1109 | 15.17 | 10.94 | 3.6 | 1169 | 16.88 | 14.45 | 0.6 | | 1110 | 15.42 | 13.27 | 2.3 | 1170 | 15.66 | 13.22 | 1.0 | | 1111 | 15.35 | 11.47 | 2.6 | 1171 | 14.91 | 10.75 | 2.2 | | 1112 | 14.86 | 10.93 | 2.1 | 1172 | 16.01 | 9.32 | 2.7 | | 1113 | 14.75 | 10.65 | 3.6 | 1173 | 16.61 | 10.01 | 3.6 | | 11114 | 14.72 | 10.67 | 2.6 | 1174 | 16.77 | 12.84 | 0.6 | | 1115 | 14.61 | 10.54 | 2.6 | 1175 | 15.86 | 11.59 | 1.6 | | 1116 | 14.56 | 10.81 | 2.0 | 1176 | 15.40 | 12.10 | 1.0 | | 1117 | 15.35 | 13.11 | 2.5 | 1177 | 14.92 | 10.44 | 2.4 | | 1118 | 15.22 | 10.98 | 2.0 | 1178 | 16.15 | 12.89 | 0.7 | | 1119 | 15.50 | 12.38 | 2.0 | 1179 | 18.13 | 15.00 | 0.6 | | 1120 | 15.48 | 13.33 | 1.2 | 1180 | 15.53 | 10.15 | 2.1 | | 1121 | 15.50 | 12.52 | 0.8 | 1181 | 15.86 | 12.63 | 0.6 | | 1122 | 15.69 | 12.58 | 1.0: | 1182 | 14.85 | 12.58 | 2.3 | | 1123 | 15.05 | 12.87 | 2.0 | 1183 | 15.68 | 13.09 | 2.1 | | 1124 | 15.81 | 12.05 | 1.6 | 1184 | 15.64 | 12.40 | 2.8 | | 1125 | 18.50 | 14.20 | 0.8 | 1185 | 15.40 | 13.19 | 2.4 | | 1126 | 16.15 | 13.84 | 1.0 | 1186 | 14.72 | 10.80 | 1.2 | | 1127 | 14.74 | 11.65 | 0.8 | 1187 | 15.98 | 12.80 | 2.1: | | 1128 | 15.22 | 11.74 | 3.1 | 1188 | 15.10 | 13.02 | 2.4 | | 1129 | 14.96 | 11.03 | 2.6 | 1189 | 14.87 | 11.11 | 3.1 | | 1130 | 15.79 | 13.60 | 1.5 | 1190 | 15.88 | 13.17 | 1.1 | TABLE 7-Continued | No. | р _о | g | wt | No. | p _o | g | wt | |------|----------------|-------|------|------|----------------|-------|------| | 1191 | 15.40 | 11.71 | 0.6 | 1251 | 15.12 | 11.77 | 2.6 | | 1192 | 16.12 | 13.58 | 1.0 | 1252 | 14.91 | 11.61 | 1.3 | | 1193 | 16.08 | 12.88 | 0.6 | 1253 | 17.40 | 13.22 | 0.8 | | 1194 | 15.16 | 11.43 | 1.8 | 1254 | 15.68 | 11.55 | 1.5 | | 1195 | 16.77 | 14.51 | 0.6 | 1255 | 15.76 | 11.62 | 2.6: | | 1196 | 14.68 | 11.47 | 4.0 | 1256 | 16.07 | 10.80 | 1.8 | | 1197 | 14.79 | 11.12 | 1.8 | 1257 | 15.69 | 12.85 | 2.2 | | 1198 | 18.92 | 16.69 | 0.6 | 1258 | 15.94 | 11.73 | 4.1 | | 1199 | 15.31 | 11.39 | 2.0 | 1259 | 15.81 | 11.74 | 2.3 | | 1200 | 15.70 | 11.71 | 3.4 | 1260 | 16.02 | 12.90 | 1.0 | | 1201 | 15.89 | 12.58 | 2.6 | 1261 | 15.96 | 11.83 | 1.0 | | 1202 | 16.77 | 11.46 | 0.6 | 1262 | 14.96 | 11.07 | 1.0 | | 1203 | 16.80 | 13.12 | 3.6 | 1263 | 13.61 | 10.42 | 0.8: | | 1204 | 16.10 | 13.82 | 2.0 | 1264 | 14.47 | 10.84 | 1.3 | |
1205 | 18.13 | 15.19 | 0.6 | 1265 | 14.95 | 11.03 | 0.6 | | 1206 | 15.03 | 11.38 | 1.6: | 1266 | 14.83 | 10.32 | 2.3 | | 1207 | 16.77 | 12.05 | 0.6 | 1267 | 16.18 | 13.39 | 2.0 | | 1208 | 16.34 | 9.69 | 2.4 | 1268 | 15.24 | 9.94 | 2.1 | | 1209 | 16.02 | 11.81 | 0.8 | 1269 | 14.92 | 9.59 | 2.3 | | 1210 | 15.17 | 11.26 | 1.8 | 1270 | 16.25 | 14.05 | 2.0 | | 1211 | 15.91 | 12.15 | 2.8 | 1271 | 15.85 | 11.71 | 1.8 | | 1212 | 16.23 | 10.88 | 1.4 | 1272 | 16.99 | 13.51 | 0.6 | | 1213 | 16.34 | 12.21 | 1.2 | 1273 | 16.76 | 14.14 | 2.1 | | 1214 | 15.33 | 12.00 | 2.3: | 1274 | 15.24 | 13.05 | 1.8 | | 1215 | 14.86 | 11.81 | 1.9 | 1275 | 15.11 | 11.84 | 2.6 | | 1216 | 15.49 | 13.29 | 1.6 | 1276 | 16.01 | 11.83 | 1.0 | | 1217 | 16.99 | 14.48 | 0.6 | 1277 | 15.82 | 12.52 | 2.2 | | 1218 | 16.62 | 14.34 | 1.6 | 1278 | 15.19 | 12.54 | 2.0: | | 1219 | 15.40 | 13.26 | 2.6 | 1279 | 16.31 | 13.75 | 2.2 | | 1220 | 16.37 | 12.47 | 0.8 | 1280 | 15.75 | 11.18 | 3.0 | | 1221 | 20.3 | 19.06 | 0.6 | 1281 | 15.46 | 12.46 | 2.3 | | 1222 | 16.65 | 13.16 | 0.6 | 1282 | 15.50 | 11.39 | 1.5 | | 1223 | 15.28 | 11.63 | 2.1 | 1283 | 16.20 | 11.92 | 0.6 | | 1224 | 15.22 | 12.83 | 0.8 | 1284 | 14.59 | 11.40 | 3.6 | | 1225 | 15.46 | 13.27 | 0.8 | 1285 | 15.10 | 11.23 | 1.7 | | 1226 | 16.08 | 13.03 | 0.6 | 1286 | 15.46 | 11.53 | 2.1 | | 1227 | 15.67 | 11.45 | 2.8 | 1287 | 15.94 | 12.03 | 3.6 | | 1228 | 16.16 | 12.71 | 1.0 | 1288 | 16.65 | 12.98 | 0.6 | | 1229 | 17.13 | 12.91 | 0.8 | 1289 | 15.12 | 11.49 | 1.7 | | 1230 | 17.68 | 14.64 | 0.6 | 1290 | 16.20 | 13.65 | 0.8 | | 1231 | 15.88 | 12.64 | 1.2 | 1291 | 15.28 | 11.37 | 4.4 | | 1232 | 15.47 | 11.28 | 2.6 | 1292 | 15.37 | 12.40 | 2.0 | | 1233 | 15.32 | 12.32 | 1.2 | 1293 | 17.07 | 14.89 | 0.8 | | 1234 | 16.22 | 12.31 | 0.8 | 1294 | 15.20 | 11.92 | 2.8 | | 1235 | 16.67 | 15.47 | 0.8 | 1295 | 16.54 | 12.04 | 1.2 | | 1236 | 15.52 | 12.81 | 2.6 | 1296 | 15.50 | 12.82 | 1.2 | | 1237 | 15.08 | 11.96 | 2.14 | 1297 | 16.30 | 12.38 | 1.6 | | 1238 | 16.25 | 13.01 | 1.0 | 1298 | 15.68 | 11.56 | 2.3 | | 1239 | 16.43 | 13.20 | 0.6 | 1299 | 16.41 | 12.89 | 2.4 | | 1240 | 14.65 | 11.01 | 3.6 | 1300 | 15.73 | 12.25 | 2.6 | | 1241 | 14.63 | 10.41 | 1.3 | 1301 | 15.22 | 11.78 | 1.4 | | 1242 | 14.45 | 11.06 | 2.2: | 1302 | 16.08 | 11.98 | 0.6 | | 1243 | 15.29 | 11.23 | 3.6: | 1303 | 14.68 | 10.43 | 1.5 | | 1244 | 14.88 | 12.39 | 1.3 | 1304 | 14.64 | 10.41 | 2.9 | | 1245 | 14.67 | 10.98 | 2.3 | 1305 | 15.38 | 11.47 | 2.1 | | 1246 | 16.54 | 13.40 | 0.6 | 1306 | 14.90 | 10.75 | 1.6 | | 1247 | 15.89 | 11.77 | 1.8 | 1307 | 15.41 | 13.17 | 1.1 | | 1248 | 14.31 | 10.96 | 2.4 | 1308 | 15.65 | 11.93 | 2.1 | | 1249 | 15.06 | 12.88 | 1.6 | 1309 | 15.49 | 11.23 | 2.1 | | 1250 | 17.04 | 14.05 | 0.8 | 1310 | 15.29 | 12.68 | 0.6 | TABLE 7-Continued | No. | P _o | g | wt | No. | P _o | g | wt | |--------------------------------------|---|---|----------------------------------|--------------------------------------|---|---|---------------------------------| | 1311 | 16.45 | 13.75 | 1.1 | 1371 | 16.77 | 12.52 | 0.6 | | 1312 | 16.79 | 12.74 | 1.6: | 1372 | 16.07 | 12.63 | 1.2 | | 1313 | 16.20 | 12.99 | 0.6 | 1373 | 18.81 | 14.23 | 0.6 | | 1314 | 16.54 | 14.18 | 0.6 | 1374 | 16.95 | 14.70 | 0.8 | | 1315 | 15.26 | 10.99 | 2.3 | 1375 | 15.59 | 12.84 | 2.1 | | 1316
1317
1318
1319
1320 | 17.45
13.85
15.52
15.57
15.57 | 14.79
9.65
13.13
11.71
11.71 | 0.6
0.8
0.6
1.1 | 1376
1377
1378
1379
1380 | 15.92
16.45
15.72
15.04
17.22 | 13.73
14.18
13.16
12.10
13.08 | 2.2
2.0
2.0
2.6
0.6 | | 1321 | 14.89 | 11.10 | 2.5 | 1381 | 15.77 | 12.93 | 2.6 | | 1322 | 16.76 | 14.08 | 1.0 | 1382 | 15.62 | 13.46 | 2.0 | | 1323 | 15.45 | 11.23 | 3.0 | 1383 | 16.86 | 12.84 | 1.6 | | 1324 | 15.63 | 13.56 | 0.6 | 1384 | 16.08 | 12.82 | 0.6 | | 1325 | 16.17 | 13.21 | 1.2 | 1385 | 15.29 | 11.90 | 2.1 | | 1326 | 15.14 | 11.90 | 0.7 | 1386 | 17.22 | 14.68 | 0.6 | | 1327 | 16.37 | 12.89 | 2.0 | 1387 | 16.88 | 14.60 | 0.6 | | 1328 | 15.99 | 11.26 | 1.0 | 1388 | 15.75 | 11.82 | 1.4 | | 1329 | 14.51 | 11.37 | 2.2 | 1389 | 16.16 | 12.52 | 2.6 | | 1330 | 15.74 | 11.55 | 0.6 | 1390 | 14.64 | 10.03 | 2.1 | | 1331 | 15.80 | 11.73 | 1.6 | 1391 | 17.79 | 14.81 | 0.6 | | 1332 | 15.01 | 11.00 | 1.11 | 1392 | 16.01 | 12.89 | 0.9 | | 1333 | 16.00 | 12.83 | 2.8 | 1393 | 15.82 | 13.10 | 3.0: | | 1334 | 15.09 | 11.36 | 2.6 | 1394 | 15.57 | 12.84 | 2.3 | | 1335 | 17.11 | 14.89 | 0.6 | 1395 | 16.91 | 12.67 | 0.8 | | 1336 | 15.63 | 12.02 | 2.0 | 1396 | 15.24 | 13.00 | 3.6 | | 1337 | 15.9h | 12.22 | 1.8 | 1397 | 16.00 | 12.72 | 2.6 | | 1338 | 16.30 | 14.02 | 2.0 | 1398 | 15.55 | 11.37 | 1.7 | | 1339 | 15.43 | 11.50 | 2.h | 1399 | 17.33 | 15.17 | 0.6 | | 1340 | 16.66 | 12.47 | 1.6 | 1400 | 16.99 | 12.88 | 0.6 | | 1341
1342
1343
1344
1345 | 15.40
15.70
15.52
16.26
16.21 | 12.00
13.35
12.49
14.03
10.86 | 0.6
0.8
2.lı
2.0
0.8 | 1401
1402
1403
1404
1405 | 14.72
17.79
16.88
16.83
16.55 | 12.41
14.52
13.56
10.17
14.31 | 0.6
0.6
0.9
0.5 | | 1346 | 15.52 | 12.36 | 0.6 | 1406 | 16.05 | 12.75 | 0.5 | | 1347 | 15.20 | 12.17 | 1.6 | 1407 | 15.72 | 12.28 | 1.9 | | 1348 | 15.58 | 12.09 | 2.6 | 1408 | 16.18 | 12.09 | 1.7 | | 1349 | 15.47 | 11.51, | 1.8 | 1409 | 14.98 | 11.72 | 1.8 | | 1350 | 15.83 | 12.20 | 2.0: | 1410 | 16.28 | 12.36 | 3.1 | | 1351 | 15.19 | 10.98 | 1.8 | 1411 | 15.82 | 11.93 | 2.6 | | 1352 | 15.74 | 12.27 | 1.8 | 1412 | 15.91 | 13.76 | 1.6 | | 1353 | 14.99 | 11.08 | 2.4 | 1413 | 16.37 | 12.44 | 3.2 | | 1354 | 16.23 | 12.11 | 1.3 | 1414 | 17.22 | 13.74 | 0.6 | | 1355 | 14.80 | 13.30 | 1.2 | 1415 | 15.63 | 13.46 | 2.4 | | 1356 | 15•30 | 11.26 | 2.0 | 1416 | 15.65 | 11.73 | 1.9 | | 1357 | 14•84 | 10.61 | 0.6 | 1417 | 16.18 | 12.34 | 2.0 | | 1358 | 15•64 | 12.83 | 1.5 | 1418 | 15.22 | 13.04 | 3.6 | | 1359 | 14•96 | 10.86 | 1.0 | 1419 | 15.10 | 12.74 | 1.6 | | 1360 | 15•63 | 12.46 | 0.8 | 1420 | 16.08 | 12.67 | 0.6 | | 1361 | 15.98 | 11.93 | 0.8 | 1421 | 15.49 | 11.44 | 1.9 | | 1362 | 16.20 | 11.82 | 0.6 | 1422 | 17.34 | 15.10 | 0.8 | | 1363 | 16.26 | 12.55 | 2.6 | 1423 | 16.17 | 12.54 | 2.1 | | 1364 | 15.89 | 11.98 | 2.2 | 1424 | 14.93 | 10.72 | 1.9 | | 1365 | 15.46 | 13.22 | 2.8 | 1425 | 15.75 | 12.64 | 0.5 | | 1366
1367
1368
1369
1370 | 14.84
16.69
14.80
15.48
17.11 | 11.18
14.20
11.88
11.38
14.86 | 2.5
1.0
1.5
1.7
0.6 | 1426
1427
1428
1429
1430 | 15.18
15.29
15.05
16.63
16.16 | 12.13
11.88
11.52
13.64
13.16 | 1.0
1.8
2.2
1.0 | | _ | | | _ | | - | | | |---|---|----|---|----|---|-----|------| | T | A | ਧਾ | v | 7_ | | ~+4 | mied | | | | | | | | | | | No. | P _o | g | wt | No. | P _o | g | wt | |-------|----------------|-------|------|------|----------------|-------|------| | 1431 | 15.64 | 12.51 | 1.0 | 1491 | 16.74 | 12.51 | 1.0 | | 1432 | 15.87 | 13.28 | 1.5 | 1492 | 16.36 | 14.33 | 2.7: | | 1433 | 16.26 | 12.76 | 1.2 | 1493 | 15.29 | 12.58 | 2.3: | | 1434 | 15.34 | 11.42 | 2.4 | 1494 | 16.06 | 13.98 | 1.4 | | 1435 | 17.90 | 14.70 | 0.6 | 1495 | 16.60 | 13.42 | 0.9 | | 1436 | 15.52 | 11.37 | 2.0 | 1496 | 15.94 | 13.82 | 1.8 | | 1437 | 15.76 | 9.12 | 5.6 | 1497 | 16.42 | 12.72 | 0.9 | | 1438 | 16.88 | 12.70 | 1.0 | 1498 | 17.06 | 13.00 | 0.7 | | 1439 | 16.31 | 10.93 | 0.6 | 1499 | 16.52 | 13.27 | 1.5 | | 1440 | 17.22 | 13.04 | 0.8 | 1500 | 16.85 | 14.63 | 0.5 | | 1441 | 17.33 | 14.16 | 0.6 | 1501 | 16.61 | 13.64 | 2.5 | | 1442 | 16.21 | 12.55 | 1.5 | 1502 | 16.54 | 13.16 | 0.6 | | 1443 | 16.06 | 12.28 | 1.0 | 1503 | 14.99 | 11.84 | 2.5 | | 1444 | 16.31 | 12.14 | 0.6 | 1504 | 15.75 | 13.12 | 0.9 | | 1445 | 16.03 | 11.93 | 1.3 | 1505 | 15.58 | 12.36 | 1.8 | | 1446 | 16.35 | 14.12 | 0.5 | 1506 | 16.26 | 13.24 | 1.8 | | 1447 | 15.78 | 12.83 | 1.6 | 1507 | 17.25 | 14.79 | 0.5 | | 1448 | 16.85 | 14.29 | 0.5 | 1508 | 16.85 | 13.40 | 0.5 | | 1449 | 15.89 | 13.72 | 0.9 | 1509 | 15.04 | 14.00 | 1.8 | | 1450 | 15.67 | 12.55 | 1.5 | 1510 | 15.77 | 12.52 | 2.4 | | 1451 | 15.85 | 13.72 | 0.5 | 1511 | 16.60 | 14.07 | 1.0 | | 1452 | 17.09 | 13.00 | 1.0 | 1512 | 15.84 | 10.50 | 2.0 | | 1453 | 14.85 | 13.70 | 1.0 | 1514 | 16.69 | 14.60 | 0.8 | | 1454 | 17.03 | 14.49 | 0.8 | 1514 | 15.76 | 13.54 | 1.0 | | 1455 | 16.65 | 14.41 | 0.6 | 1515 | 16.88 | 13.85 | 0.6 | | 1456 | 15.98 | 11.78 | 1.0 | 1516 | 16.06 | 12.91 | 2.0 | | 1457 | 15.66 | 12.36 | 0.8 | 1517 | 15.52 | 12.17 | 0.6 | | 1458 | 15.72 | 12.57 | 2.0 | 1518 | 15.84 | 13.66 | 1.9 | | 1459 | 16.14 | 11.97 | 2.6 | 1519 | 16.95 | 12.84 | 0.5 | | 1460 | 16.79 | 13.83 | 0.7 | 1520 | 15.84 | 11.76 | 1.9 | | 11461 | 14.66 | 10.55 | 1.2 | 1521 | 16.75 | 13.14 | 0.5 | | 11462 | 16.25 | 12.09 | 0.5 | 1522 | 16.23 | 13.69 | 0.9 | | 11463 | 16.13 | 12.00 | 0.9: | 1523 | 15.56 | 13.34 | 1.6 | | 11464 | 16.12 | 12.23 | 2.5 | 1524 | 15.97 | 11.89 | 2.5 | | 11465 | 16.08 | 12.14 | 0.6 | 1525 | 17.57 | 14.27 | 0.9 | | 14,66 | 16.60 | 14.02 | 0.8 | 1526 | 17.15 | 14.73 | 0.5 | | 14,67 | 14.33 | 9.79 | 1.8 | 1527 | 15.79 | 13.61 | 1.1 | | 14,68 | 16.75 | 14.54 | 3.0 | 1528 | 16.19 | 13.52 | 1.6 | | 14,69 | 14.98 | 10.87 | 4.6 | 1529 | 16.58 | 11.19 | 1.1 | | 14,70 | 17.33 | 13.16 | 0.6 | 1530 | 16.95 | 14.71 | 0.5 | | 1471 | 17.33 | 13.99 | 0.6 | 1531 | 16.18 | 13.02 | 0.8 | | 1472 | 16.08 | 13.88 | 1.7 | 1532 | 15.78 | 11.88 | 2.5 | | 1473 | 16.55 | 13.51 | 0.5 | 1533 | 15.80 | 11.89 | 0.7 | | 1474 | 16.30 | 12.92 | 0.8 | 1534 | 16.32 | 12.95 | 1.5 | | 1475 | 16.59 | 14.09 | 0.8 | 1535 | 16.96 | 12.80 | 0.9 | | 1476 | 17.12 | 14.79 | 0.8 | 1536 | 16.61 | 14.49 | 0.7 | | 1477 | 16.47 | 12.27 | 0.7 | 1537 | 17.79 | 13.82 | 0.6 | | 1478 | 16.35 | 13.56 | 0.5 | 1538 | 18.02 | 15.48 | 0.6 | | 1479 | 15.68 | 12.42 | 2.0 | 1539 | 16.11 | 12.01 |
2.7 | | 1480 | 16.40 | 14.29 | 1.2 | 1540 | 15.55 | 11.94 | 0.5 | | 14,81 | 15.90 | 11.98 | 0.8 | 1541 | 15.91 | 12.46 | 2.0 | | 14,82 | 15.71 | 12.06 | 3.1 | 1542 | 15.63 | 11.57 | 1.8 | | 14,83 | 15.89 | 12.55 | 2.5 | 1543 | 16.99 | 13.83 | 0.6 | | 14,84 | 15.61 | 12.22 | 0.8 | 1544 | 15.43 | 12.86 | 1.8 | | 14,85 | 16.31 | 12.37 | 0.6 | 1545 | 16.26 | 12.80 | 2.1 | | 1486 | 16.76 | 14.66 | 1.6 | 1546 | 15.83 | 11.65 | 1.2 | | 1487 | 15.86 | 11.73 | 2.9 | 1547 | 15.92 | 12.73 | 1.0: | | 1488 | 15.95 | 11.99 | 0.5 | 1548 | 15.15 | 11.67 | 0.5 | | 1489 | 17.22 | 13.02 | 0.6 | 1549 | 15.55 | 13.36 | 0.5 | | 1490 | 15.17 | 12.66 | 1.7 | 1550 | 16.74 | 13.76 | 0.8 | | TABLE 7-Continu | |-----------------| |-----------------| | No. | р _о | g | wt | No. | р _о | g | wt | |--------------|----------------|----------------|------------|---------------|------------------------|----------------|------------| | 3 449 | _ | | 0.0 | | | | | | 1551 | 16.20 | 13.58 | 2.9 | 1586 | 15.74 | 13.04 | 0.6 | | 1 552 | 16.53
16.44 | 12.63
12.72 | 1.1
1.0 | 1587
1588 | 15.78 | 12.81
12.10 | 1.4 | | 1553
1554 | 15.85 | 12.71 | 2.0 | 1589 | 16.0Ц
15.90 | 13.22 | o•fi | | 1555 | 15.82 | 12.53 | 1.3 | 1590 | 15.23 | 13.04 | 3.6
2.6 | | ±333 | 15,02 | 12.55 | ر•1 | 1990 | 19.23 | 13.04 | 2.0 | | 1556 | 15.95 | 11.35 | 1.2 | 1591 | 15.79 | 13.18 | 0.9 | | 1557 | 16.13 | 12.22 | 2.1 | 1592 | 16.32 | 12.86 | 1.4 | | 1558 | 15.78 | 11.52 | 2.2 | 1593 | 16.76 | 14.58 | 1.3 | | 1559 | 15.88 | 13.27 | 0.9 | 1594 | 15.68 | 13.38 | 1.2 | | 1560 | 16.07 | 12.79 | 2.1 | 1595 | 15.76 | 12.57 | 0.9 | | | - 4 | | | - 4-4 | | | | | 1561 | 16.17 | 11.98 | 0.8 | 1 596 | 15.86 | 12.17 | 1.4 | | 1562 | 15.69 | 13.51 | 1.0 | 1597 | 16.89 | 13.27 | 1.6: | | 1563 | 15.84 | 13.76 | 1.0 | 1598 | 16.78 | 32 بلا | 2.0 | | 1564 | 16.21 | 12.05 | 0.8 | 1599 | 16.33 | 12.19 | 2.6 | | 1565 | 16.29 | 13.68 | 1.3 | 1600 | 16.99 | 16.01 | 0.6 | | 1566 | 12.35 | 17.7և | 0.5 | 1601 | 16.01 | 13.81 | 1.9 | | 1567 | 15.17 | 10.90 | 1.4 | 1602 | 15.91 | 13.68 | ī.ú | | 1568 | 15.63 | 13.12 | 1.7 | 1603 | 15.46 | 12.04 | 2.4 | | 1569 | 16.59 | 12.43 | 2.2: | 160 <u>L</u> | 15.64 | 11.70 | 3.6 | | 1570 | 16.13 | 12.53 | 2.2 | 1605 | 15.27 | 11.36 | 1.6 | | | - | | | | | | | | 1571 | 17.26 | 13.13 | 1.2 | 1606 | 15.95 | 12,66 | 1.5 | | 157 2 | 15.40 | 11.31 | 2.2 | 1607 | 15.97 | 13.00 | 4.4 | | 157 3 | 16.43 | 13.87 | 0.6 | 1608 | 1 5 .7 4 | 13.60 | 0.6 | | 1574 | 16.30 | 11.54 | 1.6 | 1609 | 14 . 99 | 11.93 | 2.6 | | 157 5 | 16.47 | 13.90 | 0.8 | 16 1 0 | 16.88 | 14.77 | 0.6 | | 1576 | . 15.78 | 11.65 | 1.5 | 1611 | 15.97 | 11.73 | 0.6 | | 1577 | 17.43 | 15.24 | 1.8 | 1612 | 16.08 | 12.01 | 0.6 | | 1578 | 17.05 | 11.71 | 2.0 | 1613 | 16.31 | 12.92 | 2.6 | | 1579 | 15.63 | 11.02 | 1.1 | 1614 | 15.52 | 11.64 | 2.6 | | 1580 | 17.65 | 15.56 | 0.5 | 1615 | 16.43 | 12.33 | 0.6 | | | -1100 | -,-,- | | 202) | 2002) | 20000 | 0.0 | | 1581 | 15.34 | 11.14 | 0.2 | 1616 | 16.65 | 12.92 | 0.6 | | 1582 | 17.20 | 13.02 | 0.8 | | | | | | 1 583 | 16.48 | 9.71 | 3.4 | | | | | | 1584 | 14.82 | 12.25 | 1.3 | | | | | | 158 5 | 15.51 | 11.75 | 1.0 | | | | | The weight of magnitudes printed in italics in the Ephemeris was determined from the plot of differences, italics minus combined magnitudes, against combined magnitudes, shown in Figure 2. The average of the differences is found to be -0.35 mag. The average deviation of the dots in Figure 2 from -0.35 is ± 0.43 mag. The combined values that were used have an average weight of 1.2, or ± 0.20 mag. probable error. The probable error of the italic values is then ± 0.30 mag., and their weight is 0.5. Italic magnitudes from the Ephemeris were therefore used in the combination, with weight 0.5 after correction of +0.35 mag. The accidental errors of magnitude determinations at other observatories were derived in Paper VI by avoiding aspect variations; thus unit weight in Paper VI corresponds to ± 0.14 mag. not ± 0.22 mag. Partly for convenience, the relative weights so established were retained in the present compilation, although it includes the scatter from aspect variations. The relative weights of the more uncertain series will thus have been slightly reduced. Fig. 2.—Plot of differences (italics minus p) versus p For about 300 asteroids, magnitudes were obtained in the Survey at two oppositions. Some 800 asteroids were observed in the Survey during one opposition only; the precision of the final magnitude for these objects was increased by inclusion of two magnitude observations made at other observatories in addition to the reduced Ephemeris magnitudes mentioned before. For some 500 asteroids no magnitudes could be determined in the Survey; for each of these, four magnitude determinations made elsewhere were added to the reduced Ephemeris magnitudes, if such additional values were available. The magnitude values determined at other observatories were taken as much as possible from oppositions different from the Survey and from each other. They were collected from the Cincinnati Index, which was kindly loaned to us by Dr. Herget. The Index magnitudes were reduced to absolute magnitude by the same method and the same phase corrections as those of the Survey magnitudes. Usually only observations of the years 1948–1954 were included, but in a few cases 1947 observations were used also. The series used are discussed in Paper VI, with an example of the combination procedure given in Table 5 of that paper. The result of the compilation is found in Table 7, with the weighted mean absolute magnitude, g, given in column 3. The total weights of the combinations are shown in column 4; they are the sum of the weights of the separate determinations if only one Survey magnitude was available. If more than one Survey magnitude was derived within a period of 10 days, the average rather than the sum of the weights of the Survey magnitudes is given. This was done to allow for common uncertainties, such as in aspect variation and in the reductions to absolute magnitude; furthermore, these asteroids oc- curred on the overlapping edges of the plates where the images were somewhat inferior. Because the aspect variations correspond to a p.e. roughly of ± 0.16 mag., it is obvious that an absolute magnitude derived during a single opposition cannot have a weight in excess of roughly 2.0 (unit weight corresponding to ± 0.22 mag.). For some 38 asteroids, photoelectric data other than complete light-curves had been obtained at the time of this discussion; some of these are based on observations made on two nights. They are collected in Tables 9 and 10 and have been added to the data in Table 7 with weight 2.0, after reduction to the International Photographic Scale by means of equation (1). In about 150 cases neither Survey magnitudes nor Index magnitudes were available; they can be recognized from the assigned weight, 0.6, in column 4 of Table 7. For the Trojans the magnitudes were taken from Paper VI, after inclusion of the corrected Ephemeris magnitudes. Column 2 of Table 7, giving the mean opposition magnitudes, was derived from column 3 by means of the relation $$p_0 = g + 5 \log a (a - 1).$$ (3) The differences between columns 2 and 3 were computed twice independently, based on the 1955 and 1957 Ephemeris, respectively. To preserve the computational result, they are given in two decimals even in cases of low weight. TABLE 8 COMPARISON OF INDIVIDUAL g-VALUES OF UNIT WEIGHT | Interval of
Comparison | Average
Difference
of Two Values | p.e. of
One Value | No. of
Compari-
sons | Interval of
Comparison | Average
Difference
of Two Values | p.e. of
One Value | No. of
Compari-
sons | |---------------------------------|--|----------------------|----------------------------|----------------------------------|--|----------------------|----------------------------| | 0 ^d | 0.232 | 0.14 | 90 | 14 ^d -25 ^d | 0.254 | 0.15 | 62 | | 1 ^d –10 ^d | 0.276 | 0.17 | 58 | 1 -2 years | 0.362 | 0.22 | 295 | The precision of the Survey magnitudes referred to above will now be determined. All asteroids were used for which two determinations were made. They were subdivided into groups according to the interval elapsed between the two measures, as given in Table 8. It is noted that the probable error of one value is essentially constant, at ± 0.15 mag., for comparisons between values obtained during the same opposition, while the probable error is ± 0.22 mag. for comparisons between different oppositions. The former result is consistent with the discussion in Section VII in which a probable error of ± 0.14 mag. was found for one determination of unit weight (which consists of two measures made on pairs of plates taken approximately 1 hour apart). This value depends on internal evidence between the measures on one pair of plates, while ± 0.15 mag. was found from intercomparisons between different plate pairs. The latter value includes certain additional effects, such as differential corrections for phase. The extra dispersion between magnitudes obtained at different oppositions and derived above on the basis of Survey magnitudes alone, was qualitatively confirmed by comparisons of Survey magnitudes with observations made at Heidelberg and Simeis. In both instances the dispersion of the differences, Observatory minus Survey, was substantially larger if the magnitudes had been obtained at different oppositions. As remarked before, the difference in the two probable errors, ± 0.22 and ± 0.15 mag., corresponding to a probable error of ± 0.16 mag., may be attributed to aspect variations. This may be shown as follows: Intercomparisons between different oppositions involve a comparison between the zero point of the 1950–1951
opposition with that of 1951–1952. A variety of checks made in connection with the preparation of Paper VI as well as Figures 1 and 2 of that paper show that the difference in the zero points of the two oppositions is not in excess of 0.05 mag.; actually, since the same Selected Areas were used in the two oppositions, no systematic differences would be expected. The next possibility was that the larger difference between consecutive oppositions might be due to occasional errors in identification. The identifications were examined with care whenever the g-values of the two oppositions differed more than 0.35 mag. The criteria used were O-C in both position and motion, with allowance for the variation, as well as the similarity of the O-C values between the two oppositions. No identifications were found to be erroneous. Parenthetically, for future identifications the importance is stressed of accurate magnitude determinations, especially for fainter objects, for which the numbers increase so rapidly that the probability for similar orbits is greatly increased. A third possibility is that phase effects are responsible for the increased scatter between oppositions. Examination showed, however, that this was not the case. The mean phase angle of asteroid magnitudes for the Survey is 5°; the mean difference between pairs of observations was 40, for pairs made both during the same opposition and at different oppositions. The only remaining possibility appears that variations in aspect The rather surprisingly large scatter due to aspect can be understood if certain conditions are satisfied. One expects theoretically that the asteroids will rotate around the shortest figure axis, i.e., around that axis about which the moment of inertia is largest. If, for simplicity, the asteroid is assumed to have the shape of an ellipsoid, with semiaxes a > b > c, one expects it to rotate around the c-axis. As the asteroid moves in its orbit, the aspect can change at most from pole-on (area πab) to equatorial (area varying between πac and πbc). The rotational variation will be zero pole-on and by the ratio b/aequatorially. Maximum rotational variation will be observed in the plane of the asteroid equator, being 2.5 log b/a magnitudes; while maximum aspect variation, 2.5 log $\frac{1}{2}(c/b +$ c/a), will occur only if the obliquity is so high that the earth can pass near the asteroid pole. Now for the brightest of the asteroids the average rotational semiamplitude may be found from Papers I-V and VII, ± 0.09 mag.; while the average aspect variation, based on Table 8 (which gives p.e.) is about ± 0.19 mag. The latter value may actually approach the maximum time-average, since the interval between consecutive oppositions is nearly 5/4 years, making the two aspects nearly 90° apart. In any case, the comparatively large variation attributed to aspect appears to require that the asteroids as a group have large obliquities unless the c values should be much smaller than the a and b values. Since flat disks are improbable, it is concluded that the asteroids have large (possibly random) obliquities. This subject, including such corollaries as the relation between the phase of the aspect variation and the amplitude of the rotational variation, will not be pursued here; when the maximum aspect is presented, the rotational variation should be at minimum, as seems to be true for asteroid 511, described in Paper I. Asteroids showing large differences between the magnitudes determined at different oppositions are of special interest; they are designated by a colon following the weight in column 4 of Table 7. Included are the objects whose average deviation per unit weight of the individual g-values from their mean was greater than about 0.35 mag. This value may be compared with that expected on the basis of the probable error of ± 0.22 mag. per individual observation at different oppositions. If the average is based on four observations, typical for Table 7, the computed mean deviation is 0.32 mag., and the fraction for which the mean deviation is larger than 0.35 mag. is about 23 per cent, which is roughly the percentage of such deviations actually found. The aspect deviations may therefore roughly follow a Gaussian distribution. The reason for marking with a colon the large differences between oppositions is that these objects as a class will have appreciable obliquities and departures from spherical shape and are therefore of special interest. It is noted that the objects in question are by no means a complete inventory of asteroids with large aspect variations, since their selection was based on two adjacent oppositions for the Survey, to which a few observations made at other observatories and at different oppositions were added. In addition, a few cases are uncertain for other reasons, as is shown by internal inconsistencies between the measures. If the asteroids in Table 7 marked with a colon in column 4 are omitted, a rediscussion of the material used in Table 8 gives the probable errors ± 0.13 , 0.16, 0.14, and 0.17 mag., respectively. Some cases were found where the magnitudes in the Ephemeris should perhaps have been printed in italics, while they were not; then the Ephemeris magnitudes were not used, or else a colon was added in column 4 of Table 7. Furthermore, there are cases where the Ephemeris magnitudes were exceptionally discrepant, so that they were not used for combination; examples are 127, 369, 830, 1178, 1186, 1192, 1206, 1220, 1235, 1243, 1263, 1312, 1345, 1552, 1555, 1581, 1588, 1591, 1592, 1593, 1602, and 1606. It is therefore likely that, for some cases for which we did not have recent observations and for which, therefore, the Ephemeris value transformed to the p system was taken, the magnitudes are actually too faint by about $1\frac{1}{2}$ mag. because the Ephemeris value should have been printed in italics but was not. The opposite may have occurred also; an example may be 1463, where two observations are available, although of low weight and only in one opposition, that give an absolute magnitude of 12.9, while the Ephemeris q is 11.0. The asteroids marked with colons in column 4 of Table 7 were investigated for possible orbital peculiarities. No appreciable difference was found between the average orbital eccentricities of these bodies and those of asteroids in general, for the semimajor axis a, or in the average absolute magnitude. The average orbital inclination, however, was 8.3 versus 10.5 for the other asteroids, a difference that may just be significant. If this effect is real, it may mean that these bodies have experienced more collisions. The scatter of the g-values for each asteroid, within one opposition or in different oppositions, appears not correlated with p, unless the scatter be slightly less for fainter asteroids. The magnitude scale of Table 7 was checked by a special photoelectric program which supplemented the photoelectric checks already available from asteroids whose lightcurves had been observed. Since the latter group consisted mostly of bright asteroids, the supplementary observations were extended down to about 16.0 mag. The useful comparisons between the photoelectric and photographic scales are listed in Table 9. In this table are included all asteroids observed photoelectrically for which photographic observations existed for more than one opposition and whose total weight exceeded 1.8. The table is arranged by increasing P_0 . Column 2 gives the year, month, date, and decimal in such cases where the results have not been published before. If the decimal of the day is omitted, it signifies that a mean magnitude has been used, taken from light-curves published in Papers I-V and VII. The observers and telescopes are listed in column 3. Column 4, giving V, gives the mean magnitude determined from lightcurves or the mean derived from different observations during the same night. Column 7 has been derived from columns 4 and 5 by means of equation (1). Column 8 gives the quantity p_0 taken from Table 7 after the photoelectric data used in the compilation had been removed. The identification of moving objects near the limit of visibility, as required here, poses a special problem in photoelectric photometry. Finding charts were prepared from Survey plates, and the Ephemeris positions were corrected with the residuals derived from 10-inch McDonald or 24-inch Yerkes plates taken for the purpose. The 24-inch objects were identified on search plates taken just prior to the photoelectric observations. The 24-inch photoelectric records were made with the aid of an integrator designed and built by Mr. R. H. Weitbrecht. The estimated probable errors of the photoelectric magnitudes are small compared to those of the photographic magnitudes in Table 9. The photoelectric data listed in Table 10 could not be matched with accurate photographic observations; but they were, of course, used in Table 7. TABLE 9 PHOTOELECTRIC CHECK OF THE MAGNITUDES OF TABLE 7 | | | 1 | | | _ | | 1 | | | |---|--|--|---|---|--------------------------------------|---|--|--|-------| | Asteroid (1) | Date
U.T.
(2) | Observ-
er*
(3) | \overline{V} (4) | B-V (5) | <i>U-B</i> (6) | P_0 Photoel. (7) |
#0
Table 7
(8) | $p_0 - P_0$ (9) | | | 29
18
9 | 56.3.4.3
56.8.22.1
{54.1.3
54.1.16 | K
K
Gr
Gr | 9.83
11.39
8.67
9.08 | +0.88
+ .83
+ .84
+ .85 | +0.30
+ .50
+ .48 | 10.01
10.10
10.19
10.22 | 10.27
10.12
9.91 | $ \begin{array}{c} +0.26 \\ + .02 \\30 \end{array} $ | | | 16
11 | \$55.12.26
\$56.1.2
\$6.1.3
\$52.1.29 | Gr
Gr
Gr
K | 9.78
9.92
10.59
10.28 | + .71
+ .81
+ .89 | + .25
+ .39
+ .52 | 10.32
10.44
10.60 | 10.65 | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | +0.05 | | 39 | 53.4.10
55.12.18
55.12.19
55.12.28 | Gr
Gr
Gr
Gr | 10.65
10.65
10.82 | + .88 | + .49 $+ .50$ | 10.67 | 10.76 | 09 | | | 349 | \$\\ \{ 56.8.23.2 \\ 56.8.24.2 \end{array} | K
K | 9.74:
9.80 | + .91:
+ .98 | + .50
+ .59 | 10.78:
10.92 | 11.01 | + .14 | | | 30
51
23
511
52
37
128
194 | \$\begin{cases} 56.8.23.3 \\ 56.8.24.3 \\ 56.3.4.3 \\ 56.3.4.3 \\ 53.4.8 \\ 56.3.4.3 \\ 56.3.4.3 \\ 56.3.4.3 \\ 56.3.2.2 \end{cases}\$ | K
K
K
K
Gr
K
Ge
K | 9.73:
9.83
10.62
10.27
9.98
11.44
10.67
11.32
11.92
11.02 | + .84:
+ .88
+ .83
+ .91
+ .71
+ .72
+ .70
+ .89
+ .84
+ .70 | + .45
+ .46
 | 11.04:
11.18
11.15
11.29
11.32
11.54
11.59
11.68
12.01
12.04 | 11.29
11.11
11.53
11.01
11.43
11.47
12.11
11.66 | + .16
04
+ .24
42
16
21
+ .10
38 | 09 | | 122
498
268
490
380
62
510 | $\begin{array}{c} 56.2.16.2 \\ 56.3.13.3 \\ 56.1.4.2 \\ 56.3.13.2 \\ 56.3.3.2 \\ 52.2.16.2 \\ 56.1.4.2 \\ 56.1.6.1 \end{array}$ | Ge
Ge
Gr
Ge
K
Ge
Gr
Gr | 12.61
13.77
13.32
13.29
13.62
13.08
14.50
14.40 | + .68
+ .77
+ .70
+ .78
+ .72
+ .76
+ .74
+ .73: | + .41
+ .36
+ .30
+ .69
 | 13.11
13.14
13.32
13.61
13.70
13.76
14.01
13.91 | 13.08
13.06
13.85
13.68
13.78
13.77
14.12 | $ \begin{array}{cccc} & - & .03 \\ & - & .08 \\ & + & .53 \\ & + & .07 \\ & + & .08 \\ & + & .01 \\ & + & .17 \end{array} $ | + .11 | | 540
976
321
1043
658
1291 | 56.3.13.3
56.3.13.2
\$55.12.19
\$55.12.20
56.3.4.2
\$56.1.4.2
\$56.1.6.2
\$56.1.6.2
\$56.1.6.2
\$56.1.6.3 | Ge
Ge
Gr
Gr
Gr
Gr
Gr
Gr | 12.96
13.41
14.17
15.27
14.52
14.57
14.31
14.74
15.17
15.26: | + .95
+ .74
+ .82
+ .92
+ .87
+ .87
+ .86
+ .81
+0.85 | + .06
+ .25
+ .45
 | 14.26
14.46
14.73
14.77
15.02
15.05
15.25
15.06
15.46
16.15: | 13.89
14.86
15.07
14.61
15.03
15.26
15.30
15.87 | $ \begin{array}{rrr}37 \\ + .40 \\ + .34 \\16 \\01 \\ + .01 \\ + .04 \\ - 0.28 \end{array} $ | 0.00 | ^{*} Ge = Gehrels, 24-inch; Gr = Groeneveld, 82-inch; K = Kuiper, 82-inch. Group averages per $1\frac{1}{2}$ -mag. interval of the magnitude differences in column 9 of Table 9 are found in column 10. It is noted that there is no dependence on apparent magnitude. The over-all average of $(p_0 - P_0)$ is $+0.01 \pm 0.03$ mag. (p.e.). Both the zero point and the scale of Table 7 are thus found to be satisfactory. The average deviation of single values from the mean difference is ± 0.18 mag. This quantity is estimated to have a probable error itself of ± 0.03 mag. The probable error thus found cannot be compared TABLE 10 Additional Photoelectric Data | Aster-
oid
(1) | Date
U.T.
(2) | Observer | <i>V</i> (4) | B-V (5) | <i>U-B</i> (6) | P ₀ Photoelectric (7) | |----------------------|--|--------------------------|----------------------|--------------|----------------|----------------------------------| | 7 | 55.12.28
55.12.29
56.1.2 | Gr \ Gr \ Gr \ | 9.81 | 0.86 | 0.47 | 9.29 | | | 56.1.5
56.3.8
(55.12.20
55.12.27 | Gr∫
Gr
Gr
Gr} | 8.99 | | | | | 8 | 55.12.28
55.12.29
56.1.1 | Gr\
Gr∫
Gr\
Gr∫ | 8.82 | .88 | .48 | 9.53 | | 15 | \begin{cases} 55.12.21 \\ 55.12.24 \\ 55.12.27 \end{cases} | Gr
Gr
Gr | 8.65
8.74
8.83 | .84 | .44 | 9.15 | | 17 | $ \begin{cases} 55.12.23 \\ 55.12.24 \\ 55.12.25 \end{cases} $ | Gr
Gr
Gr | 11.47 | .84 | .40 | 11.22 | | 25 | (56.1.3
)56.1.4
)56.1.5
(56.1.6 | Gr
Gr
Gr
Gr | 12.54 | .93 | .51 | 11.59 | | 3 | \$56.8.22.2
\$56.8.23.2 | K
K | 9.95
10.07: | .77
.83: | .35
.38 | 9.45
9.64: | | 10 | \$56.8.23.2
\$56.8.24.2 | K
K | 10.39:
10.39 | .78:
.71 | . 47
. 40 | 10.90:
10.82 | | 2 | \$56.8.23.2
\$56.8.24.2 | K
K | 9.36:
9.32 | .62:
0.65 | 0.27
0.27 | 8.59:
8.58 | directly with the values listed in Table 8 because, in comparisons with observations taken at different oppositions, the photoelectric data have a scatter due to aspect, while the asteroids to be observed photoelectrically were somewhat selected to favor objects having consistent photographic determinations. Nevertheless, the quantity is of the order of magnitude to be expected on the basis of previous discussions. Mr. Gehrels is largely responsible for this section. Part of the reductions were carried out by him at Indiana University, after his appointment there in August, 1956. ## IX. CONTROLS AND REVISIONS The measured positions, motions, and magnitudes were entered on sheets similar to Table A, except that the latter is arranged in order of asteroid number, while the original Survey records were kept separate for each opposition field and were arranged by the plate-field number. For each plate pair, the asteroids were assigned numbers added to the plate-field number, e.g., B24.3. The Survey records were checked carefully against the original measures and computations. The positions were measured once, but the reductions were all checked independently; furthermore, the previously derived approximate positions were used as a check on the theodolite positions, and the latter were remeasured in a number of doubtful cases. The identifications of the first eight opposition fields were checked by Dr. E. K. Rabe, as consultant to the project, during a month's stay at the Yerkes Observatory in August, 1954; later he made additional checks at Cincinnati and found that none of the identifications checked needed revision. In the early stages of the project, advice was given by Dr. W. Strobel, of the Rechen Institute at Heidelberg. The O—C's for the positions were computed in duplicate. The daily motions were measured and computed only once, and only in cases where the O—C's with the Ephemeris motions were large were control measures and reductions made. The magnitude measures and reductions for the a and b plates of each pair were made independently; in case of serious discrepancy they were repeated. Similarly, the g-values were derived independently for each plate pair and controlled if necessary. This latter check led to the discovery of a few misidentifications or clerical errors. As has been stated, the differences between columns 2 and 3 of Table 7 were computed in duplicate. ## X. COMPLETENESS OF SURVEY; FREQUENCY-CURVE OF ASTEROIDS One of the principal aims of the Survey was the determination of the frequency-curve of asteroid magnitudes to the limit of the plates. Such a determination requires a fairly homogeneous collection of plates. All factors that influence the apparent brightness of an asteroid, other than its size, such as the distances from the sun and the earth and the phase correction, will, to a first approximation, be the same for faint and bright asteroids, so that the rate of increase with apparent magnitude is a significant quantity. Because the discovery of asteroids by blinking is never entirely complete, particularly for fainter asteroids, the completeness factors must be determined. In the present Survey this has been done in two ways: (a) from overlapping Survey regions and (b) from comparison with the Ephemeris asteroids. Method a can be used because the blinking was done without previous knowledge of asteroids present. A fraction of the objects will have been recorded twice, another fraction once, and a third fraction not at all. The ratio of the first two fractions is readily found to be $$\frac{\text{Found twice}}{\text{Found once}} = \frac{k^2}{2k(1-k)},$$ (4) in which k is the completeness factor for single blinking. The method depends, however, on the outer areas of the plates, which, because of the somewhat inferior image quality, will tend to make k slightly too small for the plate average. The completeness of the entire Survey will be larger than k because of the areas blinked twice. If μ is the fraction of the 40° belt blinked twice, the average probability of finding an asteroid is clearly $$K = (1 - \mu) k + \mu [k^2 + 2k (1 - k)].$$ Method b also depends on the fact that the blinking was done independently of previous knowledge, so that the fraction of Ephemeris asteroids recorded gives a true measure of the degree of completeness of each magnitude group. Objects found by reblinking must, of course, be excluded. On the other hand, if an object is not found by reblinking, its position might be grossly in error; then the object should not be counted at all. If it were missed for any other reason, it should be counted. Half the objects not found by reblinking were regarded here as "lost" and were not counted. Method a was used as follows: All objects were counted that were found in the Survey, irrespective of recurrences; the completeness, K, as defined will apply to these counts. This approach has the advantage that the largest possible numbers are used. The quantity μ was found to be 0.25. The material was divided into groups of fields blinked by the same person and of about the same quality. For these groups the degree of
completeness was computed; the results are found in Table 11. The figures in parentheses are found by method b. It is seen that the two methods give generally accordant results. The numbers of asteroids, counted per half-magnitude intervals and corrected for incompleteness, are given in Table 12. The last column of that table shows the number of declination strips, each one plate (6.5) wide, which contributed to the statistics. The totals are found at the bottom, with the values in parentheses adjusted to the full num- TABLE 11 DEGREE OF COMPLETENESS OF SURVEY | Fields | Blinked
by | 14.0 14 | 5 19 | 5.0 15 | 5.5 10 | 6.0 16.5 | Effective
Plate
Limit | |--|------------------------------------|----------------------------|--|----------------------------------|--|----------|-----------------------------| | $B, C, D, E, F \dots$ $G, \dots, H, J, \dots, I, K, \dots, I$ $L, \dots, M, N, M, N, M, M,$ | K
T
Gr
VH
T
VH
T | 0.85(0.94)
0.77
1.00 | 0.80(1.00)
0.90(0.89)
1.00
0.50
0.50
0.86 | 0.80(0.79)
0.91(0.87)
0.67 | 0.50(0.41)
0.73(0.69)
0.80(0.79) | 0.86 | 16.5
16.7 | ber, 154, of strips. The logarithms of the adjusted numbers are found in Table 13, together with the residuals with respect to the equation $$\log n = 1.983 + 0.344 (p - p_1) - 0.014 (p - p_1)^{2},$$ $$\pm 0.023 \pm 0.007 \qquad \pm 0.005 \text{ (mean errors)}$$ (5) which was obtained by least squares; $p_1 = 12.75$. The numbers and equation (5) are shown in Figure 3. The deviation from linearity is small and hardly significant. The constant term in equation (5) must now be reduced to the proper unit. Subtraction by $\log 154 = 2.188$ leads to values applicable per one strip; subtraction of $\log 1.10 = 0.046$ allows for overlaps between strips. Addition of $\log 360^{\circ}/6.5 = 1.744$ reduces the count to the entire ecliptic belt. A correction by the factor 1.10 (logarithm + 0.046) is required, to allow for objects missed because they were outside the 40° belt (the correction is somewhat larger than the 7 per cent noted above for the entire Survey because recurrences are now excluded and the Survey covered the asteroids, on the average, nearly 1.5 times). The four reductions combine to make the constant term in equation (5) equal to +1.539. Reduction to the interval of 1 mag. requires multiplication by a factor slightly in excess of 2. More precisely, the factor is $(10^{s/2} - 10^{-s/2})/10^{s/4} - 10^{-s/4}) = 2.04$ (logarithm 0.309), where s is the coefficient 0.344 in equation (5). The constant term thus becomes 1.848. Equation (5), thus modified, still does not allow for the fact that one year (360°) does not bring all asteroids into opposition; the fraction will be the mean of the reciprocal synodic periods. The average mean motion of asteroids 1–250 and 1001–1250 is 798″.4/ TABLE 12 Numbers of Asteroids in Magnitude Intervals (Corrected for Incompleteness) | Field | 9.0 9. | .5 10 | .0 10. | 5 11 | .0 11 | .5 12 | .0 12 | .5 13 | .0 13 | 3.5 14 | .0 14 | 5 1 | 5.0 15 | 5.5 10 | 6.0 | No.
Vert
Str | |---|-----------------------|---------------------------------|---|---|--|---|--|--|---|---|--|--|--|---------------------------|--------------|---| | B-F
G
H-J
I-K
L
M-N
O
R-V
X | 0
1
0
0
0 | 1
1
0
0
1
0
1 | 3
1
2
1
1
0
2
3
0 | 3
0
2
0
0
1
4
5
1 | 2
1
3
4
1
2
0
6
4
2 | 5
4
3
6
5
5
2
10
6
2 | 14
6
8
6
2
6
4
15
4
2 | 23
5
7
13
3
8
9
18
8 | 27
10
16
20
11
7
5
30
16
5 | 41
15
14
28
8
22
9
45
22
8 | 53
12
11
28
15
31
10
50
19 | 66
16
31
45
21
60
36
90
29
13 | 147
42
39
60
30

102
41
22 | 45
70

147
51 | 82 | 36
8
12
17
8
16
8
31 | | Total | 4 | 6 | 13 | 16 | 25 | 48 | 67 | 100 | 147 | 212 | 235 | 407 | 483
(571) | 313
(690) | 82
(1204) | 15 | TABLE 13 REPRESENTATION OF EQUATION (5) | Þ | log n
Obs. | log n
Comp. | 0-C | Þ | log n
Obs. | log n
Comp. | 0-C | |------|--|--|--|-------|--|--|---| | 9.25 | 0.60
0.78
1.11
1.20
1.40
1.68
1.83
2.00 | 0.60
0.82
1.04
1.24
1.43
1.63
1.81
1.98 | 0.00
04
+ .07
04
03
+ .05
+ .02
+0.02 | 13.25 | 2.17
2.33
2.37
2.61
2.76
2.84
3.08 | 2.15
2.31
2.47
2.61
2.76
2.89
3.01 | +0.02
+ .02
10
.00
.00
05
+0.07 | Fig. 3.—Observed numbers of asteroids, corrected for incompleteness, and representation by equation (5). day compared to 3548''.2/day for the earth; the average differential motion is therefore 2749''.8/day, and the annual fraction 2749.8/3548.2 = 1/1.290 (add log 1.29 or 0.111); Further, the observed magnitudes are not quite so bright as the opposition magnitudes; if the mean correction is $\frac{1}{4}$ mag., the correction to the constant in equation (5) is 0.344/4 = 0.086. The two effects together will make the constant term in equation (5) about +2.045. Yet another effect results from the finite orbital eccentricities. They cause asteroids of a given p_0 to be observed at opposition magnitudes that scatter by amounts Δp of roughly ± 1 mag., because, for a=2.8 and e=0.2, the perihelion opposition magnitude is 1.29 mag. brighter and the aphelion magnitude 0.98 mag. fainter than p_0 . Now the law of areas will make the number of asteroids near perihelion less than that near aphelion. It is readily shown that the ratio of the probabilities of occurrence of r < a and of r > a is $(1 - 2e/\pi)/(1 + 2e/\pi)$, which, for e=0.2, equals 0.773. Since the ratio 0.98/1.29 = 0.760, almost the same value, the mean of Δp will actually be nearly zero; TABLE 14 FREQUENCY OF ASTEROIDS IN THE 1957 EPHEMERIS, BY MEAN PHOTOGRAPHIC OPPOSITION MAGNITUDE | p 0 | $N(p_0)$ | E q. (6) | Eq. (7) | O-C, Eq. (7) | |------------|----------|-----------------|---------|--------------| | 7 | 2 | $\frac{1}{2}$ | 1 | $+ 1 \pm 1$ | | 8 | 1 | $1\frac{1}{2}$ | 3 | -2 ± 2 | | 9 | 3 | 4 | 6 | -3 ± 2 | | 10 | 9 | 11 | 13 | -4 ± 4 | | 11 | 30 | 28 | 30 | 0 ± 5 | | 12 | 83 | 67 | 66 | $+17 \pm 8$ | | 13 | 185 | 150 | 148 | $+37 \pm 12$ | | 14 | 269 | 315 | 332 | -57 ± 18 | | 15 | 478 | 620 | 740 | | | 16 | 401 | 1150 | 1660 | | | 17 | 133 | 1990 | 3700 | 1 | | 18 | 12 | 3240 | 8300 | 1 | | 19 | 7 | 4940 | 18600 | 1 | | 20 | 3 | 7050 | 42000 | 1 | but, because the asteroid numbers increase exponentially with p_0 , the scatter in Δp will indirectly cause a small increase in the observed numbers in p. A 10 per cent increase will make the coefficient 2.09. The statistics of the Survey thus lead to the following equation, giving the total numbers of asteroids N_p between limits $p_0 - \frac{1}{2}$ and $p_0 + \frac{1}{2}$ for the mean photographic opposition magnitude, p_0 : $$\log N(p_0) = 2.09 + 0.344(p_0 - p_1) - 0.014(p_0 - p_1)^2, \tag{6}$$ in which $p_1 = 12.75$, as in equation (5). Equation (6) may now be checked by direct comparison with the known numbers of the brighter asteroids where completeness is expected. These numbers are found from counts in Table 7 and are shown in Table 14, second column. The completeness limit may be found as follows: The brightest *new* asteroid found in the Survey was 13.7 mag., and only a few objects were as bright as 14.0. Between 14.0 and 15.0 there were 42 new asteroids in the Survey among a total of 642, or $6\frac{1}{2}$ per cent. There will be a strong statistical preference for these brighter new objects to be asteroids with eccentric orbits observed near perihelion. Accordingly, the Ephemeris and Table 7 are probably complete down to $p_0 = 14.0$, while between 14.0 and 15.0 the incompleteness will probably not exceed half of the $6\frac{1}{2}$ per cent, and 2 per cent for $13.5 < p_0 < 14.5$. The entry in Table 14 for $p_0 = 14$ may therefore be corrected to about 275, while the entry for $p_0 = 15$ will be the first to be distinctly incomplete. The third column of Table 14 shows the numbers of asteroids computed according to equation (6). The sums of the bright, the middle, and the faint magnitude groups, 7+8+9, 10+11, 12+13+14, are almost perfectly represented, while the fluctuations within each group are probably merely random. Equation (6), derived statistically, is thus in full accord with the individually observed asteroids brighter than $p_0 = 14$, while on the basis of Tables 12 and 13 it is established to $p_0 = 16$. The question remains whether the limited
information on asteroids fainter than 16 is compatible with equation (6). Baade (1934) derived the number of 44000 asteroids brighter than 19.0 photographic for 360° of longitude. Since the synodic period of the asteroids is about 15 months, this number must be multiplied by $\frac{5}{4}$, to 55000, to represent the *total* number of asteroids. The uncertainty in this figure is probably between 15 and 20 per cent. Recent work on the photographic magnitude scale leads to a corrected limiting magnitude of 19.5 (Baade 1957). Now it is seen from Table 14 that the number of asteroids computed by equation (6) would give 12500 objects brighter than 19.5, much smaller than observed. Also, the quadratic term in equation (6) will cause the computed numbers to pass through a maximum, at $p_0 = 25$ mag., after which the numbers will decrease. At the fortieth magnitude, which is the apparent magnitude of moderate-sized meteorites moving in the asteroid ring, the computed number would be a mere 10 over the entire sky, while the actual number must be enormous. These considerations suggest that the quadratic term (whose reality was in doubt in any case) be dropped and an appropriate linear relation be used instead: $$\log N(p_0) = -2.38 + 0.35 p_0. \tag{7}$$ The numbers thus computed are shown in the fourth column of Table 14 and the residuals in the fifth; the assigned uncertainties are mean errors (square roots of the computed numbers). While the representation of equation (7) is not quite so good as that of equation (6) (which had an extra parameter), it is fair. The computed number brighter than 19.5 is now 33600, which is of the right order of magnitude. Equation (7) therefore appears to represent the entire range 7 . If the space density of asteroids increases everywhere with absolute magnitude g as $$\log N_q = c + b g , (8)$$ then, regardless of the dependence of c on the semimajor axis, a, the mean-opposition magnitudes, p, will increase as $$\log N(p_0) = c' + bp_0. \tag{9}$$ The proof is readily found. It is therefore not possible to derive from equation (7) anything on the space distribution in the asteroid ring. If in equation (8) a term fluctuating in g is added, this will be smoothed out in equation (9) because, for different a, the fluctuations will appear at different p_0 -values. The possible presence of such deviations from equation (8) must therefore be studied directly from the g distributions for different groups of a. The material of Table 7 was subdivided into three distance groups: $$2.0 < a_1 < 2.6 < a_2 < 3.0 < a_3 < 3.5$$ a.u. The comparatively few objects with a < 2.0 and a > 3.5 are discussed separately. The counted numbers for half-magnitude intervals in the absolute magnitude g are shown in Table 15. The mean values of a for the three groups were found to be approximately 2.43, 2.75, and 3.17 a.u., corresponding to absolute-magnitude corrections, $p_0 - g$, of 2.71, 3.41, and 4.19 mag. Now the counts in Table 15 are essentially complete to g-values corresponding to $p_0 \leq 14.0$, as shown above. For fainter objects we rely on the discussion accompanying Table 14, from which it is inferred that equations (6) and (7) yield rough lower and upper limits, respectively, to the numbers of asteroids between $14 < p_0 < 18$ mag. The second, third, and fourth columns of Table 14 then give the completeness factors; they are listed in Table 16. These quantities are plotted in Figure 4. Because of the steep decline in f with magnitude, there is some danger that the completeness-curve so derived may be distorted. Accordingly, the counts and computations were repeated for half-magnitude intervals. Table 17 gives the results. The counts in ${\it TABLE~15}$ Observed and Rectified Numbers of Asteroids in Three Zones of a | | | 2.0 < a < 2 | 2.6 | | 2.6 < a < 3 | 3.0 | | 3.0 < a < | 3.5 | 2 | 2.0 < a < 3 | 3.5 | |--|--|--------------|--------------|--|-------------|--|---|---|--|--|--|---| | g | N
(Obs.) | N*
(Min.) | N*
(Max.) | N
(Obs.) | N
(Min.) | N
(Max.) | N
(Obs.) | N
(Min.) | N
(Max.) | N
(Obs.) | N
(Min.) | N
(Max.) | | 4.25.
4.75.
5.25.
5.75.
6.25.
6.75.
7.25.
7.75.
8.25.
8.75.
9.25.
9.75.
10.25.
10.75.
11.25.
11.75.
12.25.
11.75.
12.25.
13.25.
13.25.
14.25.
14.75.
15.25.
15.75. | 0
0
0
0
2
5
5
5
13
15
24
24
29
28
27
54 | | | 1
1
0
0
2
1
4
4
15
20
39
51
62
68
78
64
51
55
28
7
2 | | 69
91
104
134
300
360
(360)
(550)
(3800) | 0
0
0
0
1
0
2
5
11
24
30
39
64
93
78
77
45
17
10
0
0
0 | 30
47
107
246
420
1100
2700
4400 | 32
54
133
350
680
2050
5700
11000 | 2
1
0
0
3
3
3
11
14
31
57
84
114
150
180
184
150
138
120
62
42
29
10 | 84
122
193
333
530
1210
2870
4700 | 86
129
219
438
800
2180
5900
11400 | ^{*} Observed numbers are not repeated in adjacent columns if complete. Table 7 for the intervals 14.00-14.49, 14.50-14.99, etc., are found in the second column. The computed numbers per half-magnitude interval based on equations (6) and (7) are found in the third and fifth columns; the constant terms in equations (6) and (7) were diminished by 0.31 in accordance with the discussion following equation (5). The curves in Figure 4 are based primarily on the half-magnitude intervals. They may now be used to correct the statistics of the three distance groups in Table 15. This was done by dividing the column N(Obs.) by f(max.) and f(min.), leading to the columns N(Min.) and N(Max.) of Table 15, respectively. The f's were found graphically from Figure 4 for values larger than 0.2 and by logarithmic interpolation in Table 17 for smaller values. If N(obs.) was less than 10 and therefore statistically very uncertain, the rectified number was put in parentheses. The results are plotted in Figure 5. The maximum and minimum values are shown separately, connected with vertical lines; the statistically uncertain values are connected with broken lines. The numbers below g=7 are very small, and their statistical uncertainties cause difficulties on a logarithmic plot. For this reason, two minor changes were made over Table 15 for g=6.25 and 6.75: the numbers 2 and 1 in the second distance group were interchanged, and the numbers 1 and 0 in the next group were replaced by $\frac{1}{2}$ and $\frac{1}{2}$. This, of course, is statistically quite legitimate. So far it has been assumed that the completeness of the numbered asteroids (i.e., Table 7) depends on apparent photographic magnitude only. Actually, there is probably Fig. 4.—Estimated upper and lower limits of completeness factors for Table 7, the Ephemeris asteroids TABLE 16 Completeness Factors for Table 7 (the Numbered Asteroids) | Þυ | f (Max.) | f (Min.) | Þо | f (Max.) | f (Max.) | |----------------|----------|---------------------|----------|----------------|-----------------| | 14
15
16 | | 0.98
.65
0.24 | 17
18 | 0.067
0.004 | 0.036
0.0016 | TABLE 17 DERIVATION OF MINIMUM AND MAXIMUM VALUES OF COMPLETENESS FACTORS OF TABLE 7 (NUMBERED ASTEROIDS) FOR HALF-MAGNITUDE INTERVALS | p_0 | $N(p_0)$ | Eq. (6)* | f (Max.) | Eq. (7)* | f (Min.) | |-------|----------|----------|--------------------|----------|----------| | 14.25 | 156 | 183 | (0.853) | 198 | (0.79) | | 14.75 | 234 | 258 | `.907 [′] | 297 | `.79 | | 15.25 | 244 | 357 | . 683 | 444 | . 550 | | 15.75 | 242 | 520 | . 465 | 665 | .364 | | 16.25 | 159 | 650 | . 245 | 995 | . 160 | | 16.75 | 100 | 855 | . 117 | 1490 | . 067 | | 17.25 | 33 | 1110 | . 030 | 2230 | .015 | | 17.75 | 9 | 1410 | . 0064 | 3330 | . 0027 | | 18.25 | 3 | 1770 | 0.0017 | 4980 | 0.0006 | ^{*} For half-magnitude intervals; hence 0.31 was subtracted from the constant term (see text). a slight dependence on a as well. If the asteroids were all discovered on plates guided at the sidereal rate (which is not the case), then the ratio of the trail lengths for different a could be readily computed. The trail length for an asteroid in a circular orbit observed at opposition is proportional to $(1 - a^{-1/2})/(a - 1)$. For a = 2.43 and a = 3.17, the mean values of the inner and outer groups, respectively, the ratio is then 1.24, so that the limiting magnitude of the outer group might be about 0.2 mag. fainter than for the inner group. This must be an upper limit, since for short trails the correction is found to be less; the guiding was usually done at the average rate of asteroid motion. From the graphs in Figure 4 and Table 17 it is then found that the differential distortion in the right-hand portions of the graphs for the inner and outer asteroid zones will be less than about 0.2 in $\log N_g$, in the sense that $\log N_g$ in the outer zone
will be slightly less, and in the inner zone slightly more, than is shown in Figure 5. The middle zone should be very nearly correct. It is concluded that there are marked differences in the absolute-magnitude distributions Fig. 5.—Frequency distribution of absolute magnitudes, g, for three distance zones and their sum in the three zones and, consequently, in the distribution of asteroid dimensions. The halt in the 2.0–2.6 group between 10 < g < 12 is of special interest. In the 2.6–3.0 group there is no halt but a greatly diminished rate of increase, while in the outer group there is a discontinuity near g = 9. The asteroid dimensions corresponding to these g-values may be found on the plausible assumption that the mean albedo of the fainter asteroids is the same as that of the brightest asteroids (except for Vesta, whose albedo is known to be higher). From the values for Ceres (g = 4.00; d = 770 km) one finds 50 and 20 km, respectively, for g = 10 and 12. The logarithmic increase in numbers for the three distance groups on the *bright* side of the discontinuities occurs with the coefficients 0.33, 0.56, and 0.75, approximately; and on the *faint* side with 0.60, 0.35, and 0.73. For the entire zone, 2.0–3.5 a.u., the average coefficient between 7 < g < 13 is found to be about 0.56, but this high value is largely due to the large numbers of faint asteroids derived for the 3.0–3.5 zone. For the 2.0–2.6 zone the average coefficient between 7 < g < 15 is 0.37. The significance of these coefficients becomes clear when it is remembered that the coefficient 0.60 would cause each magnitude interval to contribute the same total mass. It is now clear that the curvature found in relation (6) may actually be real within a limited range of p and due to the blending of the discontinuities in $\log N_g$ of the three zones, all of which are centered on apparent magnitude 13.5–14.0. It is further clear that the simple relation (7) cannot be safely extrapolated beyond the region where it has been tested. Finally, the occurrence of the three bright asteroids (Ceres, Pallas, Vesta) seems to be a *separate* phenomenon, somewhat outside the smooth frequency-curve representing the normal asteroids. Whether the discontinuities in the frequency-curves of Figure 5 represent a division of the asteroids into two classes (possibly original condensations and collisional fragments) remains to be determined. The question naturally arises whether the differences in the three frequency-curves are due to population differences between the Hirayama families. The distance group 2.0-2.6 comprises the families 6, 7, 8, 9 (2.15 < a < 2.316) and 5, 27, 25, 26, 24, 4, 23, 29, and 22 (2.316 < a < 2.6), according to the important investigation of Brouwer (1951); besides, a number of non-family asteroids are included. The percentage of non-family asteroids becomes much larger in the middle and outer zones; this fact, together with the large number of families present within each zone, introduces many complexities not properly belonging to this investigation. Some comments must now be made on the asteroids of Table 7 outside the zone 2.0–3.5 a.u. They number 54, of which 51 fall into three groups: 27 from 3.5 to 4.3 a.u., 11 from 1.85 to 2.00 a.u., while 13 are Trojans. The remaining objects are Hidalgo (a = 5.79), Eros (a = 1.48), and Icarus (a = 1.08). In Table 18 the frequency distributions of p_0 are given for $p_0 > 14.5$, the range where incompleteness increases rapidly. Table 18 may be examined from two points of view: if the distribution in g is exponential, with the same coefficient as for the asteroids at large, then Table 18 gives information on the incompleteness as a function of p_0 , simply from comparisons with the corresponding numbers for all asteroids combined. So interpreted, Table 18 gives no strong evidence that the three special groups were either favored or disfavored in the detection and orbit work, because, apart from statistical fluctuations, the distribution with magnitude is not dissimilar to that for asteroids at large. This is not true for Hidalgo ($p_0 = 19.16$), which obviously would not have been followed except for its exceptionally slow motion; and for Icarus, also discovered by Baade, which is very rarely bright enough for observation, although $p_0 = 12.35$. Alternatively, one may take for granted that the discovery probability of the three groups in Table 18 is essentially the same as for asteroids at large, and then look upon the table, or its equivalent in g, as defining, in conjunction with the f-values of Table 17, the true distribution of absolute magnitude. We shall take the second point of view (although this may not be quite correct for the Trojans) and thus derive the distributions of g found in Table 19. Parenthetically, if this second point of view were grossly in error, the 54 objects under review should have been omitted in the derivation of f from Tables 14 and 17 and equations (6) and (7). A single object, like Icarus, does not, of course, affect the f-values noticeably; but one cannot apply the derived values of f to asteroids near the earth because of the long trails on the plates and the short periods of visibility. Of the three groups shown in Tables 18 and 19, the 3.5 < a < 4.3 group is large enough to give fair results. The mean value of a is 3.867 a.u., corresponding to $p_0 - g = 5.22$ mag. Adopting the averages of $f(\min)$ and $f(\max)$, we find from the smoothed numbers in the third column of Table 19A the rectified numbers in the fourth column. TABLE 18 DISTRIBUTION OF p_0 FOR SPECIAL GROUPS | p 0 | N (Table 7) | N(3.9) | N(1.9) | N(5.2) | N(Sum) | |------------|-------------|--------|--------|--------|--------| | 14.75 | . 234 | 3 | 3 | 0 | 6 | | 15.25 | . 244 | 5 | 3 | 2 | 10 | | 15.75 | . 242 | 5 | 1 | 3 | 9 | | 16.25 | . 159 | 6 | 0 | 6 | 12 | | 16.75 | . 100 | 3 | 2 | 2 | 7 | | 17.25 | . 33 | 1 | 0 | 0 | 1 | | 17.75 | . 9 | 0 | 0 | 0 | 0 | | 18.25 | . 3 | 0 | 0 | 0 | 0 | ${\it TABLE~19A}$ Observed and Rectified Numbers for a=3.9 Group and Trojans | g | N(3.9)
(Obs.) | Smoothed | N(3.9)
(Corr.) | N(5.2) | N(5.2)
(Corr.) | |--|--------------------------------------|--------------------------------------|--|---------------------------------|---| | 8.25.
8.75.
9.25.
9.75.
10.25.
10.75.
11.25.
11.75. | 2
1
0
6
5
7
3
3 | 1
2
2
4
5
6
4
3 | 1
2
2
5
10
19
(27)
(64) | 0
2
5
4
2
0
0 | 0
4
15
(25)
(36)
(0)
(0)
(0) | $\label{eq:table 19B}$ Observed and Rectified Numbers for a=1.9 Group | g | N(1.9)
(Obs.) | Smoothed | N(1.9)
(Corr.) | g | N(1.9)
(Obs.) | Smoothed | N(1.9)
(Corr.) | |---|-----------------------|-----------------------|-----------------------|---|-----------------------|---|-----------------------------------| | 11.75
12.25
12.75
13.25
13.75 | 1
0
0
0
4 | 1
0
0
1
3 | 1
0
0
1
4 | 14.25
14.75
15.25
15.75
16.25 | 3
0
1
0
1 | 2
1
1
1
1
1
2
1
2 | 4
3
(6)
((10))
((40)) | The log N_g -curve defined by these numbers is found to be nearly linear, with the coefficient 0.51, the same as for the asteroids of 2.0 < a < 3.5 in the same interval of $g(8\frac{1}{2}-12)$. The 3.5-4.3 group is thus average in composition; the abundance equals 3 per cent of the total asteroid ring. If the reduction method applies to the Trojans, these may be fairly numerous, say, between 50 and 100 and centered on $g \cong 10$; but they have probably been looked for preferentially and will be less numerous than is estimated in Table 19A. The mean value of a is 5.180, and $p_0 - g = 6.67$ mag. The 1.85 < a < 2.00 group is inadequate for statistical treatment. The results depend on the smoothing process adopted and are therefore largely arbitrary. The numbers around g = 14 are roughly $\frac{1}{2}$ or 1 per cent of those in each of the distance groups 2.0 < a < 2.6 and 2.6 < a < 3.0, but at g = 15 the fraction seems to be smaller. The mean value of a is 1.910 a.u., corresponding to $p_0 - g = 1.20$ mag. The limiting g-value for the statistics in Table 15 is 13.0 mag. for 3.0 < a < 3.5, corresponding to $d \cong 12$ km; for 2.6 < a < 3.0 it is g = 15 mag. of $d \cong 5$ km; for 2.0 < a < 2.6 it is g = 15.5 mag. or $d \cong 4$ km. Bodies of $d \cong 1$ km, as have been observed occasionally near the earth, are as yet unknown statistically in the asteroid ring proper. It is further seen from Table 15 how the center of gravity of the asteroid ring shifts to the larger a-values for the fainter objects. The ring 3.0 < a < 3.5 contributes 23 per cent of the total (2.0 < a < 3.5) for 4.0 < g < 8.0; the percentage is 39 for 8.0 < g < 10.0; 70 for 10.0 < g < 11.0; 89 for 11.0 < g < 12.0; and 95 for 12.0 < g < 13.0. It may not be amiss at this point to emphasize that the statistical analysis in this section was possible only because of the 1600 orbits computed and that an extension to smaller asteroids will require orbit computation for representative samples of still fainter asteroids. This aspect appears to be overlooked in current proposals to discontinue orbit computation of new asteroids. This analysis of this section was carried out jointly by Mr. Van Houten and Mr. Kuiper. ## XI. FUTURE SURVEYS It may be necessary at some future time to carry out another systematic asteroid survey and obtain another general check and inventory of asteroid positions. In that case it is recommended that larger plates be used, so that the observing can be done in a shorter interval and hence
under better sky conditions. If time permits, a third plate on each field should be taken, perhaps immediately following the second, which would remove all doubt about the reality of image pairs found in the blinking. A more rapid reduction, after the taking of the plates, would allow following up objects of special interest, like the Trojans, although one would not wish to endanger the continuity of the main program. The Survey was made possible through the financial support by the Office of Naval Research for the years 1950–1953, under Contracts N9onr-87100 and NR-010-031, and by the National Science Foundation for the years 1953–1956, under Grants NSF-G434 and G1993. We are indebted to Dr. Charles Olivier for arranging for the loan of the telescope; to the Research Corporation of America for two grants, for the transportation and housing of the telescope and for its subsequent optical reconditioning; to Dr. Hans Kienle for granting two periods of leave of absence from the Heidelberg Observatory to Miss Groeneveld; to Drs. Herget and Rabe, of the Cincinnati Observatory, for frequent advice on the organization of the program and for machine-printing the copy of Table A here reproduced; and to Miss Lucille Schott for her careful typographic work. ## REFERENCES Ahmad, I. I. 1954, Ap. J., 120, 551 (Paper IV). Baade, W. 1934, Pub. A.S.P., 46, 54. ——. 1957, private communication. Baum, W. A. 1956, unpublished. Gehrels, T. 1956, Ap. J., 123, 331 (Paper V). ——. 1957, ibid., 125, 550 (Paper VI). Groeneveld I., and Kuiper, G. P. 1954, Ap. J., 120, 200 (Paper I). ——. 1954, ibid., p. 529 (Paper II). I.A.U. Transactions. 1954, 8, 280. Ross, F. E. 1936, Ap. J., 84, 241. Shatzel, A. V. 1954, Ap. J., 120, 547 (Paper III). Stebbins, J., Whitford, A. E., and Johnson, H. L. 1950, Ap. J., 112, 469. Van Biesbroeck, G. 1955, Vistas in Astronomy (London: Pergamon Press), p. 447. Van Houten-Groeneveld, I., and Van Houten, C. J. 1958, Ap. J., 127, 253 (Paper VII). | | UZO | 21
22
44
24 | 200 4 | 40000 | 25444 | 2 4 4 | 040 <i>mm</i> | 19 6 14 | |-------|------------------|---|--|---|---|--|---|---| | | 0 - C
MOT ION | -1.0
-0.4
-1.1
-1.0 | 1000 | 0000 | 100.00 | 0000 | 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | 1001 | | | DAY | -35
-47
29
0
81 | 089
087
788
4 | 119
422
420 | 1 + 43
1 | 1111 | 5-1
50
7-13 | 98
98
90
90
90
90 | | | 10 -
MOT 1 | -9.3
-8.7
-9.4
-111.0 | -9.4
-9.6
-10.1
-8.1 | -10.7
-10.1
-9.5
-9.7
-7.5 | -10.2
-10.5
-10.5 | -111.4
-111.4
-10.3
-12.2 | -8
-08
-10
-10
-9
-10 | 1 9 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | | ဖ | 5.570 | 8.12C
7.22C
6.56 | 7.17A
7.04
5.99C | 7.70
7.56
9.02
9.07 | | 7.17C
6.56
6.86
10.05
8.88 | 8.58
7.75C
7.50
7.54
8.91C | | | MAG | 11.08C | 12.02C
9.66C
10.52 | 10.08A
9.96
10.18C | 10.47
10.33
12.66
12.71 | | 10.43C
10.77
10.93
12.23 | 12.25
9.37C
11.01
11.05
11.53C | | | VAR | 40000 | 07070 | 02110 | 00199 | rr04 | 0 1 3 7 1 1 | -12
5
6 | | | - C
DEC | 70770 | 4440 | 0400 f | 11 400 | 0040 | 111 | 1
6
6
1 | | ∢ | α
0 4 | 00000 | 0000 | 11
00-1
00-1
00-0 | 0000 | 111.9 | 00000
w 4 \u0000 | 100111100 | | щ | 0. | 4 30 41 6 53 16 16 16 16 16 16 16 16 16 16 16 16 16 | 4 2 2 3 5 4 4 4 4 4 5 5 6 5 6 5 6 5 6 5 6 6 6 6 | 6 28
8 27
8 38
4 57
0 31 | 1 44
1 40
2 00
8 15
8 15 | 8 22 28 25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 1 18
7 51
9 54
4 55
3 42 | 3 41
6 11
0 14
0 28
3 03 | | TABLE | DE(
195(| -22 22
-22 23
- 3 03
16 59 | 13 9 6 0 8 1 8 9 5 5 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 | 13 56
-21 56
- 1 16 | 10 23
10 23
18 55
6 18 | -35 28
-35 28
-19 28
27 26 | 17 1]
8 1
8 36
-15 54 | 16 13 | | | A•
50•0 | 45.8
42.9
34.9
48.8
54.3 | 23 • 3
48 • 9
29 • 4
41 • 7
16 • 5 | 20 • 7
34 • 7
40 • 1
51 • 3 | 39.5
38.9
27.1
40.6 | 56.4
55.9
06.2
29.9
26.0 | 01.7
56.7
52.3
12.0
58.1 | 57.5
09.0
03.5
01.9 | | | R•
195 | 522 | 00 00 00 00 00 00 00 00 00 00 00 00 00 | 53
53
53
53 | 1 18
1 18
1 37
3 31 | 200
200
200
200
200
200
200 | 4 34
0 43
0 63
1 47 | 4 47 47 47 47 47 47 47 47 47 69 59 | | | | 23
23
16
10 | 136 | 20 13 13 22 22 | <i>w w w</i> ∞ ∞ | 16 | 100 100 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | HAA | | | E U.T. | 3.2083
3.2479
29.2000
12.1722
20.3222 | 24.2403
4.3583
5.3007
22.3472
22.1597 | 28.1903
3.2132
8.3785
9.2160
2.3319 | 4.3139
4.3229
12.1972
28.2986
28.3076 | 26.2333
26.2424
6.2160
28.3000
21.1250 | 12.1903
20.2410
24.2312
18.2229
23.1438 | 23.1528
10.1597
22.3021
22.3201
30.2083 | | | ⊢ | SEP
NAAY
FEB | FEB
JUL
JAN
AAR | S A D B B B B B B B B B B B B B B B B B B | N N O O O O O O O O O O O O O O O O O O | MAA
Den
Den
Dan | DEC
FEB
FEB
AUG | DEC
DEC
MAR
JUL | | | ۵ | 20011 | 222122 | 51 51 51 51 51 51 51 51 51 51 51 51 51 5 | 5000 E | 22112 | 50
50
50
50
51 | 51
52
51
51 | | | SURVEY
NUMBER | 0-56.1
0-66.1
L-31.1
E-55.1
U-61.1 | U-62.3
M-73.2
G-16.2
V-61.2 | T-45.3
N-44.3
J-63.1
J-53.10
O-52.2 | Q-75.3
Q-74.3
D-63.1
T-66.1
T-65.1 | X-75.1
X-76.1
L-53.2
S-53.5
S-43.1 | F-444.2
U-54.3
U-53.4
B-54.4
R-54.6 | R-55.4
F-16.4
V-52.3
V-52.1
N-23.1 | | | MINOR
PLANET | H H M 4 4 | 40000 | 7
8
9
9 | 12221 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 16
16
17
17 | 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | UZ | 00770 | 6117 | -11
-1
3
-10
-10 | 0 2 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2 1 6 6 3 | 8 10 1 5 | -2
-7
-1
-11 | |-------|--------------------|---|--|--|--|---|--|---| | | O - C
MOTICN | 00000 | -0
-0
-1
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0 | 4 - 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 | 100.00 | 0.100 | 1111 | 0.00 | | | A NO | 51
-9
-10
13 | 1 - 51 - 43 - 63 - 63 - 63 - 63 - 63 - 63 - 63 |
-29
-19
-21
55
47 | -42
48
47
101
17 | -19
119
119
54 | 47
-36
-29 | 71
67
-27
-27
-13 | | | 10 - DA)
MOTION | -10.2
-11.6
-8.5
-9.3 | -9.9
-9.5
-7.1
-6.7 | -8 8 8 -1 0 9 6 6 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | -10.2
-10.4
-10.5
-9.1
-8.9 | -111.1
-12.3
-8.7
-10.0 | -8.0
-10.1
-10.1
-9.2
-9.4 | -8.0
-8.2
-8.1
-9.9 | | | ဖ | 7.68C
7.89C
8.60
7.18 | 8.09C
8.38
8.20C
8.10
8.24C | 8.03C
8.02C
8.47
8.54
8.83 | 8.48
8.85C
8.21C
8.15 | 6.63C
7.06
7.74
8.51 | 9.13
7.49C
7.02
8.41
8.61 | 8.99
8.29C
9.70C
9.04 | | | MAG | 9.31C
10.42
11.62
10.35 | 11.31C
11.64
12.56
12.87
13.01C | 11.64
11.63
12.00
11.71 | 10.31
11.55C
10.91
10.59 | 9.27C
9.70
11.16 | 12.40
11.78C
11.30
11.87 | 11.54
10.82C
10.78C
12.05 | | | VAR | 01019 | 127-7-7- | 0.0400 | -111
5
6
10
10 | 00777 | 7
16
16
0 | 00 2 2 5 5 0 0 | | | DEC | 28
-1
0
0
12 | L 9 9 5 9 9 | 110000 | -111
6
10
10 | 0
118
118
5 | 9 ~ ~ ~ ~ ~ | 1 1 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | ⋖ | α
0 4 | 00000 | | 0111
00111
000111 | -12.2
-11.0
-3.5
1.6 | 1000 | 00040 | 0 0 W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | щ | 0.0 | 2 18 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 66 17 4 20 00 4 4 11 5 11 5 11 5 11 5 11 5 11 5 1 | 6 32
6 27
2 27
2 31 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 3 4 4 4 4 4 4 4 4 4 4 4 5 4 5 4 5 4 5 4 | 6 2 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 8 52
1 37
3 21
7 25
7 18 | | TABLE | DE(
195(| 13 00
20 50
20 50
15 20 | 113
132
134
134
134
134
134
134
134
134
134
134 | 221 521 521 53 139 139 139 139 139 139 139 139 139 13 | 9 2
111 1
111 1
12 5
9 4 | 322
132
102
103
103
103
103
103
103
103
103
103
103 | 10 2 10 2 10 2 10 2 10 4 4 10 4 4 | 0 8 8 4 4 4 4 4 8 9 9 9 9 9 9 9 9 9 9 9 9 | | | R. A.
1950.0 | 36 11.9
33 43.9
17 00.6
58 01.0
41 50.2 | 13 18.5 -
11 20.5 -
45 12.9 -
32 03.7 - | 17 35.0
17 31.7
24 01.3
56 04.3
56 03.7 | 59 06.1
15 15.1
15 14.7
45 31.5 | 53 43.9
53 34.7
11 00.8
43 55.1 | 20 51.5
46 46.3
46 41.1
06 27.5
06 16.7 | 20 41.1
19 53.9
33 42.9
31 51.9
31 51.4 | | | | 04400 | 15
15
23
23 | 44000 | 1
14
14
10
17 | 4 4 13 13 11 11 11 11 11 11 11 11 11 11 11 | 113 | 122 | | | E U.T. | 10.3035
5.2535
22.1431
3.2986
13.2861 | 20.2458
22.2729
17.2312
6.1958 | 29.2854
29.3396
12.2583
19.2118 | 5.1687
26.1965
26.2056
10.3035
26.2556 | 12.1687
12.2993
23.3444
22.1868
14.3576 | 1.1993
24.2042
24.2854
11.1312 | 23.2354
24.2236
30.2215
13.2819
13.2924 | | | ⊢ | FEB
DEC
NOV
NOV | MAY
MAY
SEP
OCT | NOV
NOV
FEB | NOV
APR
APR
MAY | DEC
DEC
MAR
APR
MAR | APR
APR
DEC
DEC | MAR
SEP
DEC | | | ۵ | | 52
50
50
50 | 5001
2001
2001 | 52
52
52
52
53 | 50
52
50
51 | 51
52
52
50
50 | 52
52
50
50 | | | SURVEY
NUMBER | H-54.4
R-54.4
R-44.7
Q-65.2
E-74.3 | X-14.8
X-23.4
C-64.1
C-53.3
C-54.1 | R-444.3
R-43.2
E-63.2
U-32.2
U-33.3 | E-24.3
W-53.9
W-54.10
H-54.5
X-82.1 | F-42.1
F-52.1
V-64.3
W-14.1 | I + 44 . 1
Y - 44 . 1
Y - 43 . 3
F - 24 . 2
F - 34 . 3 | V-34.4
V-35.2
P-44.2
F-64.4 | | | MINOR
PLANET | 20
21
22
23 | 0000
0000
0000 | 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 22
22
28
28
88 | 98888
98888 | 8888
8888
8888
8888
8888
8888
8888
8888
8888 | 88888
88888 | | | | | | | | | | | | | U <u>8</u> | ~ 1 w 4 L | 9 4 4 5 4 | 0 9 4 11 4 | 21121 | 4 4 1 1 1 1 2 1 2 1 2 1 | 1 1 1 8 4 2 2 | n 4 4 4 4 | |-------|------------------|---|--|---|---|---|--|--| | | O - C
MOTION | 0 | 0000 | -0.4
-0.5
-0.5
-1.1 | 00000 | 1000 | 01111 | 100.00 | | | DAY | 67
67
60
-31 | -29
-6
-6
-41 | 0
4
4
4
4
4
4
4
4 | 1
4
4
5
7
7
8
9
1
7 | 0 4 0 0 0
0 4 0 0 0 | -51
-10
-14
-2 | -64
-52
-51
-12 | | | 10 -
MCTI | 1 8 . 7 . 8 . | -10.0
-10.2
-9.3 | -9.1
-8.0
-7.4
-9.2
-11.3 | -7.5
-9.5
-9.6
-11.9 | -9.7
-10.4
-9.5
-7.9 | 0 | -7.7
-7.8
-7.8
-10.3 | | | g | 9.45
9.46C
10.13
9.77
9.45C | 9.62
8.63C
7.93
8.36
9.45 | 9.49C
7.36
7.35
8.62 | 8.23
8.45
8.56
9.18
8.91C | 7.79
8.32
9.14
0.08C | 9.20C
9.20C
9.19
9.03
8.19 | 7.87C
7.85
7.99
8.92
8.17 | | | MAG | 2.71
2.72C
2.93
2.57
3.76 | 4.48
0.82C
0.18
2.09 | 3.00C
0.23
1.09 | 3.02
1.74
1.87
2.21
9.91C | 0.22
1.26
1.72
2.68C | 2.15
3.61C
3.60
3.47
2.39 | 1.49C
1.51
1.65
1.92
1.37 | | | VAR | -1 1
-1 1
1 1
236 1 | -00 | 00000 | 1 1
-20 1
-21 1
-21 1
3 1 | -34 1
-1 1
-1 1
12 1 | 1 1 2 2 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 | 16900 | | | DEC | 24
24
24
24
24
24
24
34
34
34
34
34
34
34
34
34
34
34
34
34 | 21112 | 81024 |
-22
-23
-23
1 | -30
-11
-3
-11 | 35558 | 115 | | ⋖ | o ∢ | 100 8
100 8
100 4
100 4 | 00000 | -0
-2
-2
-1
-2
-1 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 10.5
10.5
10.3
12.1 | 2.6
1.6
1.5
0.7 | 1 3 4 4 1 1 1 3 4 4 1 1 1 1 1 1 1 1 1 1 | | | 0.0 | 4 116
2 33
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 2 06
4 05
9 20
2 20 | 5 1 1 2 2 3 3 4 4 5 3 8 4 4 5 3 8 4 4 5 3 8 4 5 3 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 8 10
7 44
1 48
5 39
7 54 | 7 08
4 06
5 52
6 23 | 1 59
3 17
2 46
7 24 | 9 20 4 4 4 3 3 5 4 4 4 4 5 6 4 4 4 4 4 4 4 4 4 4 4 4 4 | | TABLE | DE(
195(| 14 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 288 5
20 0
30 10 0 | -21
-10
-10
-24
-19
-29 | 121200 | 18 00 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 40004 | 2200004 | | | A.
0.0 | 011.3
000.7
558.6
353.0 | 55.7
111.1
36.7
57.2 | 50
50
50
50
50
50
50
50
50
50
50
50
50
5 | 333.5
34.4
477.9
23.9 | 15.3 | 23.0
03.3
03.0
13.7 | 57.7
26.2
26.1
34.3
51.3 | | | R•
195(| 16
20
20
31 | 4
4
4
0
8
0
8
0
8 | 8 4 5 4 8 8 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 | 30
20
19
31
50 | 16
33
30
28 | 23
23
24
26
26
26
26
26 | 2222
2026
2006 | | | | 2 4 4 6 6 | 13562 | 13
22
6
7
16 | 13
13
15
15 | 614441 | 70000 | 00000 | | | В U•T• | 30.1326
30.1444
26.1965
26.3049
14.2910 | 1.2910
14.3111
31.1451
24.2042
12.3104 | 23.2806
11.1944
23.1347
4.2333
26.3389 | 8.2569
8.3889
9.2062
6.2139
24.1937 | 9.2160
3.2021
11.3174
12.1903
24.3590 | 9.2875
22.1521
22.1611
23.1618
11.2375 | 1.2007
3.2083
3.2174
14.1937
31.1562 | | | ⊢
∀ | D D E C C C C C C C C C C C C C C C C C | NOV
DEC
DEC
DEC | S B B B B B B B B B B B B B B B B B B B | M A A B B A A A A A A A A A A A A A A A | APR
MAAY
DEC | OCT
JAN
AUG | NO N | | | ۵ | 52 50 50 50 50 50 50 50 50 50 50 50 50 50 | 50 1 50 1 50 1 50 1 | 522 | 52 52 | 52 65 65 65 65 65 65 65 65 65 65 65 65 65 | 5222 | 51 15 1 1 50 1 1 50 1 1 50 1 1 1 1 1 1 1 | | | SURVEY
NUMBER | F-64.2
F-65.1
W-53.13
C-53.1 | Q-52.3
F-83.1
F-72.1
F-34.3 | W-36.1
C-23.2
S-55.4
G-63.3 | E-46.1
J-62.1
J-52.2
G-24.4 | J-53.8
K-42.3
F-34.2
F-44.1
U-74.4 | D-43.3
S-52.2
S-53.4
S-62.1
B-23.1 | Q-45.5
Q-54.2
Q-55.3
F-73.1
F-73.1 | | | MINOR
PLANET | ብ መጠ መ መ
4 4 4 4 ነባ | 8 7 7 7 8 | w w w 4 4
8 0 0 0 0 | 4444
10000 | 4 4 4 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 4 4 4 4 4 4 8 8 8 8 8 9 9 9 9 | | | UZ | 0 4 | 4 | ~ | 6 | 0 | a | 20 | ထ | 6- | | | 10 | 9 | - | 5 | 0 | 4 | 7 | 4 | -7 | 7 | | _ | Ŋ | - | 7 | m | - | n | | -5 | | 7 | | |------|------------------|-------------------|-------|-------|-------|-------|-------|-------|-------------|-------|------|--------|---------|-------|------|-------|-------|---------|----------|------|------|-------|-------|---------|----------|------|----------|------|-------|-------|-------|---------|--------|--------|-------| | | O - C
MOTION | -0.6 | ô | • | ċ | • | • | • | -0.7 | • | • | ċ | -0.7 | • | • | • | ં | -0.1 | ċ | • | • | ċ | ċ | -0-1 | ċ | ô | -0.1 | ં | ં | ċ | • | -0.2 | ė. | • | ċ | | | DAY | 34 | | | _ | 53 | | 86 | 84 | σ | 6 | 11 | ~ | 41 | | | | 65 | | | | S | | | m | | 74 | | | | 17 | 64 | 35 | -22 | ~ | | | 10 -
MOTI | -7.1 | 6 | ċ | 6 | - | | 6 | -9.3 | œ | 6 | 6 | -1100 | ċ | 6 | 6 | ċ | -8.7 | - | • | • 9 | æ | 6 | -8.5 | 6 | 6 | -7.8 | Ġ | 6 | ထိ | 7 | 9.1- | -1 | • | 01 | | | ڻ
ن | ထဝ | .17 | 7. | 5 | 7.25 | | ñ | 9.50 | φ. | 6 | 7. | 8.57 | 9 | 'n | 1 | 7 | 9.13 | 9 | 6 | 0 | •45 | 8.5 | 10.28 | 9 | 3 | ∞ | •01 | ۵ | . 7 | 41 | 4. | | 8.430 | Ť | | | MAG | 13.41 | 4.2 | 1.5 | 1.4 | 11.15 | | 1.3 | 11.46 | 3.8 | 3.9 | 2.1 | 11.29 | 3.5 | 3.4 | 3.97 | 3.1 | 13.07 | 2.8 | 2.5 | 2. | 2.66 | 2.8 | | 1 • 7 | 1.7 | 12,35 | 2.29 | 2.1 | 3.3 | 13.20 | 3.7 | | 10.48C | 0 | | | VAR | -2 | | | | 9 | | 0 | 10 | S | | | -2 | | | | | m | | | | | | 4 | | | Z. | | ထ | | | 0 | 7 | | 15 | | | DEC | 6 9 | | - | 7 | -5 | -1 | ~ | -10 | 1 | | | -3 | | | -2 | | 0 | ٦
ع | 0 | - | 9 | 4 | 7 | 1 | -5 | 7 | 10 | | | 6 | 0 | | - 1 | | | ⋖ | α
0 4 | 0.3 | • | • | • | • | • | • | 5. 6 | • | • | • | 4.0- | • | • | • | • | 0.8 | • | • | • | • | • | 1.4 | • | • | ~ | • | | 7• | • | 0 | • | • | - | | ABLE | DEC
950.0 | 26 00 27 11 | 10 0 | 51 0 | 21, 1 | 37 1 | 56 0 | 04 5 | 12 10 | 51 2 | 51 1 | 39 2 | 12 44 | 48 2 | 13 0 | 03 4 | 0 40 | 04 31 | 53 5 | 48 3 | 48 2 | 080 | 26 5 | 59 43 | 34 5 | 48 4 | 07 51 | 59 3 | 59 3 | 41 2 | 04 4 | 21 47 | 19 0 | 11 4 | 13 5 | | - | - | -16 | | | 9 | 7 | | | 13 | | | \sim | 26 | | | 12 | n | n | - 5 | | | | | 10 | 6 | b | 2 | | 1 | | - 7 | 9 | ┥. | -10 | | | | • A•
950•0 | 6 16.0 | 20 | 34. | 08• | 90 | 35. | 04. | 8 17.3 | 57. | 56. | 21. | 3 42.8 | 27. | 10. | 11. | 41. | 6 31.9 | 56. | 58• | 57. | 35. | 51. | 5 45.2 | 23• | 45. | 4 01.7 | 54. | 53. | 05. | 38. | 3 04•1 | 45. | 50 | • | | | α - | 11 2 15 5 | . w | 3 | ~ | 2 | | 6 | 4 | | 9 | | 3 1 | | Ś | 7 | 0 | 10 0 | ω
v | 9 | n | 1 2 | 4 | 3 2 | ż | | 12 0 | | 2 | 7 | 7 7 | 11 2 | S
O | 2 5 | 2 2 | | | E U•T• | 24.3590 | .251 | 4.219 | 7.200 | .337 | 6.255 | 0.303 | 11.2181 | 5.304 | .313 | 8.302 | 12.2479 | 4.222 | •268 | •144 | 9.238 | 19.3111 | 8.287 | •195 | •204 | 3.255 | 5.267 | 29.1590 | 4.268 | •177 | 23.2083 | .261 | 7.271 | • 345 | 1.318 | 13.2653 | 7.379 | •346 | • 303 | | | ⊢
∀ | F EB | MAY | AUG | DEC | ۵. | ⋖ | ш | FEB | ⋖ | MΑΥ | APR | >0
N | FEB | DEC | i.i.i | u | FEB | u | α. | APR | AUG | >0N | >0N | DEC | DEC | MAR | APR | APR | MAR | MAR | MAR | APR | SEP | SF. | | | ٥ | 52 | | | | | | | 51 | | | | 50 | | | | | 52 | | | | | | 51 | | 90 | 52 | 51 | 51 | 51 | | 51 | | | | | | SURVEY
NUMBER | U-74.3
K-73.8X | -13.1 | -42 | -26 | -72. | -82. | -54. | H-63.1 | -63• | -62. | -67. | E-62.4 | -52. | -75. | -65. | -35. | U-45.6X | -36• | -33• | -34. | -33. | -85. | R-25.2 | -75. | 75. | V-23.6 | 43. | -44- | -55. | -45. | 1-43.5 | -14. | -33 | 143. | | | MINOR
PLANET | 49 | | | | | | | 53 | | | | 55 | | | | | 56 | | | 57 | | | | | | 53 | | | | | 62 | | | | | | UZO | σ_{α}^{-1} | 1 440 | 2 2 2 2 4 | 4 2 7 2 2 2 2 | -10 | 9101 | 8446 | |-------|------------------|--|---|--|--|--|---|--| | | O - C
MOTION | -0.2
-0.1
-0.2
-0.8 | 10000 | 10000 | | • • • | 0000 | 00010 | | | DAY | -172
-177
468
469 | 21
37
83
81
80 | 0
7
7
7
6
1 | | 31 42 | 14 t a a a a a a a a a a a a a a a a a a | 132 | | | 10 -
MOT I | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 1 1 1 8 6 6 7 9 6 7 9 6 7 9 6 8 7 9 8 7 9 8 7 9 8 7 9 8 7 9 9 9 9 9 9 | -11.2
-10.9
-7.6
-10.5 | 10006 | 86 0 | -8.1
-7.4
-8.2
-7.6 | 01111 | | | 9 | 8.74
7.89
10.22
10.28 | 10.26
10.68
9.80C
9.50C
9.42C | 7.93C
7.88
8.26C
9.06
8.69C | 4 4 0 4 0 0 | 0 0 0 | 10.05
9.26C
8.88C
8.51 | 9 • 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | | | MAG | 12.20
11.64
13.32C
13.34
13.84C | 14.43
14.78
13.12C
12.72C | 11.48C
11.43
12.47C
12.36
11.98C | 10.1
30.1
10.1
10.1
10.1 | 888 8 | 14.69
13.09C
12.32C
11.95 | 12.48
13.43
12.92 | | | VAR | 0 1 1 1 0 | 44000 | 44464 | | | 0000 | 31,477 | | | - C
DEC | 116 | 1 1 1 1 1
2 m m m m | 44000 | | 228 9 | 4100 | W 4 W 4 L | | ∢ | 0 ∢ | 0 • 9
0 • 0
0 • 7
0 • 7 | | 0001 | 00 0000 | | 6000 | 11.7
10.8
13.5 | | TABLE | DEC
1950•0 | 9 04 37
-18 29 11
14 57 55
15 02 19
16 07 38 | -21 22 42
-20 19 04
- 2 36 46
- 2 36 43
- 2 28 35 | 31 51 50
31 51 53
- 0 45 45
19 06 03
19 06 39 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 20 1
20 1
58 0 | 8 06 31
10 34 17
12 58 33
12 59 01 | 23 09 28
23 12 47
-17 45 30
7 10 34
7 09 02 | | | R• A•
1950•0 | 1 06 37.9
18 51 17.1
10 08 23.9
10 07 26.9
9 51 27.5 | 15 19 55.1
14 59 57.2
11 52 18.0
11 52 17.5
11 51 24.9 | 5 36 37.4
5 36 30.3
23 07 32.1
3 25 30.7
3 24 29.7 | 24 29.
15 51.
47 40.
25 00.
24 55.
25 26.
04 15. | 8 43 43.
8 43 43.
7 00 30.
6 56 02. | 11 06 08.9
1 37 57.0
9 11 12.1
9 11 07.3 | 8 15 31.0
8 13 42.6
14 36 46.6
23 53 59.4
10 46 22.9 | | | E U.T. | 1.3701
30.3271
11.2181
12.2229
1.2479 | 28.2778
20.1764
1.2097
1.2194
2.2424 | 27.1646
27.2729
3.2187
4.2958
5.2493 | 5.258
9.307
5.258
7.182
7.265
0.181 | 8.307
8.316
8.168 | 24.2493
12.2562
29.2465
29.3458 | 5.1556
7.1604
27.2167
7.1604
20.2410 | | | A T | OCT
JUN
FEB
FEB
MAR | A A A A A A A A A A A A A A A A A A A | DEC
DEC
SEP
NOV
NOV | | | FEB
OCT
JAN | FEB
APR
OCT
FEB | | | ۵ | | 0
0
0
0
0
0 | 4444 | | | N N N N | 8
8
8
8
8
8
8
8 | | | SURVEY
NUMBER | P-683.1
H-683.5
H-683.1
H-683.2 | W-84.7
X-15.3
I-54.5
I-55.5 | S-22.6
S-32.2
O-63.1
Q-73.3
Q-83.1 | | -65
-32
-42 | W 4 4 4 | G-73.1
H-13.1
W-64.7
D-12.2
U-54.5 | | | MINOR
PLANET | 4 5 9 9 9 | 66
67
67
67 | 68
69
70
70 | | | 75
76
76
76 |
77
77
77
78 | | | UZ | 07168 | u u 1 l u | 11 11 | 0017 | 4 4 4 4 | 4 9 9 0 0 | 48610 | |------|------------------|---|---|---|---|--|---|---| | | MOTION | 100.8
100.3
100.7 | 100.1 | 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00000 | 1001
1000
1000
1000
1000 | 0000 | L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | DAY | -81
-83
67
-66 | 1221 | 42
35
17
-32 | -30
-18
-22
-23 | 38
16
16
21 | 1 1 4 2 8 9 1 1 6 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 35
174
111
19 | | | 10 -
MOT | 1 1 0 0 5 4 4 5 1 1 0 0 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 1 1 9 . 2 . 2 . 3 . 4 . 5 . 4 . 5 . 4 . 5 . 4 . 5 . 4 . 5 . 5 | -8.9
-10.7
-7.9
-8.2 | -7.7
-8.2
-8.6
-8.7
-10.3 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | -9.6
-7.1
-10.4
-10.7
-8.9 | 0.000 | | | g | 9.56C
9.25C
9.16A
9.05 | 9.36C
9.58C
9.54
9.54
9.92 | 9.18
10.07A
9.98C
9.70
8.47 | 7.48C
7.35C
8.43C
8.01
8.01 | 7.79
9.44
9.35C
9.28
9.73 | 10.22C
7.84
8.05C
8.77
8.83C | 8.80
9.10C
8.73C
9.36C
9.51C | | | MAG | 10.97C
10.66C
11.73A
11.66 | 13.70C
12.75C
12.71
12.87C
12.33 | 11.53
13.68A
13.64C
14.66 | 12.33C
11.74C
12.85C
12.46
11.86 | 11.94
13.09
13.89
14.40 | 13.72C
12.42
12.10C
12.74
12.92C | 12.78
12.93C
13.45C
13.78C | | | VAR | 25
25
00
10
14 | 19150 | 7 0 | 00000 | m 00 % | 0000 | 80044 | | | - C
DEC | 21
21
0
0
-16 | 011471 | 17
10
10
1- | 11771 | 1 00 1 | 4 1 1 1 2 3 | 17002 | | ⋖ | o ∢ | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0000 | -2-3
-0-1
-0-2
-0-1 | 00000 | 0001 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 40000 | | ABLE | 0 • 0 | 5 0 0 4 0 6 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 5 59
1 50
5 55
2 55 | 53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195
53195 | 5 41
0 49
6 21
6 21 | 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 0 27
0 58
0 58
4 40
45 | 9 03
1 49
5 28
5 28 | | TAB | DE
195 | 11 0
11 0
-14 2
-14 1
21 2 | 111100000000000000000000000000000000000 | 1 0 2 3 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 | -26 3
-27 1
-27 2
-27 2
-27 2 | 25 4 4 3 1 1 2 2 5 4 4 3 1 1 2 2 5 4 4 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | -21 2
10 1
30 2
30 1
29 3 | 26 0
- 22 4
- 12 1
- 12 1 | | | R• A•
1950•0 | 2 03 03.4
2 02 58.4
6 12 10.3
6 11 00.9
2 06 50.0 | 1 46 39.7
2 09 17.5
2 09 12.1
2 21 00.7
1 34 07.9 | 1 32 31.6
1 11 13.5
1 09 13.4
5 32 34.1
7 59 19.8 | 7 59 16.9
7 45 26.3
7 44 37.5
7 43 46.9
4 43 25.0 | 9 37 37 1
1 35 40 4
6 18 56 7
6 00 03 5
8 20 06 3 | 5 28 12.7
2 45 53.3
3 47 22.7
3 44 17.1
3 27 06.2 | 9 18 13.7
3 36 05.5
5 34 55.1
1 50 14.4
1 47 41.1 | | | E U.T. | 1.1736
1.2639
28.2090
1.2729 | 14.2479 2
1.1646
1.2639
7.2632
24.3681 1 | 26.2618 1
11.3701 1
13.3722 1
5.3757 1
9.2986 1 | 9.3576 1
26.2229 1
27.2187 1
28.2417 1 | 18.2215
12.2562
28.3000
21.1250
7.1604 | 22.2368 1
4.3694 1
13.2236
16.2222
3.1569 | 31.3306
5.2826
5.3660
15.2708
18.2229 | | | DAT | 51 NOV
51 MAY
51 MAY
51 NAY | 50 AUG
51 NOV
51 NOV
50 NOV
52 FEB | 52 FEB
51 MAR
51 MAR
51 UUN | 51 CUN
51 CUN
50 CUN
50 CUN | 52 FEB
50 OCT
51 DEC
52 JAN
51 FEB | 52 MAY
51 APR
50
NOV
50 DEC | 52 JAN
51 SEP
51 MAY
50 AUG | | | SURVEY
NUMBER | Q-34.2
Q-44.1
L-23.2
L-33.1
Q-43.1 | B-44.1
Q-33.5
Q-44.2
E-34.1 | U-73.9
I-34.4
I-44.1
K-73.6
L-85.3 | L-84.2
M-15.1
M-24.1
M-25.1
F-43.2 | U-24.1
D-64.6
S-53.2
S-43.2
H-13.2 | X-34.1
J-32.2
E-72.2
E-82.3
F-12.1 | 1-82.4
0-74.3
K-74.3
B-53.2
B-54.1 | | | MINOR
PLANET | 79
79
80
80
81 | 8 8 8 8 8
8 8 8 8 8 | 8 8 8 8 8 8 4 4 4 9 7 6 7 | 88
78
78
88 | 88
90
90
91 | 1 2888
6666
6666 | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | | | ONO | 122 | 7.787 | 44243 | 4 L L L L L L L L L L L L L L L L L L L | 1132 | 1 0 0 0 9 | 6 10 4 0 | |-------|---------------------------------------|---|--|---|--|--|---|--| | | 0
MOT I | -0.1
-0.2
-0.3
-1.4 | -0.4
-0.1
-0.7 | 0000
0000
0000
0000 | 1000 | -0.2
-0.2
-1.1
-1.1 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 100-100-00-00-00-00-00-00-00-00-00-00-00 | | | DAY | 82
12
-19
-19 | 44004 | 158
153
153
18 | 28
-28
-19
-32
-32 | 1-8
30
4-6
8-45 | 32
-36
46
19 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | 10 -
MOT | -8.4
-7.6
-8.7
-12.2
-6.6 | 1 1 0 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 1 1 1 1 1 1 8 8 9 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 17.8
17.2
18.9
19.6 | 19.4
18.0
10.7
18.5 | -11.6
-10.5
-10.2 | -10.1
-7.9
-8.6
-10.3 | | | g | 8.86
8.53
8.58C
10.20C
9.11 | 8.91C
8.83C
9.49C
9.76 | 8.78
9.81
9.23
9.33C
8.92A | 8.25C
8.39C
9.60C
9.59 | 8.72C
8.99 | 8.78A
10.78
10.73
8.91
10.31 | 9.97
9.25
9.67
9.44
8.27C | | | MAG | 13.63
12.20
13.19C
13.16
12.62 | 13.43C
13.35C
11.62C
12.87
14.18 | 12.26
14.44
13.88
11.72C | 12.96
13.41C
14.10C
14.16
14.31 | 11.89C
12.02 | 11.45A
13.16
14.12
11.67 | 12.19
13.22
13.72
12.69
12.08C | | | V
A
R | -1
0
16
60 | 14 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 10149 | 90009 | 00444 | 11001 | 1100 | | | - C
DEC | -1
11
-33
54 | 711 | 00467 | 70706 | www40 | -15
10
10
0 | 115 | | ∢ | o∢
0 ∢ | -0.2
0.0
-1.3
2.7 | 100.0 | -00-1
-00-3
-00-3 | 1000 | # # 9 9 B | 13.7 | 0 - 2 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - | | ш | 0 | 29
33
111
27 | 00
113
141
74 | 01
26
15
20
20 | 55
03
03
03 | 6 4 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 51
28
42
46
13 | 110
93
93
83
83 | | TABLE | DEC
.950 | 0 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 811 4 4 9 9 | 130 | 26438 | 522 | 115
124
109
109 | 25
10
10
10
10
10
10
10
10
10
10
10
10
10 | | - | - | 29
1 3 6 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 9 9 5 5 9 | 125
125
138 | -15
-23
-23
-133 | 133
133
162
163 | 23
4
19
19 | 122 | | | • • • • • • • • • • • • • • • • • • • | 56.7
23.7
57.8
49.3 | 333
299
400
200
200
400
400
400
400
400
400
400 | 07 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 32.0
53.1
14.9
51.0 | 118.4
17.7
32.3
05.8 | 57.5
35.1
36.3
23.1
44.0 | 48 11 12 13 13 13 13 13 13 13 13 13 13 13 13 13 | | | R•
195 | 19
22
33 | 06
07
27
06 | 111
58
39
41
05 | 03
54
28
30 | 26
26
37
20
18 | 98
98
98
98 | 38
29
13
28 | | | | 1
12
17
14
23 | 2322 | 13
19
10
15 | 15
19
20
20
13 | 17
17
10
16
1 | 10
11
15
16 | 16
22
22
3
3
15 | | | U•1 | 1.3514
2.3375
5.3389
7.2896
6.2535 | 3.2431
3.2431
3.2187
8.2819 | 9.2160
6.2757
9.2104
6.2764
5.2208 | | 6.2597
6.2688
5.3569
4.2292
0.2257 | 24.2583
13.2757
24.2493
31.1667
25.3049 | 5.3132
9.3264
9.2514
9.1951
5.2521 | | | μ- | C PR C | EC 2
EC 2
AN 2 | APR
JUL
JUL 2
MAR
MAY | MAY
JUL
JUL
JUL
AUG
APR | MAY 2
MAY 2
MAR 2
OCT 1 | FEB 2
PEC 3
PEC 3
MAY 2 | MAY 2
AUG 1
SEP
NOV 2
MAY | | | ۷
Q | OPZEO | 70000 | | | | 2000
F X F Q X | 1000 | | | | ភាមាលភាមា | <i>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</i> | ው የ | տատատ | மைய்கள | មាមមាម | <i>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</i> | | | SURVEY
NUMBER | P-71.1
1-72.8
X-71.1
W-67.1
C-54.5 | S-15.4
S-14.8
O-63.2
S-55.8
S-44.1 | J-53.5
M-84.2
N-14.6
H-86.2
K-63.7 | K-54.3
N-22.1
N-34.1
N-44.1
U-65.3 | X - 85.3
X - 86.1
H - 82.2
X - 54.3
D - 52.2 | U-64.2
E-73.4
U-63.1
F-74.2
X-63.4 | X-62.1
B-73.2
C-13.2
R-35.2
K-66.3 | | | MINOR
PLANET | 96
97
97
98
100 | 100
100
101
102 | 100
104
105
105 | 106
107
108
108 | 109
109
110
110 | 111
112
112
113 | 113
114
114
115 | | | | | | | | 8 | | ∢ | | | | | | | | | |----------|-----------|------|--------|------|-----------------|-------------|----------|-----------------|------------|-------------|--------|----------|---------------|-----------|---------------|----| | D A T | - | ш | .T.U | | R. A.
1950.0 | DEC
1950 | 0 | ж
О Ф | - C
DEC | V
A
R | MAG | ၅ | 10 -
MOT I | DAY
ON | NOI TOW | υz | | - | | | .272 | | 5 17. | 6 2 | 0 | • | -3 | | 2.9 | • | 1 | 22 | ò | -7 | | 0 | ≥ | 7 | .286 | m | 2 48. | 4 | - | - | -27 | | 1.9 | 4. | 6 | -5 | ċ | 12 | | 52 MAR | Ř | 23 | •2264 | 12 | 31 40.6 | 2 16 | 32 | 9.9- | 74 | 47 | 11.60 | 8.97 | -9.3 | 77 | -1.2 | 7 | | 2 | × | ~ | .317 | ~ | 1 36. | 2 1 | 3 | 9 | 45 | | 1.5 | 6 | 6 | 42 | - | 0 | | - | 60 | | •137 | 00 | 6 02. | 4 | 7 | • | 7 | 0 | 3.0 | 0 | • | -19 | ċ | 0 | | 2 AP | × | 7 | •199 | m | 5 14. | 21 4 | Ś | ċ | | | 3.4 | .2 | 6 | | ô | G | | 2 A | ά | ~ | .253 | 6 | 5 11. | 4 | 4 | ċ | | - | 3.3 | 7 | 6 | | 0 | 5 | | 000 | Ε. | ~ | .186 | 0 | 3 40. | 2 3 | S | . 4 | | | 2.1 | 6 | 10. | | • | 7 | | 52 MAF | 5 | 22 | •3021 | 12 4 | 40 26.7 | 5 13 | 41 | -7.2 | 57 | 62 | 12.97 | 10.06 | -10.1 | 46 | -0.5 | 9 | | 1 MA | 7 | | •222 | 4 | 3 22. | 7 | 7 | · | | | 3.0 | 9.7 | . | | • | 15 | | - | - | | .331 | В | 8 41. | 2 1 | n | • | 14 | 00 | 2.93 | •64 | æ | ~ | ċ | 0 | | 0 | \preceq | 4 | .262 | - | 6 23. | 4 1 | 'n | • | m | 0 | 2.38 | .27 | 8 | 5 | 4 | | | 50 AUG | \cong | 18 | .2375 | 7 77 | 43 25.4 | -24 31 | 30 | -0.1 | - | 0 | 13.030 | 8.890 | -8.7 | -59 | -1.4 - | 18 | | - | \preceq | Ť | .322 | e | 0 02. | 3 1 | 7 | • | 7 | - | 2.35 | •20 | 8 | - | ċ | | | - | × . | | •273 | | 0 40 | 2 5 | G | • | 0 | 7 | 1.55 | • 78 | 2 | | ċ | | | -4 | ~ | | .317 | 7 | 9 12. | 2 4 | - | • | 0 | 0 | 3.0 | 2 | 7 | 53 | • | 60 | | _ | = | | .298 | 8 | 5 14. | 29 4 | ~ | • | 7 | ī | 4.0 | 0 | ċ | 4 | - | -2 | | 51 JUN | = | 1 26 | •2229 | 17 4 | 48 27.7 | -29 28 | 13 | 0.2 | 0 | 0 | 13.29C | 6 | 6.6- | 21 | -0.1 | G | | | 4 | 7 | .227 | 7 | 7 27. | 29 2 | 7 | • | 0 | 0 | 4.1 | • 26 | ċ | | ÷ | 4 | | - | < | 7 | •241 | ~ | 6 28. | 29 2 | ~ | • | 0 | 0 | 3.5 | . | 10. | | ċ | 9 | | ٦. | = | | .167 | | 0 10. | Ŋ | 4 | 0 | | 7 | 13.06 | 9.21 | | | -0.7 | 0 | | 52 MAI | = | | • 3444 | m | 22 46.5 | - 8 09 | 14 | -1.8 | 11 | 6 | 2.3 | • 2 | | 58 | | | | ~ | * | 7 | •177 | | 9 19. | 0 | _ | 2• | | 11 | | | ٠, | | -0 - 4 | n | | 7
7 | χ. | 7 | • 186 | 7 | 9 18. | 5 | 0 | 2. | | | | | - | | • | ၁ | | <u>۵</u> | <u></u> | ~ | •272 | | 2 36. | m | S | ċ | | | 13.64 | 9.80 | 6 | | • | Ŋ | | 2 FE | | B 19 | .321 | 0 | 2 25. | 5 | - | • | | | 2.9 | 4. | • | 62 | • | 7 | | I MA | _ | - | .358 | | 1 20. | 23 2 | ~ | • | | | 3.3 | 0.3 | æ | ထ | • | | | 51 MA | _ | 1 27 | •2410 | 2 | 42 10.3 | -22 47 | 11 | 4.0 | -3 | - | 13.35 | 10.51 | -10.2 | 21 | 0.0 | -2 | | ON O | ≥ | | .275 | m | 3 42. | 5 2 | Z | • | | | 2.7 | 4.6 | 11. | | • | | | O DE | \simeq | | •168 | | 3 26. | 5 | 2 | œ | ~ | H | 2 • 8 | • 4 | 6 | | ÷ | 9 | | 7 | 1 - * | | .388 | 2 | 5 42. | 4 | 6 | • | 0 | - | 3.0 | 9 | ~ | | ô | -2 | | 2 MA | | 7 | • 190 | ~ | 3 20. | 0 | 4 | • | 7 | 7 | 2.6 | ů | 6 | | ċ | 0 | | 51 FEE | | | • 2333 | 7 | 48 59.7 | 27 50 | 33 | 0.5 | 0 | 0 | 12.24 | 8.57 | -8.7 | 25 | -0.3 | 0 | | 2 AP | | 7 | • 181 | m | 3 46. | ~ | n | • | 6 | 4- | 3.2 | 0 | . | | ં | | | 1 MA | | ľΩ | •356 | 0 | 7 28. | 9 | - | • | | | | | å | | ċ | J | | | 0 - C
MOTION | 0.2 1
0.1 4
0.9 -2
0.5 6 | 0.9
0.6
0.5
0.5
0.4
0.4 | 0.0 -7 | 1.4 -14
1.2 -1
0.6 C
0.2 -1
0.3 -3 | 0.0
0.0
0.0
0.0
1.1
1.1
0.0 | 0.00 | 00.3
00.7
600.2
10.0
10.0 | |-------|------------------|---|--|--|---|--|---|--| | | DAY
ON | 609 | -9 -
-32 -
1114 -
76 - | -30 -
-16 -
21 -
28 - | 124 | 34 -
27 -
-
-
1 -
1 - | -27 -
48 -
41 -
27 -
127 - | 1 | | | 10 - D
MOTIO | 1109.8 | -111.3
-9.7
-8.3 - | -10.2
-9.5
-10.7 |
-100.9
-111.3
-100.7
-7.7 | 1 8 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 0 1 1 1 1 1 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 | -10.1
-9.2
-10.6
-10.6 | | | o | 10•71
11•14
8•98
9•71
8•78 | 9.49
9.02
10.74
8.58C
10.95C | 9.15C
8.51C
9.62A
9.48
11.57 | 10.62
10.05C
10.35
9.11
8.69 | 9•17
8•38C
8•66 | 9.62
10.19
9.83
9.61
8.37 | 12.15
9.57C
10.49C
10.30 | | | MAG | 13.81
13.76
13.28
14.03 | 12.13
10.82
12.58
12.68
12.60C | 11.95C
12.08C
13.26A
11.69 | 13.93
14.06C
14.35
12.76
13.13 | 12.19
11.38C
11.75 | 12.76
14.32
13.96
13.62
11.72 | 14.53
13.40
13.66C
13.47 | | | VAR | 38
16
16
133 | 1 1 1 4 4 | 12 66.0 | ₩ ₩ 4 ₩ ₩ | 15
17
17
18 | 10060 | 116 | | | - C
DEC | 44
40
40
40
40
40
40
40
40
40
40
40
40
4 | 4 6 7 8 7 | 13 | 11000 | 11881 | N 4 N N L | 00000 | | ⋖ | α
0 4 | 0.4446
•••••
••••• | 00000 | 10.00 | 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | -2-1
-2-1
-1-0
-1-2 | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | 0 | | TABLE | DEC
1950.0 | 8 29 26
19 41 24
26 38 10
26 38 48
-13 34 11 | 7 31 46
8 13 35
- 0 59 14
- 8 29 01
-21 07 47 | -24 59 33
14 40 41
13 39 17
-17 13 31
-25 23 04 | -14 30 39
35 38 46
35 38 44
25 08 53
- 1 20 50 | 0 52 16
0 52 19
7 36 55
7 36 50
- 8 10 40 | - 8 42 38
3 59 28
3 59 32
-20 33 16
11 35 35 | - 9 08 54
-19 08 27
12 29 45
12 29 41 | | | R. A.
1950.0 | 2 05 09.5
10 17 28.7
7 36 09.4
7 35 15.7
12 38 09.7 | 0 07 34.7
0 55 53.8
22 15 49.4
12 52 05.2
21 33 25.7 | 14 07 56.3
3 29 32.1
3 09 10.3
21 20 06.9
17 10 50.9 | 22 01 26.7
3 21 46.7
3 21 39.4
8 23 57.7
13 15 14.0 | 12 51 06.5
12 51 06.0
3 24 02.7
3 23 07.9
15 46 33.3 | 15 28 36.4
10 54 18.4
10 54 18.1
15 49 59.9
9 30 58.1 | 13 39 44.2
16 13 38.9
2 07 07.1
2 05 07.4 | | | E U.T. | 5.1687
20.2229
12.2764
13.2375
26.2215 | 27.3521
30.3118
1.3069
7.2715
6.2576 | 2.2729
5.2583
27.1826
5.3007 | 18.2229
4.2236
4.3410
7.1604
23.3535 | 22.1688
22.1778
4.3139
5.2674
8.3792 | 27.2611
11.3590
11.3701
24.1937
10.3035 | 8.3681
29.3201
5.1569
5.1687 | | | DAT | 50 NOV
52 FEB
51 JAN
51 JAN
52 MAR | 51 SEP
51 SEP
51 SEP
51 APR
51 AUG | 51 MAY
51 NOV
51 NOV
51 AUG | 50 AUG
51 NOV
51 NOV
51 FEB
52 MAR | 52 APR
52 APR
51 NOV
51 NOV | 51 MAR
51 MAR
51 MAR
52 MAY
51 FEB | 51 APR
51 MAY
50 NOV
50 NOV | | | SURVEY
NUMBER | C-1244
G-1424
G-153.5
C-163.2 | P-33.2
P-53.2
O-52.1
N-744.5 | K-35
0-84.2
N-644.3
L-64.5 | B-54.3
Q-71.1
Q-81.1
H-13.3
V-63.5 | W-12.1
W-13.1
Q-75.5
Q-85.1
K-82.1 | L-12.2
I-33.1
I-34.1
X-44.3
H-54.2 | L L L L L L L L L L L L L L L L L L L | | | MINOR
PLANET | 131
131
133
133 | 134
135
136
137 | 139
140
140
141 | 11
14
14
14
14
14
14
14 | 144
144
145
145 | 146
147
147
147 | 149
150
151
151 | | | U Z | 1151 | 1100 | 7 2 1 8 4 | 21422 | 62011 | 111 | 20100 | |------|--------------|--|---|--|--|--|---|--| | | MOTI | 100.1 | 0000 | 100.00 | 00000 | 100
100
100
100
100
100
100 | 10000 | 00000 | | | DAY | 116
-22
-23
-23 | -20
-67
-66
-9 | 153
133
134
14 | 11
9
-24
-39
-20 | 166
173
173
153 | 35
-116
36
-36 | -43
41
40
-22 | | | 10 -
MOTI | -10.2
-9.1
-9.9
-10.6 | -10.0
-7.1
-8.1
-8.1 | -8.8
-7.7
-7.7
-10.5
-10.5 | -13.8
-12.9
-8.2
-7.5 | 0.0000 | 1 1 1 1 1 4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 11000
11000
11000
11000 | | | 9 | 10.48
9.54C
9.58
8.77
8.14 | 8.62
9.22C
9.69A
10.64
11.11 | 10.91
8.74C
10.07A
10.06C
9.91 | 10.28
10.34
10.36C
10.30
9.61 | 10.52C
9.98
10.54A
9.01C
8.78 | 8.48
10.81C
10.06
11.08
9.48 | 9.04
10.90
10.52
9.65
10.08C | | | MAG | 13.40
14.13C
14.17
13.35 | 12.20
13.48C
13.94A
14.51 | 14.84
12.78C
13.36A
13.14C
12.99 | 13.57
13.63
13.94C
15.10 | 13.51C
11.48
12.05A
13.29 | 12.72
13.11C
13.99
14.48
13.90 | 13.14
13.72
13.40
14.09 | | , | VAR | 9 8 8 0 8 | 00000 | 151 | 00000 | 67713 | 11110 | -111
-12
-10 | | | - C
DEC | 70717 | 120 | 1 2 4 0 0 | 0000 | -16
-12
0 | 1 1 1 4 8 4 0 0 | -19
-19
-10 | | ⋖ | ж
У О | 13.0
13.2
10.0
10.0 | 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 11 11
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00000 | 0.09 | 0000 | 11 11 0 | | ш | 0 | 116
31
44
37 | 4 1 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 50
42
34
33 | 27
29
31
00
13 | 00 00 00 00 00 00 00 00 00 00 00 00 00 | 23
18
13
13 | 55
08
50
50 | | ABLE | DEC
.950 | 34
00
00
00
00
00
00
00
00
00
00
00
00
00 | 54
28
21
21
02
42 | 1 42
5 00
4 47
9 23
9 23 | 117
117
000
345
52 | 1 43
0 40
2 51
4 14
4 37 | 3 54
6 55
8 00
0 11
6 04 | 4 33
8 12
8 00
2 27
2 27 | | | - | 20
134
134
16 | 13
13
13
-21
-21 | 127 | 37
121
122
122 | 1277 | | 1222 | | | A.
50.0 | 39.1
56.3
522.8
53.1 | 52.5
18.1
29.9
43.9
12.7 | 09.6
58.5
16.7
28.1
21.0 | 47 • 5
46 • 5
07 • 3
50 • 1 | 32.6
21.3
08.4
25.5
14.9 | 57.4
47.3
37.0
111.7 | 39.5
25.9
25.9
57.9 | | | R•
195 | 24
18
18
28
49 | 40
00
40
20
20
20 | 22
20
18
34
34 | 8 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 35
30
16
43
06 | 45
29
08
07
01 | 51
21
21
21 | | | | 10
17
17
14
13 | 13
0
0
19
19 | 2002 | 6
6
21
21
21 | 21
9
9
7 | 111
23
8
8
14
22 | 122 | | | - T • I | 229
389
493
229
854 | 944
958
1146
583 | 701
1875
1389
646
729 | 1090
1181
160
1917
1926 | 333
674
1160
375
521 | 965
437
215
965
708 | 076
1174
715
243
2543 | | | ы
Э | 20.2
7.2
7.2
7.2
3.2
24.2 | 24 . 2
26 . 2
27 . 3
29 . 3 | 29.2
27.2
18.3
27.1
27.2 | 28.3
28.3
22.1
7.2
31.1 | 14.2
1.2
17.2
13.2
26.3 | 24.1
5.2
7.1
26.1
15.2 | w 4 L 4 4 | | | - | FEB
CUN
AAA
APR | APR
SEP
JUL
JUL | JUL
SEP
AUG
DEC
DEC | C C B C C C C C C C C C C C C C C C C C | E A E B B B B B B B B B B B B B B B B B | C P E B P C C C C C C C C C C C C C C C C C C | NOV
APR
JUL
JUL | | | O
A | 55000
50000
50000 | 2210
22100
22100 | 5555 | 51 D S S S S S S S S S S S S S S S S S S | 00000
00000
00000
00000 | 001100
001100
001100
001100 | | | | | | | | | | | | | | SURVEY | U-42.6
L-65.3
L-66.1
K-44.5
W-43.5 | W-42.3
P-21.1
P-32.1
M-73.3 | N-13.1
P-35.2X
B-64.3
S-22.5
S-32.1 | S-52.3
S-51.2
S-41.2
N-85.3
O-15.2 | B-43.2
T-94.1
U-14.2
G-63.6
U-96.1 | V-16.1
O-75.4
G-74.4
W-53.2
B-53.1 | Q-64.2
J-34.9
J-44.1
M-63.1 | | | MINOR | 151
152
152
153 | 156
156
158
158 | 158
159
160
160
160 | 161
161
161
162
162 | 163
163
165
165 | 165
166
167
167
168 | 168
169
169
171 | | | U NO | 6110 | 1 1 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 1122 | H 9 4 H 9 | 0 4 0 4 0 | -12
-12
-1 | 4 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | |-------|------------------|---|---|---|--|---|---|--| | | O -
MOT I | -0.8
-1.3
-0.2 | 100
100
100
100 | 1002 | 0000 | 0000 | 0.0 | 00000 | | | DAY | 125
14
16
8 | 113
112
137
139 | 18
130
111
159 | 4 4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | -234
-12
41
91
-50 | -12
-8
71
-74 | 4 4 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | 10 -
MOTI | -8.7
-9.1
-11.3
-8.4 | -9.6
-11.6
-11.1
-8.1 | -7.0
-7.8
-9.2
-9.2 | -8.0
-9.1
-9.3 | -6.6
-9.2
-7.7
-8.0 | -13.3
-10.1
-7.9
-9.1 | 15.6 | | | o | 10.25C
9.31
10.08
9.57C
9.04C | 9.65
9.36
9.47
9.63 | 9.43
9.61
10.65
11.06 | 9.39
11.05
11.48C
11.52 | 10.99
9.30C
9.61
8.65A
10.16 | 10.58C
10.52C
9.39
9.94
11.00C | 8.57
8.81
8.50
9.97 | | | MAG | 14.69C
12.44
13.20
12.58C | 13.81
13.70
13.81
14.28
13.83 | 14.22
14.17
13.22
13.90
13.61 | 13.77
15.19
15.31C
15.37
12.97 | 12.92
13.37
13.40
12.91A
12.84 | 13.16C
13.12C
12.98
13.70
13.54C | 13.03
13.30
13.80
14.01 | | | VAR | -10
4
6
1
 8 4 4 | 7
8
-112 | 99000 | -2
-17
0
10 | 12
12
106
-3 | 1111 | | | - C
DEC | 22110 | 4 A B | 106 | 1 2 2 3 4 4 | 111 | 9 4 2 8 8 8 8 | 1111 | | ∢ | ω
8 ο | 6.00 | 0.0
7.0
9.0 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 9.0
10.2
0.2
0.1 | -7.1
-0.8
2.5
0.0 | -3.2
-3.2
14.9
10.7 | 0.0
0.0
0.5
0.5 | | TABLE | DEC
1950.0 | -22 28 04
-27 17 03
-27 17 12
-26 24 48
12 13 49 | 24 22 18
37 05 24
37 05 17
36 03 10
35 59 17 | -14 10 11
-13 13 48
25 27 29
- 0 18 44
23 22 57 | - 3 15 47
-21 30 50
-24 23 17
-26 23 16
-20 03 46 | -23 25 53
24 45 04
5 17 59
15 59 53
-36 49 25 | -37 55 44
-37 56 27
-26 55 10
-18:33 32
10 09 39 | 11 35 29
11 39 29
- 4 39 52
- 2 20 53
- 6 50 57 | | | R• A•
1950•0 | 19 21 52 1
14 02 23 1
14 01 24 4
13 37 45 0
9 57 25 0 | 1 19 32.0
6 28 03.1
6 28 02.3
6 04 14.1
6 03 27.5 | 14 14 11.6
14 00 57.4
5 15 53.6
0 18 51.8
8 03 34.3 | 10 36 47.1
15 09 17.5
17 39 10.4
17 39 09.6
20 32 22.3 | 23 27 32.0
5 23 05.3
11 07 44.1
13 23 47.7
16 05 47.7 | 15 40 33.9
15 39 11.1
21 55 08.0
12 42 00.9
1 54 50.6 | 8 49 50.4
8 49 12.3
13 08 41.5
12 51 25.7
17 52 11.3 | | | E U.T. | 4.3486
9.3368
10.3222
2.2118
19.2208 | 10.2146
28.3090
28.3181
21.1431
22.1160 | 10.3438
28.2139
27.1736
8.1667
26.2229 | 6.2653
22.2639
8.2375
8.2472
3.2132 | 5.2535
13.2701
24.2493
9.1958
8.2931 | 28.1896
29.2312
1.2111
4.2514
1.1736 | 8.2667
9.2208
23.3535
22.1778
8.3340 | | | DAT | 51 JUL
51 APR
51 APR
51 MAY
52 FEB | 50 OCT
51 DEC
51 DEC
52 JAN
52 JAN | 51 APR
51 APR
51 DEC
50 OCT | 51 MAR
52 MAY
51 JUN
51 JUN
51 AUG | 51 SEP
50 DEC
52 FEB
51 APR
51 MAY | 51 MAY
51 SEP
51 SEP
51 APR
51 NOV | 51 FEB
51 FEB
52 MAR
52 APR
51 JUN | | | SURVEY
NUMBER | M-74.1
J-76.2
J-86.2
K-26.3
U-33.4 | 0-51.1
S-52.2
S-51.1
S-42.1
S-41.1 | J-84.1
K-24.2
S-23.2
D-24.3 | H-85.3
X-24.1
L-74.3X
L-75.2
N-44.2 | 0-76.2
F-63.2
U-63.3
J-51.2
K-86.1 | L-16.1
L-26.1
O-26.3
J-36.1
Q-34.1 | H-25.2
H-34.1
V-63.2
W-13.2
L-82.1 | | | MINOR
PLANET | 171
172
172
172
173 | 174
174
174
174 | 175
175
177
178
178 | 179
179
180
180
182 | 183
184
185
185 | 186
186
187
188
189 | 190
190
190
190 | | | U N
0 | 122 | 1 1 6 3 3 1 | 44864 | 1 9 1 8 1 | 4 4 4 0 W | 0 6 9 6 6 1 | 1 1 1 4 | |------|------------------|---|---|--|---|--|--|--| | | O - | 10.2 | 00000 | 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0000 | 00000 | 00000 | 01000 | | | DAY | -17
-10
-17 | 26
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 28
88
7.7
7.5 | 41
45
75
75 | 7
10
63
14 | 9
72
81
66
-35 | -36
-23
118
81
87 | | | 10 -
MOTI | -8.3
-11.0
-12.2 | -10.5
-7.8
-11.3
-10.4 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 100.4
100.4
100.6
100.6 | -10.5
-10.1
-9.2
-7.9 | 1 8 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 0.000 | | | ဖ | 9.85
8.78C
8.51C | 0 98
0 98
0 96
0 96
0 19 | 9.80
10.06
7.49
7.96C | 10.66
9.44
9.38
10.40 | 8.61C
9.80C
8.81
9.52
9.03C | 9.04
8.96
8.97
9.36 | 10.31C
10.29
10.24
10.08C | | | MAG | 3.88
1.62C
1.39C | 5 31
2 22
3 88C
3 72
3 87 | 3.25
3.51
1.54
2.01C
4.71 | 39 34
39 31
30 31
65 | 2.41C
2.42
2.42
3.70
2.88C | 2.89
2.74
3.02
3.76 | 3.64C
3.77
4.19
3.73C | | | VAR | | | | 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 4466 | 9 9 9 9 9 | 2 1 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 2 | | | . C
DEC | 2422 | 4 4 6 0 0 0 | 35511 | 4496 | 0 4 4 4 6 0 | O N N O N | 2027-8 | | ⋖ | 2
0
4 | 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 00000 | -0.2
-0.8
-6.1
-6.1 | 100-1 | 0-10-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0- | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | LLI. | 0 | 111111111111111111111111111111111111111 | 0 44440 | 7 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 00
7
7
7
7
7
7
7
7
7 | 38
47
111
02. | 0 4 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 23 | | TABL | DEC
1950 | - 34 47
- 34 48
- 34 48 | 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 2 58
2 58
-14 43
-14 43
8 13 | 8 14
-0 30
-27 17
30 51
- 5 18 | -31 23
-31 22
15 24
6 05
9 52 | 9 52
8 12
8 28
11 31 | -15 48
-17 01
9 08
-12 28
- 8 40 | | | A.
50.0 | 6 4 4 11 11 11 11 11 11 11 11 11 11 11 11 | 04981
19640 | 24
23 • 1
34 • 3
36 • 3 | 000044
000000
0000000
000000 | 588
588
580
580
580
580
580
580
580
580 | 59.3
11.8
02.3
10.8 | 25.9
44.9
32.9
13.2 | | | R• | 7 37 49 7 26 7 26 7 26 7 26 7 26 7 26 26 26 26 26 26 26 26 26 26 26 26 26 | 4 44444 | 1 49
1 49
5 29
2 49 | 5 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 8 20
8 19
5 47
1 11
4 35 | 1 53
1 53
1 35
1 35 | 1 48
1 27
7 38
4 55
2 12 | | | | 1800 | 4. 44 4 | 4 4 8 9 9 | 9 80 | 8 7 7 6 4 | 1112 | 19659 | | | E U.T. | 26.192
8.256
9.288
27.227 | 306.337.1589.37999 | 23 190
23 199
5 220
5 375
4 369 | 4.389
11.300
27.316
11.195
22.291 | 29.261
30.234
31.166
24.249
12.201 | 12.277
24.368
26.388
22.192
6.247 | 7.281
31.221
13.314
27.379 | | | ⊢ | N N N N N | MAY DEC | MAR
MAR
MAY
APR | A P P R P R P R P R P R P R P R P R P R | D C C C C C C C C C C C C C C C C C C C | DEC
FEB
FEB
AUG | AUG
AUG
APR
APR | | | ۵ | 511 | 7000 | 52 52 51 52 51 51 51 51 51 51 51 51 51 51 51 51 51 | 521 | 20000 | 22220 | 52 | | | SURVEY
NUMBER | M 12.2
L-76.5
L-86.1 | 146
142
152
193 | V-13.5
V-14.2
K-63.4
K-73.4 | U-41.1
H-66.1
W-76.3
H-61.1
X-32.1 | M-35.1
F-746.1
C-63.5
F-45.1 | F-46.1
U-83.9
U-92.1
V-12.1
N-74.3 | N-84.1
0-14.1
G-65.1
W-74.3
I-65.3 | | | MINOR
PLANET | 191
192
192
192 | , 00000 | 195
195
196
196 | 197
198
198
199
199 | 200
200
201
201
202 | 202
202
202
203
203 | 2003
2003
204
205
5 | | | UZ | 1111 | 10
10
10
10 | 1 - 1 - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | 1.00
1.00
1.00
1.00 | 0 H N O N | 40000 | 5177 | |-------|------------------|---|---|--|---|--|--|---| | | MOTI | 90979 | 001111 | 0000 | 1 1 1 1 1
0 0 0 0 0
4 4 4 6 6 6 6 | 00000 | 1000
1000
1000
1000
1000
1000 | -00
-10
-01
-01 | | | DAY | 81
153
134
126 | 10
10
10
10
10
10
10
10
10
10
10
10
10
1 | 1
8
8
8
7
8
7
8
7 | 15
15
-28
-16 | 35
121
121
121
121 | 39
71
57
78 | 53
77
91
44 | | | 10 - [
MOT I | -10.00 | -10.5
-10.5
-8.3 | 1 | -9.0
-111.1
-111.1 | 1 1 1 1 1 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 08798 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | o | 9.75
9.97
9.77A
11.02 | 10.69
8.90
10.35
8.50
9.60 | 9.39
9.28
8.93
8.71 | 9.85C
9.52C
10.54
10.10C | 10.33
10.93
10.64C
10.50 | 8.00C
11.06
10.81
9.96 | 9.80
10.47
10.68
12.09 | | | MAG | 13.41
13.33
13.13A
13.52 | 14.44
12.89
12.96
13.03 | 13.35
13.78
13.37
13.15 | 14.06C
13.73C
13.42
13.00C | 13.62
14.28
14.08C
13.89 | 12.34C
15.98
15.00
13.68 | 13.88
14.09
14.42
13.42
16.11 | | | VAR | 70777 | 76067 | 37778 | 22222 | 1123 | 00798 | -1
-37
17 | | | DEC | 4 4 1 1 2 | 15.1 | 11111 | 1 1 1 1 1 1 9 6 1 1 9 | 00040 | 0 0 1 1 1 0 | -45
13 | | ⋖ | α
0 4 | 4 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 | 01000 | 00.1 | V & W & Y & Y & Y & Y & Y & Y & Y & Y & Y | 00 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 | 00110 | 0.4
0.5
12.5 | | LLJ | 0 | 38
27
20
04 | 28
34
19
13 | 09
09
51
02 | 48
32
113
10 | 06
20
10
56 | 40
31
54
12
25 | W 4 W 4 4
W 6 0 0 W | | TABLE | DEC
1950 | 8 23
5 01
8 47
8 50 | 0 57
1 28
2 52
2 35
4 5 | 3 03 1 0 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 | 888558
88868
88688 | 1 03
1 48
1 48
9 40 | 1 10
9 16
0 00
3 38
4 01 | 2 6 0 1 3 2 3 3 3 3 5 9 3 5 9 4 3 5 9 9 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | | | | ווווו | 2122 | 11112 | 7777 | 77 1 1 | i i | 118 | | | A.
50.0 | 47.7
57.0
56.5
13.3 | 22 • 1
24 • 7
08 • 9
22 • 6
53 • 1 | 40
45
87
84
84
96
4 | 24.4
20.9
39.3
37.4 | 45.0
59.4
14.9
28.3 | 200
200
200
200
200
200
200
200
200
200 | 00000000000000000000000000000000000000 | | | R. | 10
111
111
55 | 23
52
50
50
50
50
50 | 39
52
50
50
07 |
57
13
12
12 | 14
48
28
38
18 | 40
15
53
54 | 94
93
33
32 | | | | 12
21
21
21
21
21 | 15
22
3
16 | 7
12
12
12
23 | 44000 | 20 20 3 3 3 3 | 16
9
13
12
0 | 6
11
11
11
9 | | | E U.T. | 4.2201
5.3007
5.3104
31.2604
1.2014 | 5.3660
2.2215
27.2743
28.1993
13.2375 | 4.2333
23.3264
26.2215
26.2396
12.2632 | 23.1708
23.2431
12.3104
13.2597
13.2701 | 23.3444
22.1868
10.2799
5.2493
27.1736 | 2.2958
9.2972
23.3535
22.1688
12.1868 | 22.1340
14.3458
1.2194
12.1750
18.2306 | | | ⊢
∢ | APR
AUG
AUG
SEP | SEP
NOC
NOC
NOC
NOC
NOC
NOC
NOC
NOC
NOC
NOC | S W W W E B B B B B B B B B B B B B B B B | DEC
DEC
DEC
DEC | A A B A B A B B B B B B B B B B B B B B | JUN
MAR
OCT | FO P B B B B B B B B B B B B B B B B B B | | | ٥ | 2222 | 5222 | 52220 | 50 [| 50000 | 5225 | 50112 | | | | | | | | J | | | | | SURVEY
NUMBER | 1-75.1
N-64.4
N-63.1
0-24.2
0-25.1 | K-74.1
0-54.1
R-23.1
L-24.3
G-63.8 | G-63
V-54.4
V-45.5
V-55.2
C-44.3 | S-15.2
S-14.4
F-53.2
F-62.4X | V-64.6
W-14.2
B-14.2
Q-83.3X
R-13.1 | L-42.1
H-45.3
V-63.6
W-12.3
D-45.4 | S-46.2
1-55.2
1-55.1
D-62.3
U-25.1 | | | MINOR
PLANET | 205
206
206
207
207 | 208
209
210
211
212 | 212
212
212
212
213 | 213
213
214
214
214 | 214
215
215
215 | 216
217
217
217
218 | 218
219
219
220
220 | | | UZ | 110000 | 111 | 4 6 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 20480 | 1111111111 | 08011 | 37404 | |-------|------------------|---|---|---|--|---|--|---| | | 0 –
MOT 10 | 0000 | 0000 | 100.3
100.1
100.1 | 0 | 0000 | 1 1 1 1 1
0 0 0 0 4
4 \$ \$ \$ \$ \$ \$ | 00000 | | | DAY
ON | 139 | 1
34
77
-28 | -26
-19
-32
-40 | 141
136
122
75 | -65
-10
-10
-69 | 62
100
87
-30 | -88
62
66
71 | | | 10 -
MOTI | -7.7
-7.9
-7.8
-7.1 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | - 1 3 · 6 | 1100
1100
1100
1100
1100
1100
1100
110 | -10.5
-10.2
-9.5
-9.5 | -10.3
-7.5
-9.2
-8.7 | 110.5 | | | g | 8.98A
9.08
10.30
11.19C | 11.22
9.99
9.90
10.89A
10.34 | 10.31C
9.88
9.74
9.94
13.55 | 13.98
14.07
10.33
7.59
8.66 | 10.47
11.48
11.30
9.52
9.38 | 10.30
10.28
10.24
9.70 | 9.36C
10.64
9.21
8.89
9.32 | | | M A G | 13.22A
13.32
14.58
14.92C | 14.93
13.22
12.96
15.03A | 15.28C
14.88
14.75
15.06
15.53 | 16.36
16.45
14.16
10.43 | 13.25
15.32
14.48
12.95
13.08 | 13.54
14.24
14.08
13.42 | 11.61C
14.32
13.06
12.74
13.48 | | | VAR | 1.50 | 121 | 2 0 | 00484 | 0 0 4 0 | 8009
1110 | 60441 | | | - C
DEC | 132 | 4 8 4 4
1 4 8 4 | 88848 | 00011 | -17
-2
-2
13 | 1122 | 6 9 9 9 9 | | ⋖ | ω
0 4 | 00.000000000000000000000000000000000000 | -1.0
-1.2
-3.2
1.6 | 1.6
2.1
2.2
0.2 | 000111
4 w m w w | 11200 | -1.1
0.7
-3.2
0.9 | 130.9 | | TABLE | DEC
1950.0 | 0 43 58
0 44 01
4 23 58
- 1 43 16
25 33 08 | 25 47 13
-18 44 04
-17 58 47
15 22 56
19 54 37 | 19 54 09
34 31 09
34 31 12
33 50 43
26 33 08 | 25 34 30
25 34 05
-25 28 36
-20 42 07
-20 35 10 | -30 46 53
-2 44 48
14 59 54
13 49 35
- 7 55 55 | 4 58 28
10 21 27
14 25 41
- 5 47 08
- 1 28 24 | - 1 28 26
20 06 12
2 20 39
2 20 43
- 4 28 01 | | | R• A•
1950•0 | 14 40 05.1
14 40 04.7
1 10 20.0
0 03 51.2
6 28 53.5 | 6 08 45.3
14 06 21.7
13 49 46.1
9 17 42.3
1 22 53.3 | 1 22 53.1
4 54 01.0
4 54 00.5
4 38 27.3
4 51 52.1 | 4 31 58.8
4 31 53.1
19 14 22.8
14 49 55.9
14 49 05.7 | 16 39 30.3
0 29 01.5
6 05 18.1
6 08 40.5
11 58 53.3 | 6 04 35.9
12 05 45.4
11 45 37.5
1 02 07.0
22 45 29.2 | 22 45 29.0
4 49 22.9
9 15 21.9
9 15 21.5
14 28 56.1 | | | E U.T. | 4.3000
4.3097
1.3611
8.1667
28.3000 | 21.1250
10.3319
28.2139
29.3458
10.2146 | 10.2257
5.2715
5.2896
22.2424
5.2625 | 22.2340
22.2333
4.2354
3.3167
4.2090 | 2.2264
9.1889
28.2549
5.1785
24.2056 | 5.3007
26.3882
22.1924
1.2250
2.3222 | 2.3319
12.1903
9.2868
9.2972
26.3139 | | | D A T | 51 MAY
51 MAY
50 OCT
51 DEC | 52 JAN
51 APR
51 APR
52 JAN
50 OCT | 50 OCT
51 DEC
51 DEC
51 DEC
51 DEC | 51 DEC
51 DEC
51 JUL
51 MAY | 51 JUN
50 OCT
51 DEC
51 JAN
52 MAR | 51 JAN
52 FEB
52 MAR
51 OCT | 51 SEP
50 DEC
51 FEB
51 FEB
52 APR | | | SURVEY
NUMBER | K-52.1
K-51.2
P-64.1
D-24.4
S-53.7 | S-43.4
U-85.1
K-24.5
T-84.4
D-51.4X | D-52.1
R-52.2
R-62.1
R-52.3
R-53.5 | R-143
R-533
K-1643
K-1455
S-553 | L-45.3
D-35.4
S-45.3
G-15.4
V-25.1 | G-16.1
U-92.2
V-12.2
P-55.3
O-53.1 | 0-52.1
F-44.3
H-46.1
H-45.1
W-62.3 | | | MINOR | 221
221
222
223
223 | 223
224
224
226 | 227
227
227
227
228 | 228
228
230
230 | | 23344
2334
2334
2335 | 236
233
238
238
238 | | | UZO | 202268 | 00479 | 4
0
0
0
1
0
1
0 | 4 6 1 9 6 1 9 | 0 0 0 | 10501 | 04204 | |------|-----------------|--|---|---|--|---|--|--| | | O - | 0000 | 00000 | 0000 | 0000
4 4 0 4 6 | -0.2
-0.7
-10.5 | 01111 | 7777 | | | DAY
ON | -69
-73
28
42
37 | 45
32
37
30 | - 32
- 32
- 30
- 30
- 40 | 141
35
32
81
76 | 94
39
50
27
-12 | -66
-10
21
17
59 | 29
132
127
123 | | | 10 -
MOTI | 1.00 -
1.00 - 1. | -7.2
-9.0
-7.5 | 1 6 6 9 9 1 1 8 9 9 1 1 8 9 9 1 1 8 9 9 1 1 8 9 9 1 1 1 1 | -10.2
-7.7
-7.5
-8.7
-8.0 | 114.6
-18.8
-110.0 | 1 8 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | -100.2
-100.9
-90.4
-90.4 | | | ၅ | 11.75
11.63C
8.85
10.09 | 9.04
8.86
8.31
8.72 | 10.94
10.28A
10.82C
11.26
11.31C | 13.39
9.53C
9.45C
10.04
9.83 | 9.19
11.11
11.26
12.18 | 11.32
10.96C
10.61
11.26
11.51 | 13.22C
13.09
11.48
11.08C | | | MAG | 13.97
13.88C
12.37
14.16
13.79 | 13.42
13.42
12.70
12.62 | 15.33
14.61A
14.47C
14.91
14.92C | 14.90 14.16C 14.20 13.73 13.51 | 11.38
13.74
13.62
13.69 | 15.48
14.60¢
14.89
14.95
15.99 | 14.75C
14.54
15.25
14.85C
15.01 | | | VAR | 129 | 40100 | 4 2 2 2 2 | 42244 | 143
11
11
10 | ŭ 4 0 0 4 | 2000 | | | - C
DEC | 133
122
122
123 | 11216 | 89111 | H 4 6 H H | 147
2
2
1
1 | 9258 | 88887 | | ⋖ | α
0 4 | 8 8 0 0 0
4 4 4 \uniterral v.v. | 11000 | -10
-00
101
101
101 | 0000 | 8.9
-0.8
-0.8
-1.7 | 100
100
100
100
100
100
100
100
100
100 | 00144
•••••
444ww | | ABLE | EC
50.0 | 30 49
17 37
59 57
23 57
23 36 | 57 00
56 59
47 58
17 05
13 41 | 13 38
05 14
24 32
27 32
27 53 | 46 30
53 44
18 16
12 51
12 57 | 53 03
12 02
38 33
28 18
18 38 | 35 55
34 47
00 09
24 10
40 54 | 28 19
25 34
01 21
01 24
01 32 | | T A | D
19 | 21
21
7 - | 1111 | 1115 | -111
-14
-10
6 | 13
122
120
114
140 | 1 1 8 8 1 1 1 8 8 | 7 - 7 - 7 - 7 - 1 - 1 - 1 - 1 - 1 - 1 - | | | A.
50.0 | 04.7
35.7
52.3
17.1 | 49.1
48.3
18.5
03.0
49.0 | 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 12.7
22.3
22.9
14.9 | 38.8
50.3
29.9
13.7
47.9 | 26.5
48.2
25.3
00.1
18.4 | 18.3
21.3
09.1
08.4
06.9 | | | R•
19 | 2 2 2 2 2 2 2 3 4 3 4 3 4 3 4 3 4 3 4 3 | 1 09
1 09
1 08
1 47 | 1 47
1 29
1 25
1 25
1 25 | 0 52
0 52
4 16
8 39
8 39 | 0 39
6 07
5 49
8 56 | 2 21
4 05
7 09
6 10
0 51 | 22 24 27 27 47 47 47 47 47 47 47 47 47 47 47 47 47 | | | | 111 | 1 7 4 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 04769 | 02271 | 0 4 8 8 5 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 64 6 FO O | 11410 | | | п
Т•1 | 1.200
3.217
12.286
24.204
24.285 | 11.370
11.381
13.360
24.193 | 6.358
31.2899
5.300
5.310
6.247 | 3.341
11.287
26.196
8.266
8.277 | 30.203
8.358
28.199
31.260
4.255 | 18.324
4.210
7.333
5.178
20.241 | 8.368
9.275
2.192
2.202
2.234 | | | ⊢ | NO NO A A D B B B B B B B B B B B B B B B B B | A A A A A C C C C C C C C C C C C C C C | AUG
AUG
AUG
AUG | A A A A A A A A A A A A A A A A A A A | SEP.
MAY
AUG
JUL | P C C C C C C C C C C C C C C C C C C C | A P P R S R E P P P P P P P P P P P P P P P P P P | | | ۵. | 52
52
52
53 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 2222 | 51
52
51
51 | 51
51
51
51 | 50
51
51
52 | 51
51
51
51 | | | VEY
3ER | 6 6 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 4 6 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 1.1
1.2
4.2
4.1
4.1 | 88.1
88.1
8.1
11 | 6 4 4 4 6 6 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 5.00
5.00
5.00
5.00
5.00
5.00 | 644.1
444.3
55.2
55.1 | | | SURVE | 1 0 0 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | X X 1 1 3 2 4 4 4 5 5 1 1 1 X X 1 1 4 5 5 1 1 1 X X 1 1 1 X X 1 1 1 1 1 1 1 1 | N N N N N N N N N N N N N N N N N N N | H I K I I I I I I I I I I I I I I I I I | 30 C X P S C C C C C C C C C C C C C C C C C C | B R R L 6 6 9 1 1 6 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 | 0000
4444
1111 | | | MINOR
PLANET | 239
239
240
240 | 2 | 2005
2005
2005
2005
2005
2005 | 25
25
25
25
25
26
26
26
26
26
26
26
26
26
26
26
26
26 | | 251
251
252
253
253 | 255
255
255
255
255 | | | UZ | 1 99 | 22922 | 1 2 1 2 4 4 4 5 4 | 04041 | 1111
04400 | 100 | 1 1 1 0 0 0 0 | |------|------------------|---|---|---|--|---|--|--| | | MOTIO | 1000 | 000000000000000000000000000000000000000 | 011100 | 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 100-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0 | 11 11 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 100.1 | | | DAY
ON | -115
-33
-32 | 32
33
53 | -75
-55
-18
-9 | 72
75
-46
-22
47 | -48
-51
-90
-9 | 43
37
29
36
41 | 1 1 2 4 4 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | 10 - 1
MOT I | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | -7.9
-8.8
-9.2
-10.1 | 11.86.0 | 0 | -10.0
-17.5
-8.5 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1109.5 | | | 9 | 10.84
10.96
111.13
10.95 | 9.85C
9.40
9.17
8.33
8.98 | 10.54C
10.07C
10.38C
10.25
10.63 | 10.75
10.17
11.78
11.38 | 9.19
10.45
12.41C
9.64
9.12 | 11.68
9.46C
10.10
9.64 | 10.88C
10.94C
9.98A
10.75C | | | MAG | 14.79
14.91
15.48
15.30
13.92 | 14.22C
12.45
13.67
12.83 | 14.26
13.81
14.92C
15.08 | 12.85
12.21
15.31
15.25 | 12.56
13.83
14.35C
13.12
13.50 | 15.32
13.08
13.23
12.77 | 14.63C
14.68C
12.83A
14.19C | | | VAR | namoo | 1
2
1
1
0
-10 | 01144 | 12
13
10
-2 | 135 | 15
119
127
127 | 000mm | | | - C
DEC | 11114 | 44448 | 0 m w 4 4 | 13 | 1 + 5 5 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1.5 | 7
7
10
10
12
12 | | ∢ | ω
Α Ο | 00000
4 6444 | 11.00.00.00.00.00.00.00.00.00.00.00.00.0 | 20.0
10.0
10.0 | 11.9 | 00000 | 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . | 2.0
2.0
0.0
-10.4 | | LE | 0 | 00 02 02 03 05 05 05 05 05 05 05 05 05 05 05 05 05 | 12
28
28
28
41
41 | 08 07 07 05 05 05 05 | 08
118
24
28 | 24
22
23
40
40
58 | 12
12
12
12
12
12
12
12
12 | 03
00
00
07
141
18 | | TABL | DEC
1950 | 0 44
0 53
3 46
11 08 | 11 14
3 21
27 35
27 35
13 14 | 4 25
12 50
12 31
1 44 | 9 21
9 34
16 17
19 14
8 00 | 32 46
32 51
12 56
4 27
18 33 | 11 11
12 20
21 27
10 07
10 07 | 10 00
10 00
2 03
27 19
27 15 | | | | 988 | 80266 | - 0 0 8 4
1 1 | 9946 - | 99000 | 9 9 6 5 4
[[]] | 950H4 | | | A.
50.0 | 51.
08.
59.
58.
22. | 53.03.00 | 569 | 24
55
55
01
35 | 38
40
13
13
29 | 00
41
47
42 | 53
17
13 | | | R•
19 | 2 44
3 47
9 47
9 20 | 3 52
5 19
7 13
7 13
2 41 | 3 24
3 24
4 27
4 15
1 17 | 1 35
1 33
3 21
3 53
0 25 | 1 24
1 23
0 07
7 26
2 37 | 1 50
1 36
7 18
4 22
4 22 | 3 13
3 13
1 01
4 29
4 28 | | | • | 22 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 4 6 0 4 1 | 71 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 22 22 22 22 22 22 22 22 22 22 22 22 22 | 11 21
12 21
16 16
17 15 | 60805 | 1000 | | | U• T | 2076
286
168
168
204
318 | 2854
2007
1756
2764 | 2576
2910
2014
1521
2917 | .368]
.2618
.2383
.1312 | .243]
.268]
.2479
.309] | .337
.341(
.2868
.1969 | 313
322
370
3056 | | | ш | 10
11
29
29
9 | 24
27
12
12
22 | 14
14
22
10 | 24
26
3
11
19 | 5
6
12
12
26 | 15
31
12
26
26 | 11
11
12 | | | A T | SEP
NOV
NOV
FEB | M C C D P R A A A A A A A A A A A A A A A A A A | SEP
SEP
DEC
DEC | FEB
SEP
DEC | A A C C C C C C C C C C C C C C C C C C | Z Z J A A
A A G G
A X X X X | NOV
NOV
DEC | | | ۵ | 50
50
50
50
50
50
50
50
50
50
50
50
50
5 | 52
51
51
52 | 50
50
50
50
50
50 | 20
20
20
20
20 | 5
5
5
5
7 | 0
0
0
0
0
0
0
0 | 12
12
10
10
10
10
10
10
10
10
10
10
10
10
10 | | | SURVEY
NUMBER | C-22.1
C-32.4
R-26.4
R-36.2
H-43.3 | W-43.9
S-26.5
G-43.3
G-53.1
V-41.1 | C-54.1
C-53.5X
R-45.4
R-45.4
D-54.4 | U-83.3
U-73.11
O-65.4X
F-24.1
U-44.7 | N-66.1
N-76.1
H-63.4
G-56.1 | I-52.2
I-52.2
G-54.2
W-53.14 | Q-75.1
Q-74.2
I-34.2
F-33.1
F-43.1 | | | MINOR | 256
256
256
256
257 | 257
258
259
259 |
260
260
260
260
261 | 261
261
262
263
263 | 00000 | 267
267
268
268
268 | 269
269
270
271
271 | | | 0 - C
MOIION | 100-100-100-100-100-100-100-100-100-100 | | 000000000000000000000000000000000000000 | 0.00
0.00
0.00
0.00
0.00
0.00 | 11-00-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0 | 0.00 -1 | 4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | |-------|------------------|---|---|---|---|---|--|--| | | DAY | 39
38
-31
136 | 26
31
16
-56
-55 | 25
-105
-102
53 | 32
37
19
134
118 | -10
25
31
44
52 | -39
-11
-21 | -28
-79
17
-24 | | | 10 - [
MOTIC | 1 8 • 4 • 9 • 1 • 1 | 0 4 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | 17.7
17.2
16.7
18.0 | -10.8
-10.8
-9.9
-6.3 | -7-1
-9-1
-6-2
-12-0 | 1 8 9 9 6 | -10.0
-9.1
-8.6
-7.7 | | | 9 | 10.92
10.74
11.85C
11.49C | 11.02
11.33C
9.90A
10.20 | 9.83C
9.72
9.56
10.92C | 11.20
10.38A
10.51C
9.70
9.80A | 9.44
11.54
12.15C
13.28C | 11.86C
9.74
10.04 | 9.00
11.12
11.83
10.08 | | | MAG | 15.12
14.80
15.40C
14.48C
15.11C | 15.06
14.70C
14.03A
14.35 | 13.18C
13.55
13.40
15.00C | 15.19
13.69A
12.92
15.31
15.33A | 15.42
15.17
15.78C
15.32C
14.96 | 14.90C
13.15C
12.95
13.28
13.36C | 12.86
12.58
16.74
14.67
14.79 | | | VAR | 111 12 1 0 | 0
129
129 | 111111111111111111111111111111111111111 | 20202 | 4 4
0 8 8 0 0 | 0
-111
-111 | 0
-18
131
6 | | | - C
DEC | -10
-11
1
8 | 130 | 10 10 4 9 | 00400 | 164 | -10
-10
-10 | 0
-18
124
7 | | ⋖ | A
O A | 11001
0000
0000 | 0 | -8
0 0 9
0 0 9
1 1 - 1 | 0111000 | 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2 . 5 . 1 | -0-7
-3-7
-11-8
-2-3 | | TABLE | DEC
1950.0 | 7 40 50
7 56 16
-22 03 32
9 20 18
9 33 08 | 23 20 40
-12 29 02
-11 34 30
- 0 49 34
- 1 05 09 | 19 41 09
10 40 54
10 40 16
8 23 10
-17 52 46 | -17 45 31
31 00 01
-20 45 58
7 24 53
21 18 37 | 20 51 53
- 1 40 33
- 1 40 21
22 28 37
22 33 02 | -12 27 14
0 0
- 3 24 28
- 3 59 02
- 3 59 01 | 30 25 53
4 36 08
7 58 41
0 19 30
- 0 05 29 | | | R• A•
1950•0 | 10 46 44.7
10 43 33.5
21 28 31.0
10 29 49.1
10 29 00.9 | 7 58 19.6
15 02 02.4
14 43 55.9
0 52 16.4
0 50 00.1 | 6 21 24.1
2 15 08.5
2 15 08.5
10 22 44.6
15 12 36.2 | 15 10 56.5
7 32 34.3
16 01 56.6
1 35 34.2
4 25 51.0 | 4 11 23.9
12 21 31.0
12 21 28.3
9 53 28.1
9 52 19.4 | 19 23 31.9
0 0.
22 25 29.3
22 08 20.5
22 08 20.1 | 5 42 15.5
21 53 17.1
9 38 29.3
17 41 27.7
17 27 26.9 | | | E U.T. | 20.2410
24.2312
14.2625
5.2542
6.1937 | 4.2333
27.3799
20.2549
9.2951
12.1868 | 23.1257
1.2007
1.2639
5.2542
20.2458 | 22.2729
12.1972
24.1937
12.2562
29.2854 | 22.1431
2.2736
2.3271
10.2292
11.2069 | 1.27
18.31
19.27
9.23
9.25 | 27.2729
31.2993
18.2215
7.3528
26.1819 | | | DAT | 52 FEB
52 FEB
50 AUG
51 MAR
51 MAR | 51 FEB
52 APR
52 MAY
50 OCT | 52 JAN
51 NOV
51 NOV
51 MAR | 52 MAY
51 JAN
52 MAY
50 OCT | 51 DEC
51 APR
51 APR
51 FEB
51 FEB | 51 JUL
50 AUG
50 AUG
50 SEP
50 SEP | 51 DEC
51 AUG
52 FEB
51 JUN | | | SURVEY
NUMBER | U-54.4
U-53.3
B-45.2
H-74.6
H-83.1 | G-63.4
W-74.5
X-13.1
D-44.4
D-45.1 | S-54.2
Q-45.1
Q-44.3
H-74.6
X-14.7 | X C - 1 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 | R-44.16X
I-74.2
I-73.3
H-52.3
H-62.1 | M-72.2X
B-62.2
B-72.3
C-12.3X | S-32.3
0-21.1
U-24.2
L-71.1
M-11.1 | | | MINOR | 271
271
272
273
273 | 274
274
274
275
275 | 275
276
276
277
277 | 277
278
278
279
279 | 279
280
280
281
281 | 282
283
283
283 | 283
284
285
286 | | | ÚZ | 2 | 0 | 0 | -5 | 12 | 7 | -2 | 12 | -13 | 0 | 7 | 6 | 9 | | 4 | 4 | 7- | 0 | 0 | 9 | -2 | | 4- | | 0 | -2 | 19 | 4- | -5 | | 7 | | <u>ر</u> | | |-------|------------------|------------|-------------|----------|------|----------|------|-------|---------------|-------|-------|----------|---------|-------|-------|--------|------|--------------|------|------|------------|--------|-------|------|---------------|-------|------------|-------------|-------|-------|------|-------------|----------|----------|-------| | | O - C
MOTION | 9.0- | • • | • | · | • | • | • | $\overline{}$ | • | • | ô | 9.0- | ċ | ċ | • | • | 0.0 | ċ | • | | -0.4 | ċ | • | • | • | ÷ | -0.7 | ċ | ċ | | ~ | • | • | • | | | DAY
ON | 6 4 | 186 | S | S | 16 | | S | -52 | S | | | -29 | | 2 | | 2 | 45 | | | 9- | 0 | 23 | 85 | 26 | | | -81 | | | | 'n | | 37 | | | | 10 -
MOTI | -10.3 | • • | 10 | • | o | 8 | 6 | 9.6- | • | œ | å | -10.9 | ċ | 10 | • | - | 4. 7- | | 8 | 11. | -10.4 | ۲. | 7 | . | 7 | æ | -8.2 | 6 | ထီ | | 6 | 6 | • | œ | | | o | 6 - | 2 4 | 3.0 | 2.4 | 1.0 | 1.1 | 1.3 | 13.53 | 3.9 | 6 | 0.5 | 12.43 | 2.0 | 2 • 3 | 2 • 80 | 2.7 | 11.05 | 0.7 | 1.0 | 2.0 | 10.17 | 8.1 | 6 | 0.5 | 0.0 | 0.7 | 10.66 | 0.1 | 0•7 | .7 | 8.88 | 1.2 | | 1.5 | | | MAG | 12.44C | 2.6 | 5.00 | 4.3 | 4 • 8 | 4.5 | 4.0 | 14.56 | υ | 4.2 | 4.8 | 15.32 | 5.0 | 5.5 | 4.98 | 5.5 | 25 | 4.9 | 4.2 | 4.1 | 14.02 | 4.0 | 3.8 | 3.7 | 4.5 | 2.2 | 12.17 | 3.5 | 4 • 8 | 1.9 | 12.22 | 5.3 | 2.0 | 4 68 | | | VAR | | | 0 | | | | | 4- | 4 | | | | | _ | | | _ | | S. | | 0 | S | | ~ | | | ~ | | | | 7 | ~ | | - | | | - C
DEC | 70 | | 1 | 0 | 4 | 4 | m | 12 | | ~ | ~ | 7 | 0 | 0 | 7 | 7 | 7 | -2 | 17 | -19 | 0 | S | 7 | ω
Ι | | ~ | -14 | | | 0 | 7 | 89 | | 0 | | ⋖ | 0 K | 0.3 | • • | • | • | • | • | • | -0.7 | ċ | ° | ċ | -0.2 | ċ | ċ | • | • | 0.2 | • | • | 5. | -1.2 | • | • | • | • | - | -1.9 | - | • | • | 2.3 | • | • | • | | | 0.0 | 3 35 | 0 | 0 | m · | 0 | S | 3 | 1 15 | 7 | n | n | 94 | ~ | 7 | G | 7 | 0 07 | 3 | Ó | n | 58 | 7 | 0 | m | S | ~ | 32 | 'n | 7 | 7 | 5 15 | n | ~ | 'n | | TABLE | DEC
1950 | 3 03 | 4 0 | Ŋ | 2 | 4 | 7 | 'n | 3 41 | 3 | 7 | ~ | 8 51 | 'n | ß | 2 | ~ | 2 50 | 4 | 0 | - | 3 31 | 7 | 7 | 0 | 7 | 4 | 5 49 | 0 | 0 | 2 | 6 15 | 0 | 4 | S | | • | • • | - | | ~ | | • | 7 | | 1 | | ~ | 2 | -1 | - | - | 7 | | | 1 | • | | m | | Ĭ | • | _ | | ~ | | | _ | 7 | 2 | | - | | | A.
50.0 | 21.6 | J 4 | 9 | • | 3 | | 3 | 33.6 | ċ | 4 | 4• | 43.0 | 4 | ċ | 9 | 5 | 12.9 | 6 | 6 | 6 | 45.6 | • | 2. | Š | • | • 9 | 01.2 | 2 | 3 | 3. | 6.00 | 5. | 6 | • | | | R.
19 | 649 | ט יכ | 4 | 4 | | | | 56 | | 7 | ~ | 02 | 0 | 0 | 7 | 0 | 32 | G | 'n | 4 | 47 | 7 | 2 | 'n | 0 | - | 20 | S | 4 | | 25 | | | | | | | <i>a</i> . | 23 | | 7 | 7 | 16 | 0 | 23 | 23 | | | 22 | | | 4 | 4 | 12 | | 12 | n | 2 | | 12 | | | | 22 | | 12 | | 17 | | 13 | | | | E U.T. | 204 | 2777 | 3.208 | •307 | • 284 | .295 | •352 | 7.231 | • 253 | • 306 | .316 | 31.2604 | 1.201 | •268 | 9.28 | .143 | 4.317 | .359 | •359 | .275 | 4.183 | 4.359 | .337 | •254 | 4.288 | 8.222 | 338 | 5.162 | •369 | .227 | •202 | 4.233 | •190 | 0.317 | | | ⊢ | NON C | ה
ה
ה | ≥ | Ş | ^ | Š | SEP | SEP | 201 | ۲A۲ | MAY | AUG | SEP | SEP | NOV | DEC | APR | APR | 1PR | <u>ک</u> و | DEC | .EB | PR | 4AR | MAY | 308 | 10 6 | AN | PR | Š | N
O
O | E8 | P | Š | | | 0 | 15 | - ا | . ~ | - | 0 | _ | - | 20 | 0 | - | - | 51 | _ | - | - | - | 51 / | -4 | ~ | 0 | 50 (| 7 | - | - | 7 | 0 | 20 7 | 7 | _ | -4 | 51, | _ | ~ | | | | | -, - | ., | | | | | - | -, | -, | | - | | ~' | -, | | •• | - | • | | | • | ٠. | • | | | | -, | •• | •• | • | • | | ••• | • 1 | | | SURVEY
NUMBER | R-36.3 | 7 | ויי | 9 | -36- | -42. | -33.1 | C-64.3X | -54• | -46. | -45. | 0-24.4 | -25. | -35. | 44. | 44. | 4 | 33. | 33。 | ě | F-72.1 | • | 5 | . | -43 | -54. | B-64.2 | -14. | -35. | -73. | M-13.1 | -63 | -24• | 54. | | | MINOR
PLANET | 287 | 0 00 | 9 | 0 | 6 | 6 | 6 | 296 | σ | 6 | σ | 298 | σ | 6 | 6 | 6 | 300 | Ó | 0 | 0 | 303 | 0 | Ö | 0 | 0 | 0 | 306 | 0 | 0 | 0 | 308 | 0 | 0 | _ | | | UZ | 09000 | 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 1950 | 0 9 7 8 4 | 10107 | 1 1 9 | w 10 10 10 w | |-------|------------------|---|--
--|--|---|---|---| | | 0 -
MOT 10 | 4 0 1 1 0 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 0 1 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 | 0 | 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 100.2 | 10.2 | 100-1 | | | DAY | -1
-52
-2
-102 | -90
-85
87
53 | 47
-68
67
22
71 | 71
75
53
53 | 1.33
1.20
1.3
1.3 | 2
-92
-13 | 37
39
8
-23
11 | | | 10 -
MOT I | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | -9.5
-9.5
-7.5
-10.9 | -1110
-1101
-709
-506 | 15.7
1.0
1.0
1.0
1.0
1.0
1.0
1.0 | -9.3
-8.8
-11.6 | -14.0
-10.4
-6.2 | -9.2
-9.2
-9.9
-10.2 | | | ڻ
ن | 11.51
11.38
10.20
9.83C
9.50 | 9.51
10.10
9.50
10.84
14.38C | 12.56
11.35
11.07C
10.22
10.46 | 10.02
10.12
11.66C
11.71A
11.67C | 11.37C
11.49A
10.17
8.21C
8.05C | 10.23C
9.95C
11.15 | 11.38
11.28A
10.24C
10.61
10.31C | | | MAG | 14.78
15.07
13.27
12.90C | 12.36
12.95
11.90
15.69
16.18C | 14.81
13.22
13.54C
14.33 | 14.32
14.27
16.06C
16.11A
15.76 | 14.60
14.92A
12.28
11.52C | 15.23C
14.98C
15.04
15.32 | 14.88
14.77A
13.88C
14.16
13.98C | | | VAR | 1 4 5 7 1 | 707 | 70009 | 00440 | 66444 | 00000 | 122 18 19 19 19 19 19 19 19 19 19 19 19 19 19 | | | DEC | 11130 | 75000 | 40071 | 00400 | 16
1
7
5 | 00816 | 12899 | | ∢ | o ∢ | 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - | 0 • 4
0 • 4
0 • 7
0 • 1
1 • 1 | 0000 | 10.7 | 100000000000000000000000000000000000000 | -1007
-002
-002
-101 | 11.00.00.00.00.00.00.00.00.00.00.00.00.0 | | TABLE | DEC
1950.0 | -18 56 38
-14 44 54
-21 28 42
-21 28 46
2 21 51 | - 1 09 28
- 1 09 31
- 1 04 36
- 1 15 38
-17 45 17 | - 4 06 03
0 57 29
11 44 17
8 36 41
3 19 23 | 3 32 51
6 44 59
0 14 11
0 14 34
-14 50 45 | 18 59 05
14 23 00
12 50 33
-39 36 27
-39 10 36 | -35 00 03
-34 45 13
4 32 37
33 55 52
- 1 00 19 | 0 13 54
0 13 59
15 53 21
-27 29 04
27 00 40 | | | R• A•
1950•0 | 18 54 24.3
22 27 39.1
22 03 17.3
22 03 14.1
2 02 06.2 | 1 43 03.5
1 43 03.1
14 37 02.1
14 27 00.9
16 47 54.3 | 13 11 39.9
0 30 18.5
10 04 18.1
5 44 48.5
11 51 07.2 | 11 50 03.5
11 33 12.9
9 47 14.5
9 47 10.5
14 19 37.4 | 3 17 27.6
10 19 59.2
23 29 39.2
17 54 15.7
17 32 15.0 | 17 40 18.0
17 23 19.3
12 52 40.8
5 59 28.7
12 11 01.9 | 11 49 48•3
11 49 47•2
10 44 00•5
20 46 00•3
6 01 56•1 | | | E U.T. | 30.3271
2.1924
1.2014
1.2687
13.2299 | 4.1757
4.1868
27.3528
3.2021
2.2056 | 9.2160
9.1785
19.2299
31.1778
24.3681 | 26.2708
23.1903
1.2736
1.3486
26.2056 | 12.2583
20.2319
3.3500
9.2889
27.2375 | 8.2569
27.2278
22.1688
5.1451
26.3701 | 23.1993
23.2174
24.2222
3.2229
14.3111 | | | D A T | 51 JUN
51 SEP
51 SEP
51 SEP
50 OCT | 50 NOV
50 NOV
52 APR
51 MAY | 51 APR
50 OCT
52 FEB
50 DEC
52 FEB | 52 FEB
52 MAR
51 MAR
51 MAR
52 APR | 50 NOV
52 FEB
51 SEP
51 JUN
51 JUN | 51 JUN
51 JUN
52 APR
51 JAN
52 FEB | 52 MAR
52 MAR
52 FEB
51 AUG
50 DEC | | | SURVEY
NUMBER | M-53.6X
0-24.1
0-25.3
0-35.1 | E-15.3
K-72.1
K-42.1
L-43.2 | 011533
011534
011344
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
01153
015 | V-84.10
V-13.2
V-13.2
H-65.1
K-66.1 | E-63.3
U-43.2
O-71.1
K-86.2 | M-16.6X
M-12.2
G-12.1 |
V-14.3
V-24.1
U-52.7
N-45.2
F-83.3 | | | MINOR
PLANET | 310
311
312
313 | 919
913
914
915 | 316
317
317
318
318 | 318
318
320
320 | 321
321
322
324 | 325
325
327
327 | 327
328
331
332 | | | UNO | 444 | 0 9 1 1 9 0 | 717 | L 4 | 7200 | 40 4 4 4 | 1111 | ω ₁ 0 1 | |----------|--------------------|---|--|--|---|--|---|--|--| | | 0 - C
MOT 10N | 1000 | | 0 | •• | 0 | 979 | 0000 | 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - | | | DAY | 1 4 4 4 6 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | -19
-17
-45 | 6 -1 | 134
134
119 | 63
60
18
2
71 | 17
18
-20
17
24 | -35
-18
-21
-81 | | | 10 - DA)
MOTION | -10.2
-7.0
-7.4
-6.7 | 01001 | -11.9
-9.6
-8.4 | 8 9 | -8.0
-13.0
-12.8 | -9.2
-12.7
-11.0
-9.0 | - 8 - 1
- 9 - 1
- 8 - 5
- 8 - 5 | 1.8.7
1.8.7
1.8.9
1.9.6 | | | ဖ | 9.94C
10.72
10.55
8.45C | v 00m4w | 000 | <u>, , , , , , , , , , , , , , , , , , , </u> | 10.44
11.43C
12.57
12.42
11.05 | 11.11
9.08
9.12
10.12 | 8.75C
8.75
9.97
10.72 | 7.18C
7.17C
7.11
9.78 | | | MAG | 13.68C
14.78
15.33 | <i>w w w w w w w w w w</i> | 11.60C
12.98
14.34 | 4.4 | 14.80
14.63C
14.63
14.48
13.42 | 14.51
13.39
13.57
12.99 | 12.72C
12.73
13.55
14.74 | 10.80C
10.79C
10.76
14.32 | | | VAR | 1940 | | 4
6 0 0 | 00 | 0 0 0 0 0 0 | w w 4 4 0 | 1100 | 0 m m m 0 | | | DEC | 2250 | 0 4 6 7 7 0 | 53
- 0
- 2 | 9 9 | 10110 | 11100 | 1111 | 10018 | | ∀ | α
0 ∢ | 10.0 | | 400 | • • | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 11110000 | -100
2.00
2.00
2.00
2.00
4.00 | 00000 | | TABLE | DEC
1950.0 | 27 04 40
5 04 58
-12 10 16
3 09 26 | 4 | 21 11 14
-13 40 04
6 55 33 | 55
48
0 | 7 23 51
- 8 48 05
25 58 05
25 58 01
14 25 21 | -19 06 46
-19 01 16
34 56 16
35 09 39
-14 13 47 | - 7 41 34
- 7 39 18
- 6 15 34
- 5 51 53 | -24 41 57
-25 54 16
-25 54 20
-25 55 32
-32 58 29 | | | R. A.
1950.0 | 5 44 54.1
11 42 26.1
13 30 25.9
12 21 12.3 | 5 54 24.
4 50 31.
4 49 26.
5 10 03.
4 12 31. | 1 51 27 • 7
20 53 55 • 3
3 56 36 • 8 | 56 36.
38 00. | 8 59 01.9
23 28 17.8
3 49 40.5
3 49 32.8
6 06 37.4 | 15 04 13.3
15 03 26.0
4 55 46.9
4 35 54.5
15 43 43.8 | 15 08 07.44
15 07 15.2
3 17 57.9
14 58 31.3 | 22 07 31.7
21 46 46.7
21 46 43.5
21 45 55.5
19 38 53.3 | | | E U.T. | 31.1562
24.3681
8.3681
2.3271 | .288
.219
.253
.152 | 0 6 9 | •266
•159 | 29.3188
5.2826
29.171
29.2764
5.1785 | 27.3708
28.2778
5.2896
22.2424
5.3757 | 4.1882
5.2104
4.3139
4.1882
4.3000 | 7.2917
31.1826
31.2403
1.2111
4.3382 | | | + | PEB
APR
APR | 5 0000 4 | OCT
AUG
NOV | | SEP
NOC
UAN | APR
DEC
DEC
MAY | M M M M M M M M M M M M M M M M M M M | AUG
AUG
AUG
SEP
JUL | | | ۵ | 522 | 20000 | 50 20 | 200 | 5222 | 50
50
50
50
50
50
50
50
50
50
50
50
50
5 | 25222 | | | | SURVEY
NUMBER | F-73.4
U-83.6
J-64.2
I-73.2 | 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | Q-32.1
N-53.2
E-85.3 | -86.
-16. | T-75.1
0-74.2
R-33.1
R-32.2
G-15.2 | W-75.6
W-84.2
R-62.2
R-52.2
K-73.3 | K-53.4
K-62.1
Q-75.2
K-53.2
K-52.5 | N-85.5
0-15.3
0-16.3
M-75.2 | | | MINOR
PLANET | 2 2 B B B B B B B B B B B B B B B B B B | <i>_</i> | 337
338
339 | 60 60 | 339
340
341
341 | 3 3 4 4 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 346
3446
3447
348 | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | | | U 2
5 | 12
-8
0 | 15 | 100
147
17 | 00407 | 4 4 4 0 0 | 90740 | 2017 | 90625 | |-------|--------------------|----------------------------|----------------|--|--|---|--|--|---| | | MOT IC | -0.8
-1.8 | 0 - | 1000 | 1000 | 44101 | 00000 | 0 - 1 - 1 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - | 10000 | | | DAY | 140
185
88 | | 72
-72
-3
-12 | -62
20
53
47 | 4 8 8 9 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 122
123
123
124
124 | 20
20
10
10
10
10
10
10
10
10
10
10
10
10
10 | 160
160
156
156
156 | | | 10 - DA)
MUTION | -10.0
-10.0 | 10. | -9.3
-8.4
-11.5
-10.7 | -10.5
-8.1
-9.1
-7.3 | -100.1
-80.9
-70.6
-70.6 | 00000 | -111.5
-11.8
-9:4
-8.8
-7.9 | -8.6
-9.9
-10.3
-7.6 | | | 9 | 10.39
11.67
11.31 | 2.3 | 12.07
6.86C
11.56
11.53
8.88C | 9.10
9.69C
10.51
9.78 | 10.61
10.31
9.51
9.10
9.39C | 9.81C
10.13C
9.96
9.97 | 10.75
11.14
11.15
10.22
10.58 | 9.56
11.94
12.06
11.07 | | | MAG | 14.29
12.89
14.08 | 5.39C
5.34C | 15.09
10.84C
14.96
14.93
10.99C | 11.19
13.93C
13.42
14.02 | 14.65 1
14.33 1
14.39
13.98
15.59C | 13.08C
13.39C
13.01
13.67
13.63 | 11.90
12.28
12.67
13.71
14.05 | 13.66
14.58
13.58
15.91 | | | VAR | 797 | | 12507 | 62444 | 0 F 0 0 0 | 2-10-1 | 22411 | 1-1 2 3 3 4 5 4 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 | | | DEC | 1-8 | . m m | 90446 | W W W W W | 77 | 12112 | 8 8 9 1 1 | 122 | | ∢ | Ο ∢ | 10.0 | 00 | 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | -0.5
-2.7
-1.1
0.2 | 00000 | 00011 | 00000 | 10.1
10.9
12.2 | | щ | 0.0 | 2 57
9 55
7 14 | 40 | 1 3 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 5 44
1 17
1 13
7 29 | 5 44
1 27
1 19
5 52 | 7 47
7 58
1 17
7 46 | 4 2 3 3 4 5 4 6 5 4 6 5 6 5 6 5 6 5 6 5 6 5 6 5 | 4 7 6 0 6 8 8 5 9 8 5 9 8 8 9 9 9 9 9 9 9 9 9 9 9 | | TABLE | DE(
195(| 12 1
8 2
7 3 | 19 3
19 3 | 11 4 1 1 1 1 2 2 9 4 4 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 13 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 10 3
10 3
10 4
36 4
46 | 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 115 116 116 116 116 116 116 116 116 116 | 16 46
11 5
17 44
1 38 | | | | | | 111 | 80004 | m 11 0 m 0 | 90926 | 0 1 0 1 4 | 60898 | | | A.
50.0 | 21.36. | 4 4 | 08.
49.
13.
11.
27. | 24.
14.
31. | 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 | 33.
28.
03.
21. | 10
01
05
56 | 35.
31.
48.
26. | | | R•
19 | 0 25
0 18
2 20 | 4 4 | 1 05
1 02
8 28
8 28
2 06 | 2 04
9 36
9 36
2 14
2 52 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2 10
2 10
2 48
9 51
9 50 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 1 15
2 58
0 00
0 34
5 15 | | | | 7 0 0 0 | 200 | 10070 | 6 0 6 4 8 | 2 | 82510 | 12124 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | E U.1. | 0.293
8.155
3.235 | .262 | 24.240
3.341
30.213
30.234
30.272 | 1.281
29.191
6.213
23.344
22.177 | 8 · 181.
23 · 190.
4 · 309
4 · 3000
30 · 238 | 2.232
2.327
12.204
18.203
19.211 | 4.219
5.253
22.143
31.312 | 1.333.
11.307
119.220
6.265:
28.277 | | | ⊢ | SEP
OCT
MAR | 30G
30G | FEB
JUN
JUN
OCT | A M C C C C C C C C C C C C C C C C C C | FEB
APR
MAY
JUL | A PR
NOR
FEB | DEC
DEC
JUL
AUG | SEP
SEP
AAR
APR | | | ۵ | 50 6 | 00 | 52 51 7 51 7 51 7 51 7 51 7 61 7 61 7 61 7 | 521 | 51 651 651 651 651 651 651 651 651 651 6 | 52 52 52 52 52 52 52 52 52 52 52 52 52 5 | 51 651 651 651 651 651 651 651 651 651 6 | 51
50
52
51
52
52 | | | | | | | | × × | | m | | | | SURVEY | P-47.1
D-23.2
V-34.3 | -44•
-45• | U-62.7
N-53.3
M-45.3 | Q-42.2
N-12.4
G-24.3
V-64.5
W-13.3 | K - 52
K - 51
K - 52
K | I-63.2
I-73.1
E-54.2
U-22.2
U-32.1 | R-55.3
R-54.9
R-44.1
N-41.1 | P-62.3
C-34.2
U-33.6
H-84.2
W-84.6 | | | MINOR
PLANET | 351
352
352 | S | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 9999
9999
9988
9988 | 359
360
361 | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 3 3 6 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 366
367
368
368 | | | U 3 | u ω ω 4 L | -12
-12
-2 | 40404 | 24462 | 4477 | 11111 | 14 00 | |-------|------------------------|---|--------------------------------------|---|---|---|--|---| | | MOTI | 10.0
10.0
10.0
10.0 | 100.1 | 0 | 10000 | 010100 | 00010 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | DAY
ON | 51
14
57
67 | 1 3 3 4 0 4 0 0 4 0 0 4 0 0 4 | 20
7
39
39 | 72
71
70
4
-8 | 1444
1447
189 | 11
11
11
12
13
13
14 | 10
10
10
10
10
10
10
10
10
10
10
10
10
1 | | | 10 - 1
MOTIO | -7.9
-7.5
-8.1
-10.1 | 100.4
100.4
100.4
100.4 | 110.0
10.0
10.0
10.0
10.0
10.0 | 1 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 8 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 16.2
17.0
18.8
17.0 | -8.0
-10.1
-7.5
-7.7 | | | ဖ | 11.14
10.83
9.45
9.63
9.51C | 200000 | 10.25C
10.21C
10.35C
9.67 | 10.21
10.20
8.23
7.87 | 8.81
10.21
10.25
9.68
9.29 | 10.27
10.01A
11.28
10.98 | 10.68C
10.24
9.20 | | , | MAG | 15.01
14.71
12.35
13.34 | | 15.03C
14.05C
14.25C
13.61 | 13.28
13.35
12.79
12.37 | 13.25
11.99
12.93
12.92
12.33 | 13.66
13.41A
15.37
15.09
14.89 | 14.16
14.09
13.82 | | | VAR | 124
10
3 | | 10
10
10 | 7 L L 8 E | 111333 | w w ч ч о | 40600 | | | - C
DEC | -17
-20
0
0 | 11106 | 60181 | 11
11
12
12 | -13
-19 | 1 1 0 6 4 2 | 23252 | | ⋖ | %
0 4 | 12.2
12.2
0.4
-0.1 | | 12.6 | 1 | 100.5 | 10000 | 10.0
11.0
0.0
0.0
0.0 | | TABLE | DEC
1950.0 | -18 28 54
-16 23 43
- 5 54 36
28 44 02
28 50 10 | 2 51 1 18 2 18 3 8 35 2 8 23 3 | 15 04 13
-27 09 28
6 30 51
7 25 01
7 35 52 | -16 20 02
-16 13 32
-13 33 47
-22 43 38
-23 58 16 | -23 12 53
-14 12 58
-14 12 54
- 0 45 45
13 15 24 | 13 33 37
13 35 22
-14 34 44
-14 34 42
- 3 24 20 | -20 16 15
24 15 32
1 28 00
3 48 27
17 25 06 | | | R. A.
1950.0 | 15 15 25.7
14 58 15.8
2 12 46.4
9 47 05.6
9 46 08.5 | 41 22 24 11 45 20 26 18 46 8 | 10 59 15.8
14 16 09.0
8 09 55.6
7 50 50.9
7 48 29.3 | 15 09 01.4
15 08 21.3
14 51 05.2
9 29 00.9
13 09 41.9 | 12 45 14.3
12 31 46.4
12 31 46.2
22 17 25.5
6 33 32.1 | 6 12 06.4
6 11 27.7
13 25 49.1
13 25 48.8
12 38 52.3 | 16 56 27.7
7 40 47.9
13 20 11.3
12 55 55.7
7 26 09.9 | | | E U.T. | 28.2868
20.2458
7.2944
18.1944
19.2028 | 7.19
6.17
8.23
5.24
8.20 | 11.2875
26.2236
13.3812
4.2118
7.2354 | 27.3799
28.2868
20.2458
9.3187
26.2486 | 23.1993
4.2201
4.2306
18.3111
28.2819 | 22.1250
23.1347
8.2625
8.2729
4.3174 | 26.3389
13.2375
23.3535
22.1688
12.2868 | | | 4 | APR
NAPR
FEB | NOFEE | MAR
APR
JAN
FEB | APR
APR
MAAY
AAR | APR
APR
AUG
DEC | L A A A A A A A A A A A A A A A A A A A | 2 2 2 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | ۵ | 5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5 | | 522 | 52
52
52
51
52 | 52
51
51
50
51 | 52
51
51
51 | 5222 | | | SURVEY
NUMBER | W-83.5
X-14.4
E-37.1
U-21.2
U-31.1 | 44000 | I-32.2
W-56.1
G-76.2
G-65.2
G-76.1 | W-74.9
W-83.1
X-14.1
H-43.6
V-66.1 | W-16.1
I-75.2
J-35.1
B-62.1
S-55.10 | S-455.3
S-55.1
J-555.2
J-345.8 | X-73.2
G-63.5
V-63.8
W-12.4
G-54.3 | | | MINOR | 368
369
369
369 | トトトトト | 373
373
374
374 | 374
374
375
375 | 375
376
376
377 | 377
377
378
378 | 379
380
380
380 | | U NO | 7 7 7 7 7 | 41004 | 44440 | 10010 | 11000 | 40000 | -11-
-4-
-9-
-12 | |------------------|--|---|---|---|--|---|---| | - 0
MOT 1 | 1 | 00000 | 100- | 40622 | 100.1 | 1 | 10000 | | DAY
ON | 0 0 0 W W W W W W W W W W W W W W W W W | 22
19
-38
11
31 | 33
33
62
62
62 | 442 421 421 433 433 433 | 47
413
441
44 | 52
68
62
115
14 | 2
-15
-20
-6
-70 | | 10 - I | -7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 1 - 8 - 1 - 1 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 | -9.5
-11.9
-10.6 | 1 1 1 1 1 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | -111.4
-12.0
-7.4
-9.4 | -15.0
-15.0
-7.8 | 1 1 8 8 9 1 1 8 8 9 1 1 8 9 9 1 1 8 9 9 1 1 8 9 9 1 1 8 9 9 1 1 8 9 9 9 9 | 4 | | | 9.89
9.74C
9.57C | 10.74
10.80C
9.27
8.55C
8.87C | 8.76C
8.56
9.26
9.19
8.95C | 11.35
11.17
10.83
9.05
11.16 | 10.77
10.97
11.20C
11.33 | 10.81
9.77
9.78
10.21C | 11.05C
10.39C
10.41C
10.47C | | MAG | 14.09
13.94C
13.77C
15.59 | 14.47
14.40
12.82
11.73C | 13.32C
13.12
13.42
13.07
12.36C | 14.95
14.76
15.01
13.56
15.58 | 15.06
15.24
14.88
15.00 | 13.56
14.19
14.20
14.63C | 14.78C
14.51C
14.55C
14.69C
13.94 | | VAR | -17
-17
-17
4 | 112 | 211110 | 00400 | 2
0
10
10 | 19
22
22
-24
-23 | 118 | | - C
DEC | 88874 | 12
12
2
17
-17 | 119 | w u n 4 u | 122 | 19
25
126
126 | 119 | | ه
۵ م | 4 4 4 0 0
0 0 0 0 0 0 | 12.1
12.2
12.2
13.3 | 111000000000000000000000000000000000000 | 0.0
1.00
1.00
1.00 | 111100000 | 1173.00 | 00000 | | ABLE
DEC | 52 30
52 36
52 41
55 41
49 42 | 55 06
48 52
01 55
05 18
28 55 | 28 56
29 00
46 27
36 35
38 35 | 29 07
13 32
23 32
39 26
22 14 | 49 41
54 30
05 12
20 51
20 23 | 12 52
24 52
24 46
56 51
55 47 | 50 40
32 59
32 59
42 54
25 19 | | 1A
19 | 14
14
14
14
12 | -17
-17
-30
-30 | 7
21
-17
25 | -37
-37
-11
7 | 1 6 9 8 8 8 8 | -11
-16
-16
-16 | 134
129
129
13 | | R• A•
1950•0 | 2 11 41.1
2 11 40.3
2 11 39.9
2 01 30.3
4 43 03.1 | 5 12 28•2
5 09 36•1
6 09 55•7
3 53 40•1
5 53 15•1 | 5 53 14•6
5 53 13•7
9 18 47•5
2 16 31•9 | 6 55 30 5
6 51 05 9
4 57 42 2
5 19 50 9
8 40 59 2 | 2 52 06.1
2 51 19.2
5 29 18.0
1 12 06.5
1 12 02.3 | 3 12 40.5
2 45 49.1
2 45 48.2
1 03 41.8
1 02 53.5 | 5 16 02.5
7 38 50.7
7 38 50.1
7 22 20.0
0 31 56.3 | | E U.T. | 22.2014 1
22.2104 1
22.2194 1
31.3194 2 | 5.2208 1
8.2507 1
5.1333
24.2132 1
28.1826 | 28.1917
28.2097
9.3187
24.2764
1.2819 | 2.2368 1
6.2500 1
4.1882 1
13.3035
8.1812 | 22.3201 1
23.3174 1
13.2701
24.3590 1 | 9.2757 1
26.2215 1
26.2396 1
30.3701 | 5.2521 1
8.2472 1
8.2569 1
27.2278 1 | | A
T | 52 MAR
52 MAR
52 MAR
51 AUG
51 MAY | 51 MAY
51 MAY
51 JAN
52 APR
51 DEC | 51 DEC
51 DEC
51 FEB
52 APR
51 NOV | 51 JUN
51 JUN
51 MAY
50 DEC | MAR
MAR
MAR
MAR
MAR
MAR
MAR
MAR
MAR
MAR | 51 APR
52 MAR
52 MAR
51 SEP
51 OCT
 51 MAY
51 JUN
51 JUN
51 JUN
50 OCT | | SURVEY
NUMBER | V-21.3
V-22.2
V-31.1
O-23.1
K-44.2 | K-63.10
K-54.6
G-11.1 | S-46.1
N-44.2
W-44.2 | L-46.4
L-56.1
K-53.7
F-66.2
H-22.1 | V-52.2
V-63.3
F-63.3
U-64.6
U-74.1 | C - 154 .3 | K-66.1
L-75.1
L-76.3
M-16.1
D-37.1 | | MINOR | 381
381
382
383 | 384
385
385
387 | ထာထာထာထာ | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 396
397
397
399 | 400
401
401
402 | | | UZ | 6 4 | m | 0 | -2 | | 41 | ထ | 6 | | S | | | נט ו | | 7 | 4- | ~ | S | 0 | 9 | -3 | | | -2 | 4- | 9 | ထ | 0 | 8 | 13 | 2 | -7 | m | 9 | |---------|------------------|--------|---------|------|------|------|------|------|----------|------|-------|-------|----------|----------------|------|-------|------|----------|----------|------|------|--------|------|-----------|-------|------|---------|----------|------|-------|------|------|--------|-------|------| | | 0 -
MOT 10 | -0.1 | • | • | • | 2. | • | • | 0.2 | • | • | • | • | -0
-0
-0 | • | -0.2 | ċ | • | • | ċ | • | 2.2 | • | • | • | · | • | -1.5 | • | • | · | ċ | -0.4 | ċ | • | | | DAY
ON | 100 | | | | ~ | 7 | -34 | | 9 | | | | 65 | | 38 | | | | | | -77 | | | | | | 20 | | | ~ | 3 | -46 | 4 | 3 | | | 10 - [
MOTIC | 0.6- | | • | æ | · | å | 5 | 7.7 | 6 | 6 | 6 | е | က
ထ
က | ဆိ | 6 | ۲. | • | е | ٠, | 7 | 0•9- | ô | • | 6 | 6 | 6 | 1.9- | 7 | 7 | · | 9 | -9.5 | 6 | ဆီ | | | g | 10.11C | 0 0 | 0.1 | 9.38 | 0 | 9.5 | 1.6 | 11.49 | 6.0 | 0.3 | 7 | 0.7 | 8.11 | | 10.19 | 0.0 | 0.1 | 4.0 | 9•0 | 0.1 | 10.76 | 0.4 | | 9.11 | ~ | 8.99C | •2 | | | 4. | 9.3 | 8.70C | 6 | • | | | MAG | 12.15 | 3.0 | 4.0 | 3.72 | 3.4 | 2.9 | 4.3 | 14.11 | 5.1 | 3.1 | 3.3 | 4.1 | 10.95 | 2.3 | 14.54 | 4.3 | 3.8 | 3.9 | 5.4 | 3.0 | 13.79 | 3.5 | | 11•36 | 1.4 | 11.29C | 3.1 | | | 3.2 | 3.38 | 12.78C | 3.2 | 3.6 | | | VAR | -2 | - 80 | _ | 10 | ~ | -22 | - | | 0 | 80 | m | m | - 4 ſ | - | 9- | H | 4 | -13 | 7 | | 9- | | | | -38 | G | 91 | | | 2 | 7 | 7 | 7 | 7 | | | - C
DEC | 6 E | | | 11 | ~ | -22 | 0 | 0 | -5 | 11 | 4 | 4 | 0 | 13 | 4- | | 16 | | 7 | 8 | 9- | 55 | | -43 | | | 46 | | 0 | m | 0 | - | 0 | 0 | | ⋖ | α
0 4 | 2.2 | • | • | • | • | • | • | 0.1 | • | • | • | • | 4.0- | • | -1.6 | ċ | 1.3 | • | • | ٦. | -1.7 | ÷ | • | • | • | • | -23.2 | 9 | 23• | • | • | 0.8 | • | • | | w | 0 | 25 | ١ | n | 7 | | | | 54 | | | | | 9
9 | | 56 | | 45 | | | | 05 | | | | | | 02 | | | | | 30 | | | | ABL | DEC
.950 | 29 | 4 | 0 | 7 | 2 | 7 | 3 | 50 | - | 3 | G | 0 | 01 | v | 30 | | ~ | 5 | ć, | 6 | 28 | S | 7 | 'n | 5 | ~ | 53 | ų | (r) | 'n | G | 32 | 'n | ß | | | 7 | 17 | | _ | | | 14 | ω | 80 (| 23 | v | | | -23 | | 16 | | 19 | | | ~ | -17 | | | | - | _ | 6 | | | | | 19 | | | | | A • 50 • 0 | 29.5 | , w | 6 | - | œ | 7 | 2. | 45.6 | ċ | æ | Š | 4• | 13.8 | 4 | 03.0 | 2. | . | œ | 2 • | • | 58.3 | 6 | 6 | • | . 4 | ŝ | 18.0 | 2 | 2 • | 6 | 6 | 48.3 | ċ | Š | | | R. | 47 | 0 | 0 | - | | | | 22 | | 7 | 4 | n | 53 | 4 | 43 | | 05 | | | | 19 | | | | | | 18 | | | | | 46 | | | | | | 8 2 | 12 | | ~ | 9 | 9 | 0 | 01 | _ | 23 | | | 13 | | S | 11 | | 13 | | | 22 | | | | 15 | | 13 | | | 9 | m | n | m | 'n | | | U.1. | 8.3167 | .252 | .195 | •214 | .125 | .134 | .155 | 8 • 3042 | •186 | • 195 | • 195 | •324 | 9.3465 | •379 | 16 | .331 | .167 | •177 | •222 | .340 | 9.2965 | .240 | .120 | •250 | .286 | .245 | 3 . 3444 | •177 | • 186 | .327 | .249 | 5.2583 | •173 | •265 | | | ш
— | AN 2 | | 7 | - | 7 | 7 | | | 7 | 7 | 7 | 7 | 98.00
0.00 | - | n | 7 | | 7 | 7 | 7 | | 0 | | 7 | 2 | بَ
≺ | 2 | 2 | 8 | 7 | | | 7 | 7 | | | ∢ | 7 4 | < ≺ | Z | 0 | 7 | ר | 0 | 00.1 | 7 | S | 7 | S | ∢ • | ⋖ | DEC | | | | | ⋖ | S | ш | LL | ⋖ | | | MA | | | ۵ | Z | Z | Z | Z | | | ۵ | 52 | 3 5 | 51 | 20 | | | | 50 | | | | | 57 | | 50 | | | | | | 50 | | | | | | 52 | | | | | 51 | | | | | SURVEY
NUMBER | 1-64.3 | -65 | -35. | -51. | -45 | -55. | -23. | 0-33.2 | -33 | -45. | -34• | 41. | J-75.1 | 31. | -74.4 | -60• | 6-14.2 | 31. | -33• | -14. | C-14.2 | -62. | -61. | -82• | -83. | -14. | V-64.7 | -13. | -14. | -44- | -83 | 9-84.4 | -13.2 | -24. | | | MINOR
PLANET | 402 | \circ | 0 | 0 | 0 | 0 | 0 | 406 | 0 | 0 | 0 | 0 | 604 | - | 411 | ~ | _ | - | ~ | | 415 | ~ | - | ~ | - | _ | 417 | - | - | | ~ | 419 | ~ | - | | | U NO | 15798 | 40040 | 10644 | 2 4 0 4 | 1001 | 121 | 40000 | |-------|------------------|---|---|--|--|---|---|--| | | MOT I | 00000 | 100.0
100.0
100.0 | -0.5
0.1
0.0
0.0 | 0000 | 100.0 | 0 | 1000
1000
1000
1000 | | | DAY
ON | 39
50
36
41
13 | 10
4 4
10
10
10
10 | 20
10
10
10
10
10
10 | -32
70
-6
-12 | -36
16
6
20
-13 | -100
26
35
-25 | 88
-7
-8
-14 | | | 10 -
MOTI | -7.3
-7.1
-111.6
-112.9 | - 1 - 9 • 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | -8
-7
-1
-8
-1
-1
-1 | % ○ ® ®
® & ® & ®
I I I I | -10.6
-11.1
-10.4
-10.1 | -10
-9
-10
-10
-10
-2 | 17.5
18.4
19.6
19.9 | | | ග | 9.42
9.06
11.60
11.79 | 8.76
8.87
7.95
10.71 | 11.29
9.71
10.66
10.31
13.09 | 12.86C
10.74
11.46
10.16
9.74 | 10.30C
11.01
11.11
10.89C
11.01C | 11.72
11.19
11.60
10.96C | 10.69C
12.94
12.83
13.02
9.16 | | | MAG | 13.94
13.58
14.74
14.91
13.94 | 12.94
13.06
12.20
13.61
13.92 | 14.04
14.02
15.23
16.34 | 15.90C
13.85
16.01
13.52
13.15 | 13.16C
13.82
15.64
15.42C
15.64C | 13.79
15.14
15.48
14.02C
13.93 | 14.75C
14.79
14.69
14.92
12.22 | | | VAR | -24
-23
0 | 44490 | -187
11
-3
-1 | 20
11
00
00 | -10
27
28
29 | 1 2 2 9 4 5 1 3 3 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 0447 | | | - C
DEC | 0000 | 12422 | -182
15
-6
-2
27 | 27
7 1 2 2 3 3 3 | 11222 | 136
25
11 | 4 1 1 1 1 4 | | ∢ | ω
0 4 | 8 8 0 0 0
4 4 4 0 0 0 | 11000 | 26.8 | 11.0
11.0
0.6
0.6
0.5 | 0 W W W W W W W W W W W W W W W W W W W | -133.3
-4.07
-0.04
-0.4 | 0000
0000
0000 | | w | 0 | 52
32
34
34
34 | 24
14
30
31
21 | 17
37
01
35
25 | 22
00
14
51
23 | 98888 | 00004 | 22 0 4 1 0 3 4 5 6 5 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 | | TABLE | DEC
950 | 16
16
137
187
188 | 388 | 116
55
52
58
50
09 | 500 | 44 66 67 67 67 67 67 67 67 67 67 67 67 67 | 118 | 9 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | - | ~ | -19
-19
20
-20 | 22
22
28
28
11
26 | -10
-19
-11
-26 | 125
125
125
125
125 | 3222 | 24 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1222 | | | A.
50.0 | 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 10.0
18.4
08.9
15.8 | 20
20
20
30
30
40
40
40
40 | 32448
32446
32446
0000 | 32.0
51.8
40.1
38.7 | 20.7
42.7
14.7
27.1
23.1 | 22.3
36.6
50.6
52.7
52.9 | | | R. | 4 4 W W R | 31
30
14
20
27 | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 35
09
17
02
01 | 38
02
29
12
12 | 39
29
19
19 | 22
15
14
14
53 | | | | 41 0 0 0 | 440% | 14
22
8
12
15 | 15
20
14
18
18 | 0 9 6 6 6 | 00000 | 13 | | | E U.T. | 3.2229
3.3167
10.2292
10.2931
24.2028 | 11.3056
12.2347
20.2139
29.1951
12.2764 | 26.1965
1.3271
7.1215
26.2215
22.2007 | 22.2368
31.2910
26.2146
27.2187
28.2319 | 30.2938
28.1993
31.3403
31.3583
17.1889 | 8.2785
1.2764
17.2250
1.2639 | 9.2757
21.1250
22.1611
23.1257
8.1917 | | | - | MAY
FEB
MAY | AV EEC | A A E B A A A A B B A A A B B A B A B A | L A C A C C C C C C C C C C C C C C C C | SEP
MAA
JAN
FEB | EB
OV
OV | A A A A A A A A A A A A A A A A A A A | | | ۷
۵ | 7777 | 00211
00211 | A 3 T E E | 24244 | 2222E | 2222
2222
2422
2442 | 40000 | | | | <i>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</i> | տտտոտ | ω ω ω ω ω | տտտտտ | 81 41 41 41 41 | 01 01 01 01 01 | 4, 4, 4, 3, 4, | | | SURVEY
NUMBER | K-444
K-4562
H-5361
X-4563 | F-33.2
F-43.4
U-41.1
R-35.3
G-53.3 | W-53.8
0-41.1
G-74.2
V-45.1
X-35.2 | X-34
N-31
N-55
N-55
N-24
N-34
N-34 | P-47.2
L-24.4
T-81.3X
T-91.2X
U-11.2 | E-52.1
T-95.2
U-15.3
Q-45.2 | J-54.4
S-43.5X
S-53.1
S-54.1
G-34.3 | | | MINOR | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 24 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 455
452
452
452
453
453
453
453
453
453
453
453
453
453 | | | 4 4 3 7 4 5 3 7 4 5 3 7 4 5 3 7 4 5 3 7 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 7
4
4
4
4
4
4
4
4
4
1
1 | | | U NO | 4- | 7 eg | 0 | ю | | 61 | 0 | 9 : | - | - | ~ | | ا
ا | > | -5 | 10 | | | 12 | 2 | | 15 | 9 | - | 7 | -8 | 7 | m | œ | -2 | | -14 | | 7 | |-------|------------------|-----------|-------|---------|--------|--------|--------|--------|---------------|----------|----------|----------|------------|---------------------|-------------|---------|----------|------------|----------|--------|--------|----------|--------|------------|---------|--------|----------|------------|----------|----------|----------|--------|----------
-----------|-------------| | | 0 -
MOT I | 0.0 | • • | • | • | • | • | • | 0 · 0 | • | ċ | ċ | ċ. | -1.3 | • | -0.2 | • | • | ċ | • | • | • | • | -1.1 | · | • | • | -0.3 | • | • | • | • | ċ | 600 | • | | | DAY
ON | -18 | 4 C | 9 | 7.1 | 5 | 5 | 4 | -57 | n | 81 | 81 | α ι | 1
50
10
10 | 4 | -93 | | 7 | ~ | | 7 | 6- | -35 | -33 | - | | | -29 | - | | 9 | -58 | 2 | 94- | 7 7 | | | 10 - [
MOTIC | -9.2 | • • | α | 6 | 6 | 6 | ċ | 7.6- | • | å | . | | 9.7- | • | • | • | 6 | 4.6- | 6 | 8 | е
Э | ŝ | 0.8- | 6 | 10. | 7. | -6.5 | - | œ | ø | 6 | 12. | 10.6 | • 7 7 | | | o | 8.66 | - 8 | 6 | •86 | 1.00 | 6.0 | 0.7 | 11.59 | 7 • 7 | 1.20 | 1.4 | 1.29 | 9.650 | 0.00 | 9.70C | 4.6 | 0 | • 5 | 0.1 | • 2 | 9.8 | 0.3 | 10.50 | 9 | 0.5 | 1.5 | 11.05 | 1.6 | 1.1 | 3 | 8.5 | 1.67C | 11.61 - | 7.30 | | | MAG | 11.71 | 1.8 | 9.6 | 3.55 | 3.92C | 3.85C | 3.74 | 14.07 | V 0 • 0 | 3.25 | 3.49C | 3.34 | 12.310 | 7 + 1 + 2 | 2 | 2.06 | 55. | •63 | 3.17 | 4.47 | 4.11C | 4.12 | | 3.73C | 5.36 | 95•9 | 14.89 | 5.14 | 4.52 | 2.65 | 2.81C | 4.43C | 14.48 | 7005 | | | VAR | -2 | | | | | | | 77 | | | | 1 | -26 | V | -26 | Ñ | | -5 | | - | | | 16 | | 0 | 5 | ~ | 0 | -3 | 0 | 0 | 7 | | - | | | - C
DEC | 4 | | | | 0 | | | 77 | | | | 1 (| -22 | V | -27 | | | ŀ | | 0 | | | 13 | | - | 6 | - | 7 | 0 | 0 | 0 | m | ~ - | - | | ⋖ | α
0 4 | 0.7 | • • | • | • | • | ċ | ċ | -0.2 | • | • | • | o i | -7.3 | • | | 7 | • | 0.2 | • | • | • | • | 9.0 | • | • | • | 9•0 | • | • | • | • | • | 000 | • | | TABLE | DEC
1950.0 | 16 10 02 | 000 | 19 23 3 | 9 23 3 | 050 | 55 2 | 55 1 | 6 18 47 | 0 7 | 4 46 3 | 46 2 | 4 46 2 | 1 44 58 | 4
4
0 | 13 0 | 1 13 5 | 5 32 1 | 15 32 17 | 0 04 1 | 6 40 1 | 0 04 9 | 7 50 0 | -19 23 58 | 0 17 5 | 8 49 1 | 41 5 | | 11 1 | 7 47 1 | 28 43 5 | 8 44 0 | 6 34 3 | 25 44 21 | 2 55 8 | | | R• A•
1950•0 | 6 53 52.6 | 53 46 | 3 38 35 | 38 34• | 26 44. | 24 49. | 24 47. | 1 49 14.4 | • CT | 3 05 24. | 3 05 23. | 3 05 23 | 21 44 53.5 | 1 44 55 | 27 31 | 1 27 27. | 05 03. | 5 03. | 13 30• | 28 34. | 6 28 33. | 22 17. | 22 04 38.0 | 13 01. | 59 25. | 1 10 58. | 19 47 09.8 | 3 58 47. | 3 40 53• | 9 31 10. | 31 09. | 3 45 33. | 3 21 36.0 | 13 22. | | | E U.T. | 202 | . 295 | 3.280 | •28 | • 200 | .181 | .217 | 5.1687 | C T • | • 33 | 3.344 | 3 9 3 5 3 | 6.3389 | • 540 | 31.2021 | 1.289 | 8.181 | 8.190 | •191 | 2.143 | 2.152 | 8.338 | 10.1819 | 9.28 | 2.152 | 0.322 | 30.2181 | 5.329 | •22 | •338 | 4.348 | •,223 | 3.1569 | 517. | | | 4 | NAC | | | | | | | > 2
2
2 | | Æ | Σ | Σ. | 9 C | ¥ | | A. | 4 | ٩ | ö | 7 | ר | ⋖ | SEP | Z | | | JUL | | | | | | DEC | | | | ۵ | 51 | | | | 51 | 51 | 51 | 000 | 2 | 52 | 52 | 52 | 15 | 7 | 51 | 51 | 52 | 52 | 20 | | | | | | | | 51 | | | 51 | 51 | 50 | | 70 | | | SURVEY
NUMBER | 6-35.5 | -44- | -36 | -35. | -45. | -46. | -55. | E-24.7 | .67 | -53. | -64• | -63 | 1 - 1 - N | • 70- | -12 | -11. | • 44 • | ů | -26. | -51. | -55. | -64• | C-15.1 | • + + - | -41. | -61. | N-24.2 | -84• | -14. | -75. | 74. | -72. | F-12.6 | 20. | | | MINOR | 441 | t t | . 4 | 4 | 4 | 4 | 4 | 443 | + | 4 | 4 | 4. | 55 5 | 4 | 4 | 4 | 4 | 445 | 4 | 4 | 4 | 4 | 7447 | 4 | 4 | 4 | 644 | Ś | Ñ | Ś | S | S | 453 | n | | | 2000 | C | | <u> </u> | | | | | χo ù | | | | | 2 | و | ١ | > | | Ĺ | |---|--|----------------------------|---------------------------------|---|-------------------------|---|---------------------------------------|-----------------------------|---|---|---|---|--------------------------|---|-------------------------------------|---|---|---|-------------| | MINOR | NOMBER | 2 | -
∢ | | | к•
195 | • • • • • | 161 | 950 | 0 | ⊃∢
α | DEC | VAR | ε
δ | 9 | MOTI | N N | MOTI | J R | | 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | I-53.5
I-53.2
I-51.5 | 51 51 51 | MAR
MAR
AAR | 15.3243
31.3300
15.3833 | 777 | 53
38
55 | 04.6
28.1
56.1 | 8
8
18 | 02
45
47 | 17
32
54 | -1.8
-1.8
-0.9 | 17
17
9 | 15 | 12•45C | 9.620 | 0 | 28
13
45 | 0.0 | 7 1 2 8 | | S | -51.
-43. | 51
52 | MAR
MAY | 31.351
24.288 | | 7 4 | 90 | 19
-14 | | | 9. | 90 | 10 | 15.44 | 10.65 | 7. | | • • | 0 10 | | ນ ທ | -83
-13 | 51 | MAY
MAY | 8.368 | 15 | | 2.0 | | | | | - 1 | 4 4 | 3.5 | 1.1 | 9. | 984 | • • | -26 | | 444
0000
0000 | M-62.1X
Q-63.1
G-55.1 | 5125 | NOC
V AN | 123 | 19 19 1 | 12
01
21 | 08.9
19.3
35.9 | -12
22
14 | 5 2 2 6
5 5 5 6 | 53
08
41 | 3.6 | 1 4 1 1 | 23 | 14.69A
13.38
15.21A | 10.27A
11.56
11.84A | -8.2
-11.1
-9.5 | 32 | 0-0 | 141 | | 460
460
461
461
461 | V-54.5
V-64.9X
F-64.1
V-33.4
V-34.7X | 52
52
52
52
53 | MAR
DEC
MAR | 23.3264
23.3444
13.2819
23.2264
23.2354 | 13
12
12
12 | 004
400
900
000 | 008
004
239
33
1 | 77088 | 26
26
51
10
10 | 54
48
09
09 | 0.0
0.0
10.8
-2.0 | 0000 | 122 | 15.88
15.69
14.36
15.11 | 11.92
11.76
11.29C
11.37 | 7.7.1
1.9.7.1
7.06.1 | ~ ~ 1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | 0000 | 77777 | | 461
461
462
462
462 | V-44.4X
V-43.1
H-63.2
W-74.2
W-73.3X | 52
52
52
52 | MAR
MAR
FEB
APR
APR | 23.3083
23.3174
11.2181
27.3889 | 12
10
14
14 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 29.7
29.5
14.1
000.5 | - 2
- 15
- 12
- 12 | 00
00
10
10 | 4 4 6 7 3 0 1 1 8 8 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 | 12.0
13.0
12.1 | 12
12
13
13 | 12
12
13
13 | 15.22
14.87C
14.01 | 11.48
11.13C
10.07 | 1 | 2920 | 0001 | 7577 | | 4 4 6 3 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 6 4 6 6 4 6 6 4 6 | K-34.5
K-444.4X
Q-86.1
R-15.2X
R-25.1 | | MAAY
NOV
VOV | 2.2833
3.2229
5.2764
27.1917
29.1590 | 44666 | 7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7 | 04.6
02.3
41.1
16.2
33.9 | 115
115
55
65 | 50
50
50
50
50
50 | 00
10
10
10
10 | 00000
00000
00400 | 60466 | 44000 | 16.07
15.72C
12.98C
13.32C
13.58C | 12.78
12.43C
10.19C
10.50C | -111-
-8.5
-8.8
-8.8 | -13
-27
31 | 0 | 4 2 6 6 | | 465
465
466
467
467 | L-554.1
L-556.1
X-566.1
E-72.1
E-82.4X | 51
52
50
50 | NOV A NOV | 6.2257
6.2396
25.2187
13.2236
16.2222 | 16
16
16
3 | 7 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 19.9
19.7
00.7
19.0
27.6 | 128
140
30
30 | 1 5 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 0 • 8
0 • 8
0 • 7
1 • • 7 | 94196 | 004 4 4 4 | 13.51
13.76C
13.88
15.17 | 10.70
10.95C
9.43
11.89 | -9.5
-10.1
-10.2 | 31
21
-21
-16 | 10.7
10.9
10.6
10.6 | 6 L 1 L 1 8 | | 467
467
468
468 | F-122.4
U-54.8
H-134.3X
V-23.1 | 50
51
51
52 | DEC
FEB
FEB
MAR | 3.1569
20.2410
7.2465
8.1924
23.2083 | 3
10
8
8
12 | 23
30
29
00 | 36.2
38.1
111.7
27.7
56.8 | 29
4 4
19
19
0 | 14
21
37
40
08 | 8 4 4 4 8 8 8 9 10 0 8 9 10 0 8 9 10 0 8 10 0 10 10 10 10 10 10 10 10 10 10 10 1 | 0 | 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 193
193
193
193 | 15.07
16.16
15.06
15.52
15.17 | 11.74
12.23
10.36
10.79 | -8.1
-8.0
-8.0
-7.2 | 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 0000 | 20044 | | | UZ | 44 | 0 0 0 0 0 | 4 7 9 0 1 0 0 1 | 7 | H0112 | 0 7 6 11 4 | 111 | |-------|------------------|--|---|---|--|---|--|---| | | 0 -
MOT I (| 0 | 100.5 | 1000 | -0 • 4
-1 • 3 | 00000 | 1 | 0100 | | | DAY | 147
153
154
157 | -34
-86
107
78 | 15
15
15
15
15
15
15
15 | 27
-84
79 | 75
-90
-10
-40
-61 | 105 | 80
12
12
41
22 | | | 10 -
MOTI | 9.00 | 0 | 110.00
110.00
110.00 | -10.6
-6.7
-8.9
-9.3 | -10.7
-10.7
-8.8
-10.2 | 0.000 | -111
-100.3
-190.3
-180.9 | | | ს | 10.37C
9.66
9.91
10.12
11.24C | 11.19
10.61
10.74
11.57C
9.38 | 9.93
10.17C
9.63
11.88 | 111.32
9.23C
8.77
111.19 | 10.53
9.91
9.75A
9.78
10.39 | 11.37C
9.37
10.14C
11.90
12.41
 11.96
9.18
9.30
9.51
8.27 | | | MAG | 15.12
14.27
13.11
13.16 | 14.57
13.70
13.40
15.33C
12.93 | 13.48
13.14C
12.59
13.65 | 14.97
13.06C
12.58
13.77
13.75C | 13.74
12.95
12.76A
13.15 | 14.42C
12.84
13.64C
15.52
14.68 | 14.37
12.06
12.18
12.66
12.43 | | | VAR | 171 | 00040 | 12000 | 1112 | понон | 9778 | 24 7 7 7 9 | | | DEC | 26
1
-78
-79 | 111 - 12 - 13 | 113 | 04450 | 25142 | 110
119
188
36 | 29
8
10
8 | | ⋖ | ω
0 4 | 0.07 | 00000 | 00041 | 000000 | 00000 | 1
8
8
8
8
8
8
8
8
8 | -8.6
1.8
1.7
1.1 | | TABLE | DEC
1950.0 | 0 08 42
37 01 11
7 49 48
7 50 35'
9 03 59 | 7 16 37
-23 33 00
17 54 10
9 10 12
9 23 56 | 9 23 59
-33 17 26
-33 04 58
12 02 14
20 07 09 | 21 11 00
-16 45 48
-16 21 34
-14 18 31
13 59 59 | 16 10 43
9 22 32
-14 46 41
29 38 25
0 25 44 | -17 15 18
- 5 21 00
- 5 04 53
- 3 55 23
27 39 40 | 30 19 07
9 51 03
9 51 05
10 39 15
16 01 44 | | | R• A•
1950•0 | 12 00 56.0
3 51 52.5
10 41 27.2
10 37 48.9
3 26 36.3 | 3 05 58•3
22 35 49•5
7 54 52•5
10 19 34•9
8 50 41•7 | 8 50 40•1
15 47 22•4
15 45 23•5
1 34 17•1
9 47 09•5 | 9 30 44.5
12 13 10.5
12 11 02.7
22 54 42.2
9 49 21.9 | 9 34 35.3
5 15 30.7
0 10 25.5
9 42 13.3
2 05 46.0 | 23 24 27.0
14 02 53.3
14 01 24.0
1 58 07.3
9 37 27.6 | 9 20 05.9
4 36 23.1
4 36 22.5
4 20 11.0
4 09 00.1 | | | E U.T. | 2422 | 27.
111.
28.
5. | 8.2979
22.2097
24.2118
12.2562
1.2583 | 17.2069
1.2403
4.2410
11.3076
1.2583 | ~~ | 5.2437
24.2944
26.1965
7.1771
31.3583 | 17.1889
4.2194
4.2285
22.1521
11.1312 | | | A 1 | MAR
DEC
FEB | ΖυυΣπ | FEB
MAY
MAY
OCT | FEB
APR
SEP
FEB | | S A P B B C A V O V A V A V A V A V A V A V A V A V | FEB
DEC
DEC
DEC | | * | ۵ | 5220 | | 0000
0000 | 50000
00000 | 52
52
52
53 | 2000
2000 | 00000
00000 | | | SURVEY
NUMBER | V-24.3
F-21.1
U-54.1
U-53.1
Q-85.2 | R-15.1
C-25.2
T-44.1
H-74.1X | H-35.1
X-36.3
X-46.1
D-64.1 | U-13.6
I-66.2
I-76.1
C-34.3 | 01010 | 0-75.1
W-42.6
W-53.1
E-26.1 | U-11.3
R-55.2
R-56.2
R-45.5
F-24.3 | | | MINOR
PLANET | 4 4 4 4 6 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 444
477
477
474
474 | 47.4
47.4
47.7
77.7 | 477
477
4778
479 | 479
480
481
481 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 4 4 8 4 4 8 4 4 8 4 4 8 4 4 8 4 8 4 8 4 | | | UZ | 44111 | 40101 | 20404 | 20102 41416 | α ₀ 040 | 10046 | |-------|------------------|---|---|---|---|--|--| | | 0
MOT I | 10010 | 0- | 10.2
10.2
10.2
10.2 | 01000 00000 | 010000000000000000000000000000000000000 | 10000 | | | DAY
ON | 16
35
19
60
81 | -20
-14
48
30
29 | 69
69
144
128 | 111
844
112
123
136
136
136
136
136
136
136
136
136
13 | 31
20
225
-45
-9 | 1-1
150
141
35 | | | 10 -
MOTI | -9.2
-7.2
-7.2
-6.7 | 1 - 8 - 1 - 1 - 8 - 9 - 9 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | -111.3
-111.0
-8.3
-7.1 | -10.4
-10.4
-9.4
-7.9 | | | ග | 8.79
9.47
9.40
9.32
9.88C | 11.32
11.30
9.98
10.34C
9.86 | 10.00
9.92C
11.63C
13.42
12.83A | 11.61C
10.73
10.50
9.87
10.12
10.73
10.23
10.41C | 10.09
11.62
10.17C
9.37C | 10.24
11.16
10.06C
9.50C | | | MAG | 12.94
12.85
13.67
13.83
14.28C | 14.66
14.73
13.91
14.33C
13.85 | 13.34
13.26C
14.70
15.06
14.89A | 13.06C
15.02
14.81
13.54
14.39
16.02
15.54
16.21
14.12C | 13.44
13.38
14.25C
12.18C | 12.97
14.66
13.94C
13.48C | | | VAR | 165 | mm N N | 9029 | 136
-255
1 12
112
112
0 0 | 144
442
200 | 76312 | | | - C
DEC | 100 | 62464 | 9
6
9
12 | 1 | 154
153
2
2
6 | 12
26
20
-1 | | 4 | м
0 4 | 1 | 11000
0000
0404
0404 | 1 | 84401 11100
60000 60000 | 111 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 10.1
10.8
10.6
10.6 | | TABLE | DEC
1950.0 | 16 02 03
19 51 43
- 1 49 22
- 4 07 23
3 23 41 | -23 41 46
-24 33 14
20 28 09
21 34 00
21 34 30 | -25 28 05
-25 28 05
2 55 34
16 51 20
15 53 50 | 11 52 14
18 20 19
18 23 51
25 03 13
14 06 20
- 1 49 28
- 1 49 28
- 1 49 28
- 32 01 25
- 32 01 25 | -17 49 03
-17 46 55
16 20 24
-22 31 46
17 09 45 | 16 47 57
- 8 14 52
-17 14 46
-16 16 11
-15 34 20 | | | R• A•
1950•0 | 4 08 50.8
12 01 44.6
15 54 20.1
13 31 10.2
12 09 43.7 | 19 42 47•7
19 22 04•5
10 26 19•7
10 11 42•9
10 11 35•5 | 16 03 02-1
16 03 01-7
11 22 58-3
4 30 39-1
4 14 06-7 | 1 28 01.1
9 47 25.7
9 46 31.8
7 26 26.8
12 06 59.8
11 49 54.3
11 49 18.0
14 42 00.5
15 32 59.5
15 32 59.5 | 23 03 16•4
23 02 18•8
8 04 20•4
21 24 15•1
3 44 26•7 | 3 23 24 • 1
16 20 01 • 3
0 13 45 • 9
11 28 43 • 1
11 13 46 • 5 | | | д | 11.3174
22.2014
28.2285
8.3785
2.2326 | 4.3486
29.2104
12.2125
1.2354
1.3729 | 24.1937
24.2028
13.3722
5.2535
22.1431 | 12.2562
18.2125
19.2208
12.2764
22.2104
1.2097
2.2424
27.2167
8.2083 | 2.2340
3.2382
7.1215
14.2625
5.2583 | 27.1826
29.2111
27.2243
14.3347
31.3083 | | | A 0 | O DEC
2 MAR
1 MAY
1 APR
1 APR | JUL
JUL
1 FEB
1 MAR | 2 MAY
2 MAY
1 MAR
1 DEC | O O C C FEB 2 LEB 2 LEB 2 LEB 3 | 1 SEP
1 SEP
1 FEB
0 AUG | NOV
MAAY
MAAR | | | | מ מ מ מ מ | ம் ம் ம் ம் | מממממ | முற்று முற்று முற்று | היהיהיה | מ מ מ מ מ | | | SURVEY
NUMBER | F-34.4
V-21.2
L-21.1
J-63.4
I-63.1 | M-74.3
N-14.4
H-72.2
H-62.1
H-72.1 | X X X X X X X X X X X X X X X X X X X | D-64+2
U-23*6
U-33*1
G-53*2
V-22*1
I-54+4
K-75+8
K-75+8 | 0-55.3
0-65.3
6-74.5
8-45.3
Q-84.3 | R-14.1
L-32.2
P-37.1
I-56.1 | | | MINOR
PLANET | 488
488
489
490
491 | 764
765
766
766
766
766
766
766
766
766
766 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 4 4 4 9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 501
502
503
503 | 00000000000000000000000000000000000000 | | | U Z
0 | r 9 4 | 90 m | 0 0 | 101 | 7 | | | 70 | | | e
G | | 9.5 | 9 | | 9 | ů ¬ | -2 | | 4 | 17 | | ٦ | | | -12 | |-------|------------------|-----------------------------------|--------------------------|---------|-------------------------|--------|--------|--------------|------------------------|-------|--------|--------|----------|------------------------|--------|-------|------------|------------------------|--------|--------|-----------|-------|--------|--------|-------|-------------|------------------------| | | NOTION | 440 | | • | 6.00 | | | • | 4 0 | • | • | • | • | -1.0 | • | • | • | -0.1 | • | - | 0.0 | • | ° | • | • | ċ | 100 | | | DAY | -12 | - | ~ 0 | 4 F | ן מ | | | 22 | | -75 | 9- | G | -38 | | | | 39 | | | 47 | | | | | | -38
-38 | | | 10 -
MOT | -7.8
-8.1 | | 7. | 900 | . 6 | • |
. | 9 9 - 1 | 7 | - | 7 | • | -7.9
-7.9 | 9. | ċ | • | -7.9 | - | 2 | -8.3 | ċ | 10. | 6 | æ | | 0.9- | | | ဖ | 10.63 | η ω ω | 9.7 | 11.31 | 0.50 | 0 | 9 | 11.85 | • 1 | 10.49 | 6.0 | | 10.58C | 9.81C | | 0.1 | 10.47
12.41 | 2.7 | 0.1 | 10.63C | 2.3 | 2.4 | • | .7 | 9.6 | 10•18
10•33 | | | MAG | 14.42 | 337 | 4 • 2 | 13.91 | 4.60 | 5.4 | 4.0 | 10.36 | 3.9 | 14.29 | 4.6 | | 14.48C | 13.90C | | 5.0 | 15.34
14.28 | 4.6 | 3.5 | 15.130 | 5.5 | 5.7 | 5.6 | 4.5 | 4.3 | 14.64 | | | VAR | 7 7 7 | taa | 0 (| | | | | 7 - | יה | m | | | 1 1 2 5 | ~ | -22 | m · | 11 | | | -21 | | Ġ | 6 | - | 1 | | | | - C
DEC | 7- | 900 | 70 | 7 | 1 7 | | m | 7 (4) | -5 | 9- | | | -2 | | -14 | | ოთ | 6 | | -28 | | 7 | 55 | 0 | ٦, | 9 9 | | ⋖ | α
0 4 | 4.00 | • • • | • • | 1 1 0 | • | | . ; . | 110- | ċ | • | ÷ | ċ | -0.7 | - | 2. | • | -0•7
4•7 | • | • | 5.9 | • | • | • | • | ċ, | -1.2 | | Ë | 0. | 3 11 8 21 | 7 7 7 | 4 4 | 2 4 4
2 4 1
3 4 1 | 4 | N | ر | 380 | 0 | 5 | n | 0 | 0 51
6 22 | ß | - | m · | 8 01
8 05 | 0 | m | 0 20 | Ŋ | 0 | 3 | 'n | m (| 9 08
6 21 | | TABLE | DE(| 7 7 7 | 44 | 0 ~ |) W C | 0 | 0 3 | S (| ა <i>ს</i> | 0 | w | 7 | B | 4 0
9 0 | (n) | 5 4 | 16 0 | 4 00
4 00 | 9 | 3 4 | 20 5 | 5 | 5 | 0 | - | ر
د
د | 5 6 | | | R• A•
1950•0 | 1 22 50.5
1 05 24.3
53 06.8 | 24 444 20 56 • | 19 08 • | 3 30 54 8 | 15 47. | 55 04• | 35 48 | 7 35 03.5
3 14 00.9 | 32 17 | 17 45. | 02 38. | 43 37 | 3 43 34.9
3 28 10.9 | 43 35. | 23 58 | 55 00 | 3 41 12.2
9 31 47.1 | 31 46. | 31 46. | 1 11 50.8 | 35 58 | 35 56• | 55 45. | 53 58 | 53 52 | 1 41 06•/
1 26 04•5 | | | • | ~ O a | | 7 | | | | | | 1 7 | 2 | | 7 | 1 23 | 2 | 8 | ,i | 9 13
6 19 | - | | 2 11 | | | _ | ~ | - | | | | E U.1 | 040 | | 8.2 | 6.184 | 8.2 | 2.1 | 5.28 | 9.206 | 9.2 | 9.2 | • 23 | 5.33 | 5.393
26.257 | •39 | 6.25 | 9.35 | 28•213
1•255 | •2 | 3.25 | 20.322 | 3.22 | 3.27 | .322 | • 188 | 4.300 | 4.175 | | | A
T | 000 | பய்ய | APR | 0CT | DEC | JAN | Z Z Z | A A A | AUG | LL. | w | Ŵ. | SEP | SEP | SEP | APR | APR
JUL | JUL | DEC | FEB | Nov | NOV | FEB | MAY | MAY
T | NO NO | | | ۵ | 51 | 212 | 51 | 30.5 | 215 | 52 | 52 | 51 | 20 | 50 | 51 | 21 | 51
51 | 51 | 21 | 27 | 21 | 51 | 50 | 55 | 20 | 20 | 52 | 21 | 5 | 200 | | | SURVEY
NUMBER | P-72.1X
Q-11.1
D-45.5 | -21.
-22. | -55. | C-52.1 | -55- | 45. | 23. | J-52.1 | 72. | -12. | -16. | 83 | 0-82•1
P-12•2 | 82. | 12. | 74. | K-24.4
M-71.1 | 72 | 62. | U-61.5X | 72. | 73. | 61. | 53. | 52, | U-65.1
E-15.1 | | | MINOR
PLANET | 507
507 | 200
200
880
880 | 0 ~ | 510 | 4 ~4 | - | | | 513 | - | ~ | ~ | 514
514 | _ | - | ~ . | 517
518 | - | - | 519 | 2 | 520 | 520 | 521 | 521 | 522
522 | | | UZO | ا
ب | 1 (4) | | | | 13 | 9 | 61 | 0 | -13 | 7 | | 0 | 4 | 3 | ~ | 7- | 0 | - | -10 | | 7 | 3 | 7 | ω | ï | σ | 7 | 0 | 80 | 7 | 4 | ∞ · | 7 | |-----|------------------|------------------|-------|------|------|------|------|--------|------|-------|--------|--------|---------|------|--------|-----|------|-------|------|------|------|------|------|------------|--------|-------|----------|-------|------|--------|------|-------|----------|------------|----------| | | 0 -
MOT 10 | 0.0 | • | • | • | • | • | 6.0- | • | • | • | -0.3 | | • | 0.1 | • | • | 0.0 | • | • | o | ċ | ċ | -1.0 | ံ | 0 | ċ | • | • | • | ô | -0.7 | . | • | ċ | | | DAY | 10 | | | | | | -35 | | 7 | -89 | 33 | 43 | 8 | 56 | | | -78 | | | | 37 | | 52 | • | 10 | | | 77- | | | -10 | | | | | | 10 - MOTI | 1.7- | | 6 | • | 10. | • | -8.2 | 7 | 7• | | ċ | -6.8 | - | 7 | 9 | œ | 0.6- | å | 7. | æ | 6 | ċ | -8-3 | •
ລ | 6 | œ | 7 | • | e
O | 0 | -6-9 | 6 | | • | | | g | 9.52 | | 0.2 | 0.5 | 1.2 | 1.19 | 11.29C | 1.29 | 1.70 | 1.3 | 1.0 | 11.47C | 0.14 | 0.8 | 1.2 | 0.2 | 7.95 | 0.7 | • 90 | 1.2 | 0.7 | •53 | 10.15C | • | 10.33 | 0.72 | 0.5 | 1.0 | 0.7 | 1.7 | 11.27 | 1.3 | о
(| • | | | MAG | 14.25 | 4.8 | 3.5 | 3.8 | 5.1 | 5.06 | 15.83C | 5.54 | 4 • 3 | 3.9 | 4.8 | 15.64C | 4.4 | 5.3 | 5.3 | 4.3 | 11.72 | 4.51 | 4.0 | 4.5 | 4.1 | 3.58 | 14.90C | 8.7 | | 4.52 | 4 • 8 | 3.5 | 5.1 | 4.2 | 14.55 | 4.6 | ¥. | 4•1 | | | VAR | ן ן | | | | 2 | 7 | 30 | 30 | | | -2 | | 0 | 0 | 7 | 0 | 0 | 0 | -1 | -7 | | - | <u>س</u> : | 77 | -15 | -1 | | | | 0 | 7 | 7 | ٥, | - | | | - C
DEC | 1 4 | - 5 | | | 9 | | 30 | | | -39 | 4 | | -1 | 7 | 11 | m | 7 | 7 | 4- | 4- | 0 | 11 | ru (| 71 | -17 | | | | | 0 | 13 | | | - | | ₹ | N
O A | -1.5 | • | 2 | • | • | • | 6•9 | • | • | • | -1.7 | | • | 0.0 | • | • | -0.8 | • | • | • | • | • | -0-1 | 5 | -6.3 | 6 | ċ | • | • | • | 1.5 | • | • | • | | ш | • | 39 | | | | | | 15 | | | | | 37 | | | | | 22 | | | | | | 40 | | 13 | | | | | 33 | | | | | | ABL | DEC
950 | 040 | 0 | - | 5 | 7 | 7 | 43 | 4 | 4 | 4 | 0 | 28 | - | - | Ŋ | G | 21 | ~ | m | 7 | 4 | 0 | 10 | 4 | 20 | ~ | | - | m | | S | S | in i | Ų | | - | 7 | 20 | | | | લ | G | -13 | - | - | | | 18 | | | C) | | -26 | - | 7 | | | | 16 | | 14 | | | | | 13 | -14 | щ, | | ~ | | | A.
50.0 | 59.1 | 41. | 51. | 17. | 54. | 53. | 27.9 | 27. | 16. | 12. | 47. | 07.5 | 42. | 28. | 46. | 44. | 44 | 36. | 60 | 21. | 51. | 50. | 25.9 | 03 | 45 | 44. | 28• | 35. | 50. | 23 | 26. | 92 | 000 | 4.7 | | | R• | 5 58 | i | _ | 3 | 7 | 7 | 1 46 | 4 | 0 | 0 | 7 | 6 02 | G | 'n | Ä | 7 | 0 20 | 'n | 0 | 0 | 0 | w | 1 02 | 7 | 5 13 | _ | S | S | 0 | 3 12 | 0 | 0 | <i>m</i> (| O | | | | | . 7 | | | | | 7 | | | 23 | | v | | Ξ | | | 2 | | | _ | w | | Ξ, | | 41 | | ٠. | 7 | = | | 5 | | | | | | <u>.</u> | 1271 | 19 | 31 | 61 | 8 | 18 | 333 | 47 | 70 | 75 | 45 | 340 | 9 | 13 | 29 | 11 | 118 | 32 | 95 | 91 | 22 | 65 | 875 | 4 | 819 | 92 | 20 | 10 | 0 | 1229 | 08 | 8 | 000 | 0 | | | ы
Э | 28.3 | • | • | 7 | 2. | 2 | 14.2 | 4• | 2• | • | å | 21.1 | • | • | 4 | 6 | 31.2 | 6 | 6 | ò | • | 7. | 11.2 | ÷ | 13.2 | 'n | 6 | 5 | 4 | 4 | 30.5 | . | •
• | 4 | | | - | DEC | Α× | EB | AR | MAY | | | | | a
E | S
C | Z
V | 8 | A
A | MAY | | | | | | | | MAR | | Ų, | ر
لد | EB: | EC | E B | NOV | | | | | | | ۷
۵ | | | _ | - | 7 | ~ | 0 | 0 | 0 | S | о
п | 2 | z | 1
A | 2 | _ | _ | _ | 0 | 0 | 7 | _ | - (| V | 0 | 0 | 7 | 0 | 7 | _ | _ | , | (| 2 | | | | ru ru | 1 41 | 41 | 41 | 41 | 41 | 'n | 41 | 41 | 41 | 41 | 'n | 41 | u 1 | Ŋ | u, | u) | un. | u i | นา | un. | un. | S I | n | N. | Ω. | un | un. | r. | r. | S) | n ı | nı | v | | | SURVEY
NUMBER | S-44.2
K-44.6 | -45 | -74. | -64• | -35. | -25. | B-43.4 | -44. | -35.2 | -45. | -54.1 | S-44.4X | -54. | -61• | -54 | -32. | 5 | -43. | -44- | -54. | -43. | -24. | I-32.4 | •76- | 4 | -65- | -33 | -53. | -65. | | -23 | -193 | 154. | 141 | | | MINOR
PLANET | 522
523 | 10 | 2 | 7 | ~ | 7 | 526 | 2 | ~ | 527 | 7 | | ~ | 2 | 529 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 537 | n | 538 | n | m · | ന | n | 540 | 4 | 4 | 4 | 4 | | | UNO | 7779 | | 15. | 12 | | 9 | | 7-5 | 7 | - 4 (| o
C | 7 7 | 7 | | 770 | ٦, | | -12 | ا
س س | 7 | M | ~ (|) 4 | u C | |----------|------------------|---|-------|---------------------------------------|-----------------------------|------|--------|------------|------------|-------|--------------|-------------|------------|-------|----------|---|-------|------|-------|-----------------|---|-------|------------|------------|------------| | | MOTI | 100.0 | • | • • | -0.9 | • | 0 | • | | ô | • | • 6 | 0 | · | • | | • | · | • | 0.0 | • | · | • | . | 0 - 0 | | | DAY
ON | 4 2 4 1 4 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 2 (| 12 | 13
4
-149 | σ, | | | 0 | | m, | | 51 | | | 1 7 9 | | | | 45
50
50 | | | ~ | | 21 | | | 10 -
MOTI | -9.2
-9.1
-10.2 | 6 | | -111.0 | | 10 | c | 61 | 6 | • | 5 0 | -7.8 | တ် | . | 7.8- | 9 | 7. | ċ | 0.0 | æ | œ | . | ٠
د | 18.6 | | | ၅ | 10.44
10.84
11.32 | 9 0 | יע יע | 7.50
11.14
11.01 | 0.7 | 12.68C | 0.31 | 4 (6) | 0.3 | ċ | 0 0 | า ตั | 10.81 | 0.8 | 4 | 9.50 | 1.5 | 0.5 | 9.91 | 9.9 | 0.0 | 0.7 | 11.68 | • | | | MAG | 14.97
15.33
14.72 | 4.520 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 14.47
14.47
13.14 | 4.73 | 00C | 4.03C | 4.54 | 4.50C | 5.10 | 3.57 | 14.13 | | 4.87C | 5.52 | 11.42 | 5.51 | 2.92 | 12.81
15.32 | 9 0 | 4.04 | 4.22C | 15.43 | 76.6 | | | VAR | 446 | 0 00 | | 000 | ~ | | | 15 | | ۲. | | 14 | 4 | 4 (|) (C | 9 | | | 4 0 | 0 | | - | 0 - | 77 | | | - C
DEC | 4485 | | 3 F) | 297 | ~ | 7 | о а | 11° | 11 | | 4 6 | 00 | 6 | | ם
ה | | -56 | | 4 0 | 7 | | [| | 11 | | ⋖ | ⊙∢
α | 000 | • • | • • | 0 0 m | • | 0.3 | • | 7. | • | - | • | -2.1 | 2 | 2 | 1 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | • | • | ċ | -0.6 | Ö | • | ė, | • | 000 | | ш | 0.0 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | יט י | <i>w</i> | 4 49
3 49
31 | ~ | 0 | m u | 9 07 | 2 | ٦. | ⊣ (| 4 12 | - | ٦, | 7 7
1 2 | - | 4 | 0 | 0 0 | J. W. | 7 | S. | 4 u | 4 0 6 | | TABLE | DE
195 | 229 | 16 1 | <i>2</i> 0 -4 - | v – w | 4 | 4 | ٦ ر | 4 0 | 4 | 4 (| | 0 3 | n | m i | 4 C C C C | 1 00 | 0 | 23 | -150 | 7 | 7 | 16 | ~ (| 32 5 | | | A.
50.0 | 39.1 | 12. | 50.0 | 04.0 | 31. | S | 17. | 50. | 59. | 56. | 28 | 51.3 | 12. | 12. | 31.3 | 36. | 52. | 38• | 00 • 8
5 7 6 | 20 | 25. | 14. | 50.0 | 17.6 | | | R•
19 | 17 53
17 37
1 40 | 14 | 4 4 | 0 35
0 35
55 | 6 | | 0 : | 10 28 | 7 | 0 | U (| 11 54 | 4 | 4 . | 10 03 | 0 0 | 2 | 2 3 | 12 52
10 45 | 2 | 7 3 | ~ | w r
w n | 7 56 | | | E U•1• | 9.2986
27.2278
12.1750
25.2799 | 58 | 222 | 26.334/
9.1889
7.1708 | 39 | 175 | 111 | 19.3021 | 0.250 | 0.313 | 2.310 | 23.2083 | •265 | 6.276 | 9-21 | 3 | .212 | 8.172 | 23 | 4 | 6.202 | •243 | 0.241 | 5.1437 | | | ⊢ | N N L N | | | OCT | | | |
TEB
TEB | | | | | MAR | MAR | ₩
₩
₩ | SEP | MAY | | | N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N | | | | FEB | | | ۵ | 50
50
50 | | | 0 0 0
0 0 | | | | 25 | 52 | 52 | 0 u | 2 5 | 51 | 51 | 5,2 | 51 | 51 | 20 | 52 | 51 | 51 | | | 21 | | | SURVEY
NUMBER | L-85.2
M-16.5X
D-62.2
T-24.6X | 41. | 63. | 35. | 26. | 73. | 83. | • • | _ | _ | _ | V-23.3 | _ | _ | | | _ | _ | | | _ | 75. | 71. | G-72.1 | | | MINOR | 0 0 0 0 0
4 4 4 4
6 6 4 4 4 | 545 | 7
7
7
7
7
1 | 546
546
746 | 547 | 548 | 550 | 220 | 550 | 550 | נט מ
בים | 551 | 552 | 552 | 552
553 | 556 | 555 | 556 | 556
556 | 558 | 3 | S | 9 | 562
562 | | c | U N | U - 1 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 1
2
3
4
4
8 | 62226 | 94 # 0 % | -19
13
-11 | 3 4 4 7 1 | 1000 | |----------|-------------------|--|---|---|--|--|--|--| | | 0
MOT1 | 1001 | 0000 | 100.00 | 0 - 1 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - | 1000 | 40000 | N M P P P P P P P P P P P P P P P P P P | | | DAY
ON | 151
160
192
19 | 143
161
181
181 | -31
-57
-53 | 444
445
148 | -11
46
-17 | 78
44
80
80 | 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | 10 - MOT I | -7.5
-9.8
-10.8
-9.0 | -7-
-5-9
-7-9
-8-1 | 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 1 8 8 8 1 1 8 9 5 1 1 8 9 1 1 1 8 9 1 1 1 8 9 1 1 1 1 1 1 | -6.2
-10.2
-10.1
-11.1 | -7.9
-7.5
-10.1
-11.1 | 100 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 | | | o | 10.81
9.84
9.90
12.26C
12.19 | 9.15C
9.00C
8.98C
9.11C
10.34 | 10.38
10.20C
10.47
10.44C
10.57 | 10.68
11.14C
11.07
10.30C
9.61C | 10.11
13.32
12.35
11.74
12.09 | 11.44
10.47
12.29
12.26 | 11.03
10.93
10.75
11.03 | | | MAG | 15.21
13.44
13.55
15.43C
15.28 | 13.17C
13.31C
13.24C
13.37C | 14.91
14.72C
13.44
13.43C | 14.45
14.78C
14.71
14.07
13.74 | 14.77
14.32
15.83
13.96
14.46 | 15.06
14.73
14.77
16.03 | 13.95
13.85
15.39
15.64
13.58C | | | VAR | 1000 | -06
-06
-12
-12 | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 111111111111111111111111111111111111111 | -35
-1
-1 | 122171 | -13
-106 | | | - C
DEC | 34404 | 1
4 4 9 3 7 | 34
39
39 | 111
122
-10 | 4 4 6 1 1 | 11250 | -1
-1
-86
-100 | | 4 | ж
0 4 | 00000 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | -2.0
-2.1
-1.8
-1.3 | -4.6
-0.2
-0.4 | -0.2
-0.6
-7.1
-0.7 | -1.1
-1.1
1.04
-13.0 | | TABLE - | DEC
1950.0 | 9 57 10
-29 16 50
-29 33 12
-11 51 36
-10 45 35 | - 9 07 10
-10 16 24
22 44 20
22 44 23
- 6 34 56 | - 6 35 11
- 6 38 35
9 13 12
9 12 33
9 07 37 | -14 23 31
-12 54 32
-12 54 29
7 09 35
21 21 47 | 21 28 46
14 05 14
0 42 11
5 30 09
5 16 10 | - 8 15 14
- 3 57 36
-36 28 20
14 39 56
35 11 56 | -29 50 53
-29 50 51
30 03 07
14 54 13
-11 33 36 | | | . R• A•
1950•0 | 12 54 14.7
20 28 53.8
20 25 57.7
18 07 51.9
17 49 29.0 | 23 48 37 8
23 35 44 2
5 00 43 5
5 00 42 7
0 43 17 3 | 0 43 13.9
0 42 32.0
6 12 27.1
6 12 19.7
6 11 28.7 | 14 00 47.8
13 44 19.8
13 44 19.0
0 53 21.9
6 29 42.7 | 6 11 37 8
1 36 20 4
11 57 46 1
5 26 24 0
5 10 46 6 | 13 18 22.0
12 53 44.2
16 31 26.5
0 27 26.7
8 39 53.9 | 18 35 21.3
18 35 20.1
5 46 04.2
9 38 41.8
23 23 29.1 | | | E U.T. | 22.329
31.211
3.222
8.334
27.199 | 17.2312
6.2535
23.2431
23.2521
30.2306 | 30.3028
1.2250
5.1785
5.3007
6.2347 | 9.3562
28.2042
28.2139
9.2875
28.3451 | 21.1340
12.1972
23.2083
13.3035 | 23.3444
22.1778
2.2368
8.2931
29.2104 | 30.2139
30.2347
14.1833
18.2125
14.2687 | | | ∀ | MAR
JUL
JUN | SEP
OCT
DEC
SEP | SEP
OCT
LAN
LAN | APR
APR
OCT | JAN
OCT
MAR
DEC | A A A A A A A A A A A A A A A A A A A | CUCN | | | <u> </u> | 52
52
51
51
51 | 00000000000000000000000000000000000000 | 20000 | 50000 | 20000
0000 | × 2000 | 0000
00000 | | | SURVEY
NUMBER | V-51.2X
N-35.4
N-45.1
L-82.3 | C-64.6
C-54.4
S-14.5
S-13.4
P145.1X | P-46.1
P-55.5X
G-15.5
G-16.3
G-26.1 | J-74.3
K-23.4X
K-24.1
D-43.2
S-54.3 | S-44.2
D-63.3
V-23.7X
F-66.3 | V-64.10X
W-13.5
L-46.1
D-32.1 | M-45.4
M 46.3
F-72.2
C-55.1 | | | MINOR
PLANET | 5653
5653
5653 | 566
566
566
7666 | 567
568
568
568 | 569
569
570
570 | 570
571
571
572 | 572
572
573
575
575 | 576
576
577
577
578 | | | U NO | 120 | 9 1 1 1 | L 4 0 4 L | 1110 | 110 | 20001 | 1001 | |-------|--------------------|--|--|--|--|--|--|--| | | O -
MOTIO | 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 100.5
00.1
00.1 | 1008
1008
1009 | 100.3
100.3
100.3
100.3 | 100.3 | 1000 | 69179 | | | DAY | -112
-114
-35
-70 | 56
58
58
-111 | -44
-44
-47
-47
31 | 62
-30
-117
-44
-45 | 146
134
126
57 | 114 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 2 1 3 2 3 3 8 5 5 6 8 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 | | | 10 - DAY
MOTION | 1 1 1 1 1 1 8 8 9 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | -7.3
-8.7
-8.4
-9.0
-10.5 | -10.5
-11.8
-10.2
-7.4 | 16.3 | -10.6
-10.6
-10.0 | -100
-110
-110
-8
-0 | | | ဖ | 10.43C
10.40C
8.83
8.99
10.54 | 11.26
10.79A
10.53
10.65
9.98A | 10.33
9.96C
10.13C
9.34
9.88 | 9.95
11.42
11.09
11.45C | 10.35
9.50
9.69
9.31
9.90 | 11.18
11.85
10.68
10.24 | 9.17C
10.38
10.88
10.66 | | | MAG | 4.69C
2.44
2.75
4.40 | 15.00
14.99A
14.77
14.89
14.24A | 15.18
13.69
14.33C
13.20 | 3.67
3.93
3.60
4.17C | 14.52
15.57
15.57
15.22
14.24 | 15.14
15.77
13.93
14.35 | 13.21C
12.75
14.34
15.39 | | | VAR | -7 1
-7 1
0 1
-6 1 | 111 | 00175 | 4 1 1 0 | 01000 | 122 | 6 11 1 | | | - C
DEC | 19115 | 0 4 4 4 9 1 | 13
-1
-1 | 28860 | 10014 | -13
10
17 | 212 | | ⋖ | α
0 α | -5.0
-0.0
-11.1 | - 68 - 7
- 88 - 7
- 88 - 7
- 88 - 7 | 6 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0000 | 0 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 100
100
144
000
000
000 | | TABLE | DEC
1950.0 | 30 03 30
30 03 34
-27 41 58
-29 45 33
-11 51 08 | 21 13 11
14 25 10
14 30 38
14 30 40
- 0 06 07 | 11 03 18
23 27 58
22 19 41
-28 38 25
-28 35 18 | -26 36 04
9 48 44
9 48 42
- 9 32 20
- 1 58 10 | - 1 58 42
18 58 01
33 17 16
33 12 25
- 4 02 06 | -14 02 51
-16 22 38
2 26 47
-13 09 29
-13 36 23 | -25 50 27
-25 50 36
14 33 44
30 19 25
11 06 46 | | | R. A.
1950.0 | 5 10 51.7
5 10 52.0
21 56 41.5
21 37 37.0
22 59 24.5 | 5 06 21.5
5 34 11.6
5 33 19.5
5 33 19.1
20 42 10.7 | 23 53 11•3
4 45 45•5
4 31 28•4
14 01 21•1
14 00 25•9 | 13 38 31.2
4 59 59.1
4 59 58.5
16 17 13.8
23 20 36.2 | 23 20 31 1
0 58 50 7
0 58 50 0 7
3 56 36 8
3 55 18 5
14 25 36 5 | 0 36 07.1
22 02 29.5
2 40 20.6
16 14 12.4
15 54 48.1 | 14 51 16.5
14 51 11.5
2 21 18.1
7 40 12.7
13 08 26.9 | | | В 0.1. | 23.2521
23.2611
7.3014
31.2403
11.3076 | 23.2431
27.1826
28.1736
28.1826
10.2368 | 7.1604
5.2625
22.1340
9.3368 | 2.2118
13.1729
13.1833
24.3146
3.2187 | 3.3319
9.2764
27.3014
29.2764
3.2021 | 9.21
7.28
3.21
8.36
28.20 | 27.2257
27.3167
1.2639
4.2458
22.3472 | | | DAT | 51 DEC
51 DEC
51 AUG
51 AUG
50 SEP | 51 DEC
51 DEC
51 DEC
51 DEC
50 AUG | 50 OCT
51 DEC
51 DEC
51 APR
51 APR | 51 MAY
50 DEC
50 DEC
52 MAY
51 SEP | 51 SEP
50 OCT
51 NOV
51 NOV | 50 OCT
51 AUG
51 NOV
51 MAY
51 MAY | 52 APR
52 APR
51 NOV
51 FEB
52 MAR | | | SURVEY
NUMBER | S-13.6
S-12.4
N-86.2
O-16.1 | S-14.7
S-24.6
S-34.1
S-35.1
B-11.1 | D-12.1
R-53.3
R-43.8
U-76.1
U-86.1 | K-26.2
F-55.1
F-56.1X
X-52.2
O-63.3 | 0-73.1
D-42.1
R-31.1X
R-32.6X
K-42.2 | D-37.2
N-84.4X
Q-55.4
K-83.1
L-23.1 | N-65.4
N-76.2
Q-44.5
G-62.2
V-61.1 | | | MINOR
PLANET | 578
578
579
579 | 580
581
581
581 | 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | <i>୰ Ს ๖ Ს Ს</i>
ଌ ଌ ଌ ଌ ଌ
୬ ଛ ଉ ଛ ହ | 5990
5990
5990
5990 | 3000
3000
3000
3000
3000 | | | U Z
O | 46000 | 1-10 | 48419 | 9777 | 10 | 6044 | 40,400 | |------|-----------------
--|---|--|--|---|--|---| | | MOTI | 0.0
-0.1
-0.1
-0.1 | 0000 | 100
100
100
100
100 | 10.5 | 10.0 | -0 • 7
-0 • 7
-0 • 0 | -1-
-0-1
-0-5
-0-5 | | | DAY
ON | 7
-78
17
17
-98 | 24 8 8 8 4 8 4 8 4 8 9 9 9 9 9 9 9 9 9 9 | 150
155
164
164 | 1 4 4 1 1 3 5 7 4 5 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 | 1 4 4 7 7 7 9 7 9 9 9 9 9 9 9 9 9 9 9 9 9 | - 00 m * m 0 m * m 0 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 | -58
-89
89
14 | | | 10 -
MOTI | 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | -8.6
-9.8
-10.6
-7.6 | -7.9
-11.6
-10.3
-8.8 | 19.0
19.3
18.8
17.7 | 1 8 . 7 . 9 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 | 1 1 1
* 0 0 0 0 0
* 0 0 0 0 | -7.9
-8.4
-8.4
-11.2 | | | g | 9.37
11.49
11.00
11.52
10.56 | 9.99C
9.59
14.00C
10.20C | 10.26C
11.49
10.88
10.73A
10.99C | 11.56
11.91
11.11C
11.25
11.30 | 10.79
10.71
11.16
10.91
12.13 | 12.12
11.79
10.87
11.45C
9.83C | 9.19
11.34
11.10
11.28 | | | MAG | 13.43
14.79
14.71
15.23
13.91 | 15.07C
14.67
15.80
14.57C | 15.02
15.04
14.93
14.85A | 16.06
16.14
15.18C
15.53
15.70 | 14.85
15.30
14.55
14.30
15.22 | 15.21
14.92
14.14
14.93C
13.75C | 13.22
14.09
14.67
14.67 | | | VAR | 1 9 4 4 4 | 178 | 4 4 4 4 4 A | 16877 | 88448 | 4 N N N H 4 | 77777 | | | - C
DEC | 1 1 1 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 46488 | 110 | 18
4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 40004 | 24110 | 1111 | | ⋖ | α
Ο 4 | 11200 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0 | 32622 | 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - | 0000 | 100
000
003
003
003 | | ш | 0 | 9 37
8 20
1 36
1 42
5 11 | 5 7 3 8 8 8 8 8 9 9 8 8 9 9 9 8 9 9 9 9 9 9 | 20 00 00 00 00 00 00 00 00 00 00 00 00 0 | 6 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 3 41
1 59
3 10
0 18 | 6 11
6 12
6 12
6 43 | 5 3 4 4 4 5 3 3 5 4 4 4 5 5 5 5 5 5 5 5 | | TABL | DE(| 1 | -36
-36
10
13
13
11 | 11
20
20
20
20
20
20
20
20
20
20
20
20
20 | 130 5 9
130 5 9
13 0 0 13 0 | 1 1 2 2 2 4 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 20001
2000
2000
2000 | 1 1 1 1 2 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | • O • O | 08.2
07.9
37.7
20.6 | 255.7
334.1
339.0
55.3 | 38.5
28.5
01.3
01.5 | 17.1
53.4
44.3
05.4
08.9 | 23 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 45.2
17.4
10.1
21.3
49.5 | 28.1
53.1
24.5
20.3
58.9 | | | R.
195 | 5 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 4 4 4 5 5 5 6 5 6 5 6 5 6 6 6 6 6 6 6 6 | 01
4 4 6 0 1
4 2 2 8 6 0 1 | 14 4 7 0 6 4 4 7 0 6 4 4 7 0 6 4 4 7 0 6 4 4 7 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 200 200 200 200 200 200 200 200 200 200 | 50
03
04
47
01 | 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | 13
22
4
4
22 | 14
11
10
10 | 10
10
10
10
10
10 | 11 2 2 2 2 | 18
18
22
23 | 23
10
22 | 21
3
10
10
19 | | | E U.T. | 24.2944
11.2062
23.1708
23.2340
2.3132 | 3.2958
4.2306
13.3722
5.2424
6.1937 | 24.2764
2.2368
16.2222
3.1569 | 13.3604
24.2028
16.2444
3.1785 | 29.2465
29.2132
1.2729
1.2819
7.1604 | 7.1708
29.3188
11.2181
1.2479
7.3014 | 31.2403
13.2021
24.2583
24.3403
30.2382 | | | ⊢ | APR
SEP
DEC
SEP | ₩₩₩₩ ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩ | A P P P P P P P P P P P P P P P P P P P | MAAR
NOY
DEC | NOUN
NOON
OOT | OCT
JAN
MAR
AUG | AUG
NOV
FEB
FEB | | | ۵ | 50000 | | 50000 | 0000 | 50000 | 52
51
51
51 | 51 / 52 P | | | | | 0 | | | | × . | | | | SURVEY | W-42.4
C-24.2
S-15.1
S-16.3
O-42.1 | K-47.2
K-57.2
I-44.1
H-73.7 | W-444.3
L-46.3
E-82.1
F-12.2
U-25.2 | 1-45.3
X-45.1
E-84.5
F-14.3 | T-74.1
M-41.1
Q-43.3
Q-42.4
D-12.3 | D-13.2
T-75.2
H-63.4
H-63.1
N-86.3 | 0-16.2
E-66.1
U-64.1
N-26.1 | | | MINOR | 599
600
600
601 | 602
603
604
604 | 604
606
607
607
607 | 8 6 6 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 0 | 614
614
615
615
618 | 618
619
619
619
620 | | | U NO | 4 | 0 | 9 | 4 | | | | | Ŷ | | 7 | | | 18 | | -13 | | 0 | 7 | S | | -2 | M | 7 | - | -5 | e | 9- | | | 7 | 1 | e i | - | 00 | |-------|------------------|---------|-------|-------|-------|----------|------|-----------|------|---------|-------|--------|------|-------|--------|-------|-------|------|-----------|-------|------|-------|-------|--------|-------|-------------|-------|-------|--------|-------------------|-------|------|-------|--------|------|------| | | O - C
MOTION | -0.2 | ċ | ċ | ់ | | ó | • | | -0.5 | • | -0-3 | • | • | 0.5 | • | 0.1 | • | ċ | • | • | • | • | -0.7 | ċ | • | • | • | -0.3 | • | • | ं | ċ | -0.5 | ċ | • | | | DAY | 45 | | | | | | 7 | | 43 | | | | | -71 | | 32 | 41 | 23 | -104 | 3 | -80 | 18 | 23 | 55 | ∞ | | | 16 | | | 145 | 14 | 54 | 52 | -57 | | | 10 -
MOTI | -7.9 | - | å | | | • | •9 | 5 | -9.2 | ထိ | 6 | œ | ۲. | -8.2 | o. | 9 | ô | • | 6 | å | 7 | 7 | -8.3 | 7 | ċ | æ | å | -10.0 | ŝ | æ | 8 | å | -8.2 | å | • | | | g | 11.59 | 1.5 | 1.65 | 1.4 | 1.33 | 9 | 9 | ~ | 11.57 | 1 • 4 | - | 1.1 | 0.7 | 10.01C | 0.3 | - | 6.0 | .2 | 0.0 | 3•3 | 1.2 | 0.9 | 11.11 | 0.5 | 9.0 | 0.5 | 2.0 | 10.63 | 4.0 | 1•4 | •2 | • | 9.27 | 6 | 3 | | | MAG | 18 | 5.12 | 5.24 | 2.64C | 4.40C | 5.4 | 5.3 | 5.54 | 14.95 | 4.87 | 5.24 | 5.07 | 4.56 | 12.81C | 3.68 | 4.24 | 4.23 | 80 | 3.59 | 00•9 | 4.58 | 5.10 | 15.28 | 4.75 | 5 • 03 | 5.15 | 5.24 | 14.60 | 4.43 | 4.20 | 3.0 | 3.6 | 13.70 | 3.5 | 5.2 | | | VAR | 21 | _ | _ | æ | | 7 | | 6 | 7 | | - | | | 6 | | -31 | _ | _ | 0 | | 2 | 9 | 16 | 0 | 0 | e | S |
6 | ო | 2 | | | 7 | | | | | DEC | 19 | | | | ~ | | | | -1 | | 7 | 7 | 54 | e | 15 | -34 | S | 77 | 8 | -58 | 30 | 19 | 19 | -20 | 0 | 4- | 41 | 5 | ا
گ | 15 | 0 | - | m | m | 7 | | ⋖ | Р О | -3.3 | 9. | 6 | • | • | ô | ं | ċ | -0.5 | ċ | 3. | 3. | 4• | -1.2 | ÷ | -22.9 | 2 | ŝ | ; | 6 | • | • | 7.6 | • | • | • | | -1.6 | ä | 5 | Ö | • | -0.3 | • | • | | щ | 0 | 20 | 4 | 4 | 7 | 4 | ~ | 7 | G | 0 42 | S | 4 | S | ~ | 117 | 4 | 60 0 | m | 0 | n | 0 | 4 | ß | 6 55 | 0 | 7 | 0 | ~ | 2 26 | ~ | ~ | 4 | 7 | 94 0 | S | 8 | | TABLE | DEC
1950 | 10 57 | 0 | 0 5 | 4 | 1 3 | 9 | 0 | 0 | 3 1 | _ | 6 5 | Z | 7 7 | 23 33 | 3 | 0 | 9 | 1 13 | G | 7 4 | 4 | S | 8 56 | 6 2 | G | 5 1 | 0 1 | 21 12 | п | - | 4 | 7 | 0 ~ | 3 | 4 6 | | | | - | | | ı | 1 | | | | 2 | ±. | | | | î
o | | N. | | 2 | | ı | ł | 9 | 6 | ı | | | | - | | Φ. | | 6 | 7 | 1 | | | | A.
50.0 | 07. | 90 | 07. | 26. | 29. | 59 | 19 | 0 | 35. | 33 | 49 | 43 | 28 | 55. | 45 | 29 | 22 | 'n | 23 | 29 | 28. | 14. | 13. | 46 | •60 | 11 | 37 | 37. | 36 | 38 | 22. | 38 | 29. | 90 | 00 | | | R•
19 | 0 53 | S | 'n | ~ | - | 3 | 4 | 4 | 4 56 | Ŋ | S | N | ~ | 1 42 | - | | ~ | Z | 0 | | 7 | ~ | 5 19 | 3 | 7 | - | ~ | 5 56 | Ś | ~ | 0 | E | 9 20 | S | 0 | | | | 2 | ~ | 7 | | 7 | | | | 7 | - | 7 | | _ | 7 | | 2 | | - | | 7 | 7 | | | ~ | | | 7 | 7 | | - | | | 0 | ~ | | | | E U.1 | 231 | 4.249 | 4.240 | 4.304 | 1.241 | •186 | 2.152 | .211 | 4 • 309 | .331 | • 191 | .295 | 3.226 | 62 | 3.170 | 156 | .288 | .303 | 1.164 | •247 | 2.263 | 7.191 | 27.200 | 4.188 | •278 | 4.240 | 9.321 | 31.156 | 1.166 | 3.172 | •181 | 1.276 | 17.225 | •216 | •257 | | | ⊢ | FEB | FEB | FEB | >0Z | JUL
T | 201 | ^0 | 20 | MAY | ۸A۲ | ZAD | AN | MAR | AUG | DEC | NAO | NAU | APR | 20 | AUG | SEP | DEC | DEC | ۸A۲ | N
N
N | FEB | FEB | DEC | DEC | APR | DEC | FEB | FEB | S | oct | | | ۵ | 55 | 7 | 7 | _ | _ | 0 | 0 | 0 | 51 | _ | - | _ | 7 | | _ | - | ~ | 7 | _ | 21 | | | | | 21 | 2 | 7 | 20 | 0 | 7 | 0 | ~ | 52 | _ | 0 | | | SURVEY
NUMBER | U-53.7X | 63.6 | 62. | 76. | 4• | -71. | -11. | -21. | K-51.1 | -60 | 6-34.2 | -44. | -33. | -45. | -15. | | 23. | 4 | 33.3 | 74. | -44- | -25. | 5-26.4 | -53. | -22• | 62.1 | 44 | F-73.6 | 74 | 22 | 22. | 95. | U-15.2 | 53. | 21. | | | MINOR
PLANET | 621 | 2 | ~ | 2 | | 624 | ~ | ~ | 7 | 7 | | ~ | 7 | 2 | 628 | 629 | 659 | 659 | 631 | 632 | 633 | 633 | 633 | 635 | 636 | 636 | 637 | 638 | 638 | 638 | 689 | 689 | 639 | 640 | 643 | | | U Z | 14460 | 21161 | 1717 | 112 12 16 | 2775 | 9 1 1 1 9 | |-------|--------------------|---|---|--
---|---|--| | | 0 - C
MOT I ON | 0000 | 0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0- | 00101
0000
0000
0000 | 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | HO HHOO | 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | DAY | -41
60
18
19 | 4
1
2
2
2
2
2 | 18
-77
-69
-67
-1 | 1 28
1 28
1 28
1 40
2 40 | | -26
-24
-11
61 | | | 10 - DAY
MOTION | - 1 8 • 8 - 1 1 0 • 0 1 - 1 9 • 4 + 1 + 1 9 • 1 | -8.9
-8.1
-7.6
-7.7 | -1103
-1103
-1105
-1101 | 0.001
0.001
0.000
0.000
0.000
0.000
0.000 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | -10.2
-9.4
-7.8
-7.2
-9.6 | | | g | 10.75
11.99
11.24
11.59 | 12.59
10.97
10.64C
10.51C | 11.03
12.51
10.65C
9.41 | 10.69
10.38
11.75C
11.75C
11.58
11.69 | 0.00 | 11.47
11.64
11.60
11.15
9.50C | | | MAG | 14.72
15.64
14.69
15.04
15.86 | 15.69
16.18
15.88C
15.75C | 15.41
15.31
14.38C
13.02 | 14.88
15.09
15.77
14.68C
14.62C
14.82
15.62 | 44 m m m m m m m m m m m m m m m m m m | 14.81
15.12
15.25
15.33 | | | VAR | 05770 | 50007 | 177 | N W 4 H H 1 9 C | | 70112 | | | - C
DEC | 99000 | 21111 | -10
-11
17 | 20 1 1 10 10 10 10 10 10 10 10 10 10 10 1 | 11 6601 | 11211 | | ⋖ | ° 0 ∢ | 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00000 | 0 | 0 | • • • • • | 00000 | | TABLE | DEC
1950.0 | 18 24 09
6 12 07
-20 58 23
-32 25 13 | -10 17 41
-21 08 59
-21 15 31
-21 15 33
31 30 32 | - 7 21 37
-27 34 59
-27 41 37
15 31 52
- 7 07 10 | 3 14 43
-10 36 10
-35 09 27
-34 58 29
24 39 46
2 10 27
25 01 57 | 000 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 13 44 17
13 03 00
12 52 45
3 33 21
6 20 26 | | | R. A.
1950.0 | 5 39 33.9
11 16 00.1
16 36 15.6
16 36 11.0
17 09 23.6 | 11 42 47.3
19 50 17.3
19 31 57.1
19 31 53.9
9 26 19.1 | 13 39 43.0
18 16 54.5
18 15 51.8
11 04 30.2
20 09 07.0 | 12 54 42.8
22 28 49.4
22 14 02.8
15 28 25.7
15 25 29.1
4 42 53.1
11 41 05.9 | 29 31.
21 39.
08 33.
34 40.
32 51.
52 18. | 3 52 17.9
3 25 44.6
3 29 55.8
10 48 26.2
9 30 18.5 | | | E U.T. | 28.1736
13.2653
25.2278
25.3049
7.2389 | 1.2299
6.2757
29.2104
29.2701
10.1965 | 24.2042
29.2618
30.2139
11.2875
31.2806 | 7.2507
19.3264
9.2514
5.2521
8.2722
12.2347
26.2708 | 1.125
1.125
1.125
1.125
1.206
2.236
6.244 | 16.2562
3.1785
10.1493
20.2410
9.2972 | | | A . | CAAARC
COAARC | APR
JUL
JUL
FEB | CACCP | A A A A A A A A A A A A A A A A A A A | צרממר פפי | NOV
DEC
PEB | | | Δ . | 52
52
51 | 2222 | 22222 | 00000
0000
0000 | 0000 000
0000 000 | 500
200
200
200 | | | SURVEY
NUMBER | S-34.5
I-43.2
X-64.5
X-63.3
L-65.1 | 1-56.2
M-84.4X
N-14.1
N-13.5X
H-41.3 | W-34.4
M-35.2X
M-45.1
I-32.5
N-32.1 | C-142.1
K-66.2
K-66.2
K-76.3
K-76.3
K-76.3
K-76.3 | 100 40048
100 60404 | E-85.1
F-14.4
F-15.4X
U-54.6
H-45.2 | | | MINOR
PLANET | 0000
4444
4444
0000 | 644
648
648
648
651 | 652
652
653
653 | 66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665
66665 | | 662
662
664
665
665 | | | ON | 7 9 9 7 | 1 35 | 4 44 400 | 01.120 | 7 400 | 0 10 0 m | 211745 | |-------|------------------|--|--|--
---|---|---|---| | | 0 -
MOT 10 | 0 | 00100 | 100.00 | 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 | 10.5 | 0 - 1 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - | 0-00-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0 | | | DAY | 3
-105
62
127
135 | -19
-71
-101
11 | 133
126
139
19 | - 33
- 42
- 138
- 76 | 48
77
83
50 | 65
11
23
23 | 68
68
-23
72
-139 | | | 10 -
MOTI | -9.2
-8.0
-8.3
-7.1 | 0.470 | | -8.2
-9.6
-8.9
-8.7 | 8 9 9 9 | -9.6
-9.1
-10.0
-9.2 | | | | ŋ | 9.66
11.88
11.87
10.21 | 13.22
11.02
11.37
11.48 | 11.50
11.34
12.70C
12.23C
12.55C | 111.31
111.50
111.13
8.44C
9.56 | 8.83A
10.82
10.42
10.38 | 9.77
9.74
10.47
10.42
11.22 | 11.78
9.55
11.81A
12.81 | | | MAG | 13.89
13.32
15.74
13.66
13.65C | 17.06
14.55
15.26
15.95
13.69C | 15.79
15.62
15.56C
15.08C
15.40C | 14.92
15.06
14.57
12.74
11.63 | 12.96A
15.21
15.11
15.02
14.33 | 13.70
13.66
15.06
15.01
16.76 | 16.18
13.55
14.61A
14.76
12.99 | | | VAR | 114 | 1 | -15
10
12 | 126 | 1.0770 | 3
108
108
12 | -1
-1
1
1 | | | - C
DEC | 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 1001 | 1 1 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 11700 | 100 110 | -1
0
116
116 | 101 | | ⋖ | ω
Α | 13.2 | 0000 m | 12.2 | 10.6
10.6
12.1
10.6 | 100-100-100-100-100-100-100-100-100-100 | -0.5
-0.5
12.4
11.7 | 0 - 1 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - | | ш | 0.0 | 1 02
5 07
3 58
0 34
1 02 | 8 09
4 26
4 58
9 27
6 10 | 4 28
7 22
7 52
6 10
5 59 | 9 19 2 40 3 3 8 45 43 43 43 43 43 43 43 43 43 43 43 43 43 | 4 14
3 00
5 09
7 10 | 3 55
3 55
8 10
3 05
04 | 1 25
9 02
1 24 | | TABLE | DE(
195(| 90000 | 24.00. | 121
121
125
125
125
125
125
125
125
125 | 113
113 2
174 4
24 3 | -16 4
9 4
8 0
8 1
-27 1 | 111
223
223
200
200
200
200 | -33
-16
-16
-16
-16 | | | A.
50.0 | 24.4
14.3
45.6
22.7
21.8 | 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 02.1
12.1
52.5
44.9 | 29.6
41.8
06.7
52.7
03.6 | 50.3
17.7
27.6
16.5
56.4 | 36.7
24.3
23.5
07.3 | 28.2
00.1
13.3
17.0
50.1 | | | R. | 9 29
0 35
0 48
10
8 10 | 5 11
3 40
3 26
4 48
6 02 | 1 46
3 40
3 39
3 39 | 0 47
0 46
3 09
6 21
4 58 | 2 14
7 05
1 33
1 32
6 15 | 2 32 32 32 33 19 3 19 6 41 | 1 08
4 39
3 37
4 29
2 29 | | | • | 6 7 0 4 7 | 98208 | 111111111111 | 00844 | 1 | 1 9 6 1 1 | 1 2 2 2 1 1 1 1 | | | E U.T | 10.313
8.304
20.250
7.235
7.268 | 23.170
14.291
6.253
23.161
28.254 | 6.257
7.291
23.280
24.213
24.267 | 10.263
11.237
4.295
29.310
12.310 | 24.232
8.283
24.368
26.261
29.300 | 4.220
4.230
12.247
12.258
12.258 | 24.258
27.289
3.331
27.216
1.291 | | | ⊢ | FEB
OCT
FEB
FEB | DEC
SEP
OCT
DEC | AUG
APR
APR
APR | AUG
AUG
NOV
MAY
DEC | MAR
PEB
MAY | A P R NOV NOV DEC | FEB
SEP
NOV | | | ٥ | 51
52
51
51 | 50
50
50
51
51 | 52
52
52
53
54
54
54
54
54
54
54
54
54
54
54
54
54 | 50
50
50
50
50 | 52
52
52
52
51 | 51
50
50
51 | 52
51
52
51 | | | SURVEY
NUMBER | H-55.1
D-33.1
U-55.3
G-76.3
H-16.1 | S-15.5
C-53.3
C-54.2
R-56.3
S-45.2 | N-75.2
N-85.2
W-36.3
W-46.1
W-45.1 | B-13.1X
B-23.2
Q-73.4X
L-34.2
F-53.4 | V-36.1
G-45.3
U-83.1
U-73.10
L-35.2 | 1-75.3
J-35.2
E-62.5X
E-63.1
S-51.3 | U-64.7X
W-67.3
O-73.6
W-64.1
Q-52.2 | | | MINOR | 665
666
667
667 | 668
669
669
670 | 671
671
672
672
672 | 673
673
673
674
675 | 675
676
676
676
676 | 678
678
680
680
680 | 681
683
685
685 | | | U Z
S | 7 - 0 - 1 - 0 | | 111128 | 1089 | 1111 | 05050 | L0084 | |------|------------------|---|--|--|---|--|---|---| | | - 0
MOT I | 0000 | | 100.5 | 100-1 | 0.00 | 00000 | 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | DAY | 1 1 2 2 4 5 2 8 2 5 4 5 2 6 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | 11
60
80
100
-1 | 28
46
31
32
38 | 66
0
16
16
20 | 26
124
126
36 | -78
-71
-71
18
24 | | | 10 -
MOTI | 113.1 | 0 7 8 8 0 0 | 110.1
-18.1
-18.2
-19.3 | 1 6 . 9 | -7.2
-7.8
-12.1
-10.8 | -9.1
-9.0
-8.4
-7.9 | -8.2
-6.9
-7.3
-11.9 | | | ဖ | 13.02
112.45
111.63 | 8 4 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 10.00
9.87
9.99A
9.81 | 10.04A
10.31
10.87C
10.32 | 10.34
8.10
9.63
9.49
13.94C | 11.78
9.88C
12.46
11.98
13.08C | 9.20
9.76
9.83
11.00 | | | MAG | 5 5 5 6 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 | 3.44C
4.23
4.00
4.14 | 3.90
4.67
4.84A
3.46 | 4.89A
5.28
6.25C
4.26 | 6 4 4 6 6 7 6 9 6 9 6 9 6 9 6 9 6 9 9 9 9 9 9 | 4.53
4.03C
6.19
5.74
6.28C | 24.00
5.00
5.46
1.56 | | | VAR | 2005 | , , , , , , , | 4
0
0
0
1
1 | -41 1
-39 1
-8 1
-14 1 | -14 1
-61 1
-61 1
-61 1 | 39 11 0 1 0 1 0 1 | 00676 | | | DEC | 4 6 7 4 | | 11 0 0 0 6 | -57
-54
-8
-8 | 119 | 041161 | - 1 ∞ ∞ ∿ ∞ | | ⋖ | ω
0 4 | 0 - 1 - 1 - 1 - 2 - 2 - 3 | - 04404 | 40000 | 44004
•••••
••••• | 1 1 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 | 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 111111111111111111111111111111111111111 | | ABLE |)EC
950•0 | 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 2 80r00
4 0vuu | 01 16
10 39
09 20
42 22
54 49 | 37 53
27 13
19 17
19 10
16 10 | 17 07
30 25
20 09
20 06
53 13 | 05 38
10 47
49 05
44 49
18 55 | 29 04
46 19
46 02
08 53
15 39 | | 11 | D
19 | 44 6 | | 21
-16
-14
-12 | -12
-11
-33
-33 | -18
-1
26
26
-23 | -21
12
-19
-20 | 20
00
00
00
00
00 | | | • A•
950•0 | 2 01.6
6 44.4
7 26.2
8 47.0 | 16
55
09
20
49 | 7 49.8
0 08.6
6 59.7
2 53.7
5 58.5 | 05.2
46.1
04.7
03.1 | 45.5
1 21.3
0 05.4
0 04.5
48.7 | 58.9
02.5
29.9
04.3 | 37.7
23.5
21.7
49.7
28.8 | | | & -i | 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 | 0 140F0
0 0 0 6 0 0 | 10 07
11 36
11 16
17 12 | 11 26
11 12
14 42
14 42
14 26 | 14 09
21 03
1 29
1 29
18 31 | 14 50
9 57
19 47
19 29
9 55 | 0 36
0 10
0 10
6 42
8 39 | | | E U.T. | 8.1583
12.1528
6.2028
23.2083 | 3.33
3.33
7.370
9.211
5.198
9.211 | 20.2229
14.3347
31.3083
26.2556
7.2243 | 13.3465
31.3083
27.2535
27.2896
10.3319 | 2.2729
11.2083
12.1618
12.1750
30.2139 | 4.2090
11.2285
6.2757
29.2701
1.2479 | 27.3243
27.3146
27.3521
5.2674
8.1583 | | | ⊢ | ZZZZZZ | | FEB
MAR
MAR
FEB | M A A A A A A A A A A A A A A A A A A A | MAY
AUG
OCT
JUN | MAY
JUL
JUL
MAR | SEP
SEP
SEP
CAN | | | ۵ . | המה
המה
המה
ה | | 52
51
51
51 | 51
52
52
51 | 50
50
50
50 | 00000
11000 | 2000 | | | SURVEY
NUMBER | G-31.2
G-41.3
G-36.3X
V-23.4 | 35. | U-42.2
I-56.2
I-46.3
X-82.2
G-75.1 | I-46.1
I-46.1
W-77.1
W-67.4
J-85.4 | K-35.1
B-21.1
D-61.1
M-45.5X | K-55.5
H-64.2
M-84.6X
N-13.4X
H-63.3X | P-41.3
P-32.2
P-33.3
G-21.1X
G-31.1 | | | MINOR
PLANET | 687
688
688
688 | 0 00000 | 693
694
694
695 | 696
696
696
696
701 | 701
702
705
705 | 708
709
710
710
711 | 712
713
713
715 | | | U Z
S | 0 - 1 - 2 - 2 | 2 4 4 4 5 5 | 99999 | 9 6 4 5 6 | 4 4 4 1 2 2 | 174 | 97079 | |---------------|------------------|---|---|--|---|---|---|---| | | O - | 100.0
100.1
100.1 | 00000 | 100.2 | 00000 | 00000 | 11110000 | 11100 | | | DAY
ON | 30
130
130 | -30
10
111
8
-50 | 123
123
137
0 | 91
-113
-80
-99 | 123 | -20
-18
-13
-23
-31 | 26
31
-79
68
58 | | | 10 - [
MOT IC | - 8 · 8 · 8 · 8 · 7 · 7 · 3 · 7 · 9 · 7 · 9 | 1 1 1 2 5 . 7 | 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 9.9.9
17.6
17.6
17.6 | 1 8 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 | | | o | 10.81
11.86
12.05
11.72
11.84A | 12.04
12.08
10.67
10.99 | 10.79
10.42
12.98
13.04
11.05C | 12.06
11.18
10.79
11.10C | 10.35
10.49
10.21
10.36
11.64C | 11.98C
11.14C
11.17
10.96
11.01 | 11.10
10.59C
12.59
9.83
10.68 | |
| MAG | 14.78
15.86
16.05
14.87
14.07A | 14.73
16.36
14.91
13.71 | 14.47
14.62
14.39
14.45
15.12C | 15.77
14.10
13.89
14.20C
13.98 | 14.86
15.00
14.75
14.90 | 14.78C
14.97C
15.00
14.55 | 15.75
15.24C
13.73
14.00 | | | VAR | -15
-17
-17
30
-5 | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 04440 | w 4 4 4 L- | 00004 | 122112 | 000000 | | | - C
DEC | -17
-22
-22
-22
-25 | - 1
- 1
- 1
- 1
- 2
3 | 7-77- | 1124 | 0 m m m 0 | 122 | 173 | | ,
« | м
0 А | 0.00 | 10.00 | 10001 | 0.0000 | m m m m m | 0 | ννοι
νοω 94 | | TABLE | DEC
1950.0 | 0 24 39
8 52 16
8 52 18
8 53 08
1 49 04 | 3 02 40
3 40 57
1 58 51
7 43 33
6 16 13 | 5 36 17
7 16 59
6 54 07
6 54 10
6 26 17 | 3 25 02
6 20 38
0 32 15
0 32 31
3 35 07 | 5 54 27
5 54 30
5 55 01
5 55 06
4 49 13 | 4 49 21
3 06 10
3 06 11
2 11 00
2 10 55 | 2 52 22
2 54 38
1 59 07
2 33 37
1 40 20 | | • | | | 1 2 1 1 | 1755 | 120 | <i>w w w w w w w w w w</i> | । निन्नन | 1 1 1 | | | . A | 4 12.8
7 30.8
7 30.5
3 15.2
9 39.3 | 14 45 1
3 20 9
0 18 4
16 14 7
17 58 5 | 1 01 1 0 1 2 2 2 2 2 2 4 2 1 2 2 4 2 1 2 2 4 2 1 2 2 4 2 1 2 2 4 2 2 2 2 | 54.6
9 24.4
0 10.2
0 08.2 | 0 36 8
0 37 6
9 45 8
9 45 3
8 54 5 | 19 59 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 0 42.9
9 59.4
17 41.2
14 06.9
14 59.6 | | | α | 12 4
4 1
4 1
11 2
23 3 | 23
7 2 3
13 3 3 2 | 5 1
16 4
16 4
17 5 | 14 2 2 2 1 3 2 1 3 3 1 0 0 1 0 | 6 4
6 3
1 8 3 3 | 18 18 18 18 18 18 18 18 18 18 18 18 18 1 | 132 | | | E U.T. | 22.3021
11.2722
11.2847
26.2618
14.2910 | 6.1958
25.2889
5.2785
24.2042
14.2576 | 23.2521
27.2875
25.2278
25.2361
27.2090 | 2.2729
7.2819
31.1826
31.2215 | 22.1431
22.1521
23.1528
23.1618
29.2132 | 29.2229
2.2507
2.2597
24.1750
24.1847 | 8.3889
9.2062
1.2250
26.2708
7.2611 | | | ⊢ | MAR
DEC
DEC
SEP | C C C C C C C C C C C C C C C C C C C | DEC
SEP
MAY
JUN | MAY
AUG
AUG
OCT | U O O O O O O O O O O O O O O O O O O O | JUN
001
001 | APR
APR
OCT
FEB
APR | | | ۵ | 52
50
50
50
50 | 50
52
52
50
50 | 51
52
52
51 | 51
51
51
50 | 52
52
52
51 | 51
51
51
51 | 51
52
52
51 | | | SURVEY
NUMBER | V-42.2
F-35.2
F-36.1
U-73.7
C-53.2 | C-53.2
T-23.3X
G-22.2X
W-34.1
C-54.4 | S-13.8
P-35.1
X-64.7
X-65.1
M-23.4X | K-35.3
N-84.2
0-15.1
0-14.3
D-45.3 | S-51.2X
S-52.3X
S-61.1
S-62.2
M-41.2 | M-42.1X
P-73.1
P-74.1X
Q-12.1
Q-13.1 | 0-52.2
0-52.2
0-55.2
0-84.5
0-84.5 | | • | MINOR
PLANET | 715
716
716
716 | 717
717
718
718
720 | 720
721
722
722
722 | 726
727
727
727
731 | 731
731
731
731 | 732
734
734
734 | 735
735
736
737 | | | UNO | 75617 | 49461 | 1 4 5 6 6 7 | 10001 | 0 9 1 1 1 4 | 8
7
12
3 | 8 1 0 1 v | |-------|------------------|--|---|---|---|--|---|--| | | 0 -
MOT I | 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 | 0 - 1 - 0 - 5 - 1 - 0 | 10010 | 4 9 0 0 1 | 0111 | 0000 | 0-10-0 | | | DAY
ON | 53
-95
-103
27 | 149
100
100
100 | 25 113 113 114 114 114 114 114 114 114 114 | 110
938
938 | 1
-14
21
-17
-17 | 132
133
174 | -23
41
36
31
22 | | | 10 -
MOTI | 8.77.
8.03.
7.08.
7.08. | 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | - 8 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 | 1 1 8 9 9 9 1 1 6 9 9 1 1 9 9 9 1 1 9 9 9 1 1 9 9 9 1 1 9 9 9 1 1 9 9 9 1 1 9 9 9 1 1 9 9 9 9 1 1 9 | -10.1
-9.9
-12.6
-11.2 | -6.9
-6.8
-8.7
-11.0 | -10.7
-8.6
-7.1
-6.7
-7.0 | | | o | 11.08
10.21C
9.90
10.17
10.08 | 11.47
10.60
10.72
11.22 | F1.13
10.60
10.74
10.78 | 9.85C
9.65
9.87
13.01 | 11.64
11.57
10.60 | 10.82C
10.97
10.07C
11.23C | 9.26
9.63C
9.63C | | | MAG | 14.61
14.37C
14.06
13.82 | 15.21
14.73
14.85
15.14 | 15.46
15.84
15.04
14.24 | 14.08C
14.03
14.67
15.10 | 15.18
13.53
15.46 | 15.69C
15.89
14.64C
14.48C | 14.82C
13.77
14.14C | | | VAR | 90044 | 0
0
0
0
0
0 | 22442 | 1911 | -6
-25
3 | 44000 | 01270 | | | - C
DEC | 00044 | 76
16
16 | L 4 W W O | 98086 | 130 | | 1111 | | ∢ | 0 K | 1 - 2 - 9 - 0 - 0 - 8 - 0 - 8 | | 3.2
0.2
0.1
0.1
17.6 | 17.5
17.2
0.1
-1.3 | 03000 | 10011 | 00000 | | TABLE | DEC
1950.0 | - 1 30 09
-19 08 13
-19 08 21
- 0 04 13
- 0 04 10 | - 9 29 35
-14 45 50
-14 45 44
-16 01 46
-14 24 18 | 13 49 32
30 42 19
- 8 30 07
- 8 30 06
23 24 30 | 23 24 32
23 10 26
3 13 40
3 50 33
26 32 24 | -20 51 04
-20 51 04
29 27 47
5 36 18
9 53 01 | 9 45 51
9 45 31
18 57 00
-34 37 34
-34 37 41 | -34 39 39
9 37 29
10 49 15
10 49 37
-13 07 05 | | | R• A•
1950•0 | 13 03 31.7
23 26 18.2
23 26 18.1
14 57 58.0
14 57 57.1 | 0 41 03•1
15 29 25•8
15 29 18•4
14 15 50•5
14 01 38•5 | 5 23 32•3
9 48 01•7
12 45 50•8
12 45 49•9
5
54 46•8 | 5 54 41.5
5 41 39.4
10 59 09.7
12 28 25.4
8 26 45.7 | 17 07 18•2
17 07 18•4
5 40 49•7
13 11 20•1
2 06 27•8 | 2 05 04.6
2 05 03.5
5 59 15.4
17 32 53.3
17 32 52.8 | 17 31 41.5
11 45 39.8
11 34 28.5
11 34 23.8
15 34 33.0 | | | E U.T. | 9.2160
5.2437
5.2535
4.3000 | 30.3028
5.2208
5.3757
10.3438
28.2139 | 27.1917
10.2187
23.3083
23.3264 | 14.3111
31.1562
24.2583
2.3271
7.1604 | 26.3389
26.3472
14.1833
23.1722
5.1687 | 7.2632
7.2736
28.3271
7.2389 | 8.2569
15.3243
31.2236
31.3410
22.2819 | | | DAT | 51 APR
51 SEP
51 SEP
51 MAY
51 MAY | 51 SEP
51 MAY
51 MAY
51 APR
51 APR | 51 DEC
51 FEB
52 MAR
52 MAR
50 DEC | 50 DEC
50 DEC
52 FEB
51 APR
51 FEB | 52 MAY
52 MAY
50 DEC
52 APR
50 NOV | 50 NOV
50 NOV
51 DEC
51 JUN | 51 JUN
51 MAR
51 MAR
51 MAR
52 MAY | | | SURVEY
NUMBER | J-53.2
0-75.2
0-76.1
K-52.3
K-61.1 | P-466
K-63.5
L-84.5
K-24.3 | S-25.2
H-51.3X
V-44.2
V-54.2
F-73.2 | F-83.5
F-73.2
U-64.4
I-73.5
H-13.5 | X-73.3X
X-83.1
F-72.3
W-22.1
E-24.2X | E-34.8
E-35.2
S-44.3
L-65.4
L-66.2 | L-76.1
1-53.3
1-43.4
1-52.1X
X-33.1 | | | MINOR
PLANET | 738
739
740
740 | 741
742
742
743 | 744
746
746
746
748 | 748
748
748
750 | 752
752
753
753 | 755
755
755
757 | 757
758
758
758
758 | | | UZ | 111 8 4 0 6 - | 0 m m 0 0 | 4 4 8 0 4 | 7 4 6 8 7 9 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | <u>м мм</u> м | 22222 | 0 40 % | |------|------------------|--|--|---|--|---|--|--| | | O - C
MOTION | 00000 | 10000 | 01000 | 0111 | 0 | 0000 | 0 000
4 ~ ~ 0 0 | | | DAY
ON | 4 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 9 1 1 1 9 | -111
-211
-26 | 35
188
8 8
8 8 | 149
38
38 | 1135 | -59
-53
-71 | | | 10 - [
MOTIC | -13.1
-10.0
-9.9
-9.9 | 1 1 1 1 1 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | -10.7
-10.7
-9.3
-8.6 | -8.0
-11.2
-11.8
-9.9 | 0 8 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | -10.7
-8.7
-9.4
-8.1
-8.1 | -6.6
-5.7
-7.7
-11.1 | | | ს | 11.64
9.59
9.67
9.22C
9.72 | 12.19
11.69
9.46
9.65
13.45 | 10.45
10.69
11.12
10.95
11.45C | 9.88
11.87
10.38
10.76C | 10.24C
9.62
11.41
11.76 | 9.06C
9.07C
9.32C
11.09 | 10.22
10.03
10.53
12.55 | | | MAG | 13.57
14.29
14.34
13.89C | 15.40
14.89
14.06
14.25
14.72 | 15.04
14.15
14.85
14.69
14.75C | 13.69
14.14
14.09
14.44C | 14.45
14.52
15.10
15.43
15.02 | 13.06
13.02
13.27C
15.94
15.57 | 14.05
14.59
14.56
14.73
14.79 | | | VAR | 14
-17
-17
-17 | 70077 | 04920 | 6044 | 1 2 4
1 2 4
1 3 | 1 1 1 1
0 w w 4 w | 777 | | | - C
DEC | 21
-14
-14
-11 | 0 0 0 2 2 2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 | 1 9 9 1 1 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 13 | -26
-26
-26
-4 | # # # N N N | 7 7 7 7 7 | | ⋖ | α
0 4 | 13.6 | 010000 | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | -1-
0 0 0 0
0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 | 00.3 | 0 0 0 0 0 0 0 4 mm w w | 0 | | щ | 0.0 | 9 52
8 13
9 06
7 14 | 7
8
3
7
8
9
9
9
9
9 | 93 7 7 8 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 7 46
6 32
7 18
0 31
7 30 | 3 38
5 56
7 16
6 38 | 7 49 11 06 4 6 9 6 9 6 9 9 6 9 9 9 9 9 9 9 9 9 9 | 2 06
6 02
6 15
9 02
9 05 | | TABL | DE(
195(| 04446
0004 | 26 36
32 03
32 00
19 46 | 22 23
24 33
22 22
24 05 | 23 37 23 25 25 25 25 25 25 25 25 25 25 25 25 25 | 20 23
17 59
0 55 | 21 22 21 22 21 21 24 11 24 11 24 | 18
18
22
22
22
55
55 | | | _ | 2025 | 9 1 9 2 1 | 0 6 7 7 8 | 0 0 0 0 0 | 44400
111 | 11111 | 0 4 4 4 4
 | | | A.
50.0 | 43.
14.
20.
20.
48. | 19.
28.
10.
10. | 28.
17.
41.
44. | 15
31
49
37 | 59
45
01
11 | 34.
37.
36.
27. | 008
944
429 | | | R•
19 | 0 16
9 47
9 46
9 46
9 23 | 8 23
8 22
8 41
8 41
1 47 | 5 57
2 31
0 07
9 05 | 3 16
1 17
7 23
0 22
0 19 | 3 03
0 30
0 29
6 09 | 7 07 7 06 7 06 1 29 1 29 1 29 | 0 0 0 4 4 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 | | | | 0 | аннн | a aaa | д | ааа | 7777 | 7 | | | E U.1. | 31.2118
4.3382
5.2931
5.3028
29.2201 | 29.2618
30.2139
30.2250
30.2347
5.1451 | 28.1993
8.1729
19.2118
20.2229
4.2354 | 9.2160
13.2653
26.2597
27.3243
30.1944 | 12.1500
25.1625
5.2667
6.2653
25.2097 | 6.2257
7.2174
7.2278
6.3708 | 8.2028
22.1340
1.2347
23.2431
23.2521 | | | + | 7 | 2 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z | MAY
NOV
FEB
JUL | A A A B B B B B B B B B B B B B B B B B | M M M M M M M M M M M M M M M M M M M | N N N D D O O O O O O O O O O O O O O O | OCT
JAN
JUL
DEC | | | ۵ | 551 | 1200 | 52
52
52
51 | 5525 | 522 | 551 | 50 652 652 651 651 651 651 651 651 651 651 651 651 | | | | × | × | | × | × × | × | × | | | SURVEY
NUMBER | N-35-1
M-75-3
M-76-1
N-15-1 | M-35.3
M-45.2
M-55.1
M-56.4
E-26.4 | L-24-2
E-42-1
U-32-8
U-42-1
M-64-2 | J-53.7
I-43.3
X-85.2
P-41.1
P-31.1 | E-53.1
T-14.4
H-75.1
H-85.1
X-55.3 | L-54.2
L-63.1
L-64.1
N-72.3
N-74.2 | D-27.1
S-46.1
M-61.1
S-14.3 | | | MINOR
PLANET | 759
760
760
760
760 | 761
761
762
762
763 | 764
766
766
766 | 769
770
772
773 | 774
774
775
775 | 776
776
776
777 | 780
780
781
782
782 | | | ONO | 0 7 7 8 8 | 40440 | 4 8 4 8 8 | 9000 | 04000 | 1 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 1 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | |---------|------------------|---|---|--|--|--|---|---| | | NOT TOW | 00000 | 00000 | 00000 | 10.0 | 00000 | 100.7 | 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | DAY | 111
113
118
14
15 | 32
-26
13
16 | -10
78
-89
2 | 88
044
000
04 | 1 8 8 4 1 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 1771 | 150
180
35 | | | 10 -
MOTI | -10.3
-10.5
-10.2
-9.7 | 19.6
17.9
17.0
17.0 | 1 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 | -12.5
-7.2
-7.8
-10.9 | -10.9
-11.0
-10.0
-9.0 | 1 6 6 7 6 9 7 6 9 9 9 9 9 9 9 9 9 9 9 9 9 | | | ဗ | 11.95C
12.12
10.14C
10.29
10.10 | 10.32
10.10
9.75C
9.61
9.85 | 9.58C
9.05
12.09
12.34 | 9.24C
8.94
10.40C
10.34
11.11C | 11.18C
12.30
12.25C
12.32
10.64C | 10.99
10.99
9.94
11.66C | 11.45C
10.93
10.24
11.58 | | | MAG | 15.07C
15.25
15.33C
15.45
15.37 | 14.29
15.03
14.60C
14.75 | 14.31C
12.81
15.40
16.69
16.53C | 13.54C
13.24
15.45C
14.75 | 14.57
15.26
15.24C
15.31
14.55C | 14.90
14.90
14.46
14.74C
15.15 | 14.91C
14.91
14.65
14.48 | | | VAR | 66111 | 77777 | 1 1 1 1 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | U U U O 4 | 128 | 128 | 4 4 4 % 0 1 | | | - C
DEC | 99444 | 0 7 4 6 6 | 100 | 44448 | 1 | 11 41 1 | 0
5
13 | | ⋖ | ω
Ο 4 | 2.5
2.5
1.11
1.11 | 1001 | 100
100
100
100
100
100 | 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 0 8 8 8 0 0 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 100-7
100-7
100-7
100-7 | 11.4
1.0
1.0
1.0
1.0
1.0
1.0
1.0 | | ш | 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 23
23
29
29 | 53
51
51
08 | 58
17
23
25 | 36
07
05
17 | 09
16
14
21
04 | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | r ABL E | DEC
1950 | 4 43
9 27
9 48
9 88 | 1 26
4 4 4 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 3 14
0 35
6 28
1 44
1 45 | 0 36
0 27
9 21
7 16
2 22 | 4 28
0 47
9 07
9 07
2 53 | 2 52 2 52 1 1 1 1 1 1 1 1 2 5 5 5 5 5 5 | 8 13
2 11
1 16
4 29
0 45 | | • | | *************************************** | NHAA. | | 1 1 | 8 1 1 1 8 | 88 | AAAA | | | A | 27.4
25.2
17.1
12.5
17.3 | 19.4
10.7
16.5
02.3
01.9 | 000.1
35.7
000.1
14.1 | 48.9
01.4
37.1
20.1 | 03
50
50
50
50
50
50
50
50
50
50
50
50
50 | 36.7
35.7
28.7
15.1
07.9 | 51.9
06.7
30.3
11.9 | | | R•
195 | 47
16
00
54 | 41
18
26
12
12 | 16
19
15
15
14 | 00
00
03
14 | 15
22
05
05
04 | 02
02
10
42
27 | 23
23
20
20
20 | | | | nnoon | 01 4 4 4 | 10 0 6 6 | 14
14
10
15
22 | 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 23 23 23 23 23 23 23 23 23 23 23 23 23 2 | 6
7
7
15 | | | <u>+</u> | 681
042
896
660
333 | 222
132
014
431
521 | 035
111
764
250
347 | 1118
847
750
049
167 | 035
507
549
729
729 | 729
819
160
076
847 | 257
806
347
146
507 | |
| э
 | 29.1
29.2
14.2
30.1
5.1 | 10 .3
4 .2
10 .3
10 .3 | 13.3
19.3
9.2
22.1
23.1 | 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · | 29 • 3
28 • 2
20 • 2
30 • 2 | 1.2
1.2
9.2
17.2
6.1 | 83.22 | | | Η | A C C C C C C C C C C C C C C C C C C C | EB 2
CT 1
EC 2
EC 2 | DEC 1
FEB 1
OCT JAN 2
JAN 2 | >> ~ ~ ~ <u>~</u> | APR MAY NOV | NOV
NOV
APR
SEP 1 | AN 2
AN 2
AN 2
PR 2 | | | ۷
۵ | 22001 | 7000
1000
1000 | 00000 | MA
11 MA
12 APA
11 SE | 12221 | 00 | 00010
00010 | | | | տտտտտ | տտտտտ | மைமைமை | տտտտտ | տատատ | மைமைய | տտոտո | | | SURVEY
NUMBER | R-26.3
R-36.1
F-81.1
F-71.1 | U-52.4
D-56.2
R-45.3
R-44.5 | F-66.4
U-45.2
D-42.2
S-45.5X
S-55.6X | K-26.4
K-36.4
I-31.1
W-80.3
O-31.1 | K-42.3
X-13.3
X-13.3
C-22.1 | Q-43.4X
Q-42.1
J-53.3
C-62.2
C-52.2 | S-54.3
D-53.1
S-55.3
K-65.3 | | | MINOR | 783
783
784
784 | 784
786
786
786 | 788
788
789
789 | 790
790
791
791 | 793
794
794
795 | 795
795
796
797 | 797
798
798
799 | | | MINOR SURVEY | 800 J-6 | 03 M-3 | 03 M-4 | 804 B-65 | 00 C-S | 07 6-6 | 07 6-7 | 07 W-5 | 9-M 20 | 08 P-2 | 809 F-6 | | 7_3 11 | 811 I-3 | 13 N-8 | 13 N-8 | 14 N-7 | 14 W-8 | 14 X-1 | 15 1-5 | 815 I-4] | 15 I-5 | Ś | 16 S-5 | 16 S-4 | 17 1-7 | 18 J-6 | 19 E-6 | 19 E-7 | 816 N-8 | 20 0-3 | 23 B-1 | |------|---------------|---|----------------|--------------|----------|----------------|----------|--------|--------|--------|----------|--------------------|-----|--------|---------|--------|--------|----------|--------|--------|--------|----------|--------|------|---------------|--------|--------|--------|--------|--------|--------------|----------|--------| | | VEY
BER | 20.5 | 3: | 4 | 5.1 | • | • | • | 1. | 1.1 | ë | 5.3
4.4× | • | • | 4.5X | • | • | • | • | - | - | 1.2 | | | 6• | 5.7X | • | • | • | • | 4.8 | • | • | | | ۵ | 52 N | o ~ | | 50 7 | ٦. | | _ | 8 | ~ | _ | 00°C
0°C
0°C | , (| > | 7 | | | | 7 | ~ | _ | 51 4 | _ | 50 0 | _ | 7 | _ | _ | | 0 | 7 | _ | 0 | | | ⊢ | MAY | | | AUG. | | | EB | PR | P.R | e e | DEC | | | NAU | 40G | | | œ | > | œ | MAR | œ | 00. | | | | 4PR | | | FEB ; | | | | | E U.T. | 20.2549 | •225 | 9.242 | N | 16201
3.348 | 4.222 | •121 | 6.295 | 6.322 | 6.277 | 13.2924 | | 201.0 | 26.1958 | .291 | 7.301 | •223 | 8.304 | 0.157 | 5.383 | 31.2014 | 1.351 | 0.3 | 8.281 | 25 | 7.343 | •355 | 2.247 | 3.223 | 26.2708 | 1.288 | .263 | | | | 15 | | | 22 | | ^ | 7 | | | | ر
د ر | | 7 | 1 | | 21 | | 14 | 14 | 11 | Ξ | 11 | - | 9 | | 17 | | B | n | 11 | | 20 | | | R•
195(| 38 | ν 4 | m | 11 | ہ م | 1 4 | 7 | 6 | 6 | en (| 23 | 4 (| 5 | 0 | 4 | 4 | 9 | 9 | 0 | ထ | 33 | m | Ŋ | _ | 0 | 9 | | 2 | 4 | 41 | 7 | _ | | | • o • o | 19.7 | + - | 4 | 28.1 | • « | | ċ | 7 • | 5 | 2 | 27.7 | , , | 7 | 30.7 | • | 5 | ċ | 7 | 2. | ۷. | 29.1 | 2• | 9 | 2 | 9.44 | • | 5 | 7 | • | 6.04 | 7. | ÷ | | 1 | 19 | - 9 | -18 | - | -21 | - | | | ю | m | | 10 | 1 1 | | 20 | | 7 | 9 | 9 | | | 54 | | -13 | | 4 | | | | 27 | | -15 | _ | | ABLE | DEC
950. | 18 | n œ | 9 | 0 4 | 0 1 | ٠. | S | 2 | S | 9 | 0.4 | , , | v | 19 | 9 | 9 | _ | | 4 | 0 | 60 | 6 | æ | æ | 8 | Ś | 9 | - | 00 | 18 | 6 | 6 | | ∢ | 0 | 15 | | 0 | 19 | | | 7 | | | | 21
26 – | , (| ก | 25 - | 9 | _ | | 18 | 00 | 20 | 45 | 56 | | | 7 | | | | | 54 | | | | | Α
0 Α
1 | 3.1
0.3 | •
•
• | - | 3 | • c | ; ; | ; | • | • | • | 2 0 | | • | .1.9 | | - | • | • | • | • | 0.5 | • | 2. | - | | • | • | • | • | 4.7 | • | • | | | . C | 13 | | | 40 | 1 1 | -5 | -5 | 4 | 4 | 0 | 17 | | 0 | 0 | | 3 | | | | | -2 | | -11 | -18 | ~ | -5 | -16 | 80 | 6 | | -17 | | | | VAR | 10 | | | 93 | | | 7 | 0 | 0 | 0 | 0 ~ | 4 u | J. | 4 | | 3 | | 0 | | | 4-1 | | | $\overline{}$ | -16 | | | æ | | -38 | | | | | MAG | 14.51 | 7.4 | 4.7 | 12.20 | 5 | | 5.0 | 6.4 | 6.3 | 3.8 | 15.41
16.28 |) u | 0 | 15.52 | ۍ
د | 5.5 | ۍ
د | • | 5.8 | | 15,14 | 5.5 | 9 | 4.86 | | 5.8 | 5.1 | 5.8 | 5.8 | 15.55 | 5.2 | 5.1 | | | g | 11.26 | 2.1 | 0•7 | 6 | 7.0 | 62. | 1.2 | 2.3 | 2.2 | 9.0 | 13.18 |) (| 7 • 7 | 11.42 | 3.3 | 3.3 | 6 | | | | 11.78 | 2 • 2 | 1.8 | 1.35 | 10.91 | 1.8 | 4.0 | 3.2 | 3.1 | 13.08 | 1.4 | 2.4 | | | 10 -
MOTI | -8.4
-11.6 | œα | æ | -12.6 | • / | : . | 7• | 7 | å | . | -11.6 | • | ò | -8.5 | · | 10 | . | 7 | ۷. | ċ | -8.7 | 6 | 7 | 6 | • | 6 | 7 | 13. | 2. | 7.6 - | . | - | | | DAY | 441 | | | 4 (| | 50 | | | | | רן מ
בן מ | | 120 | 31 | -64 | 3 | 16 | | | | -15 | | -65 | | 9 | | | 2 | -31 | 26 | 5 | -40 | | | O - | 0.0 | • • | ċ | -1.9 | • d | • | • | ô | ċ | ċ | 4.0- | • | • | 0.1 | • | • | • | · | ċ | • | -0.1 | ċ | • | • | 0.0 | ំ | • | ٦. | ô | -0.1 | ċ | • | | | U NO | 2 4 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | -12 | | | M | -2 | 0 | 91 | -7 | • - | 4 | 4 | 7 | σ. | 4- | - | 7 | 9- | 0 | 4 | | | .5 | | | | 4 | -2 |) | -7 | | | U Z | u u u | | 16
-7
-0
11 | -111
0
2
8 | -10
9
8 | 14871 | -18
-2
-3 | |------|------------------|--|------------------------------|--|---|--|---|--| | | 0
MOTI | 10.2 | | 0 0 0 0 0
4 0 0 0 4 | 000 | 0 - 1 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - | 0.00 | 0 | | | DAY
ON | 10
-68
-63 | 23
71
69
68
53 | 125
118
196
196 | 1 31
1 32
1 4 4
1 4 9 | 27
-49
-16 | 1 2 3 1 1 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 143
125
29 | | | 10 -
MOTI | -10.5
-7.7
-8.2
-9.0 | | -7.7
-9.1
-11.6
-9.0 | -8.1
-8.1
-8.1
-7.7 | 1 9 • 6 1 1 4 • 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | -8.6
-9.2
-7.0
-11.8 | 110°7 | | | o | 12.61
12.34
10.81
13.00A | 9.0 | 11.35
10.92
12.11
11.81 | 10.56
10.57
10.43
12.39 | 12.11
12.39
10.73
10.32C | 12.18
11.18
11.31
11.82
13.81 | 10.73
10.84
10.69C
11.54C | | | MAG | 14.44
15.40
15.13
15.36A | 5.6
5.0
6.1 | 15.15
15.04
15.04
15.47 | 14.80
14.14
14.00
15.53 | 15.83
16.14
14.61
15.30C
15.51 | 15.83
14.34
14.92
14.89
16.09 | 14.39
15.30
15.44C
15.08C | | | VAR | 477 282 | | 2 1 2 8 6 | 3525 | 111 | 1124 - 12 | 11 -2 -2 4 | | | - C
DEC | 112 | 128
128
128
16 | 112 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 4 8 6 6 4
4 8 6 6 4 | 0
17
0 | 00000 | 1 2 64 | | ⋖ | ω
Ω | 1-000
6.000
6.000 | | 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 000000000000000000000000000000000000000 | 4.4
11.8
11.2
-0.3 | 1 5 3 1 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 | | щ | 0. | 8 40
8 36
0 27
1 02
18 | ww449 | 6 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 2 | 8 49 8 14 8 11 4 1 5 0
1 5 0 1 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 5 2 2 4 4 3 4 5 5 6 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | TABI | DE(
195(| 11 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 00004
00000 | 22 0
22 0
35 5
-14 3 | 121
171
174
175
10 | 200
200
100
100
100
100
100
100
100
100 | 25
19
17
10
13
13
15
13 | 35 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | | • o • o | 36.3
15.1
445.7
55.2 | 20881
2088
2096 | 38 28 28 28 38 38 38 38 38 38 38 38 38 38 38 38 38 | 19.1
30.4
25.2
20.4 | 28.5
40.7
54.1
45.1 | 12.5
20.0
27.5
59.7
01.1 | 150
150
150
150
150
150
150
150
150
150 | | | R•
195(| 113
023
023
023 | W4444 | 55
64
66
66
66
66 | 45
008
24
23 | 31
30
21
32
20
20 | 57
31
17
01
38 | 47
26
05
50
58 | | | | 23 4 22 22 22 | | 22
4
6
13
20 | 00770 | rr044 | W 4 4 M H | 81660 | | | E U.T. | 25.2799
12.2632
23.1528
18.3389
9.2965 | .161
.370
.379
.277 | 11.2965
29.1771
8.1687
23.2625
10.2799 | 11.2507
1.1646
1.2729
8.1667
9.1785 | 25.2799
26.1958
8.1667
5.2535 | 29.1771
5.2535
22.1431
4.2111
12.1972 | 9.2875
28.3090
21.1431
1.1736
9.2097 | | | ⊢
∢ | JAN
SEP
AUG
SEC | 7 | SEP
NOV
LAN
APR | AUG
NOV
NOV
OCT | JAN
JAN
OCT
DEC | NOV
NOV | OCT
JAN
NOV
FEB | | | ۵ | 50 20 20 20 20 20 20 20 20 20 20 20 20 20 | 00000 | 50 21 20 20 20 20 20 20 20 20 20 20 20 20 20 | 500 | 52
50
51
51 | 511200 | 50
51
51
51 | | | SURVEY
NUMBER | T-24.2
C-44.2
R-55.3
B-64.4
C-14.1 | -53
-75
-84
-84 | C-33.2
R-33.10X
G-32.2
W-25.1
B-14.1 | B-24.4
Q-33.4
Q-43.2
D-24.1
D-34.4X | T-24.5X
T-34.3
D-24.2
R-54.3
R-44.10 | R-33.8X
R-54.2
R-44.8
E-21.2
D-63.7 | D-43.1
S-52.1
S-42.2
Q-34.3X
H-33.1 | | | MINOR | 822
824
825
825
825 | 77777 | 828
828
829
830 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 888888
8888
888
888
888
888
888
888
88 | 8 8 8 8 8 4 1 4 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 | 8 8 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | U Z | 7 | | - | | - | 4 | m | | 13 | | 14 | | | → • | v | 7 | 4 | | 7 | | 7 | -15 | _ | | 0 | ው | 4 | ~ | m | 0 | 4 | 5 | | ~ | n | |-------|------------------|------------|------------|----------|-----------|-----------|--------|--------|----------|-------------|-----------|----------|----------|------------|------------|--------------|--------|--------|--------|------------|----------|--------|-----------|---------|-----------|--------|----------|-----------|------------|-------------|--------------|----------|-------------|----------|----------|--------| | | O - O
MOTION | +0- | • | ċ | • | • | ° | ံ | • | n 0 | • | 0 | ċ | - | 0-0- | ċ | | ċ | ં | -0.8 | ċ | 0 | 7 | ં | -0•1 | ċ | | ô | 0.1 | • | • | ċ | -0.5 | ં | • | ં | | | DAY | 34 | | | | | | | | -37 | t | Ŋ | | ~ (| 104 | ⊣ | 45 | | | 33 | | | | | ω, | | | | 10 | | | 3 | 121 | | | | | | 10 - [
MOTIO | -8.6 | • | . | œ | ~ | 6 | 8 | æ | -10.5 | • | ~ | 12. | ٠
د ه | 9,7 | • | ဆိ | ં | -6- | -12.5 | 6 | 0 | 6 | • | -10.5 | ထိ | æ | å | -8.0 | œ | ထ | • | -6.7 | 7 | . | å | | | ŋ | 11.53 | 1.4 | 1.2 | 1.4 | 2.2 | 0.7 | 0.4 | 0.5 | 13.03 | • | 2. | 1.1 | 2.4 | • | 7•4 | 3.4 | 3.5 | 3.4 | 13.10 | 1•6 | 1.2 | 9° | 1.2 | 10.94 | 1.0 | 9•0 | 0.7 | 11.50 | 0.1 | 0•3 | 2.8 | 13.42 | 0.77 | 0.5 | 0.7 | | | MAG | 15.65 | 6.4 | 6.2 | 5.3 | 6.3 | 5.3 | 5.0 | 4.5 | 15.68 | 0 | 4•4 | 4.7 | 4.4 | 14.80 | 7 • 4 | • | 6.7 | 9•9 | 15.79 | 7.7 | 5.3 | 4.6 | 5.3 | 14.84 | S
S | 5.1 | 4.3 | 15.15 | 4.6 | 4 • 9 | 4.8 | 15.43C | 5.15 | 4.5 | 3.2 | | | VAR | 4 | m | m | - | σ | 4 | m | 7 | -4 F | ⊣ | | | 2 | -25 | ~ | | | | 13 | | -2 | 0 | | 0 | m | 7 | | 12 | | | | -2 | | 2 | | | | - C
DEC | 4 | 7 | 7 | 7 | æ | m | m | 7 | 00 | > | H | | Α, | -16 | - | | | | 15 | | 9 | -2 | 0 | 7 | 7 | 0 | œ | œ | - | 2 | 9 | S | -23 | 2 | | | ⋖ | В
О 4 | -1.0 | ં | ં | ċ | ÷. | • | • | • | 0 0 | • | • | • | • | | • | 2. | 2. | 2. | -1.6 | ŝ | • | ċ | ં | -0.1 | ċ | • | 3 | -3.1 | ċ | o | • | 0.8 | • | • | • | | TABLE | DEC
1950.0 | 16 54 21 | 7 19 4 | 19 3 | 20 24 4 | 13 17 3 | 0 60 | 0 60 | 2 19 3 | -17 18 05 | 0 62 11 | 0 01 1 | 03 2 | 1 00 3 | 2 19 07 | 19 1 | 40 0 | 54 5 | 8 28 3 | 24 40 24 | 9 43 4 | 7 13 2 | 9 56 4 | 19 53 3 | 39 33 14 | 4 36 2 | 4 47 2 | 0 51 1 | -10 51 22 | 51 0 | 513 | 00 2 | 4 11 23 | 21 4 | 25 0 | 34 2 | | | R. A. 1950.0 | 8 58 15 | 3 05 25.9 | 05 25.2 | 5 10 56.1 | 4 13 50.7 | 16 09. | 16 08. | 0 04 04• | 20 47 18.0 | 0 40 100 | 5 49 14. | 1 59 16. | 1 47 01.3 | 11 32 41.2 | 1 32 41. | 29 16. | 26 34. | 11 03. | 10 26 46.5 | 1 08 54• | 20 38. | 3 35 36.1 | 17 54.4 | 5 35 42.2 | 12 01• | 1 10 35. | 6 05 03.7 | 16 05 03.0 | 01 16 | 01 10 | 1 42 32. | 11 41 59.9 | 3 21 17. | 3 20 40. | 01 34. | | | E U.1. | 9.2208 | 3.326 | •344 | 5.231 | • 205 | 3.292 | 3.303 | 9.211 | 10.2639 | 1 • 2 5 0 | .173 | 2.201 | 4.357 | 1.1993 | • 209 | .336 | 1.276 | 7.225 | 20.2229 | • 300 | 7.173 | •279 | 6.160 | 27.2819 | 1.287 | 3.254 | .297 | 24.3146 | .178 | •300 | •330 | 1.2097 | .388 | 9.506 | • 229 | | | ⊢ | FEB | MAR | MAR | MΑΥ | APR | DEC | DEC | FE8 | AUG | 9
Q | DEC | MAR | MAR | APR | APR | NA N | FEB | FEB | FEB | AUG | للنا | ш | J | DEC | ⋖ | MAR | MAY | MΑΥ | Z
V
V | S
N
N | ⋖ | APR | α. | α. | J | | | ٥ | 51 | 55 | 55 | 51 | 52 | 50 | 50 | 55 | 0
0
0 | n
O | 51 | 52 | 51 | 5 | 5 | 52 | 52 | 52 | 52 | 51 | 51 | 50 | 20 | 51 | 21 | 51 | 52 | 52 | 51 | 51 | 51 | 51 | 51 | 51 | 20 | | | SURVEY
NUMBER | H-34.3 | 54. | • | 64. | 54. | 65. | 99 | 32. | B-13.4 | 0-77-0 | 5-34.6 | V-21.4X | 1-54.2 | I-44.2X | I-54•1 | 85.2 | 95. | 15.1 | U-42.9X | 64.1 | -23. | -56. | -45. | 5-31.2 | -32. | 1 | -42. | X-52.4X | -15. | -16. | 53. | I-54.3 | 62. | 52. | 75. | | | MINOR
PLANET | 846 | 4 | 4 | 4 | 4 | 5 | S | S | 851 | n | S | S | S | 853 | S | S | S | S | 855 | 2 | S | S | S | 859 | 9 | • | 9 | 861 | 9 | 9 | 9 | 865 | 9 | 9 | 9 | | | UZ | 15 | (| | T 80 | C | > • | † 1 | - ~ | · M | 61 | 7 | -2 | . | 4- | | 4- | | ۲, | 9 | 7 | 5 8 | | | v | - | | 15 | | | | ~ | 0 | 7 | 0 | |-------|------------------|--------|----------|----------|------------------------|---|----------------|--|----------|-----------|--------|----------|----------|-----------|----------|--------|--------|----------|--------------|-----------|--------|-------------|--------|----------|--------------|--------|----------|------------|-----------|-----------|-----------|-----------|--------------|-----------|-----------| | | 0 - 0
MOTION | -0.8 | , | ံ | 0.0 | | • | • | | • | · | ċ | ં | -0.5 | · | ċ | ċ | ं | 4.0 | • | | 7. 0 | • | • | ċ | - | ÷ | -1.9 | • | ċ | • | ċ | -0.5 | • | ċ | | | DAY
ON | | ښ, | اق | -60 | Ċ | 67 | ۲× | † | -46 | | | | 47 | | 2 | | 7 | 7 | 7 | -24 | ဆ | 36 | | | | | 54 | | - | | 0 | 66- | Ò | | | | 10 -
MOTI | 8 | . | | 18.3 | r | • 1 | • 0 | 7.7 | 6 | æ, | ~ | 7 | -10.0 | 10. | 6 | 6 | 2 | 0.9 | ٥ | 6 | -7.6 | - | 11 | 6 | o | ထံ | 0.6- | 6 | 6 | Š | • | 7-9- | • | 7 | | | g | 1.3 | 1.4 | 1.08 | 11.43C
11.15C | • |)
) | | | ~ | 2.9 | 2.0 | 1.9 | 11.70 | 1.8 | 1.7 | 1.56 | - | 10.06 | Σ
• | 6 | 11.86 | 4 | 2.6 | Š | 2.6 | 1.5 | 11.01C | 1.3 | 1.3 | 0.5 | 9°0 | 10.74 | 0.7 | 0.8 | | | MAG | 3.9 | 4.1 | 4.0 | 14.85
14.57 | | | 4 • • • • • • • • • • • • • • • • • • • | • | - | 6 • 5 | 6.3 | 6.2 | 14.35 | 4 | 4.9 | 4.7 | 9•9 | 16.14 | | 5.4 | 15.40 | 3.4 | 3.7 | 4 • 8 | 4.3 | 5.4 | 14.89C | 5.5 | 5.1 | 4.8 | 4.2 | 14.20 | 4.2 | 4.7 | | | VAR | | · | . | 7 7 | | | ٦. |

 | | | 7 | | rv. | | - | | _ | 0 | | ٠6 | 6- | S | 52 | | m | 4 | 4- | 7 | 7 | | | 0 | | _ | | | - C
DEC | 12 | | | 0 0 | C | ν, | | 0 | -12 | | | | ۳
ا | | | | -5 | 7 | ၁ | | 8- | | 2 | 4 | | | -2 | | - | 4- | 0 | 0 | 7 | - | | ∢ | ω
0 α | • | • | • | 0
0
0
0 | ď | • | ,, | 9.0 | | • | • | • | -2.7 | 5 | • | • | • | -0-1 | င် | 3 | -3.2 | æ | æ | 5 | • | • | 6.0 | • | • | • | • | 0 | • | • | | TABLE | DEC
1950.0 | 03 5 | 0 03 5 | 38 5 | 5 55 19
5 55 09 | | 7 7 7 | C 11 21 | 4 7 6 | 3 23 21 | 39 2 | 30 2 | 9 30 3 | 21 46 03 | 1 46 0 | 1 28 2 | 1 26 0 | 4 50 2 | 22 14 11 | 7 7 7 7 | 5 33 2 | 14 53 34 | 6 26 0 | 0 92 9 | 07 2 | 2 46 4 | 15 4 | 24 15 48 | 9 52 2 | 9 52 2 | 1 47 4 | 10 56 1 | 11 06 32 | 15 13 0 | 5 19 2 | |
| R• A•
1950•0 | 43 36. | 43 36. | 39 20 | 0 55 48•2
0 55 47•3 | • | 31 28. | 4 90 90 7 | 57 04. | 4 36 00 4 | 20 33• | 0 51 42. | 0 51 41. | 7 36 33.9 | 36 33• | 56 56. | 55 57 | 6 19 26. | 19 56 13.9 - | 9 42 43.9 | 02 49 | 3 48 20.7 | 02 24• | 6 02 24• | 30 20• | 38 20. | 1 05 01. | 11 05 00•6 | • 40 64 9 | 6 49 03.4 | 1 28 14.2 | 1 45 34.1 | 21 44 52.8 - | 1 28 30•7 | 6 24 06.7 | | | E U.T. | •175 | 4.186 | •231 | 9.2875
9.2951 | ċ | • 134 | 3.2431 | .3375 | 4.2285 | 2.161 | 4.2312 | 4.249 | 26.1868 | 6 • 195 | 7.263 | 8.327 | • 3000 | 6.2757 | 9.2104 | •244 | 3.1785 | •308 | 7.3000 | •3431 | 8.182 | 1.2632 | 2750 | 5.3132 | 5.3306 | •3590 | 6.2382 | 7.2722 | •2215 | •3056 | | | A | Z | Z I | L | | | | | | DEC | DE | IL. | H | NAC | ک | | | | בן
בן | | | DEC | | | | ۵ | Σ | MAR | Σ | Σ | | | AUG | | | | | Δ . | 50 | 50 | 52 | w w | Ċ | 20 | 22 | ין
ני | 51 | | | | 52 | | 51 | 51 | 51 | 51 | 51 | 50 | 20 | 51 | 51 | 51 | 51 | 51 | 51 | 52 | 52 | | | 51 | | | | | SURVEY
NUMBER | -15. | -16. | -53.2 | D-43.4X
D-44.1 | Ļ | ָּטָל
מְיִּ | -62 | 140.6 | 56. | 46. | 53. | 63.7 | T-33.2 | 34• | -33. | -44. | -53. | M-84.5X | -14 | • | -14 | -41. | -45. | -72• | -35. | -30. | 1-31.2 | -62. | -72. | 0-74.5 | N-73.2 | N-83.1X | 0-14.2 | L-41.1 | | | MINOR | 9 | 9 | 9 | 872
872 | | | | | 875 | 875 | 876 | 876 | 877 | 877 | œ | 8 | Φ | 884 | ò | œ | 885 | œ | œ | ထ | œ | σ | 891 | 6 | 6 | 6 | 6 | 893 | σ | ď | | | UZO | N H E 4 H | 00001 | 1201 | -17
-0
-6
0 | 21
-12
-7 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 9111 | |-------|------------------|--|---|---|--|---|---|---| | | MOTI | 00000 | 00011 | 100.0 | 0000 | 00000 | 4 1 2 9 0 | 0000
4 0000
6 0000 | | | DAY | 663
698
81
81 | 21
21
80
80
-17 | 1.28
1.1
1.1
1.0 | 15
29
29
62 | 9 9 8 1 8 | 116 | 28
188
22
28 | | | 10 -
MOT | -100.0
-100.0
-8-1
-8.9 | -10.3
-10.3
-12.0 | -10 • 1
-10 • 1
-10 • 4
-13 • 5 | 113.5
112.7
18.9
17.9
17.6 | -118
-1119
-9.2 | 100.6
112.9
112.9
100.9 | 1.00 | | | g | 12.84
11.29C
13.04C | 12.81
13.43
12.94C
10.66 | 11.37C
10.82
11.70C
10.73 | 10.87C
10.46
12.00
12.03 | 11.42
11.11
10.35
10.31
9.96C | 10.05
13.02
12.60C
12.64
12.48 | 11.87
11.96C
12.33
12.47 | | | MAG | 14.82
16.02C
16.50C | 13.78
14.40
13.90C | 15.19C
14.48
15.36C
14.44
13.60 | 13.99C
13.61
15.04
15.07 | 15.32
15.01
13.96
14.00 | 14.18
14.27
15.45C
15.94 | 16.25
16.08C
15.43
15.98
15.90C | | | VAR | 00764 | 118 | 4 6 6 6 9 | 4 4 01 10 10 | 112
115
115
149 | 11991 | 34
37
-138
-1 | | | - C
DEC | 100 | 153
123
123 | 123 | 0 0 M M H | -22
-16
-16
-70 | 44466 | 40
38
-147
-1 | | ⋖ | α
0 4 | 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 100-1 | 1000
1000
1000
1000
1000
1000
1000
100 | 0.00 | 1 1 1 4 6 6 6 6 6 6 6 6 6 | -1.6
-0.1
2.6
0.4
0.3 | -3.4
-8.8
-29.4
0.1 | | ш | 0 | 23
13
23
17 | 41
60
61
61
63 | 06
18
17
02
32 | 27
114
118
42
30 | 41
22
34
38 | 0 4 0 0 4 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 | 00
00
00
00
00
00
00
00
00
00
00
00
00 | | TABLE | DEC
1950 | 8 45
6 35
3 29
1 57 | 9 28
9 28
7 25
6 28
6 04 | 6 05
6 26
6 26
6 27
1 31 | 3 01
7 04
7 36
9 01 | 4 28
4 50
7 00
00 | 3 02
7 01
0 59
9 24 | 4 23
4 31
9 29
9 03
9 08 | | • | | 12111 | 77 77 | 00004 | 4 4 | 776 | 177 | 9 | | | A.
50.0 | 45.4
27.3
59.9
59.8
45.1 | 53.1
44.8
02.9
25.0 | 21.6
03.2
02.3
05.9
29.5 | 43.
24.3
48.9
14.8
23.5 | 49.1
20.7
48.7
29.1
28.5 | 17.4
41.3
06.7
33.7
31.4 | 16.7
50.5
44.9
55.6 | | | R. 19 | 15
08
16
51
29 | 22
22
52
40
10 | 01
43
41
13 | 50
44
50
50
50
50 | 50
00
00
00
00
00
00
00
00
00
00
00
00
0 | 3 2 4 4 5 9 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 4 m m 4 4 m m 6 4 m m | | | | 17
12
12
16
16 | 19 19 19 19 19 19 | 9119 | 1 4 4 1 1 3 4 4 | 23
13
13
13
13 | 6
17
14
13 | 10
14
23
7 | | | <u>-</u> | 597
146
410
299
708 | 243
889
899
826 | 153
312
410
208
986 | 514
701
021
743
903 | 201
917
701
201
382 | 340
646
146
319 | 542
535
604
049
903 | | | ы
Э | 26.2
24.2
4.2
26.3
26.3 | 24 • 2
24 • 3
3 • 3 • 3
8 • 2 | 8.3
27.2
27.2
29.2
5.2 | 22 • 2
23 • 2
10 • 3
28 • 1
28 • 1 | 5.3
26.1
10.1
22.3 | 23.2
1.1
8.3
10.3 | 6.2
27.2
7.1
26.2
28.1 | | | - | MAA
APR
MAYR
FEB | JUC
APPR
AV | E A A X | A P P R C | A A E E P | MACNON
MAPRICA
MARRICA | AAC DAR
AN TRR | | | ۵ | 20000
20000
2545F | 32 A C C | | 51 P P P P P P P P P P P P P P P P P P P | 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 3 A C Z C | 55021
57073 | | | | 31 31 41 31 41 | 01 01 01 01 01 | 3, 3, 4, 4, 4, | a. a. a. a. a. | 51 51 51 G1 G1 G1 | 4, 4, 4, 4, 4, | 0.0.0.0.0.0. | | | SURVEY
NUMBER | X-85.4
V-26.2
I-76.2
X-74.2
U-84.1 | M-63.2X
M-73.1
W-73.2
Q-53.1
K-85.1 | K-84.5
L-15.2
L-14.4
L-25.1
R-61.1 | R-51.2
S-11.1
J-81.1
K-20.1
T-45.6 | 0-85.3
P-15.2X
F-21.2
V-52.3 |
S-66.1
Q-33.2
L-77.1X
J-85.3
K-25.1 | H-84.2X
W-77.2
D-12.4
T-35.1X
T-45.1 | | | MINOR
PLANET | 895
899
899
899 | 901
901
904
905 | 206
906
906
906 | 907
908
908
908 | 910
910
912
912 | 914
915
916
917 | 918
918
919
919
919 | | | UZ | 10000 | 0 000 9 | 0
- 6
- 6
- 17
- 12 | 2 6 7 4 4 | 1 mmmm | 11 21 0 | -111
-111
-5 | |-------|------------------|---|--|--|--|--|---|--| | | O MOTI | 00.00 | 000 0 | 10
00
10
00
10
00
10
00
10
00 | 00.5 | 00000 | 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 100.1
100.1
100.2 | | | DAY | 72
-89
-91
33 | | -40
-74
-18
-17 | 38
41
23
32 | 29
-34
-16 | -21
-125
-117
-48
-8 | -11
-2
-31
-20
-30 | | | 10 -
MOTI | 1 | 2 7 7 6 | -10.6
-7.5
-11.4
-10.4 | -6.4
-7.1
-8.8
-8.9 | -110.4
-111.3
-7.0
-7.2
-8.0 | -17.2
-17.0
-17.0
-7.3 | -9.3
-10.3
-10.1
-10.0 | | | g | 11.11
12.89
13.08
10.39 | 0 | 13.47
9.99
11.15
13.23 | 11.20
10.85A
11.33C
12.64 | 12.78
13.12
10.22
10.63C | 10.77
11.03A
11.18
11.38 | 11.26
12.40
12.71
12.43 | | | MAG | 15.48
15.02
15.18 | 7 4 7 4 9 9 1 4 | 15.48
13.82
14.33
15.92
15.51 | 16.07
15.80A
15.11
13.86
15.86 | 16.00
16.11
14.00
15.59C | 15.67
13.06A
13.20
15.97 | 13.11
16.14
16.56
16.28
15.54 | | | VAR | 00000 | | 17 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 14 1 6 1 9 1 9 1 9 1 9 1 9 1 | 9 2 3 6 8 8 8 8 | w 4 rv O ss | 92226 | | | - C
DEC | חדים | 152 | 115 | -5
-6
-7
-21 | -20
-10
16
2 | 2
1
1
0
97 | 97
10
1
2 | | ⋖ | ω
0 4 | 0000 | | 10.3 | 1100 | 2 | -1-1
-0.2
-0.3
12.3 | 12.0 | | | 0 | 23 25 25 25 25 25 25 25 25 25 25 25 25 25 | 1 HHH44 | 35
04
16
02 | 31 34 4 3 5 4 5 5 5 6 5 6 5 6 5 6 5 6 5 6 6 6 6 6 | 39 39 64 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 08
001
55
19 | 20
139
189
18 | | TABLE | DEC
1950 | . 8 33
8 59
8 50
12 58 | 2 | 6 23
-21 46
-36 20
9 25
22 45 | 12 49
14 19
12 42
4 00
12 41 | 12 41
22 57
3 29
15 29
16 00 | 16 02
16 50
16 49
15 01 | . 1 48
35 46
35 28
35 25
33 39 | | | • O | 00000 | | 4 H & C H | 28.7.1.7
28.0.1.7 | 6.00.00 | 9.59 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | R•
1950 | 004
044
044
000 | 66619 | 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 31
15
15
16
16
16
24
43
43 | 43
51
50
50
40
46
3 | 45
113
51
51
51
51
51 | 03 4
08 0
50 2
49 2
18 0 | | | | 10 | | 21
22
18
3
2 | 10
10
14
23
8 | 8
7
0
18
17 | 17
9
9
21
1 | U 0 4 4 W | | | E U.T. | 6.2764
9.2875
10.2806
8.2028 | 3.190
2.276
1.211
8.222
8.237 | 6.3708
2.2021
4.2556
29.1590
8.1840 | 12.2229
5.2424
26.2056
12.1958
28.3076 | 28.3167
26.1868
1.2250
8.3243
26.2021 | 27.2090
9.3076
9.3187
7.2819
1.2250 | 1.2431
5.2896
22.2424
23.2611
12.2368 | | | ⊢ | MADOUR
DACH
TAN | 4 4 11 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | AUG
SEP
JUL
NOV
NOV | L S P R R P R P R P R P R P R P R P R P R | COAN | JUN
FEB
FEB
AUG | OCT
DEC
NOV | | | ۵ | 00000 | 00110 | 501 | 51
52
50
52 | 522 521 521 521 521 531 531 531 531 531 531 531 531 531 53 | 2522 | 51 51 51 52 510 52 51 52 51 52 51 52 51 52 51 52 51 52 51 52 51 52 51 52 51 52 | | | SURVEY
NUMBER | H-86.1
D-43.5X
D-53.3
G-35.3 | 1133
153
154
155 | N-72.1
0-45.1
M-56.2X
R-25.4X
E-43.1 | H-73.2
H-73.1
W-54.15
C-42.3
T-65.4X | T-64.5X
T-33.4X
P-55.1
L-83.3
M-13.4X | M-23.1
H-44.2
H-43.1
N-84.3X
P-55.4 | P-65.1
R-62.4X
R-52.9
S-12.1
E-61.1 | | | MINOR
PLANET | 922
922
924
924 | 00000 | 929
931
933
933 | 936
936
937 | 937
939
940
943 | 943
945
946
947 | 544
948
948
948 | | | | | | | | F. | TABLE | | ⋖ | | | | | | | | | |-----|-----|-----|---------|----------|--------------------|------------|-------------|----------|----------|------------|--------|----------------|----------------|------------------|-----------|--------------------|----| | | ٥ | Α Τ | E U.T. | | R. A.
1950.0 | _ H | DEC
950. | 0 | 0 4
& | - C
DEC | VAR | MAG | ტ | 10 - [
MOT IC | DAY
ON | - 0
- 10
- 1 | 10 | | | 52 | VAN | 28.3257 | 8 [| 43 24.7 | 22 | 45 | 33 | 0.1 | 0 0 | 7 - | 13.93 | 10.55 | -10.7 | 5 5 | -0.5 | | | | 2 5 | | 29.220 | 17 | 7 57 | | | | • • | -19 | 1 4 - | 0 • 4
0 • 5 | 0.1 | . 0 | | | | | | 20, | | 10.291 | | 5 59 |) | | | • | 1 | t | 4.3 | 1.9 | 6 | 1 | ं | | | × | 52 | | 21.143 | 9 | 8 44. | | | | • | - | 0 | 6.2 | 1.6 | å | | • | | | ~ | 52 | | 22.152 | 9 | 7 54. | | | | • | - | 0 | 6.2 | 1.5 | 6 | | - | | | × | 52 | | 24.314 | 16 | 2 02. | | | | • | 9 | 7 | 5.2 | 3.4 | ċ | | ċ | | | 4 | 51 | | 27.324 | | 8 47. | | | | • | | 0 | 4.7 | 0.9 | 7. | -74 | ċ | | | × | 51 | 45 | 5.2632 | 20
19 | 02 06.4
39 24.9 | -16
-16 | 21 | 23
54 | -0.7 | 7 7 | n n | 15.87
15.48 | 14.34
14.01 | -9.0 | 7-111 | 6.0- | | | | 51 | | 28.251 | 18 | 6 17. | | | | 6 | | 13 | 15.56C | 12•49C | 12. | | - | | | × | 51 | | 29.252 | 18 | 5 14. | 4 | | | · ભ | -2 | 13 | | | -4 | - | • | | | 7 | 20 | AUG | 11.2507 | 50 | 54 18.4 | -16 | 33 | 2 | -1.8 | • | -7 | 5.8 |
2.5 | -10.0 | -37 | -1.9 | | | | 51 | | 29.285 | 4 | 5 04. | | | | ċ | -1 | -2 | 15.87 | 12.73 | 6 | 7 | • | | | | 51 | | 22.143 | 4 | 6 07. | | | | ° | | 13 | 6.4 | 2 • 8 | ۲. | | • | | | × | 51 | | 3.222 | | 8 03. | - | | | ċ | m | 4 | 6.5 | 2.1 | æ | 17 | • | | | | 51 | | 3.3167 | 14 | 47 59.1 | -19 | 15 | 55 | 9.0- | m | 4 | 16.34 | 11.98 | -9.1 | 13 | -0.7 | | | | 51 | | 4.209 | | 7 13. | ~ | | | ċ | - | | 6.1 | 1.7 | å | _ | • | | | 'n | 52 | | 26.196 | | 9 07. | | | | 7 | 146 | 212 | 5.8 | 1.27 | 6 | | • | | | | 51 | | 29.229 | | 0 35. | S. | | | • | | - | 4 • 2 | 1.2 | ċ | -47 | • | | | 2 X | 51 | | 30.238 | 19 | 9 36. | | | | | 0 | ٦ | 8 | ~ | 6 | -45 | 0.0 | | | _ | 51 | | 23.243 | 'n | 2 59. | | | | • | ٦ | 0 | 6.36 | 3.63 | 11. | | ં | | | 0 | 51 | DEC | | Ŋ | 12 59.3 | 23 | 14 | 46 | ċ | - | 0 | • | å | • | 4 | • | | | _ | 51 | | 3.289 | | 7 13. | | | | • | 15 | 7 | 3.5 | Ŏ. | 10. | | ċ | | | | 51 | | 4.219 | 15 | • 6 7 9 | ~ | | | • | | e
I | 5.3 | ٠
ق | ထီ | 31 | ċ | | | | 51 | Σ | 5.241 | | 5 59. | | | | • | | 4- | 5.3 | 0.5 | æ | 34 | • | | | _ | 51 | MAR | 5.2424 | 10 | 21 29.7 | 16 | 02 | 8 | 0.8 | -16 | 61 | 14.87A | 10.66A | -8.9 | - | -0.2 | | | 7 | 52 | ∢ | 27.289 | | 4 00 4 | 3 | | | • | | -19 | 5.9 | 1.2 | 6 | 13 | • | | | | 51 | Σ | 5.210 | | 9 32. | | | | • | | | 6.4 | 1.5 | ° | | ં | | | | 51 | Σ | 5.220 | | 9 31. | _ | | | • | | | 5.0 | 1.6 | 6 | | ċ | | | - | | Σ | 8.250 | | 6 40 | - | | | • | 0 | 13 | 4.6 | 1.2 | 6 | | • | | | | | ΑA | 3.222 | 14 | 1 21. | | | | • | 7 | m | 4.7 | 6 | æ | | • | | | | | ¥ | 4.209 | | 5 24. | 2 | | | ò | - | | 4.0 | 0.47 | 7 | | • | | | | 51 | OCT | 30.1729 | ~ | 45 23.4 | 16 | 30 | 18 | 14.1 | 40 | 38 | 14.46C | 11.09C | -7.5 | -82 | -0.8 | | | | | ¥ | 22.209 | 15 | 6 03. | | | | 9 | 7 | | 3.49 | •67 | 6 | | • | | | | 10 - DAY 0 - C
MOTION MOTION | -8.8 31 -0.5
-7.8 -66 0.6 -
-9.3 -37 -0.3
-9.9 5 -0.3
-10.7 0 -1.1 | -9.2 -27 -0.7
-12.3 -56 -1.4
-10.9 -56 0.0
-8.8 43 -0.7
-8.4 55 -0.6 | -8.2 69 -0.4
-8.3 45 -0.3
-10.4 -13 -0.7
-7.3 -38 1.1
-7.9 -60 0.5 | -9.1 18 -0.7
-9.8 30 -0.4
-8.8 -32 -0.3
-8.0 70 -1.0 | -8.2 51 0.2
-7.9 91 0.0
-9.7 62 -0.6
-7.5 11 -0.7 | -7.9 6 -0.7
-8.4 -1 -0.6
-10.8 12 -1.0
-7.4 -50 -0.2
-7.1 46 -0.3 | -7.4 40 -0.7
-6.4 37 0.0
-9.5 20 -0.5
-11.0 -72 -0.7 | |-------|---------------------------------|--|--|--|--|---|---|--| | | g | 11.98
11.56
11.17
10.47A | 10.76
14.11
14.14C
10.95
10.31C | 10.41
10.40
10.58
10.59 | 10.37
12.68
11.85
11.96 | 10.95C
11.76C
11.16A
11.86 | 11.09C
10.51
11.61C
10.52 | 10.94C
10.87C
10.81
12.60 | | | MAG | 16.50
15.34
16.18
13.00A | 14.34
15.11
15.14C
14.67
15.11C | 15.22
15.35
14.54
14.60 | 15.24
16.76
15.47A
15.42
15.20C | 14.50C
15.77C
14.91A
15.06 | 15.57C
14.89
15.33C
15.39 | 15.85C
15.95C
14.57 | | | VAR | 41 000 | 2 | 2
2
10
-10
-10 | -4 9
-61
-2 | 7 6 6 1 4 | 44400 | 7 1 9 0 0 | | | - C
DEC | 116
43
141
141 | 1 5 6 4 7 6 6 6 6 7 6 6 6 7 6 6 6 7 6 6 7 6 7 | 100
115
115 | 150 | 12012 | 31
-31
-1 | 10927 | | ⋖ | ω
Ο 4 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 1 1
0 0 0 8 0
0 0 0 0 0 | 01111 | 0.0
1.1
15.2
15.2 | 1000 | 00.4 | 0000 | | TABLE | DEC
1950.0 | 19 37 07
24 53 47
33 45 07
-14 44 09
-14 44 11 | 29 17 59
26 22 29
26 21 57
9 13 05
29 01 10 | 29 01 12
30 29 09
34 26 14
33 01 48 | 21 57 42
-21 51 04
17 16 30
- 7 55 09
12 22 27 | 12 24 56
0 12 09
-14 04 20
-13 18 56
-12 56 18 | -12 53 19
-12 54 54
- 8 26 19
2 48 20
10 32 16 | 11 52 24
- 5 45 27
- 3 38 54
36 34 58 | | | R. A.
1950.0 | 9 05 24.3
0 27 47.5
5 20 58.3
21 18 08.2
21 18 07.5 | 6 48 39.3
3 30 52.1
3 30 47.9
3 54 09.3
9 24 26.1 | 9 24 25.8
9 10 27.1
4 08 24.6
3 45 24.7
3 45 23.7 | 8 42 02.5
14 00 55.1
3 14 29.9
11 25 29.7
11 13 27.9 | 11 11 22.4
8 13 18.7
13 18 41.5
15 39 48.1
20 02 23.6 | 19 59 34.9
19 40 35.3
22 53 30.6
0 47 14.5
10 13 33.0 | 10 00 59.7
13 26 31.6
23 35 05.2
4 37 23.7 | | | E U.T. | 29.2375
8.2819
27.1646
13.2556
13.2694 | 23.1618
13.2236
13.2757
11.1424
31.3306 | 31.3403
17.1889
16.2111
10.1701
10.1812 | 28.3257
2.2007
12.2687
13.3604
11.2875 | 13.2653
7.2687
23.2625
22.2819
1.2958 | 5.2632
29.1910
2.3222
1.2160 | 1.2611
24.1951
3.3319
5.2806 | | | D A 1 | 2 JAN
0 OCT
1 DEC
0 AUG | O NOV DEC JAN | 2 JAN
2 FEB
0 NOV
0 DEC | 2 JAN
10 MAY
11 MAR | MAR
D FEB
2 APR
2 MAY | JUL
JUL
JUL
JUL
JUL
JUL
JUL
JUL
JUL
JUL | MAR
MAR
MAR
MAR
MAR
MAR
MAR
MAR
MAR
MAR | | | SURVEY | 7-73.4X
0-31.1
5-22.3
8-33.2
8-34.1 | S-62.6
E-72.5
E-73.5X
F-25.1
T-82.5 | T-81.1
U-11.1
E-81.1
F-21.3
F-22.1 | T-653.3
E-655.2
E-655.1
I-45.1
I-32.4 | I - 43.1
H - 16.2
W - 25.2
X - 33.2
M 82.1 | M-83.1X
0-53.2
P-54.1X
H-74.2X | H-64.2
W-33.7X
O-73.5
S-51.2 | | | MINOR | 981
982
984
984 | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 986
986
987
987 | 987
990
991
994 | 994
995
995
999 | 1001
1001
1002
1003 | 1004 | | | U Z
S | 901 | 9 7 | 6 1 3 | 11 | S | | | 1 1 | | n | | 7 | ι
v o | 4 | -18 | 4- | | | 80 | 4 | - | 7 | -2 | 2 | ၁ | 90 | ر
ا
د | • | |--------|------------------|-----------------------------------|------------|----------|------------------|------------|--------|------------|------------------|--------|--------|----------|--------|-----------------------|--------|--------|-------|----------|--------|-------|--------|----------|--------|--------|--------|--------|--------|-------------------|---| | | NOITON | -10
-0
-0
-0
-0
-0 | • • | 00 | 4.0- | • | • | ં | -0.7 | • | ċ | ċ | • | 0.0 | • | 0.7 | • | • | • | • | 0 | • | ċ | ċ | • | • | ċ | 000 | • | | | DAY
ON | -20
-14
-9 | | | -14 | 4 | 34 | | 61 | | 39 | | | 5.2 | | 12 | | | | 4 | -11 | 0 | 0 | | ~ | | Ś | -10 | 1 | | | 10 -
MOTI | 19.6
19.2
19.9 | 8. | 10. | -10.1 | | 1. | 10. | 4.6- | æ | å | ۷. | | 9.9- | · | 7.9- | • | . | æ | • 9 | -9.8 | • | • | ထီ | 5 | • | 6 | / 08 -
1 8 • 4 | • | | | v | 12.61
11.69
11.58 | 1.5 | 3.0 | 12.98C
10.78 | 9.6 | 3.26 | 12•12C | †
• | 10.03 | 9.8 | 0.3 | 0.7 | 10.68
11.41C | 1.64 | 10.52 | 0.3 | 0.1 | 2.5 | 1.8 | 11.81 | 1.58 | 1.3 | 66•0 | 2.1 | 2.1 | 2.1 | 12.45
11.09 | • | | | MAG | 15.46
15.39
15.43 | 5.7 | 6.1 | 15.28C | 3.0 | 0•9 | 13.14 | ‡
• | 14.90 | 4.6 | 5.3 | 5.4 | 15.28
16.10C | 5.7 | 15.32 | 5.1 | 5.5 | 5.7 | 5.8 | 15.57 | 4.78 | 4.5 | 4.95 | 5.6 | 5.7 | 5.6 | 15.62 | • | | | VAR | 14
13
13 | | 55
42 | -30 | • | | | 77 | | | | | 77 | m | -2 | 61 | | | | 7 | | | - | | | | 1 1 | | | | - C
DEC | 10 41 -6 | | 57 | 1
-28 | | | | 77 | | | | | - 7 | | -2 | 13 | | | | -2 | | -1 | | 6 | 7 | | 14 | | | ۷ | ω
0 4 | 4.7
4.2
-2.1 | • • | 8 4 | -1.2 | • | • | • | 0 0 | • | • | 5 | • | m m | • | 0.3 | • | • | • | • | -2.1 | • | • | • | • | • | • | 1.1 | • | | n
E | 0.0 | 6 19
3 52
9 35, | 4 4 | 4 | 5 48 | <i>(</i> 0 | 2 | 4 (| 1 45 | 0 | 2 | 0 | 0 | 1 09
8 34 | n | 3 37 | S | ß | e | 0 | 94 4 | 7 | S | 4 | 4 | Z | ο. | 4 46
10 | • | | TABLE | DE(| 24 5
11 5
35 0 | 0 O | 10 5 | 22 0 8 | 19 3 | 19 4 | ю | 25 1 | 5 4 | 4 | 7 | 6 | ν _ν
ω ο | 20 1 | . 5 | 1 5 | 23 4 | 4 | 5 2 | 26 0 | 2 5 | 2 | n | 3 | 0 | 4 (| 7 7
7 0 | • | | | - 0 | ய் கீஸ்
I | | | 9 4 | . ~ | S | | , | | | | s i | ا
ا | | Ŋ | | | 2 | | . 1 | | Ś | | | | | ṽ
ω | | | | • A • 950 • 0 | 8 04.
4 27.
7 11. | 19 | 90
46 | 1 12 4 22 | 22 | 55 | 22 | 1 03 | 40 | 36 | 14 | 57 | 6 46.
4 05. | 20 | 0 49. | 15 | 10 | 55 | 31 | 6 15, | 28 | 56 | 60 | 48 | 17 | 28 | 6 03.
0 22. | į | | | L R | 23 24 | 33 | w n | 90 | 'n | 4 2 | w , | 10 4 | 4 5 | 4 5 | 4 3 | 4 | 13
13
5
5 | . v | 13 20 | 3 2 | 4 9 | 3 4 | 2 | 5 1 | 'n | 2 3 | 2 2 | 3 4 | 7 | | 21 50
21 10 | • | | | U • T • | 6.2326
4.2687
7.1646 | .3785 | 4.1951 | 8.3271 | 3.252 | 2.2729 | 7.2312 | 5.3437 | 8.2236 | 8.3049 | 0.1576 | 0.3958 | 8.2042
2.1791 | 7.2410 | 8.3889 | •2160 | 5.2278 | 7.2312 | •2535 | 7.1736 | •3174 | •3590 | •3375 | 2.2986 | 6.1958 | 0.2806 | 8.1903
3.2097 | | | | ⊤ | 0V 1
EP 1
EC 2 | 8 8
8 8 | PR 2 | EC 2 | ·z | Α | w (| AR- | a. | œ | <u> </u> | PR . | P.R. 2
Y. 2 | A Y 2 | P.R | P.R | AY 2 | ۵. | C1 | EC 2 | <u>۳</u> | ۳
م | a
a | EP 1 | | | AN
UG | | | | D
A | 50 N
50 S | | 7 7 | 51 0 | 2 | _ | 0 | 50
51
51 | 2 | 2 | 7 | - | 2 P
5 J | | 51 A | - | 7 | 0 | 0 | 51 D | | _ | _ | 0 S | 0 | 0 | 50
50
50 | • | | | SURVEY
NUMBER | E-83.1
C-55.4
S-22.1 | -63 | -33. | S-44.4
D-46.1 | -64• | -35. | -64. | (-25.1
H-81.1 | -71. | -80 | -11.1 | -83 | K-23.2
K-22.3X | -14.5 | -62 | 3.9 | -64. | -64.4 | -54• | 5-23.3 | -34. | -33• | -72. | -52.1 | -53• | -53.4 | 1-45.4
B-31.1 | • | | | MINOR | 1007
1008
1008 | 010 | 01 | 1014 | 010 | 01 | 50 | 1018 | 02 | 02 | 02 | 02 | 1023 | 02 | 1028 | 02 | 02
 02 | 02 | 1029 | 03 | 03 | 03 | 03 | 03 | 03 | 1039 | • | | | UNO | 7 1 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 2100 | 05177 | 20471 | 90000 | L20 12 12 12 12 12 12 12 12 12 12 12 12 12 | 1100 | |------|------------------|--|---|--|---|--|--|--| | | MOTI | 00-1 | -0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
- | 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1000 | m 9 m m m | 0111 | 100-1
0-1
0-1
100-1 | | | DAY
ON | 15
19
41
41
48 | 81
126
33
33 | 57
0
1
25
25 | 23
6
10
88
3 | 11
25
60
-53 | 0 4 4 8 8
0 4 4 8 8 | 19
-80
-7-
-40
44 | | | 10 - [
MOT I | 1 1 1 1 1 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 | -6.3
-10.3
-10.3 | -10.7
-10.9
-10.2
-8.4
-8.5 | -111.4
-8.3
-10.3
-6.8 | -11.1
-9.8
-8.6
-8.7 | 1 1 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | -10.4
-7.9
-8.4
-8.5 | | | ဖ | 11.10
11.27C
11.10
11.60C | 10.87
12.05
11.76
12.02 | 14.15C
11.57
11.29
11.61 | 13.21
10.65
10.46
10.96
13.81 | 13.50
11.48
11.61
11.65
12.67 | 12.67
11.98
12.36
12.87
12.67 | 12.97
11.65
11.02
11.66
12.34C | | | MAG | 15.87
15.00C
15.03
15.53C | 15.14
15.27
15.47
15.73 | 16.39
15.22
15.01
15.67
15.53 | 14.79
14.67
14.60
15.52
16.75 | 16.44
14.64
14.94
15.88
14.53 | 15.76
14.15
16.65
14.23
13.89 | 14.20
14.26
15.22
15.25
14.78C | | | VAR | 59 | 1447 | 194
194
16 | 112 | -10
28
-32
2 | 75444 | -1
-1
0 | | | - C
DEC | 61
12
12
-2 | -11
-43
-9 | 198
5
-11
-11 | 114
4 4
1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 18
36
129
11 | 11010 | 1 4 4 2 2 2 2 2 2 | | ∢ | α
0 4 | 000
000
000
000
000 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | -30.2
-0.9
-1.0
0.7 | 10.00
10.00
10.00
10.00 | 0 4 4 9 8 9 4 4 7 9 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 10000 | 10.0
13.8
10.1
10.8 | | щ | 0. | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 2002
2002
2002
2002 | 9 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 76107
76107
76107
76107
76107 | 2 41
0 32
1 32
2 45
8 59 | 0 38
3 29
1 21
2 06
2 15 | 9 51
9 22
9 22
9 15
9 02 | | TABL | DEC
1950 | 2 30
- 7 39
- 6 46
- 6 46
13 11 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 24444
24444
2223 | 22 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 34 51
12 36
13 11
24 21
8 08 | 18 00
18 00
19 33 | -17 19
-23 59
-23 59
24 45 | | | R. A.
1950.0 | 13 34 36.0
1 46 16.4
1 25 08.2
1 25 07.5
7 58 21.5 | 13 18 41.4
12 58 32.3
2 01 35.3
8 12 48.3
8 12 43.3 | 11 29 19.6
6 53 46.7
6 54 36.4
12 45 51.7
12 45 50.3 | 5 12 36.6
23 48 52.5
3 58 48.3
13 17 46.9
7 48 12.6 | 7 47 14.8
4 05 51.9
3 43 50.5
10 35 27.1
3 20 16.8 | 12 16 38.9
2 18 48.9
9 36 19.5
18 04 09.1
17 47 03.5 | 17 46 03.9
23 05 32.4
20 27 09.7
1 46 21.7
6 57 08.6 | | | E U.T. | 24.1861
12.2875
4.1868
4.1979
7.2243 | 23.3535
22.1688
5.1687
26.2229
26.3042 | 13,3722
8,1687
12,2313
23,33683
23,3354 | 23.2521
7.2472
29.1771
23.1722
25.2979 | 26.1778
16.2562
10.1493
24.2132
4.3139 | 2.3375
7.2090
18.2215
8.3243
26.2021 | 27.2090
3.3132
10.2799
1.1646 | | | ∀ | APR
OCT
NOV
NOV
FEB | L L N A A A A A A A A A A A A A A A A A | X X C C X X A X X X X X X X X X X X X X | DEC
OCT
NOV
APR | NO N | APR
LUN
LUN | S C C C C C C C C C C C C C C C C C C C | | | ۵ | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 0000
0000
0000 | 00000
00000 | 50
50
50
50
50
50
50 | <i>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</i> | 40000 | 2222 | | | SURVEY
NUMBER | W-32.2X
D-67.1
E-16.4
E-17.1
G-75.2 | V-63.7
W-12.5
E-24.4
T-43.3 | 1-44.11
G-32.3
G-42.1
V-44.6X
V-53.2X | S-13.9
D-16.1
R-33.9X
W-22.3
T-31.2X | 1-32.2
E-85.2
F-15.1
U-51.1
Q-75.4 | I-72.2
E-33.1
U-24.5X
L-83.4
M-13.3 | M-23.2
O-62.1
B-14.3
Q-33.1
G-43.2 | | | MINOR | 1041
1042
1042
1042
1043 | 1043
1043
1044
1044 | 1045
1046
1046
1046
1046 | 1047
1048
1048
1051
1053 | 1053
1054
1054
1054
1055 | 1056
1057
1057
1058
1058 | 1056
1059
1062
1062
1063 | | | 0 - C
MOTION | -1 -26
-7 -26
-8 -2 | 0 00 | 4 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 4 6 7 1 | .0 1 | -8 -14
-3 -7
-6 -9 | 5 -1
9 -2
4 -19
8 -4 | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | -68 -6
-61 -65 17 | |------|------------------|---|-------------------------|---|---|-------------|---|--|--|---| | | Σ | 20 0 10 10 10 | ν ο <i>ω</i> ι | νων
1 1
0 0 0 | 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1
2
8 | 0000 | 84727 | 1000 | w 0 1 4 1 | | | DAY
ION | 1617 | 2 7 2 | n n 01 | 1111 | 1 9 | NMMM | 4 1 8 1 4 | 11881 | 4414 | | | 10 - [
MOTIC | -9.2
-7.2
-9.8 | 9. % | -8-7
-8-7
-7-9 | 1 8 .2
8 .5
1 9 .5 | -8. | -12.1
-11.9
-10.8
-6.7 | -8.4
-11.7
-7.2
-8.2
-7.2 | 1111 | 110.2 | | | 9 | 11.95C
11.98
11.80 | 1.7 | 11.33
10.91
11.91C | 12.50
11.22C
11.18
11.23C | 1.3
3.2 | 12.55
12.52
12.73
12.21 | 11.78
13.50
12.03
11.46 | 10.63
10.90C
10.78
10.51C | 12.54
12.66
12.91
12.86 | | | MAG | 15.18C
15.21
15.15 | 5.1
6.6
4.1 | 14.72
14.26
16.74 | 15.45
14.28C
15.04
15.06C | 5.1 | 14.10
14.02
14.64
16.17 | 15.40
14.76
15.01
15.66
15.28 | 15.07
15.70C
15.07
14.68C | 113.96.114.91 | | | VAR | 4404 | 4 01 | 609 | -28
19
21
21 | 8 1 | -17
-17
-17 | 1089 | 90999 | 21
21
18
18 | | | - C
DEC | 1356 | | 4 4 C | -31
17
16
16 | | -17
-17
-22
21 | 22
10
10
15
15 | 10964 | 1 1 2 1 5 | | ∢ | ж
У О | 0 • 0
0 • 0
0 • 0
0 • 0 | 0. | 18.2 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 5. | 1 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 00000 | 1.2.7 | | щ | 0 | 12 03 27 02 02 | 4 0 % | 052 | 53 | 3 | 59
45
10 | 36
10
10
10
110 | 38
37
119
43 | 0 1 4 4 6 | | TABL | DEC
1950 | 9 34
3 10
3 10
1 44 | 3 2 4 | พพ4
พพ4
พพ
พ | 5 0 35
5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 5 3 | 0 29 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 6 51
7 45
1 27
7 22
1 42 | 0 0 0 0 a a a a a a a a a a a a a a a a | | | | 7118 | 2 | 444 | 7 - 1 - 7 | | 1 888 | <i>6</i> ⊓ | 777 | ⁸ 1 1 | | | o o o | 42.8
29.9
35.0
47.0 | . 6 | 57.9
16.7
57.1 | 51.4
46.1
36.0
43.4 | 7. | 50.3
45.7
32.9
21.9 | 43.1
47.1
31.4
39.2
20.9 | 40 • 1 3 • 5 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 | 32.5
25.7
40.3
39.9 | | | R•
195 | 29
46
10 | | 12.
11
26 | 4 4 6 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 33
32
14
03 | 43
40
29
28
57 | 37
17
27
06
37 | 18
20
20
20 | | | | 17
21
21
7 | | 111 | 20
1
17
17 | | 2000 | 11 6 0 | 6.
17
12 | 25034 | | | <u>-</u> | 472
194
368
625 | 30 | 403
528
167 | 910
819
160
174 | 33 | 819
042
326
701 | 993
687
785
257 | 451
750
750
535 | 597
951
736 | | | ы
Э | 26.3
14.2
15.2
25.1 | φ φ
• | 24.2
26.2
27.2 | 3.2
30.1
6.2
7.2 | • • | 13.2
14.2
30.1
26.3 | 23.1
8.1
23.1
5.1 | 28 - 3
23 - 1
25 - 1
4 - 3 | 13.2
24.1
7.2
7.2 | | | -
► | A A C C A A C A A C A C C A C C C A C C C A C C C C A C | | m m or
on or or | 0 A U O U O U O U O U O U O U O U O U O U | LEB | E E E E | O A C A C A C A C A C A C A C A C A C A | E A A A A A A A A A A A A A A A A A A A | N A D B C C C C C C C C C C C C C C C C C C | | | ۵ | 5000 | 0 0 0 | 52
52
7
7
8 | 521 6 | | 5000
5000
5000 | N C O C X | 5521
520
510
510
510
510 | 0 0 0 0 0 0 | | | | ×× | * | 1
3X | × | | × | | × | × | | | SURVEY
NUMBER | 34 | -24.1
-25.5
-44.1 | U-62.1
U-72.1
W-64.1 | N-54.1
Q-24.2
L-53.3
L-63.2 | 62.
44. | F-64.2
F-74.1
F-64.1
U-94.1 | V-14.1
G-32.1
D-34.2
S-54.4
E-25.2 | S-54.7
S-54.6
D-62.4
T-13.2
J-33.3 | EE 1 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | MINOR | 063
067
067
067 | 9 7 7 | 071
071
072 | 7 | 75
76 | 078
078
078
079 | 079
080
084
085 | 085
085
086
087 | 1088
1088
1089
1089 | | | MING | | 06 07 07 07 | | | 07 | | $\sim \infty \infty \infty \infty$ | 0 | တ တာ တာ တာ တ | | | UNO | 44284 | 12 8 11 8 11 | 6-1 | 00741 | N 28 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 7
-7
-14 | 0 1 1 1 2 | |-------
------------------|---|---|--|--|---|--|---| | | 0 -
MOT 10 | 11.0
10.3
10.3
10.3
10.3 | -10.3
-10.0
-10.0 | 0000 | 0.2
-0.7
-0.1
-0.1 | 100.1 | 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 10.0 | | | DAY | -35
46
48
18 | 1 1 2 2 4 4 4 5 5 5 5 6 5 6 5 6 5 6 5 6 5 6 5 6 | 4 1 4 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 10
39
32
4
25 | 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | -37
-29
-16
-13 | 56
67
67 | | | 10 -
MOTI | 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | -10.7
-11.6
-11.2
-9.0 | 1.8
1.8
1.8
1.6
1.7 | 17.00
18.1
18.1
1.00
1.00 | 15.9
18.0
18.0
17.7
18.2 | 1100
18.8
18.5
111.1 | -7.7
-6.7
-11.7
-11.6 | | | g | 11.44
13.39
13.24
11.23C | 12.76
11.67
11.41C
12.46C | 12.35C
12.56
11.13
11.09
10.18 | 10.81
10.38
9.71
11.00
11.05 | 10.87
10.76
13.21
12.10
11.07 | 11.30C
10.57
10.45
10.67
10.71 | 10.98
10.64
10.56
10.37
10.27 | | | MAG | 15.09
16.87
16.72
14.89C
15.53 | 15.90
14.59
15.25C
16.39C | 16.20C
16.24
15.65
15.94 | 15.06
14.12
13.95
15.51
15.37 | 15.19
14.75
13.90
15.35 | 14.85C
14.80
14.67
14.93
14.14 | 14.92
15.04
13.76
13.57
14.28 | | | VAR | U U U H 4 | 0 6 6 4 7 | 222 | 32
141
62
6 | 158 | 115 | 0 7 0 0 8 | | | - C
DEC | 112 | 1
6
0 0 4 w w | 999
1114
11 | 138 | 7
10
14
11 | -9
-14
-13 | 1 2 1 2 4 3 | | ⋖ | ν
ν | 10.0 | 000000 | 100.9
100.9
180.5
180.5 | 4 4 6 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | -1.1
-1.2
-5.0
-2.6 | -12.8
-0.1
-1.7
-1.5 | 0000 W | | لننا | 0 | 20
10
10
10
10
10 | 000 000 000 000 000 000 000 000 000 00 | 10
03
03
03 | 005
001
15
48 | 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 15
42
32
12
24 | 21
28
31
31 | | TABLE | DEC
1950 | 0 18
7 23
7 28
6 58
5 49 | 7 31
3 19
0 09
2 20
2 20 | 2 16
2 16
2 23
2 46
2 30 | 1 58
1 00
1 00
9 50
6 33 | 4 4 4 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 2 34
2 19
6 48
6 48
7 15
1 51 | 8 6 9 8 8 9 8 9 8 9 9 9 9 9 9 9 9 9 9 9 | | • | | 7.7 | 4 4 4 4 | नन नन | 1 7 7 7 | 7 17 1 | w 114 | 1 7 7 | | | • O • | 7 - 7 - 9 - 1 - 9 - 6 - 5 - 1 - 2 - 1 - 2 - 7 - 7 | 8.122.5
7.00.7
6.00.7 | 2221 | 9.3
5.9
5.7
7.7 | 20.00
20.00
20.00
20.00
20.00
20.00 | 24 . 9
21 . 5
21 . 5
47 . 1 | 6.00
100
100
100
100
100
100
100
100
100 | | | R•
1950 | 12 0
17 1
16 2
06 5
52 1 | 47 1
36 1
009 3
43 2
43 1 | 4 4 4 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 00 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 000 5
5 8 8 1
0 8 9 5
0 8 0 | 26 2 27 4 28 2 28 2 20 5 | 42 1 22 4 4 2 2 4 4 2 2 2 4 4 5 3 5 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5 | | | | 23
14
14
6 | 22
22
13
13 | 13 | 13 13 12 12 | 12
11
18
7 | 10
22
22
4 | 111 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | • | 132
889
910
562
771 | 444
076
090
729
681 | 174
562
028
410
312 | 819
333
944
868
611 | 701
875
271
889
625 | 951
111
264
514
125 | 778
500
528
868
528 | | |) | 8 2 8 0 4 | 37377 | 00004
00004 | 90000 | 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 40000 | 1 | | | Η | SEP
MAY
JAN | 00 1
EEP 1
PR 2 | PR
PR
EB 2 | MAY 2
FEB
APR 2
JAN 1
FEB 2 | FEB 2
MAR 2
JUN 3
OCT | E E E E E E E E E E E E E E E E E E E | PAN | | | ۵ | SESUE
SESUE | 50000
001000
01000 | 2252
22122
2217
4 | 22222
21222
21421 | 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 00000
00000
00000 | 5550
52150
52110 | | | | | | | 2, 2, 2, 2, 2, | -, -, -, -, -, | | | | | SURVEY
NUMBER | 0-62-2X
K-31.1
K-41.1
G-13.5X
U-91.1 | E-84.6
C-22.2
S-41.3
J-65.6X
J-64.4 | 4-73.1X
J-74.1
G-36.2
U-76.1X
U-66.1 | X-21.2
G-63.5
W-42.5
G-54.4
U-95.2 | U-94.2
V-15.4
M-53.3
D-35.2
T-14.2 | F-32.1
U-45.4
B-73.1
C-13.1
R-41.1 | F-75.3X
U-75.1
G-41.2
G-51.1
W-72.2 | | | MINOR
PLANET | 1092
1094
1094
1096
1096 | 1097
1098
1099
1100 | 1100
1100
1102
1102 | 1105
1107
1107
1109 | 1109
1109
1110
1111 | 1112
1112
1113
1113 | 1114
1114
1115
1115 | | | UNO | 10074 | 110
110
19 | 4 0 0 4 9 | 4 2 1 7 1 | 1 1 1 1 3 | 11 - 11 - 11 | 1 - 1 - 1 - 1 - 1 - 1 - 1 | |------------|--------------|---|---|---|---|---
---|--| | | 0
MOT I | 00000 | 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1000
1000
1000
1000
1000 | 00000 | 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | -0.4
0.2
0.1 | 0000 | | | DAY
ON | -5
-86
-71
-34
-31 | 1 6 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 24
-16
-27
-11
-31 | 52
-19
-27 | -13
-6
9 | 236
-18
-17
17 | 0 | | | 10 -
MOTI | 110.3
10.3
10.3 | 199.4 | 0.000 | 1 1 1 1 1 8 8 4 7 8 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 | -10.0
-8.8
-11.4 | -114.0
-10.1
-9.5
-9.5 | -8-6
-11-0
-10.5 | | | ဖ | 10.74
13.25
13.13C
10.93 | 12.58
12.70
12.64 | 11.90
11.87
11.73
11.88 | 11.87C
12.16C
10.85
10.81
11.17 | 12.16C
13.35A
12.91 | 14.74
11.43C
11.48
12.16C | 12.08
12.05
12.15
12.28C
11.69 | | | MAG | 14.76
14.81
14.58C
15.44
15.39 | 15.55
14.67
14.64 | 15.83
15.47
15.34
15.54
15.59 | 15.29
15.59
14.93
14.89
15.19 | 13.97C
16.00A
15.45 | 14.92
14.36C
14.41
15.72C | 16.27
16.22
14.53
14.66C
16.23 | | | VAR | 1113 | 120
113
111
16 | | 00000 | 0 6 8 1 0 | -612
8
8
1 | 1110111 | | | - C
DEC | 11
11
12
15
15
16 | 113 | 4 4444 | 44600 | 110011 | -827
9
9
2 | 11 0 0 0 2 | | ∢ | ω
Α Ο | 12.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00 | 0000
0000
0000
0000 | 00000 | 00000 | 0 | -84.0
2.0
2.0
-0.2 | 12.
10.9
10.9 | | u i | 0 | 32
32
28
28 | 223
23
28
28
28 | 39
28
24
19
12 | 33
36
22
51 | 9 4 4 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 | 27
16
09
44
16 | 10
36
30
06
06 | | [ABL | DEC
1950 | 3 02
3 28
6 36
9 01
8 48 | 6 59
5 19
5 24
7 03 | 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 3 0 0 2 1 1 4 9 4 9 4 9 9 9 9 9 9 9 9 9 9 9 9 9 | 4 49
8 11
8 12
6 00
5 53 | 4 40
4 40
6 46
8 04 | 8 20
8 13
5 37
1 26 | | _ | 7 | 33988 | 1111 | 7 | 2, 13 | 7 1 1 1 1 7 7 1 1 1 7 1 1 1 1 1 1 1 1 1 | 777 | 1225 | | | • o • o | 25.2
14.7
04.3
42.6
44.1 | 19.4
07.8
24.0
25.4
48.6 | 27.3
18.0
17.3
27.5
26.9 | 27.7
35.5
52.9
52.6
08.1 | 17.0
24.3
28.2
59.3
35.1 | 38.9
32.1
28.4
39.1
20.3 | 08.6
23.3
50.5
43.4 | | | R•
195 | 14
0 0 3
0 3 8 8
4 8 8 8 9 8 9 8 9 8 9 8 9 8 9 9 9 9 9 9 | 27
58
50
50 | 37
03
47
47 | 09
08
17
17 | 50
02
01
10
07 | 50
15
15
57 | 27
26
21
21
21
26 | | | | 2002 | 13
22
21
21
21 | 14466 | 10
10
25
4 | 23
23
15
15 | 0 8 8 7 7 | 12
12
19
19 | | | E U.1. | 1.2687
5.3292
27.1882
23.3243
27.2819 | 8.3785
2.3222
31.1826
1.2111 | 31.3300
16.2326
16.2444
3.1681
3.1785 | 19.2208
20.2319
18.2535
18.3111
22.2333 | 23.2521
2.2340
3.2382
5.2208
8.2507 | 30.3118
4.2326
4.2958
13.3812
4.2118 | 23.3083
24.2236
4.2354
4.3486
7.2632 | | | ⊢
∢ | | A E C E P R A R P C C P R | MAR
NOV
DEC
DEC | FEB
AUG
AUG
DEC | MA X X X X X X X X X X X X X X X X X X X | S NO E P C NO C P E B N C C P E B N C C P E B N C C E B N C C E B N C C E B N C C E B N C C E B N C
E B N C E | MAAR
JUL
JUL | | | 9 | 51 S S S S S S S S S S S S S S S S S S S | 551 A
551 A
551 A
51 A | 50000 | 52 F
52 F
50 A
51 C | 2222 | 22216 | 552 7 | | | | × | × | × | ×× | * | * | ×× ×× | | | SURVEY | 0-35.2
0-84.3
0-84.3
P-24.1
S-21.4
S-31.1 | 0-53.3
0-15.4
0-15.4
1-53.4 | E + 63 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | U-33.9
U-43.1
B-61.1
B-62.1
R-53.4 | S-13.1
0-55.2
0-65.2
K-63.8
K-54.4 | P-53.3
Q-72.1
Q-73.2
G-76.3
G-65.1 | V-444.5
V-35.3
M-64.4
M-74.4
E-34.6 | | | MINOR | 1116
1117
1117
1118
1118 | 1119
1120
1123
1123
1124 | 1124
1128
1128
1128
1128 | 1128
1128
1129
1129
1129 | 1129
1132
1132
1133 | 1134
1135
1135
1136 | 1136
1136
1137
1137
1142 | | | UZ | 0 0 | ۰, | ~ | ş | | 4- | 7 | 1 3 | 4 - | 13 | | | 2 | | -1 | | -1 | | - | 7 | -5 | ω, | တ ထ | 4 | 6 | | 13 | | ю | -18 | | 13 | | |-------|------------------|-----------|-------------------------|--------|--------|--------|--------|-----------|----------------|------------|--------|---------|-----------|--------|--------|----------|----------|------------|----------|--------|--------|-------------|----------|---|----------|--------|----------|-----------|---------|----------|---------|--------------|-------------------------|--| | | 0 -
MOT I | -1.2 | | ं | • | | • | -0.7 | • | ċ | -0.6 | | • | 0.1 | | • | • | 0.0 | • | - | • | • | • | 00 | · | • | ં | 0.3 | • | 1. | • | ċ | 0.0 | | | | DAY | -36 | | - 1 | | | | -10 | | | -74 | | 2 | -22 | 11 | | | -58 | | | | | | 22 | 7 | | | -39 | 7 | | 7 | | -8
260 | | | | 10 -
MOTI | -8.6 | . 2 | 5 | ۷. | | Š | -12.5 | 6 | ċ | -11.0 | | 6 | 4.6- | 9 | 8 | ့ | -9.5 | ; | ထိ | ÷ | 11. | 6 | 19.8 | 6 | 10. | ċ | -5.8 | • | 7 | • | . | 6 | | | | o | 11.40 | 9.5 | 44. | • 3 | | 1.1 | 12.29 | 2.4 | 1.7 | 3.0 | 1.8 | 11.19 | 1.4 | 1.4 | 1.2 | 1.4 | 13.34 | 3.2 | 1•4 | 2.7 | 5.9 | 1.15 | 11.50C
10.89C | 2.0 | 2.64 | 2.17 | 10.75C | 1.77 | 1 • 4 | 11.97 | 1.6 | 1.6 | | | | MAG | 15.95 | 5.0 | 5.6 | 6.2 | | 6.3 | 15.62 | 4.7 | 4.0 | 5.4 | 5.4 | 14.79 | 5.0 | 0•9 | 5.5 | 5.7 | 14.49 | 9.0 | 0.9 | 5.74A | 5.98 | 4.95 | 15.22C
14.63C | 5.6 | 5.0 | 5.5 | 15.97 | 5.5 | 5.1 | 15.98 | 5.8 | ۍ
ه | | | | VAR | 6 - | | | | 0 | | 4- | | | 00 | | 23 | | | | | -33 | | | 2 | S | 4 | 5 4 4 5 7 4 | | _ | | σ | | | | | m m | | | | - C
DEC | 2- | - | 0 | 0 | 0 | ٦ | 4- | m | 4 | 6 | | 16 | | | | | -30 | | | 4- | -5 | 18 | 22 | 29 | | 6 | ဗ | 4 | 4 | 4 | m | 123 | | | ⋖ | α
0 4 | -0.7 | • - | • | • | • | ċ | -3.5 | • | • | • | Š | -5.1 | Š | • | • | • | _5•0 | ÷ | • | • | ÷. | 5 | 21.7 | • | • | • | -1.3 | • | • | • | • | 0.7 | | | TABLE | DEC
1950.0 | 11 22 42 | 1 4 0
1 4 0
1 0 0 | 0 28 3 | 1 59 2 | 59 3 | 48 3 | 32 27 51 | 9 41 5 | 9 36 1 | 5 45 2 | 5 50 2 | 15 50 11 | 5 50 0 | 8 45 5 | 7 20 3 | 17 20 3 | 0 30 05 | 5 18 1 | 0 57 0 | 0 00 5 | 0 03 3 | 37 11 2 | -36 59 23
-36 57 21 | 0 42 4 | 58 5 | 2 15 3 | 4 15,25 | 21 0 | 5 28 0 | 17 39 1 | 51 5 | 7 51 56
17 17 43 | | | | R• A•
1950•0 | 2 25 35.7 | 47 18 | 30 49. | 53 36. | 53 33. | 40 17. | 4 56 38.6 | 47 56. | 2 45 09. | 27 22. | 56 14. | 6 56 09.3 | 56 08. | 12 06 | 1 52 24. | 1 52 23. | 22 58 50.2 | 8 46 13. | 15 03. | 34 07. | 8 32 59. | 8 10 36. | 17 53 48.0
17 52 50.5 | 1 45 49. | 40 06 | 2 18 27. | 0 51 08.5 | 24 26• | 2 23 47. | 09 24• | 3 52 13. | 3 52 13.4
11 43 24.5 | | | | E U.T. | 8.1944 | 204 | 7.182 | 8.202 | .283 | 0.241 | 12.2993 | 3.326 | 6.221 | .197 | 8.191 | | .295 | 63 | 4.196 | 4.214 | 11.2861 | 8.316 | 9.354 | .143 | .181 | 9.288 | 27.2375
28.2514 | .270 | 3.331 | .235 | 9.2951 | •338 | .340 | 9.296 | 9.195 | 29.2042
15.3375 | | | | D A T | NON O | | | | | | O DEC | | | | | JAN | | | MAR | | | | | | | | N N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N | | | | 100 0 | | | | | MAR | | | | | 50 | , ₁₂ | 5. | 51 | 5. | × | Š | 52 | 52 | Z, | 'n | 51 | 3 | S | S | S | 50 | 3 | S | | | | 51 | | | | 50 | | | | | 51 | | | | SURVEY
NUMBER | E-44.2 | -54 | -24. | -35. | 45. | 54.11 | F-52.3 | 54. | 45. | D-63.2 | G-34.4X | G-45.4X | 6-44.3 | Xۥ96-U | 7 | -26 | C-32.2X | -64 | -83 | 12. | 22. | 98 | M-17.2
M-26.2X | 0-84.9 | 0-73.7 | V-34.1X | 0-44.3 | B-64.4X | - | 7 | 7 | R-36.6X
I-52.1 | | | | MINOR
PLANET | 1142 | 14 | 7 | 14 | 14 | 14 | 1145 | 14 | 14 | 14 | 14 | 1149 | 14 | 14 | 14 | 14 | 1153 | 15 | 15 | 15 | 15 | 15 | 1157 | 15 | 15 | 16 | 1162 | 16 | 16 | 16 | 16 | 1163
1164 | | | | U N | 6119 | 4 040 | 1 6 2 6 4 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 - 2 - 5 | -14
-14
-14 | 4 4 4 0 7 | |-------|--------------------|--|--|--|---|--|--|--| | | O - C
MOTION | 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 1 1
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 | 100-100-100-100-100-100-100-100-100-100 | 0011000 | 100-100-100 | 10000 | | | DAY | 256
160
82
-33 | 10
10
10
10
10 | 14477 | 1 5 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | -17
26
21
21
-35 | -41
66
-8
-11 | 23
19
19
19 | | | 10 - DA)
MOTION | 1 1 2 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 17.
17.8
1.8.1
1.8.1 | -111.3
-111.3
-10.4 | -111.0
-10.6
-9.2 | -10•1
-10•1
-9•2
-9•8
-9•8 | -10.7
-12.8
-12.4
-11.9 | | | ဖ | 14.27C
11.69
10.91
10.97 | 10.89
11.00
10.54
9.03C | 11.60
11.33C
10.09 | 9.62C
12.48
12.90C
13.24C
12.87 | 12.98C
12.34
12.34
12.27C
13.25 | 13.51C
13.08
10.90
10.47C | 11.96C
13.57C
13.33
13.08
12.67 | | | MAG | 16.02
15.26
15.53
15.62 | 15.59
16.08
15.37
15.26C
15.68 | 15.83
15.53C
14.52
15.44 | 15.35
15.04
15.98
16.41C
15.06 | 16.43C
15.61
15.61
15.61
15.54C | 15.97C
15.29
14.51
14.07C
15.00 | 15.00
16.10C
15.86
15.68 | | | VAR | 66611 | 0 0 1 1 7 1 | 00000 | 34
0
72 | 46661 | 1152 | 98888 | | | - C
DEC | 112 | 1
0
16
16 | 0000 | 30
16
15
68 | 1 1 1 1 1
2 2 2 2 2 1 1 1 1 | 132 | 44421 | | ⋖ | х
0 4 | -7.6
-7.3
-0.3
-0.3 | 2 0 0 0 5 8 8 8 8 8 | 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0.5
1.3.7
1.00.1
1.9.3 | 0000 | 0.0
0.0
0.0
0.0
0.0 | 99986 | | TABLE | DEC
1950.0 | 17 18 58
22 49 51
-10 29 32
14 24 28
14 14 01 | 17 12 05
17 15 35
-20 18 29
- 6 35 09
-12 44 52 | -21 49 09
-21 41 57
-23 19 46
-23 14 19
11 50 03 | 24 04 11
- 0 16 06
18 46 16
18 29 48
7 40 13 | -25 37 23
-25 30 41
-25 30 42
-25 29 22
-20 45 58 | -20 50 01
16 37 35
18 19 28
18 19 25
- 0 22 40 | 10 20 46
23 43 17
23 43 14
-26 58 45
-26 54 14 | | | R• A•
1950•0 | 11 43 22.5
11 34 09.5
14 33 44.9
2 09 09.7
2 07 42.9 | 6 30 16.3
6 12 44.1
17 23 21.5
19 34 13.4
20 57 21.5 | 15 04 07.5
15 03 22.4
16 44 50.4
16 43 58.8
3 15 01.0 | 6 06 52.8
11 20 23.9
2 47 55.8
2 43 30.9
11 16 43.5 | 14 22 48.0
14 00 56.1
14 00 55.5
13 59 50.1
22 25 29.7 | 22 24 31•1
11 09 14•6
3 06 45•8
3 05 51•1
22 53 17•3 | 10 11 10.9
9 00 21.9
9 00 21.2
15 47 04.6
15 44 39.9 | | | E U.T. | 15.3833
31.2014
26.3049
5.1569
7.2632 | 28.3451
21.1340
7.2174
1.2556
3.3410 | 4.2090
5.2312
25.2278
26.3299
12.2687 | 27.2910
13.3722
8.1840
12.1500
26.2618 | 10.3222
2.2007
2.2118
3.2847
10.1819 | 11.2181
24.2403
3.3167
4.2958
11.2861 | 19.3210
9.1979
9.2097
22.2007
24.2028 | | | A 0 | MAR
MAR
APR
NOV
NOV | DEC
2 JAN
1 JUN
1 AUG | 21
23
34
34
34
34
34
34
34
34
34
34
34
34
34 | 1 DEC
1 MAR
0 NOV
0 NOV
2 FEB | 1 APR
1 MAY
1 MAY
0 SEP | O SEP
2 FEB
1 NOV
1 NOV
0 SEP | 2 FEB
1 FEB
1 FEB
2 MAY
2 MAY | | | _ | W W W W W | տտտտտ | | տտտոտ | വസസസസ | տատատ | വവവവവ | | | SURVEY
NUMBER | I-51.1
I-41.3X
W+63.5
E-23.2
E-34.3X | S-54.4
S-44.6X
L-63.6
M-71.2X
N-53.4X | K-55.7
K-64.2
X-64.6
X-74.1
E-64.3 | S-43.7X
I-44.4
E-43.2X
E-53.2
U-73.4 | J-86.3X
K-25.3
K-26.1
K-36.1
C-15.2 | C-25.3X
U-62.9
Q-63.2X
Q-73.1
C-32.3 | U-44.2
H-32.1X
H-33.2X
X-55.3X
X-45.6X | | | MINOR
PLANET | 1164
1164
1165
1167 | 1167
1167
1171
1172 | 1175
1175
1177
1177 | 1180
1182
1183
1183 | 1184
1184
1184
1184
1185 | 1185
1185
1186
1186
1187 | 1187
1188
1188
1158 | | | U Z | 41 130 | | 1 1 1 1 | 0 0 | 94440
| 0 7 7 4 7 | 4 4 4 4 4 4 | |-------|------------------|--|--|--|---|--|--|---| | | MOTION | 10.0 | | 00000 | -0.7 | 10.2
10.7
10.0
10.0 | 11000 | 0.000 | | | DAY | 126 | | 44041
88180 | 8
12
35
-11 | 33
32
45 | 88
- 8
- 13
- 27
+ 5 | 27
-36
-16
18
19 | | | 10 -
MOTI | -10.2
-7.0
-9.0 | 0 2 2 2 2 | 7 7 1 1 1 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | -5.7
-111.7
-9.2 | 11111 | -11.0
-12.2
-12.1
-10.9 | 4 | | | g | 11.29
10.79C
11.13
11.85 | 40040 | 11.73A
11.74A
12.41
12.72
13.36 | 13.34
12.75
13.30
10.54 | 11.12
11.30
11.87
12.24
11.73C | 13.07
14.10
14.13
13.42
12.90 | 11.73C
11.25
11.63
11.08 | | | MAG | 14.56
14.20
15.10
15.39 | 4 W W W W W | 15.03A
14.90A
15.85
16.09
15.81 | 16.19
15.63
15.02
14.21 | 15.33
15.51
15.58
16.14
15.48C | 15.62
15.94
15.97
15.14 | 15.24C
14.49
16.39
15.63 | | | VAR | 41 11 | 44444 | 22792 | 5 - 74 | -16
-16
-2 | 1441
80038 | 10
-8
-4
21
22 | | | DEC | 41 11 | | 1 | -104 | 110 | 1441 | 1 6 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | | ⋖ | α
0 4 | 11.0 | 85030 | 20.0
20.0
40.0
40.0
40.0 | -1•1
-7•3 | w w 0 0 0 | 2.3
12.2
12.1
-0.8 | 11 11
4 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | TABLE | DEC
1950.0 | 7 55 38
22 54 26
21 55 57
-33 17 56 | 27 19 1
29 53 5
9 58 3
15 47 5
15 46 0 | -15 13 05
-14 58 23
4 22 36
-13 26 14
15 26 30 | 15 25 17
15 26 10
-18 37 39
4 06 55
0 0 | 18 17 08
18 17 10
4 44 59
5 23 26
-21 01 52 | 18 21 08
20 46 00
20 45 58
- 1 34 36
- 4 20 10 | - 2 15 09
-19 22 48
21 36 15
4 23 06
5 10 16 | | | R• A•
1950•0 | 22 41 55.8
6 33 42.9
6 12 30.4
16 06 54.0 | 7 52 04.
7 30 21.
9 25 16.
8 03 03. | 15 14 16•4
15 11 56•0
9 36 16•3
15 52 55•6
6 26 51•4 | 6 07 28.7
6 06 55.9
14 50 45.9
23 14 26.0
0 0 | 11 46 13.3
11 46 12.4
4 35 02.5
4 20 17.9
12 42 52.0 | 9 59 21.33
4 02 33.44
4 02 32.7
0 31 09.0
13 19 14.3 | 12 49 17 9
21 24 09 1
3 50 19 7
12 01 26 6
11 40 16 7 | | | Б
С. Т. | 10.1951
28.3451
21.1340
29.2312 | 13.237
4.105
29.191
27.209
28.222 | 5.2208
8.2507
10.3139
24.2889
28.2819 | 21.1340
22.1250
4.2090
12.1958
15.3833 | 31.3410
31.3514
4.2285
22.1611
4.2514 | 19.22
29.17
29.18
9.18
23.35 | 22 • 1778
13 • 26 94
29 • 1771
26 • 3792
23 • 1903 | | | D A T | DEC
DEC
DEC
DEC
DEC
DEC
DEC | | MAY
1 MAY
1 FEB
2 MAY
1 DEC | 2 JAN
2 JAN
1 MAY
0 SEP
1 MAR | 1 MAR
1 DEC
1 DEC
1 APR | 2 FEB
1 NOV
1 NOV
0 OCT
2 MAR | 2 APR
0 AUG
1 NOV
2 FEB
2 MAR | | | | <i>.</i> መመመመ | เพพพพพ | មាមមាម | M M M M M | นั้นเกินเกิ | * * | ທີ່ທີ່ທີ່ທີ່ | | | SURVEY
NUMBER | C-21.1
S-54.5
S-44.3
L-26.2X | 33523 | K-63.6
K-54.2
H-55.3X
X-43.4X
S-55.7 | S-44.5X
S-45.6X
K-55.1
C-42.2
I-51.6 | 1-52.3
1-51.4
R-56.1
R-46.3
J-36.2 | U-33.10
R-33.11
R-34.5X
D-35.3
V-63.3X | W-13.8X
B-34.2
R-33.2
U-93.5X
V-13.7X | | | MINOR
PLANET | 1189
1189
1189
1194 | 100110 | 1200
1200
1201
1201
1203 | 1203
1203
1204
1206
1210 | 1210
1210
1211
1211
1211 | 1216
1218
1218
1219
1219 | 1219
1223
1223
1227
1227 | | | O N | 44440 | 117 | 111 | 1771 | 21775 | 1
2
1
1
1
1
1 | 6-14-6 | |------|------------------|---|---|--|--|--|--|---| | | MOT I | 0-1-0-3 | 0000 | 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0001 | 100.1 | 100.7 | 10001 | | | DAY
ON | 22
20
40
40
40
40 | 1 4 8 6 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 12
-79
-23
-23 | 147
553
41 | -18
-26
-32
-16 | -14
45
-26
-41 | 123
133
143
143 | | | 10 -
MOTI | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | -111.7
-12.0
-10.7
-10.8 | -10.3
-7.7
-7.7
-9.2
-8.5 | 1.00.00 | -8 - 6 - 7 - 8 - 10 - 6 - 11 - 4 - 11 - 4 | 100.8 | 1 1 1 1 1 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | | | 9 | 11.35
11.25
11.46
11.05 | 12.67
12.87
12.04
11.95 | 10.92
11.39
11.42
10.52 | 10.70
12.46C
10.72C
11.10 | 11.17
11.02C
10.66
12.82
12.99 | 13.09
11.86
11.38
11.83C | 11.76
10.82
12.80
11.65 | | | MAG | 15.40
15.30
14.74
14.31 | 14.64
14.84
15.08
14.99
14.79A | 15.57
14.86
15.50
14.72 | 15.30
15.68C
14.59
15.00
16.46 | 14.73
14.59C
14.22
15.51
15.68 | 15.79
15.72
15.54
15.97C
14.88 | 15.70
16.47
15.09
15.88
15.74 | | | VAR | 21 15 21 21 21 21 21 21 21 21 21 21 21 21 21 | 20
20
0
0 | -6
2
11
11
11 | 1102 | 44000 | 0 1 1 1 1 0
0 1 4 0 0 | 011000 | | | - C
DEC | 11
25044 | 11 1 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 0 1100 | 7117 | 44400 | 17700 | 44744 | | 4 | м
О А | 00-1
00-0
00-0
00-0
00-0
00-0
00-0
00-0 | 1 3 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 11000 | 0.0000000000000000000000000000000000000 | 100.7
100.3
100.3 | 10.7
10.8
0.8
-14.0 | -13
0 0 0 4
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | Ш | 0.0 | 9 20
9 24
8 38
3 18
25 | 0 29
3 3 0 3 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 9 23 6 0 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 | 7 09
3 49
0 20
9 44
0 06 | 1 59
3 47
9 38
3 18
3 29 | 4 11 50 0 1 1 9 0 0 0 1 1 9 0 0 0 0 0 0 0 0 0 | 5 03
8 47
9 56
8 16 | | TABI | DE(| 0 4
0 4
1 26
1 26
1 24 | 22 1 1 2 2 2 2 4 2 4 2 4 2 4 2 4 4 4 4 4 | 131 5 | 2 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - | 11200 | 115 4
18 2
19 3
18 2 | 17 31
- 3 11
30 2
29 22 | | | • o • | 19.5
19.0
15.3
25.5 | 000
000
000
000
000
000
000
000
000
00 | 30 • 9
07 • 6
37 • 3
44 • 1
42 • 5 | 2000
2000
2000
2000
2000
2000 | 56.8
112.0
449.0
53.6
48.1 | 51.0
02.4
32.7
099.7
55.9 | 2355
235
235
235
235
235
235
235
235
235 | | | R•
195 | 9 31
6 94
9 33
9 53 | 3 32
3 32
9 00
7 25 | 1 40
0 20
0 49
6 15
6 15 | 50 46
93 004
93 034 | 00 00
00 00
00 4 4
00 4 4 4 | 9 43
7 37
3 00
1 33
5 27 | 5 13
1 39
7 10
4 00
3 45 | | | • | 6 8 5 0 9 | 6 | 99 08 11 | 00408 | 108871 | 60460
11.11.01 | 96476 | | | E U.1 | 10.313
10.325
24.229
25.227
16.232 | 3.156
3.168
4.245
4.255
12.197 | 26.279
31.211
9.266
28.254
28.254 | 22.125
30.334
7.261
9.216
18.221 | 7.236
8.191
23.161
29.191
29.270 | 30.208
4.222
23.335
14.233
13.281 | 30.132
26.279
7.217
16.222
3.156 | | | ⊢ | MAAK NOK | DEC
JUL
JAN | FEB
JUL
OCT
DEC | S S S S S S S S S S S S S S S S S S S | OCT
COCT
JUL
JUL | JUL
FEB
MAR
DEC | D C C C C C C C C C C C C C C C C C C C | | | ۵ | 50
50
50
50
50
50
50
50
50
50
50
50
50
5 | 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 52
51
51
51 | 22112 | 50
50
51
51 | 500
200
200
200
200 | 500 | | | SURVEY
NUMBER | H-55.2
X-56.2
X-544.4
X-644.3
F-844.3 | F-12.7
F-13.5X
M-65.1X
M-56.3X
G-52.1 | N N N N N N N N N N N N N N N N N N N | S-45.2
P-51.2X
U-43.2
U-53.1
U-24.4X | D-15.1
D-26.4
S-62.3
N-12.3X | N-23.2X
G-64.1
V-53.3X
B-43.1
F-64.3 | FG-64.3
L-63.6X
L-63.3
E-82.5
F-12.3 | | | MINOR
PLANET | 1232
1232
1232
1232
1236 | 22333 | 1240
1242
1243
1243
1243 | 1243
1244
1245
1245
1247 | 1248
1248
1248
1249
1249 | 2225 | 1255
1256
1257
1258
1258 | | | UZ | 91077 | 78776 | 21 821 | 41400 | 1 1 1 1 | -10
-11
-11 | 10004 | |------|------------------|--|--|--|---|--|---|---| | | O -
MOTI | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00000 | 0000 | 10.7 | 100.5 | 00000 | 0 - 1 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - | | | DAY | 10
15
15
-28
-2 | -19
30
23
31 | 36
41
-44
-60 | 70
74
57
48
15 | 6
15
31
41
41 | - 49
- 33
- 66 | 5.2
5.5
1.9
66 | | | 10 -
MOTI | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | -7.7
-8.0
-7.8
-6.9 | -11.1
-7.0
-11.4
-8.9 | -8.5
-7.6
-18.5
-10.1 | -8.3
-8.3
-9.5
-10.5 | -100.5
-100.6
-100.5
-70.5 | -7.8
-7.8
-7.3
-8.4 | | | ဖ |
11.65
12.00A
11.88
10.38 | 13.56
10.01
10.28C
9.67
13.59 | 13.97
11.59
13.96
14.26C
13.14C | 11.72
11.80
12.16
12.10
13.67 | 11.00
11.46
12.74
12.45
11.09 | 11.42
11.08
11.08
11.45 | 11.42
11.46C
12.13C
12.18
11.93 | | | MAG | 6.00
6.35A
5.72
4.86
4.73 | 5.58
4.78
4.76
5.73 | 6.12
6.33
6.27
6.93C
5.40 | 0.000
0.000
0.000
0.000
0.000 | 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 5.37
5.01
5.01
4.79
3.89A | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | | | VAR | -7 1
-8 1
-13 1
-31 1 | 0 | -20
4 4 1 | 1 - 2 - 1 - 1 - 2 - 1 - 1 - 1 - 1 - 1 - | 4 6 0 0 4 | 1111 | W 4 4 H H | | | - C
DEC | -11
-30
-30 | 1122 | 123
133
134 | 4
5
1
1
1
1
1 | 7 7 7 7 7 7 | 10757 | 04410 | | ∢ | 0 4 | 1110
120
130
130
130
130
130
130
130
130
130
13 | 0
1
1
1
1
1
5 | 1 4 8 8 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1009
1009
1009 | -1.9
-2.0
0.0
0.0 | 77 P P P P P P P P P P P P P P P P P P | 1000 | | LL1 | 0.0 | 5 34
6 01
6 45
6 42 | 9 56
3 48
5 39
1 27 | 4 56
7 55
7 07
1 42
0 45 | 0 42
8 50
4 29
7 26 | 1 08
4 23
9 57
4 45 | 4 36
4 14
0 47
7 02
2 09 | 6 33
7 41
1 44
5 32 | | TABL | DEC
1950 | 13 35
20 36
20 26 | 24 4 2 2 3 3 4 4 5 4 5 5 6 4 5 6 5 6 6 6 6 6 6 6 6 6 | 23 44
28 47
27 21
20 10 | 2 56
- 3 16
-21 24
-15 06 | -27 51
-27 24
5 19
5 20
35 14 | 35 14
35 16
29 02 | 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | • o | 01110
66.00
66.000 | 80846
74701 | 4 | 200.3 | 004m0 | 00416
00000 | ων.
ωω 4 90 | | | R•
1950 | 11 2
11 2
11 2
49 2
12 0 | 28 4 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 29 2
07 5
37 1
19 4
50 5 | 59 0
29 2
47 4
26 5
33 1 | 59 44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 39 3
39 2
38 3
18 1
18 5 | 112
123
133
134
134
135
135
135
135
135
135
135
135
135
135 | | | | 9
19
9
9 | 22
15
15
15 | 9 4 4 4 6
20 4 4 4 6 | 7
13
16
12
13 | 17
17
9
9 | 7
7
20
6 | 6
10
10
13 | | | E C - 1 | 29.2465
29.3458
30.2181
29.2375
29.3549 | 11.2062
13.2597
19.2208
5.2208
5.2889 | 6.2139
2.3042
5.2625
22.1340
3.2910 | 7.2354
24.1951
2.2160
2.3479
8.2729 | 9.2986
28.2417
29.3188
29.3368
25.1896 | 25.1986
25.2979
26.1778
10.2639
22.1611 | 5.1785
24.2583
24.3403
13.3257
24.2042 | | | ⊢ | COCAN | SEP
DEC
MAY | JAN
MAAY
DEC
AUG | A P B B A P B A P R A P R A P R | N N N N N | L A C A B B C C A B B C C A B C C A B C C C A B C C C C | L E B B B B B B B B B B B B B B B B B B | | | ۵ | 52
52
52
52 | 525 | 2000 | 525 | 51
52
52
52 | 50000 | 51
52
52
52
52 | | | SURVEY
NUMBER | 1-74.4X
1-84.5X
N:24.3X
1-73.1
1-83.1 | C-24.3
F-62.3
U-33.8
K-63.3 | G-24.7
K-32.2
R-53.6X
R-43.3
N-54.2X | G-76.2
W-33.1
L-44.1
I-71.1 | L-85.5X
M-25.3X
T-75.3X
T-85.1X
T-21.1 | 1-22.3
1-31.1
1-32.1
B-13.2
S-53.2 | G-15.6
U-64.8X
U-65.3X
G-66.2X
W-34.7X | | | MINOR
PLANET | 1258
1258
1259
1266
1266 | 1267
1268
1268
1269
1270 | 1270
1271
1273
1273
1274 | 1275
1275
1277
1278
1279 | 1280
1280
1281
1281
1282 | 1282
1282
1282
1284
1284 | 1286
1286
1286
1287
1287 | | | UZ | 4 9 1 1 1 | 4000 | 1 | -1.9
-1.4
-1.5
-1.5 | 12851 | 80104 | 0767 | |-------|------------------|---|---|---|---|--|--|--| | | 0 -
MOT 10 | 0000 | 1000 | 10000 | 0000
4 & 6000 | 0001 | -0.2
-0.2
-0.2
-0.7 | -1.0
0.1
-0.7
-1.4 | | | DAY | 50
1
0
41
-11 | 4 W W W 4
0 Q W Q R | 187
145
164
154 | -61
-2
-2
-44
-49 | 4 9 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 136
136
132 | 144
129
116
15 | | | 10 - MOTIO | -8.1
-8.2
-8.6
-10.0 | 10.2
17.5
17.5 | 11 8 1 1 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 | -10.2
-9.7
-8.1 | 0.000 | -6.6
-8.7
-7.0
-7.0
-10.0 | -10.6
-10.1
-10.8
-10.7 | | | g | 11.46C
11.44
11.20C
11.57
12.49 | 11.63A
11.59
11.96 | 12.99
11.97
12.42
10.43 | 11.64C
11.43
11.48
10.67 | 10.50
13.45C
12.09C
11.51
10.95 | 11.61
12.08
11.03
11.49 | 11.29
11.23
11.48
13.23
11.57 | | | MAG | 14.84
15.70
15.46C
16.10
15.37 | 14.53A
14.50
16.58 | 15.92
15.56
15.90
14.17
13.84C | 15.69
15.45
15.50
15.39 | 15.21
15.66C
15.61
15.07
15.14 | 15.75
16.36
15.11
14.54
15.65 | 15.08
14.85
15.14
16.29
13.87 | | | VAR | 12
2
9
9 | 16221 | 0 in 0 m m | 120 | -19
-07
-11 | -11
-1
104
62
-2 | -29
-29
-28
10 | | | - C
DEC | 1100011 | 1 1 1 1 | 7 4 7 0 1 | -4
0
0
-17 | 111111111111111111111111111111111111111 | -15
113
62
1 | 1 1 1
4 4 4 0 6
4 4 4 0 6 | | ⋖ | ω
Δ | 100.2
100.2
120.2
120.2 | 0 0 0 0 0 H | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | -0.7
-1.3
-1.3
13.4 | 13.5
1.6
0.9
0.8
3.1 | 3.1
-9.1
19.9
7.0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | TABLE | DEC
1950.0 | - 6 48 59
10 43 11
10 43 10
- 7 12 43
23 11 22 | -19 40 58
29 56 16
29 56 39
8 44 41
-16 40 32 | - 4 37 18
-20 15 44
-21 20 16
-22 55 29 | 4 52 04
25 02 54
25 02 58
-32 32 27
-32 32 22 | -32 28 03
- 0 30 43
- 8 03 02
- 7 52 48
- 7 46 48 | - 7 32 01
21 38 53
- 1 14 56
3 33 46
34 08 51 | -27 10 15
-28 17 56
-28 23 00
-23 22 15
-20 45 30 | | | R• A•
1950•0 | 13 05 55.2
6 52 41.5
6 52 41.0
11 35 03.9
6 03 36.7 | 14 56 38.6
7 20 54.9
7 20 49.1
9 59 03.3
13 19 16.7 | 23 44 38 1
23 20 36 4
5 25 04 1
17 49 19 9
17 33 56 9 | 1 10 25.9
5 58 26.5
5 58 24.8
14 48 38.5
14 48 38.7 | 14 47 52.9
10 55 31.8
12 46 34.5
12 44 04.9
12 31 16.7 | 12 29 53.3
9 43 06.0
21 57 43.5
23 12 23.8
5 07 55.7 | 16 05 18.1
15 45 51.7
15 43 49.2
16 31 38.9
22 15 13.4 | | | Е U.1. | 9.2757
8.2028
8.2833
26.2799
5.1562 | 27.3708
25.1986
25.2889
11.2285
23.2625 | 27.1882
14.2799
27.1736
9.3576
26.2118 | 10.2917
27.2639
27.2910
3.2958
3.3062 | 4.2306
24.2583
4.3174
7.2715
2.2736 | 4.3174
18.2035
15.2368
12.1958
23.2611 | 8.2826
27.2312
29.2208
24.2292
1.2687 | | | A
T | APP
CAPN
CABN | A P P P P P P P P P P P P P P P P P P P | SEP
SEP
CUN | OCT
DEC
MAY | MAPR
APR
APR
APR | APR
FEB
AUG
SEP
DEC | MAY
MAY
MAY
SEP | | | ۵ | 5221 | 522 | 50
50
50
50
50
50
50
50
50
50
50
50
50
5 | 50
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 51
51
51
51 | 51
52
50
50
51 | 551 | | | SURVEY
NUMBER | J-54.1
G-35.4
G-45.1
U-85.1
G-13.2 | W-75.5
T-22.1
T-23.1
H-64.3X
W-25.3X | P-24.2X
C-56.2
S-23.7
L-84.1
M-14.2 | D-54.1
S-33.11
S-43.1
K-47.1X | K-57.1
U-64.3
J-34.10
J-44.2
I-74.5 | J-34.2
U-22.1
B-52.3X
C-42.4
S-12.3 | K-85.2X
L-15.3
L-25.2
X-54.5X
O-35.4X | | | MINOR | 1289
1291
1291
1291
1292 | 1292
1294
1294
1298
1298 | 1299
1300
1300
1304
1304 | | 1306
1307
1308
1308
1309 | 1309
1312
1315
1321
1321 | 1323
1323
1323
1327
1329 | | | UZ | 9777 | w 4 | 977 | n | -10 | n m | -7 | 9 | | 79 | | | 7 | 0 | 9 | 11 | ~ 1 | | 70 | | 12 | | 90 | |------|------------------|---|------------|---------------------|------------------|--------|-------------|------------------|----------|----------|--------------------------|---------|----------|----------|-----------------|----------|--------|------------|----------|------------|-------|----------|----------|--------------------------| | | 0
M011 | 10.5 | | 10.0 | • | • | -0.1 | 0.1 | • | . | 10.0
10.0 | ċ | • | ં | -0.0 | • | • | • | o o | -0.1 | • | • | ċ | 1001 | | | DAY
ON | -28
105
84
78 | | 944 | | -39 | | -11
33 | | 2 | 133 | ı — | | 29 | 7 | 7 | | S | | 71 | σο | | 2 | 46 | | | 10 - 6
MOTIC | 0 1 1 1 1 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | α
6 | -8.6
-9.1 | • • | - | 0.6- | • • | 6 | • | -9.2 | | • | . | 6.6- | 8 | 7 | | ç, | -6.7 | œ | ~ | 6 | -9.6
-9.5 | | | 9 | 11.36
12.66
13.05C | 1.1 | 12.27
11.95 | 12.03 | 3.96 | 12.38C | 2.86
2.65 | 12.34 | | 4 | 12.88C | 2.0 | 2.5 | 12.47
11.93C | 1.56 | | 1.5 | 1.0 | 12.51 | 1.3 | 2.6 | 2.0 | 13•21
13•35 | | | MAG | 15.29
15.44
15.99C | 5.4 | 16.11
15.79 | 16.38 | 5.5 | 16.55 | 7.6
6.1 | 15.80 | | 7 | 16.39C | 4 , 6 | ر
و د | 15.37C | 5.0 | | 5.7 | 4.6 | 15.28 | 5.4 | 5.9 | 5.9 | 14.82
14.78 | | | VAR | -47
-13
-12 | 1 | 8000 | ש ע | -4 (| n m | 22 | | | 21 | | | | | | | | | -2 | -7 | 9 | | 77 | | | - C
DEC | 151 | m 0 | 666 | 10 | | 7 7 | 17 | | | 24 | | | | 126 | 9 | | | | -2 | -7 | 9 | ω, | 7 | | ⋖ | α
0 4 | \$ 0 0 0 0
\$
4 0 0 | 8 | -2.1 | | • | 2.9 | 7.4-4 | 4 | 12. | -12.6 | 9 6 | • | 13. | -20.8 | 20• | • | H | • | 0.4 | • | • | • | 1.1 | | щ | 0 | 07
41
08
25 | 7 | 98 | ט יט | 7 | 4 4
5 10 | N 4 | 8 | Α, | 51 | ١ ٦ | 0 | <u>с</u> | 13 | 0 | - | 2 | m e | 3 4 | 7 | S | α. | 17 | | TĀBL | DEC
1950 | 10 42
24 04
26 51
26 51 | 0 0 | 19 17 | 4 9 | 200 | 23 51 | n n
n | 5 3 | 28 4 | -28 42
-20 11 | , C | ß | -
- | -18 46 | 18 4 | 3 | S | | - 5 39 | 7 | 0 | 9 5 | -24 35
-22 30 | | | R• A•
1950•0 | 2 37 42.3
10 20 28.5
10 05 57.8
10 05 50.8 | 2 54 40. | 9 11 52.3 9 11 46.6 | 44 11.
16 27. | 21 22. | 6 27 46.9 | 08 08•
17 29• | 9 16 27. | 7 14 51. | 17 14 50•8
15 47 51•8 | 2 03 23 | 5 48 04. | 3 43 32. | 20 28 15.6 | 0 28 14. | 42 53. | 1 30 54. | 0 32 26. | 11 44 08•1 | 04 00 | 0 00 16. | 1 13 36. | 15 53 02•7
15 35 19•7 | | | E U.T. | 8.1944
12.2125
1.2236
1.3611 | .195 | 9.2097 | 9338 | 9.303 | 28.3451 | 1.125
9.197 | 0.206 | 6.251 | 26.2597 | 6.358 | 4.193 | 4.195 | 10.2639 | 0.279 | 5.324 | •223 | 0.221 | 1.2194 | •210 | 7.218 | 0.313 | 8.3583
27.2410 | | | A 1 | NOV
FEB
MAR | NOV
SAN | F F B | A A A | NON 7 | DEC | JAN | FEB | MAY | ¥ ¥
Σ ¥ | AUG | DEC | APR | AUG
AUG | AUG | ⋖ | \prec | w L | APR | MΑΥ | SEP | 00.1 | MAY
MAY | | | • · | 50 51 51 | 50 | 51 | 52 | 51 | 21 | 52
51 | 51 | 52 | 52 | 51 | 20 | 52 | 200 | 20 | 51 | 51 | 27 | 21 | | | | 51
51 | | | SURVEY
NUMBER | E-44.3
H-72.1
H-61.3
H-71.1X | 56.1 | H-33.3
H-43.7X | 62. | -42. | 4.8 | -43.
-32. | -42.1 | -84. | X-85.1
X-44.1 | -81 | -73.3 | 133 | 8-13-5 | -14. | -53. | -43. | -44.1 | 1-55.3 | -62• | -63. | -56. | K-84.3
L-14.1 | | | MINOR
PLANET | 1331 | 333 | 1336 | 9 6 | 33 | 34 | 1340
1343 | 34 | 34 | 1343 | 34 | 1348 | 34 | 9 4 | 34 | 35 | 35 | ان
در | 1353 | 35 | 36 | 36 | 1365
1365 | | | U NO | 5
7
0
17 | 77999 | 6 1 11 6 9 | 1 9 7 1 | 13 | 00404 | 112
122
4 | |-----|------------------|---|--|--|---|---|---|--| | | MOTI | 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | -00-7
-00-1
-00-3 | 01111 | 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - | 00000 | 100.7 | -1.1
-0.3
-0.1
-0.1 | | | DAY | 100
125
119
114 | 50
50
110 | 133
129
-27
40 | 9 8 8 8 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 | 1 1 0 6 0 2 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 13
10
10
19
18 | 1 3 4 4 8 1 2 4 4 8 1 2 6 4 4 8 1 2 6 4 4 1 2 1 2 6 4 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 | | | 10 -
MOTI | -112.0
-11.8
-17.8
-9.5 | 100.2 | 111-8
-111-8
-111-8
-111-8
-4 | -10.0
-10.1
-10.1 | 0.00 | 1-9-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | 1100.02
1100.02
1100.03 | | | g | 11.51
11.65C
12.41C
11.81C
12.90 | 12.96C
13.53
13.28
11.92 | 12.18
12.12
13.28
13.17 | 12.56
13.38
13.24C | 12.83
11.94C
12.03
12.63 | 9.67
10.24C
13.64
13.02 | 12.94
13.07
12.77 | | | MAG | 14.91
14.40
15.15C
15.02C
15.62 | 15.56C
15.43
14.70
14.75 | 14.66
14.59
15.13
15.02
16.65 | 16.16
14.71
14.57C | 16.53
14.90C
15.74
16.22
16.11 | 14.74
15.320
15.75
15.06 | 15.47
15.84
15.52
15.89
16.36 | | | VAR | 14
67
-1
8 | 1 6 1 1 6 E | 112 | 21 7 7 7 7 | -11
20
-1
19 | 00849 | 4 - 222 | | | DEC | 14
75
72
7 | 122 | 111111111111111111111111111111111111111 | 19 | 22 22 23 23 | 11111 | 40004 | | ⋖ | ω
0 4 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 1 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 1111122 | -2.6
-1.6
-1.7
-1.7 | -13°8
4°4
-0°4
-3°6 | 000000000000000000000000000000000000000 | 40001 | | LE | 0 | 1 52
1 11
3 06
5 55
0 47 | 4 21
4 27
3 00
9 09 | 9 39
9 57
1 12
9 30
4 04 | 4 4 5 0 1 0 4 4 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 | 1 33
6 19
8 23
6 03
6 42 | 9 40
3 37
3 26
7 24 | 8 8 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | TAB | DE
195 | 127 5
127 5
127 5
100 0 | 13 5 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 000
000
000
000
000 | 1 1 2 1 1 2 1 1 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 2 11 2 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 | 2112212121212121212121212121212121212121 | 1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | | | A•
50•0 | 50.6
42.2
36.9
31.6 | 27.9
29.5
09.1
33.0 | 37.6
37.1
16.1
13.9
52.3 | 53.3
411.7
411.1
32.5
31.9 | 28 . 3
41 . 9
23 . 9
29 . 5 | 19
24
18
49
49
59
44 | 54.6
10.7
01.2
06.1
25.5 | | | R•
19 | 1 22
14 42
14 41
18 15
0 21 | 10 26
15 43
16 20
12 07 | 11 50
11 50
3 28
3 27
12 02 | 11 39
14 48
14 48
14 48
14 48 | 5 41
3 47
10 42
4 01
10 33 | 11 46
11 33
11 33
14 18
14 01 | 15 33
1 57
9 46
9 28
3 30 | | | U • T • | 1.3611
3.3062
4.2194
18.2028
8.1806 | 0.2229
5.3757
9.3104
16.3701 | 23.1903
23.2083
23.22479
3.2236 | 23 • 1993
27 • 2167
27 • 2257
27 • 3799 | 7.2639
3.2965
4.2222
(6.2444 | 5.3833
31.2014
31.3514
10.3958
8.2042 | 5.3757
5.1569
1.2583
7.2069 | | | A
T | MAY
MAY
JUN 2 | FEB 2
MAY
MAY 2
FEB 2
FEB 2 | MAR 2
MAR 2
NOV 1
NOV 1
FEB 2 | MAR 2
APR 2
APR 2
APR 2 | DEC 2
NOV 1
FEB 2
NOV 1
FEB 2 | MAR 1
MAR 3
MAR 3
APR 1 | MAY
NOV
FEB
FEB 1 | | | Δ | 50
50
50 | 55
55
55
55
55
55
55
55
55
55
55
55
55 | 52
50
50
50 | 22222 | 50
50
50
50
50
50 | 9999 | 50
52
52
50
50 | | | SURVEY
NUMBER | P-64.2X
K-46.2
K-56.2
M-31.1 | U-42.7
K-73.1
L-34.1
U-94.8X
U-93.2 | V-13.6
V-23.1
E-62.3
E-72.3
U-94.10X | V-14.8X
W-64.11
W-65.3
W-75.2 | S-33.5
E-75.1
U-52.6
E-84.4
U-54.10X | I-51.2
I-41.1
I-51.1
U-83.2
K-23.3 | K-73.7
E-23.1
T-93.4X
U-13.10X
E-74.2 | | | MINOR | 1366
1368
1368
1369
1375 | 1375
1376
1378
1379
1379 | 1379
1379
1381
1381
1381 | 1381
1382
1382
1382
1382 | 1388
1388
1388
1388
1389 | 1390
1390
1390
1393
1393 | 1394
1396
1396
1396
1397 | | | O - C
MOTION | .8 1
.0 111
.8 -7 | w 4 | 50 -10 | 4 W | m (| .n | 2 -1 | m | 7 | 5 | l
G | •7
•7 -1 | ω | 1 -1 | 6 1 | .2 -5 | 6 | 2 - | - 1 | • 0 | - | σ | 3 | 7 | 4 | -4
-2
-4 | j | |-----|------------------|---|------------|-------------------|-----------------|------------|------------|-------------|-------|------|-------|--------|-------------------|-------|-------|-------------|--------|-------|-------|------|--------|------------|------|-------|-------|------|-------------------|-----| | | Σğ | 0 0 0 1 | 0 -1 | 00 | 10 | 9 | o c | 0- 2 | ŏ | 0 | 0 | ן י | 4 8 | 0 | 7 | 0 | 1 -0, | 0 | 0 | 0 | Ä | Ó | 0 | 0 | 0 | 9 | 80 4
Q C |) | | | DAY | 0401 | 1 v | <u>n</u> (| 7 7 | -24 | Ċ | -11 | | | | | 3 8 | | | | 7. | | | 4 | -14 | 2 | 9 | | | | 36 | | | | 10 -
MOT | -10.2
-7.9
-8.7 | 8 8 | 8 9 0 | 9.0 | æ | . v | -10.8 | ထီ | 7. | ထီ | 11. | -11.1 | 11. | ċ | • | 8.6- | 6 | 9 | å | -10.3 | ث | 6 | 8 | 6 | ထီ | -7.6 | • | | | g | 12.88
11.61
11.11 | 1.6 | 12.33 | 2.0 | 2.4 | 2.5 | 13.80 | 1.5 | 2.5 | 2.3 | 3.4 | 13•26
12•97 | 2.8 | 2.65 | 2.59 | 12.34C | 1.47 | 1.4 | 2.52 | 12.03C | 0.5 | 1.8 | 1.4 | 3•3 | 1.3 | 11.41 | 1 | | | MAG | 17.30
16.39
15.89
14.91 | 5.1 | 15.77 | ນ
• ດ
• ດ | 6.1 | 6.1 | 16.01 | 5.4 | 5.9 | 6.1 | 4.6 | 14.47
16.30 | 6.2 | 4.31 | 4.3 | 14.88 | 5.3 | 5.2 | 5.9 | 15.11 | 4.6 | 4•0 | 4.7 | 6.7 | 5.5 | 15.61 | - | | | VAR | 4 2 2 2 4 | _ | ო ო , | 7 | 7 | ٦ ٣ | 6 | | 6 | | | 20
-6 | 9- | 0 | ~ | 7 | 6- | 6- | | 80 | -11 | 4 | 9 | m | 0 | C | > | | | - C
DEC | 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | W 41 | n 0 | 7 | P 17 | 19 | | | | | 21
-7 | | 1-4 | | 9 | 6-1 | | | 10 | | (1) | -14 | e | ထ | ω σ | ^ | | ⋖ | л
О А | 10.7
10.4
10.5
4.6 | • • | 2.1 | • • | • | • | 5.6 | • | • | • | • | 2.3 | • | • | • | -0.7 | • | • | • | 2 • 4 | 9 | • | • | ં | ċ | 4.01 | • | | ш | 0 | 44
50
33
33 | 0 6 | 22 | 4 4 | 0 | 0 4 | 9 9 | 4 | r. | 0 | 4 | 29 | 'n | S | 7 | 08 | 0 | 7 | 7 | 36 | 7 | ~ | ٦ | 4 | 6 | 36 |) | | ABL | DEC
.950 | 5333 | 4 4 | 010 | w 4 | ~ | 4 | 41, | 0 | 0 | 0 | 0 | 31 | 2 | 0 | 3 | 101 | 7 | 8 | 0 | 17 | വ | 5 | 4 | 7 | - | 200 | 1 | | - | - | 24
-26
-26
21 | | 991 | 26 | ,— 1 | , | -24 | 2 | 12 | | _ | 7 21 | | | | -13 | | | | 21 | $^{\circ}$ | | 1 | | | 12 | | | | A 0 0 | 04.7
58.9
58.1
48.7 | 6 . | 13.1 | . 0 | e e | ٠, ۲ | 54.7 | 1. | æ | ထီ | æ | 39.5
57.8 | 5. | 9 | 5 | 51.8 | · | 6 | ċ | 0.40 | 6 | œ | 4 | ċ | ċ | 37.6 | • | | | R•
195 | 47
21
21
21 | | 39 | | | | 58 | | | | | 22
38 | | | | 14 | | | | 05 | | | 58 | 41 | 51 | 52 | > | | | | 13 | | 44 | 23 | 4 | 4 4 | 19 | | 12 | 12 | 0 | 00 | 6 | 7 | ~ | 14 | | | | 4 | | | | 13 | ထ | 30 00 | כ | | | . U.T. | 6.1868
8.2833
8.3028
6.2139 | 3.212 | 4.2285 | 2.184
7.263 | .210 | 4.210 | 9 | 4.262 | .210 | 2.228 | •155 | 8.3042 | 7.206 | 5.168 | .263 | 6.2056 | 0.213 | 0.222 | .250 | 1771-6 | .223 | •235 | 0.327 | 8.184 | .203 | 8.2667 | 011 | | | Η | LAPR 2 | AY
UG 1 | E C | EP 1
EC 2 | C | י
טעע | ,
1
1 |
UG 1 | - | - | 5 | OCT
JAN 3 | EB 1 | | > | PR 2 | | | | NOV 2 | 90 | 90 | | PR 2 | EB | н
Н
Н
Н | 3 | | | ۷
۵ | 244 | · Ε Ε Ε | 00 | 0 1 | - | - - | | 0 | 7 | 7 | 0 | 0 0 | 2 F | 20 | 20 | 2 A | 2 F | 2 | 0 | _ | -4 | | - | | - | | 4 | | | | ພະນະທຸດ | יט יט | സസ | பிய | v. | un un | ייט (| ιυ | Ŋ | ഹ | 'n | ഹ ഹ | ς. | 3 | ß | Ŋ | 'n | N | 'n | ς, | ₹. | Ŋ | 'n | S | 'n | ທິດ | • | | | SURVEY
NUMBER | 1-33.5X
J-56.1X
J-67.2
G-24.1 | 43. | R-56.3
R-46.5X | -41.
-33. | -46. | -46. | 4 | -45. | -22. | -32. | -23. | D-33.3
T-92.2X | -13. | -24.2 | -34. | W-54.9 | -41• | -42. | -24. | R-33.3 | -56. | -46. | 53. | 21. | 24.1 | H-25.4X
H-34.2 | • | | | MINOR
PLANET | 1397
1398
1398
1407 | 40 | 1410 | 41
41 | 41 | 41 | 1415 | 41 | 41 | 41 | 41 | 1418
1418 | 41 | 41 | 41 | 1419 | 45 | 42 | 42 | 1423 | 42 | 45 | 42 | 43 | 43 | 1434 | ì | | | U NO | 7 4 8 4 8 | 79797 | 123112 | 77700 | 21210 | 10011 | 1
1
1
1
1
1
1
1
1 | |--------|------------------|---|--|---|--|--|--|---| | | O -
MOTI(| -0.3
-1.2
-0.7
-0.7 | 00111 | 1110 | 00.0 | 1000 | 1-0-1
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0000 | | | DAY | 48
2
0
17- | -105
-38
-53 | 15
16
13
69
124 | 113
-52
-25
40
45 | -53
-23
14
12 | -41
-37
-36
18 | 240
240
53 | | | 10 -
MOTI | -10.5
-10.5
-19.0 | -16.7
-8.3
-9.0
-9.5 | -8.4
-9.4
-9.5
-8.9 | -11.4
-7.6
-6.1
-7.0 | -1100
-1109
-1104
-108 | -9.4
-8.7
-7.9
-7.1 | -10.4
-10.2
-9.3
-7.3 | | | ပ | 11.45
11.79
12.20C
12.55 | 13.40C
12.44
12.34
11.95C | 12.14
12.34
9.49
14.84 | 14.39
10.95
10.93
10.75 | 10.83
13.68
12.18
12.40A
14.43C | 12.19C
11.99
11.87
11.84
12.62 | 12.29
14.52
10.89C
11.98 | | | MAG | 5.39
5.14
5.44C
5.80 | 5.90
5.61
5.92
5.81C | 6 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . | 14.82
15.03
15.13
14.61 | 5.11
4.95
4.31
4.53A
5.90C | 5.867
5.67
5.69
5.89 | 5.33
5.86
5.54
5.54 | | | VAR | -88 1
1 1 1
3 2 1 1 | 30 1
-22 1
5 1
1 1 | 11 1
11 1
11 1
17 1
17 1 | 21 22 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 13 1
23 1
32 1
32 1 | 0 8 8 8 0 | 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 | | | - c
DEC | -18
-86
1
5 | 129 | 13
13
-20
-62
-61 | -60
-5
-6
18
17 | 118 | 88684 | 9 6 6 7 7 | | ⋖ | ω
0 4 | 3.8
-13.1
-0.3
-2.1 | 1 1 1 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 | 111111111111111111111111111111111111111 | 112
115
115
115
115
115
115
115
115
115 | 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 10000 | | L
E | 0.0 | 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 1 37
4 20
2 47
9 37
8 15 | 6 17
6 15
6 15
5 39
5 51 | 4 02
8 18
1 48
8 44 | 3 25
2 15
6 14
6 17
4 38 | 4 15
0 09
7 11
5 43 | 5 36
2 02
2 09
2 04 | | TABI | DE(| 1 2 2 0 1 1 3 2 1
3 2 1 3 | 11
11
28
30
30
30
30
30 | 1.28 8 2.5
2.28 8 2.5
2.28 8 2.50 | 4 6 0 0 1 1 6 4 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 | 35 2 2 2 2 2 2 0 0 2 2 2 0 0 0 0 0 0 0 0 | 7
7
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8 | 141111411141141 | | | A.
50.0 | 19.1
54.9
09.4
28.7
21.5 | 4 33 .3 .4 44 .5 .2 22 .9 | 40.1
39.8
03.3
13.2
24.6 | 21.9
13.5
36.7
54.1
48.4 | 08.6
50.6
27.1
26.5 | 38.9
35.9
07.9 | 5 55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | R•
19 | 14 12
20 44
15 44
13 09
11 53 | 11 24
1 36
18 09
7 45
7 25 | 14 04
14 04
23 16
20 10
19 45 | 19 44
3 53
9 35
9 28 | 9 17
20 58
7 26
7 26
10 04 | 1 44
1 30
1 29
6 31 | 16 35
7 43
21 41
10 08
10 08 | | | E U•T• | 26.2868
3.3201
5.3660
9.2160
15.3375 | 31.2236
12.2667
28.2222
13.2271
4.1056 | 26.2868
26.2958
3.3222
5.2833 | 30.2181
16.2660
10.1597
29.3278
1.2854 | 17.2340
5.2139
12.1868
12.1972
11.2069 | 12.2562
13.2194
2.1882
4.1757
5.2889 | 25.2278
5.1208
6.2479
11.2181 | | | ⊢
∢ | APR
AUG
APR
MAR | MAR
OCT
JAN
FEB | APR
APR
SEP
JUL | JUL
NOV
DEC
JAN
FEB | FEB
AUG
JAN
FEB | OCT
NOV
JAN | MAY
FEB
AUG
FEB
FEB | | | ۵ | 52
51
51
51 | 51
51
51
10 | 52
52
51
51 | 51
50
52
52 | 55 65 65 65 65 65 65 65 65 65 65 65 65 6 | 50
50
50
50 | 52
51
51
51 | | | SURVEY
NUMBER | V-52.3
N-51.2
K-74.2X
U-53.2X
I-52.3 | I-43.1
D-65.2
M-33.4X
G-62.1
G-52.2 | W-52.1
W-51.1
O-61.1
M-85.1 | N-24.1
E-86.2
F-16.2
T-86.1X | U-16.1
N-55.1X
G-51.3
G-52.2
H-62.2 | D-64.4
D-74.2X
E-14.2X
E-15.5X
G-23.2 | X-64.4
G-61.1
N-74.5X
H-63.6X
H-73.3X | | | MINOR
PLANET | 1434
1436
1447
1450
1453 | 1453
1458
1461
1464 | 1464
1464
1467
1468
1468 | | 1469
1472
1479
1479
1480 | 1482
1482
1482
1482
1483 | 1483
1484
1486
1487
1487 | | * | O NO | 99999 | 11000 | N 4040 | 1905 | 112
112
15 | 44646 | 24691 | |-------|------------------|--|--|--|---|---|--|--| | | 0 -
MOT I(| 100.5 | 100.7
100.7
100.7 | 1 | 11000 | -0.1
-0.9
-0.8
-0.6 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0000 | | r | DAY | 147
135
135
13 | 50
-77
-31
-32 | 112
129
159
159 | 101
101
-26
-13
-6 | 1
72
72
67 | 136
136
139
0 | -12
-11
15
58
0 | | | 10 -
MOTI | 1 8 9 9 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 0.001 | -111-
-110-
-100-
-111-
-9-1 | -8.6
-8.5
-111.2 | 17.
18.5
18.2
19.0 | -11.5
-7.3
-12.3
-9.8 | -9.1
-10.2
-9.1
-7.9 | | - | ဖ | 11.93C
13.23C
13.97
14.56
12.52A | 11.96
14.20C
13.33C
13.70C | 13.56
13.48
12.01
11.41 | 13.14
12.51
12.33
12.56C | 10.40
10.68C
13.44
13.18C | 13.47
11.40
11.49C
13.31
11.94 | 11.96
11.59
11.99
11.75 | | | MAG | 15.66C
15.22C
15.47
16.08 | 15.59
15.33C
14.90C
15.25C | 15.40
15.33
15.53
14.98 | 16.24
16.10
14.62
14.78C | 16.40
16.82C
15.62
15.32C
14:93C | 15.50
15.99
16.08C
15.76 | 15.59
16.09
15.44
15.91 | | | V
A
R | -15
-20
-20
-10 | -10
-16
-62
-29 | -19
-18
-7
16 | 10
-26
21
114
114 | 11
16
40
40
39 | 11100 | -111
-25
-111
-69 | | | - C
DEC | -18
-21
-20
-10 | -10
-17
-61
-61 | -18
-18
-4
12
20 | 21
-33
25
106
106 | 4 4 4 5 4 4 4 5 4 4 5 4 4 5 4 4 5 6 4 9 5 6 4 9 5 6 4 9 5 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 11111 | -111
-23
-15
-76 | | ∢ | o ∢
∝ | 14001
 | 1.3
-2.9
-9.2
-9.3 | -2.4
-2.3
-0.9
-1.7
-25.3 | -25.3
6.2
2.5
-11.3 | 8.1
7.8
-7.6
-7.6 | -0.7
0.1
0.1
-4.1 | -1.2
6.2
1.4
16.3
1.9 | | TABLE | DEC
1950.0 | 15 52 35
24 28 36
- 7 10 08
- 6 11 34
- 1 15 17 | 0 50 23
0 46 08
0 45 59
21 55 39 | -15 34 17
-15 34 53
24 00 47
7 55 37
-27 42 53 | -27 42 06
-15 03 49
20 42 39
8 44 00
8 43 04 | 30 19 02
30 02 03
7 23 48
7 24 01
7 29 43 | -17 33 43
-25 18 29
-25 18 18
29 24 09
21 24 34 | 21 23 24
36 36 38
16 00 04
-30 14 59
8 50 13 | | | R• A•
1950•0 | 9 54 40.4
1 01 00.4
15 47 34.0
15 27 14.1
11 57 39.2 | 11 34 46.7
0 40 32.3
23 26 45.3
23 26 44.7
0 55 21.7 | 22 53 47.7
22 52 57.1
0 49 31.0
9 55 56.9
14 42 54.7 | 14 42 50.9
11 32 45.7
0 55 49.2
10 30 36.1
10 29 37.3 | 4 58 16.4
4 45 55.5
13 27 19.1
13 27 17.7
13 26 40.6 | 22 52 30.5
13 27 00.5
13 26 59.6
3 48 43.1
1 26 25.5 | 1 24 37.8
7 32 44.6
9 43 05.6
14 56 53.9
2 42 32.3 | | | В
U•T• | 1.2479
30.3340
5.3861
27.2611
26.3701 | 23.1993
30.2215
3.3132
3.3319
30.3340 | 11.3076
12.1701
9.2660
19.2299
27.2347 | 27.3167
1.2299
9.2660
19.3210
20.2410 | 5.2896
22.2424
8.3556
8.3889 | 2.2340
23.2535
23.2806
29.2764
10.2146 | 12.1750
25.1896
10.2931
20.1854
3.2083 | | | D A T | 51 MAR
51 SEP
51 MAY
51 MAY
52 FEB | 52 MAR
51 SEP
51 SEP
51 SEP
51 SEP | 50 SEP
50 SEP
50 OCT
52 FEB
52 APR | 52 APR
51 APR
50 OCT
52 FEB
52 FEB | 51 DEC
51 DEC
51 APR
51 APR
51 APR | 51 SEP
52 APR
52 APR
51 NOV
50 OCT | 50 OCT
52 JAN
51 FEB
52 MAY
51 NOV | | | SURVEY
NUMBER | H-63.3
P-51.1
K-72.1
L-12.1
U-94.9X | V-14.4X
P-44.3
O-62.4X
O-73.3 | C-34.4
C-35.1X
D-41.5
U-34.2 | W-76.1
I-56.1
D-41.6
U-44.9
U-54.9X | R-62.6X
C-52.8
C-61.1
C-62.7 | 0-55.4X
W-26.3X
W-36.5X
R-32.1
D-51.6X | D-62.5
T-21.2X
H-53.5
X-16.1
Q-54.5X | | | MINOR
PLANET | 1487
1490
1492
1492
1493 | 1493
1494
1496
1496 | 1501
1501
1503
1503 | 1505
1506
1510
1510 | 1512
1512
1516
1516
1516 | 1518
1520
1520
1523
1524 | 1524
1524
1532
1532
1534 | | | ONOI | 115 | 00000 | 97179 | 0
7
1
13
-22 | -26
0
-11 | 3
1
-6
-13 | ω N | |-------|------------------|--|--|--|--|---|--|--| | | O MOT | 100.7
100.3
100.6 | 100-2
00-8
100-1 | - 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0000
0000
0000 | 1001 | 10.0
10.0
10.0
10.0 | 0 0 0 | | | DAY
ON | -13
-46
-40
-27 | 122
100
4 | 1117777777 | -111
6
-71
-59 | 138
165
147
145 | -19
-33
19
14 | 25
1 4 2
1 6 2
1 5 5 | | | 10 - [
MOT-10 | -10.9
-10.8
-6.9
-7.6 | -10.1
-7.3
-8.4 | -11.2
-11.2
-10.6
-8.6 | 1 | -111-7
-7.2
-7.9
-6.9 | -11.3
-7.4
-10.2
-6.2
-8.8 | 17.6 | | | g | 12.81
12.82
12.20
12.21C
11.99C | 12.56
12.60
11.51C
11.56 | 12.68
12.80C
13.00C
12.65 | 13.56
13.65
12.63
12.48
12.80 | 12.17C
12.42
11.49C
11.70
10.95 | 12.82C
12.72
10.65C
13.22
12.50 | 11.13
11.35
11.55
9.80
13.11 | | | MAG | 15.06
15.07
15.33
15.12C
15.50 | 16.29
16.33
15.72C
15.76 | 15.73
15.81C
16.01C
14.53 | 16.05
16.60
15.85
14.24
14.55 | 15.65
16.41
15.67C
15.90
15.17 | 15.31
15.78
15.00C
16.89
16.32 | 16.14
15.14
16.34
16.29
15.28 | | | VAR | 14
14
66
17 | 77000 | 111 | 123 | 15
10
9 | 0 0 0 8 8 | 1 40 | | | DEC | 22
22
65
66
25 | 1 N M M M | -1
-2
-2
56
56 | 14
15
15
136
135 | 28
0
6
6 | 1 4 4 1 1 9 | 3 6 | | ⋖ | ω
0 4 | 1.9
2.0
11.7
11.7
3.8 | 0000 | 0.9
1.0
1.0
-8.7 | 17/24 4 | 11200 | -0.1
-1.8
-1.7 | -0.1 | | TABLE | DEC
1950.0 | 8 50 08
8 50 09
8 05 57
6 22 02
- 5 24 17 | 29 29 46
29 29 46
-20 15 33
-20 15 12
-20 03 23 | -25 09 58
-25 10 36
-25 10 37
13 09 20
13 09 24 | 17 36 55
17 24 47
-12 20 13
25 12
02
25 01 50 | - 5 38 28
38 35 26
-14 53 51
-16 57 39
-17 02 33 | 25 48 56
24 45 10
32 35 25
10 39 21
-12 25 39 | 10 35 47
23 28 50
7 43 06
20 50 13
-13 48 57 | | | R• A•
1950•0 | 2 42 32.0
2 42 27.3
1 41 52.1
1 26 05.8
23 25 57.3 | 4 41 38.4
4 41 38.4
17 59.29.0
17 58 40.4
17 44 40.7 | 17 29 31.9
17 28 27.1
17 28 26.5
10 50 54.9
10 50 54.4 | 4 28 25.2
4 06 02.2
16 17 11.7
2 06 05.7
2 04 20.9 | 23 23 17•3
6 03 43•8
23 55 07•3
23 40 40•9
23 39 57•0 | 6 29 00.9
6 06 38.7
4 43 05.4
13 11 04.3
14 18 12.6 | 11 28 33.3
5 31 52.2
10 59 04.0
0 57 04.7
23 26 51.9 | | | E U.1. | 3.2174
3.2986
2.2597
24.1937
14.2576 | 22.2333
22.2424
8.3243
9.3576
26.2118 | 7.2278
8.2375
8.2472
24.2312
24.2403 | 29.2854
22.1431
24.3146
5.1451
7.1986 | 14.2576
27.3090
5.3201
26.1917
27.2604 | 28.3000
21.1250
12.1687
23.1632
2.2833 | 26.2618
13.2701
24.2493
9.2660
14.2687 | | | A
T | NOV
NOV
OCT
OCT
SEP | D E C C C C C C C C C C C C C C C C C C | JUN
JUN
JUN
FEB | NOV
NOV
NOV | SEP
SEP
SEP
SEP
SEP | DEC
JAN
DEC
APR | FEB
DEC
FEB
OCT
SEP | | | ۵ | 00000
00000 | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 22212 | 50
50
50
50 | 50
50
50
50
50 | 52
52
52
53
53
54
54
54
54
54
54
54
54
54
54
54
54
54 | 0000
0000 | | | SURVEY
NUMBER | Q-55.5X
Q-65.1
P-74.2X
Q-14.1X
C-54.2X | R-53.3
L-84.3
M-14.3 | L-64.5
L-74.1
L-75.3X
U-53.5
U-62.1 | R-44.9
R-44.2
X-52.5X
E-22.1
E-32.1 | C-54.3
S-41.2
O-85.2
P-15.3X
P-26.1X | S-53.8
S-43.3
F-42.3
W-21.1X
K-34.3 | U-73.8
F-63.5
U-63.9X
D-41.4
C-55.3 | | | MINOR
PLANET | 1534
1534
1539
1539
1541 | 1541
1541
1542
1542
1542 | 1544
1544
1544
1545
1545 | 1551
1551
1554
1555
1555 | 1557
1557
1558
1558
1558 | 1560
1560
1567
1569
1570 | 1572
1578
1578
1583 | | | U Z
S | NHWBH | 7 | vo 20 | 9 4 1 | н 4 | | |-------|------------------|---|--|--|---|--|---| | | - 0
MOT I | 00.00 | -0.2 | 10000 | 0.0 | - 0
- 0
- 3 | | | | DAY | 71
51
47
-75 | -162
-61
-35
-19 | 66
66
13
13 | | -63
-116
-129
-82
-82
-82
-22 | -166
-151
-21
-31 | | | 10 - (I
MOTIO | -100.1
-100.3
-90.9
-8.4 | -13.9
-10.2
-10.2
-8.4 | 1100.1 | 44.86 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | | | ŋ | 13.33
13.19
13.10
13.22
12.62 | 12.98C
12.72
14.57
12.13 | 13.67
13.84A
12.10
11.99C | 1.67
1.67
1.61
1.61
1.02 | 12.70A
12.90
13.47C
12.91
12.82
12.63
12.647
13.66 | 12.06
11.62
12.94
12.74
11.33 | | | MAG | 16.24
16.22
16.13
15.36
15.62 | 14.68C
14.47
15.53
15.45
16.16 | 15.23
15.46A
15.76
15.83C
15.78 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 13.82A
13.97
14.26C
13.70
15.63
16.63
14.63 | 13.90
13.56
15.73
15.59 | | | VAR | 4 5 2 2 7 | 1 | 00 00 | 20
21
21
1 | 77 | | | | - C
DEC | 6
4
11
7 | 7 | 11 66 | 12
15
15 | 00 | | | 4 | 0 K | 11.2 | -0.2 | 000 | 1122 | 0 | | | TABLE | DEC
1950.0 | 21 01 04
22 40 54
22 41 08
5 32 00
13 34 51 | - 2 56 24
- 5 44 42
- 3 48 31
12 44 52
25 03 13 | -14 14 21
-14 14 19
14 27 05
- 8 49 18
- 8 49 17 | 24 34 34 10 42 25 10 42 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | - 0 12 29
- 0 26 44
-17 48 54
-17 49 05
-22 08 52
17 32 42
19 16 59
- 8 20 39 | -23 45 07
-29 56 39
8 22 09
7 23 28
4 23 48 | | | R. A.
1950.0 | 9 33 04.2
9 16 10.2
9 16 09.8
0 00 10.7
8 00 07.7 | 16 37 06.8
16 38 58.2
16 32 03.2
2 15 52.5
9 17 56.1 | 15 11 32•1
15 09 28•9
10 50 50•9
16 10 02•5
16 10 02•1 | 53 15-
10 39-
11 50 34-
9 53 23-
9 53 23-
5 20 15- | 21 46 46.9
22 41 11.2
22 41 10.8
22 30 12.9
9 37 52.0
9 22 54.1
23 04 41.5 | 19 52 45.1
19 32 25.3
23 56 39.5
23 38 52.5
6 44 30.3 | | | E U.T. | 31.3493
17.1979
17.2069
7.1604
28.1903 | 2.3056
2.3056
2.3056
7.2632
31.3306 | 20.2458
22.2729
6.1937
24.2979
24.3146 | 3.237
6.361
4.196
4.205
1.228
1.290
0.281 | 15.2819
15.2368
19.3403
19.3514
11.2181
17.2069
3.2285 | 6.2757
29.2201
17.2076
6.1847
6.2028 | | | D A T | SZ FEB
SZ FEB
SZ FEB
SO OCT | COUNTY OF THE CO | MAY
MAY
MAY
MAY
MAY | 10001 100 | AUG
O AUG
O AUG
O SEP
12 FEB
13 SEP | JUL
JUL
SEP
O OCT | | | SURVEY | T-92.1 5
U-12.2 5
U-13.7X 5
D-12.5 5
T-45.5 5 | L-41.3
L-41.4
E-41.2
E-34.4
T-82.3 | X X -114.6
X -123.2
X -1483.5
X -152.0
X -52.0
S -52.0
S -50.0 | 1 | B-75.1
B-75.1
B-75.1
C-25.1
C-25.1
C-25.1
C-25.1
C-25.1
C-25.1
C-64.1 | M-84.1
N-15.2
C-62.3
C-52.3
G-36.1 | | | MINOR | 1589
1589
1589
1590
1590 | 1591
1592
1593
1599
1599 | 1601
1601
1603
1603 | 0 | 1606
1607
1607
1607
1607
1607 | 1609
1609
1613
1613
1614 | | | O - C
MOTION | | | | | | |-------|------------------|--|--|---|--|--| | | DAY
ON | 61
-39
-42
-29
-97 | -83
-15
-15
-37 | 130
135
135
122 | 11
- 67
- 78
- 78
- 7
- 7
- 7
- 7
- 7
- 7
- 7
- 7
- 7
- 7 | 1 | | | 10 - 1
MOT I | -6.8
-7.7
-7.8
-10.0 | 1 0 1 1 1 1 0 4 4 4 0 | -5.7
-5.7
-9.9
-10.0 | 1100
1100
1100
1000
1000
1000
1000
100 | -6.5
-7.0
-7.0
-7.0
-6.9
-7.4
-10.0
-10.0 | | | ŋ | 11.76 | | | 14.02 | 12.720 | | | MAG | 15.57
15.65A
15.50A
15.36
15.36 | 15.46
16.06
15.59¢
15.50C | 15.18C
15.19
15.29A
15.42
15.50C | 15.26
15.84
15.84
15.64
14.91
15.94
15.29
15.23 | 15.37
15.29
15.83
15.70
15.29
15.534
15.66C | | | VAR | | | | | | | ⋖ | O - C
R A DEC | | | | | | | TABLE | DEC
1950.0 | 5 46 38
-14 54 35
-14 54 42
-16 42 00
- 7 59 16 | -11 05 32
-11 05 56
-11 14 10
-11 14 19
-11 16 51 | -11 17 00
-12 13 12
- 0 30 31
0 25 27
-14 25 46 | -14 44 21
- 1 14 59
- 4 16 03
- 6 16 12
- 0 25 39
0 11 53
1 40 42
-12 19 23
- 6 10 39
- 10 50 47 | -10 50 52
- 4 01 12
2 01 18
2 00 23
1 41 34
-18 01 14
-22 31 44
22 29 26
2 48 07 | | | R• A•
1950•0 | 13 32 12.3
21 15 37.5
21 15 36.9
21 52 57.8
22 20 29.3 | 22 06 21•8
22 06 20•3
22 26 00•9
22 26 00•3
22 25 25•9 | 22 25 25 55 5 25 5 2 2 2 3 2 2 3 2 0 0 7 2 2 3 1 5
6 6 6 | 22 11 49.8
22 19 31.5
22 08 19.9
22 08 19.6
22 32 01.5
22 10 37.7
22 56 27.7
23 27 06.2
22 35 40.1
22 38 57.5 | 22 38 57.3
22 49 10.3
23 23 34.1
23 23 29.9
23 22 10.7
23 12 33.1
23 39 19.0
0 46 04.6
0 45 04.7
23 47 20.3 | | | Б О•Т• | 24.1861
13.2556
13.2694
18.2229 | 9.2514
9.2965
18.3243
18.3389 | 19.3403
9.2965
19.2722
9.2396 | 9.2965
18.3111
9.2396
9.2514
19.2722
9.2396
11.2861
11.2861
11.944 | 11.2062
11.2965
12.1958
12.2986
12.2986
14.2910
14.2910
8.2819
9.2660 | | | D A T | 2 APR
0 AUG
0 AUG
0 AUG
0 AUG | O SEP
O SEP
O AUG
O AUG | O AUG
O SEP
O AUG
O SEP
O AUG | SEP
O SEP
O SEP
O SEP
O SEP
O SEP
O SEP | o sep
o sep
o sep
o sep
o sep
o oct | | , | | տտտտտ | បកាបាបាប | <i>ന ന ന ന</i> ന | השמשת משמשת | | | | SURVEY
NUMBER | W-32.3X
B-33.3
B-34.1X
B-54.5
B-63.1 | C-13.4
C-14.4X
B-63.2
B-64.1
B-73.4 | B-74.1
C-14.6
B-72.1
C-12.5 | C-14.5
B-62.3
C-12.4
C-13.5X
B-72.4
C-12.1
C-55.2X
C-23.1 | C-24.4X
C-33.1X
C-52.5X
C-52.2
C-53.1
C-53.1
C-53.1
C-53.1
C-63.1 | | | MINOR
PLANET | 1614
1950PZ
1950PZ
1950QA1
1950QB1 | 1950QB1
1950QB1
1950QC1
1950QC1
1950QC1 | 1950QC1
1950QC1
1950QD1
1950QD1
1950QE1 | 1950QE1
1950QF1
1950QF1
1950QG1
1950QG1
1950RF
1950RZ
1950RZ | 1950RA1
1950RB1
1950RC1
1950RC1
1950RC1
1950RE1
1950SL
1950SL | | TABLE A | R• A• DEC O - C MAG G 10 - DAY 1950•0 1950•0 R A DEC VAR MOTION | 34 29.5 - 0 00 16 15.35A -6.2 -74 39 27.7 0 34 09 15.19A -9.0 -29 23 53.3 - 0 00 13 15.43 -8.5 -10 55 57.7 0 12 26 16.29A -8.9 -5 44 57.8 - 8 22 43 15.97 -9.3 -57 | 46 59.8 14 41 19 15.09 -9.1 -16 55 52.1 13 51 22 15.26 -9.8 -27 42 44.9 13 21 56 15.34 -10.5 -27 36 59.8 1 36 48 15.33 -7.0 -89 54 44.3 0 47 17 14.19A -7.7 -9.1 -16 | 39 32.0 - 1 48 48 15.07 -7.2 -53 25 24.1 -14 43 19 14.68 -7.3 -26 35 56.2 19 19 12 15.52 -10.0 -24 35 55.5 19 19 11 15.75 -10.8 -20 59 05.7 26 11 43 16.05 -7.8 -83 | 57 49.2 6 42 47 15.69 -8.1 -45 57 48.5 6 42 37 15.47 -7.8 -44 40 20.1 5 08 04 15.64 -7.9 -42 40 14.3 16 29 40 16.40 -9.3 -33 43 20.1 16 55 09 15.66 -7.4 -7.4 -78 | 27 53.1 14 01 40 15.76 -7.5 -89 44 29.5 18 00 32 16.03 -10.6 -6 00 05.3 9 11 52 15.52 -9.3 -81 40 48.7 6 33 05 15.99 -8.8 -68 02 03.1 -18 17 30 15.53 -5.8 -5.8 | 01 22.7 -18 23 55 15.72 -6.8 -67 15 14.80A -7.5 -11 15.67 6 50 12 15.34 -8.5 -97 41 21.5 6 38 54 14.0 22.0 6 30 39 14.0 23 | 39 41.5 6 22 56 14.62 -8.2 -89 07 17.3 24 55 51 15.88 -8.6 -64 06 31.4 24 48 01 15.54 -8.3 -80 07 11.7 4 35 00 15.94 -7.3 -33 | |---------|---|--|--|---|---|---|--|---| | | | | , | | | ., | | | | ď | 0 - C
A DE | | | | | | | | | | DEC
950. | 0 00 1
0 34 0
0 00 1
0 12 2
8 22 4 | 4 41 1 2 3 51 2 4 4 1 1 4 4 4 4 4 1 1 4 4 4 4 1 1 1 1 | 1 48 4
14 43 1
19 19 1
19 19 1
26 11 4 | 6 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 14 01 4
18 00 3
9 11 5
6 33 0
18 17 3 | 18 23 5
14 50 1
6 50 1
6 38 5
6 30 3 | 6 22 5
4 55 5
4 48 0
4 35 0 | | | • A | 4 29 27 3 5 5 7 5 5 7 5 7 5 7 5 7 5 7 5 7 5 7 | 6256
6256
6366
6366
6366 | 0 11 11 0
0 12 12 0
0 4 0 12 0
0 4 0 12 0 | 7 49.
7 48.
0 20.
0 14.
3 20. | 7 53 • 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 22.
5 14.
1 56.
1 21.
0 22. | 9 41.
7 17.
6 31.
7 11. | | | E U.T. | 6.1958
17.2187
6.1958
17.2187
17.2312 | 9.2764
9.2764
8.2931
12.2667
13.2299 | 4.1868
9.2111
2.1660
2.1764
13.1972 | 13.2194
13.2299
4.1757
12.1972
12.1972 | 2.1764
12.1972
13.2194
2.1882
7.2472 | 8.2028
8.1917
8.3042
9.1785 | 9.1785
9.2660
10.2146
9.2951 | | | DAT | 50 OCT
50 SEP
50 OCT
50 SEP
50 SEP | 50 OCT
50 OCT
50 OCT
50 OCT
50 OCT | 50 NOV
50 OCT
50 NOV
50 NOV | 50 OCT
50 OCT
50 NOV
50 OCT
50 OCT | 50 NOV
50 OCT
50 OCT
50 NOV
50 OCT | 50 OCT
50 OCT
50 OCT
50 OCT
50 OCT | 50 0CT
50 0CT
50 0CT
50 0CT | | | SURVEY
NUMBER | C-53.4X
C-63.3
C-53.6
C-63.4
C-64.5 | D-42.3
D-42.4
D-32.2
D-65.3
D-75.4X | E-16.3
D-37.3
E-12.1
E-13.1
D-72.1 | D-74.1X
D-75.1
E-15.4X
D-63.4 | E-13.2
D-63.6
D-74.3
E-14.1
D-16.2x | D-27.2
D-26.3
D-33.4
D-34.1 | D-34.5X
D-41.1
D-51.5X
D-44.2 | | | MINOR
PLANET | 1950SS
1950ST
1950ST
1950SU
1950SV | 1950TC
1950TD
1950TE
1950TF2
1950TH2 | 1950TH2
1950TP2
1950TS3
1950TS3
1950TT3 | 19501V3
19501V3
19501V3
19501Y3
19501Z3 | 1950TZ3
1950TA4
1950TB4
1950TB4
1950TC4 | 1950TC4
1950TD4
1950TE4
1950TE4
1950TF4 | 1950TF4
1950TG4
1950TG4
1950TH4 | | | OLION | σ. | 1.2
1.2
1.4 | |------|------------------|--
--| | | O O | 0 | • | | | DAY | 1669
1999
1999
1999
1999
1999
1999
1999 | 1 1 2 2 1 2 2 2 2 3 3 4 4 4 5 3 4 5 4 5 5 1 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | | 10 -
MOT | 111111111111111111111111111111111111111 | 110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
110000
11000
110000
110000
110000
110000
110000
110000
110000
110000 | | | ŋ | 3.47 | 13.20C
12.98 | | | MAG | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 16.227
15.659
15.659
15.659
15.559
15.500
15.75A
15.75A
15.75A
16.25
16.25
16.25
16.25
16.25
16.25
16.25
16.25
16.25
16.25 | | | VAR | W | m m | | | DEC | ~ | N N | | ⋖ | ν
Ο Α | • | 8 h | | ш | 0.0 | 1 99674 44807 VIUVP U 99400 VIUVP VIIVP VI | 2 2 3 3 4 4 4 6 9 7 7 8 8 8 9 9 8 9 9 8 9 9 9 9 9 9 9 9 | | TABL | DE
195 | OHHOO 600HO H | 22 | | | • o • o | 7 7792 1 10 1 4 7 8 9 8 7 7 7 7 8 9 8 7 7 7 7 8 9 8 7 7 8 9 8 7 8 9 8 9 | 20110
202 | | | R•
195 | MMH44 44404 00 MWW 0 | 2000 0000 00000 00000 00000 00000 00000 0000 | | | E U.1. | 00.210
00.280
00.302
20.152
20.152
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17.263
17 | 12.2042
16.2222
3.1569
16.2222
3.1569
3.1569
3.1569
16.2222
3.1681
3.1569
16.2660
10.1597
14.1937
14.1937 | | | ⊢ | | ECC CCC CCCC CCCC CCCC CCCCC CCCCC CCCCC CCCC | | | ۵ | 00000 00000 00000 0 | | | | SURVEY
NUMBER | 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | E - 54
E - 64
E - 64
E - 64
E - 18
E 18 | | | MINOR
PLANET |
100000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
000000 | 1950VP
1950VP
1950VE
1950WC
1950WC
1950WC
1950WE
1950WE
1950WF
1950XM
1950XM | TABLE | O - C
MOTION | | ر
د
د | • | | | |--------------------|---|---|---|--|--| | 10 - DAY
MOTION | 9.8
4.4 - 20
4.4 - 18
9.4 1 | 1006 - 22
1006 - 22
1900 - 28
-900 - 28
1203 - 11 | 8.2 7 7 8.2 7 7 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 | 0.2 -1
7.8 1
8.1 2
0.1 -4 | 12.6 15.7 17.9 15.9 16.0 17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9 | | ŋ | 1 1 | 11 11 | 1 11 | 1 1 | 1 1 1 | | MAG | 5 5 5 8 8 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 15.07
15.07
15.07
15.07
15.05 | 0000 000 000 000 000 000 000 000 000 0 | 7.0000 | 15.14
15.16
15.76
15.23
15.12
14.98C
15.48 | | VAR | | 7 | | | | | - C
DEC | | 7 | o
† | | | | м
О А | | | | | | | DEC
1950.0 | 12939
12930
13931
13934
14934 | 28 17 40
27 32 96
27 14 37
23 45 00
5 36 17
20 35 29
20 35 29 | 2 2 3 3 4 5 6 3 5 6 3 5 6 5 6 5 6 6 6 6 6 6 6 6 6 | 25 1 2 2 2 2 2 2 3 4 4 5 3 4 4 5 3 4 4 5 3 4 4 5 3 4 4 5 3 4 4 5 3 4 4 5 3 4 4 5 3 4 4 5 3 4 4 5 3 4 4 5 5 3 4 4 5 5 3 4 4 5 5 3 4 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 20 35 13
15 29 44
15 29 46
30 43 00
23 33 32
23 33 34
16 36 52 | | R. A.
1950.0 | 08 17.
07 29.
01 49.
00 38.
12 20. | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 40 15
44 55
44 55
44 21
59 20 | 57 03.
40 50.
51 14.
51 10. | 6 05 07 00 10 00 00 00 00 00 00 00 00 00 00 00 | | E U.T. | 2.310
2.154
2.310
3.154
3.270 | 14.3111
31.1562
5.1562
31.1562
31.1562
8.1917
8.2951 | 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | .121
.237
.202
.283
.133 | 5.1674
5.1674
5.1674
5.2785
5.2889
6.2139
6.1806 | | ⊢ | DEC
DEC
DEC
DEC | LUD DUDUE
AAR EARCON | HOLOU CO | L C A B B B B B B B B B B B B B B B B B B | Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z | | ۵ | 00000 | | | | | | SURVEY
NUMBER | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | F-183.2
G-173.7
F-78.3
F-78.3
G-18.0
G-44.5
G-44.5 | G-64.
G-64.
G-64.
G-64. | 45834 | 6-11-5-3
6-11-6-4
6-11-6-4
6-12-3-3
6-23-3-4
6-23-4
6-25-22
6-25-22 | | MINOR | 99999
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
000000 | 1950XS
1950XS
1950XS
1950XA
1950YA
1951AE
1951AE | 9518
9518
9518
9518 | 951AM
951AP
951AB
951AB | 1951AF1
1951AF1
1951AF1
1951AG1
1951AG1
1951AH1
1951AH1
1951AH1 | Identical with 1618 | | O - C
MOTION | | | | | | | | |------|--------------------|---|---|--|---|---|---|---| | | DAY
ON | 144
145
113 | | 11
11
36
36 | -13
-15
77
75 | 12001 | 25
1 2 2 4 1 2 2 4 2 2 2 2 2 2 2 2 2 2 2 2 | 10
10
10
10
10
10
10
10
10
10
10
10
10
1 | | | 10 - DA)
MOTION | -10.3
-10.6
-11.0
-10.9 | 9 0 0 0 | 1000 | 110.0 | -10.9
-10.9
-10.4
-10.6 | -10.6
-9.0
-111.7 | -9.7
-8.9
-10.0
-9.1 | | | ŋ | | | | | | | | | | MAG | 15.68
15.33C
16.27
15.07 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 16.33
16.07
16.46
15.29 | 16.00C
15.99
15.97
15.88C
15.65A | 15.69C
15.77
15.70
14.79 | 15.01
15.64
15.40C
15.09
15.10 | 15.70
14.84
15.18
15.70
15.80 | | | VAR | ř | | | | | | | | ⋖ | 0 - C
R A DEC | | | | | | | | | w. | 0 | 6 25
6 30
6 45
9 08 | | 200
200
200
200
200
200
200 | 1 44
1 49
3 52
2 36
3 08 | 1 52
4 06
4 18
1 33 | 1 26
8 16
8 26
7 56
7 29 | 2 4 4 1 1 2 4 4 1 2 4 1 2 4 1 2 4 1 1 2 3 1 4 5 1 1 4 5 1 1 4 5 1 1 1 1 1 1 1 1 1 | | TABL | DEC
1950 | 16 46
20 16
20 16
16 17 | 7 70811 | 222 132 133 393 393 | 5 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 9 41
17 34
17 23
32 34
32 41 | 221 56
20 37
20 37
20 37 | 17 45
3 2 28
3 2 0 3
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | R. A.
1950.0 | 6 32 29.7
6 32 29.1
6 26 43.0
6 32 13.8
6 30 06.5 | 43 31.7
43 30.9
24 30.5
26 43.9
38 12.9 | 7 34 55.1
7 34 00.8
7 34 00.8
7 39 09.5 | 7 53 10•0
7 53 07•3
8 09 25•5
9 09 59•1
9 09 54•2 | 9 35 01.1
9 20 17.3
9 38 15.9
0 03 52.8
8 20 47.3 | 8 18 38.2
8 10 55.0
8 10 52.7
8 25 04.7
8 24 58.9 | 8 24 39.4
8 46 28.3
9 20 31.9
9 36 38.5
9 36 37.1 | | | E U.1. | 8.1917
8.2028
6.2139
6.1806
8.2028 | 8.180
8.191
2.186
2.276
3.237 | 12.2868
13.2375
13.2486
13.3146 | 13-3257
13-3812
13-3486
9-2208
9-3076 | 10.3035
9.3187
10.2931
11.1958 | 7.1436
7.1215
7.1604
7.2465 | 7.2465
8.2771
10.1965
10.1965 | | | A
T | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | ZZZZZ Z | N A A A
N A A A
N A A A | JAN
JAN
JAN
FEB | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | | | | ۵ | | | 2000 | | | | | | | SURVEY
NUMBER | G-34.1
G-35.2
G-24.6
G-25.1
G-35.1 | | G-54.5X
G-63.1
G-64.2X
G-65.2 | G-66.1X
G-76.1
G-75.1
H-34.4
H-44.1 | H-54.1X
H-43.4
H-53.4
H-61.5
G-72.2 | H-12.1
G-74.1
H-13.6X
H-13.4
H-14.1 | H-14.2
H-26.2
H-41.2
H-41.4
H-51.1X | | | MINOR
PLANET | 1951AJI
1951AJI
1951AKI
1951AKI
1951ALI | 951AM
951AM
951AN
951AC
951AP | 1951AQ1
1951AQ1
1951AQ1
1951AQ1 | 1951AS1
1951AS1
1951AT1
1951CE
1951CE | 1951CH
1951CT
1951CW
1951CU
1951CL1 | 1951CL1
1951CM1
1951CM1
1951CN1
1951CN1 | 1951C01
1951CP1
1951CQ1
1951CR1
1951CR1 | | 0 - DAY 0 - C
MOTION MOTION | 2 96
11 -34
18 13
8 100 | 00
99
99
162
00
14
24 | 4 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 2 46
4 63
9 38
2 104
6 39 | .2 95
.7 99
.0 47
.7 71
.3 128 | 11 39 16 16 17 17 17 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19 | .2 53
.9 74
.2 36 | |--------------------------------|--
---|---|--|--|--|--| | G 10
MC | 113 | 112 | 0 0 1 1 1 1 1 1 8 8 8 8 8 8 8 8 8 8 8 8 | 8 6 8 6 8
1 1 1 1 1 | 1110 | 6 8 8 7 8
1 1 1 1 1 | # 6 6 6 6 6 1 1 1 1 | | MAG
VAR | 16.49
15.76
16.05
15.90 | 16.12
16.08
16.29
15.62
16.55 | 15.36
15.99C
15.78C
15.99C
15.50 | 15.55C
15.36
16.07
15.92
16.35C | 15.12C
15.22C
16.21
16.43
16.13 | 15.80
15.88
15.97C
15.89 | 15.96
16.18
16.28
15.47 | | 0 - C
R A DEC | | | | | | | | | DEC
1950.0 | 29 09 06
20 00 09
27 29 49
27 29 52
15 07 59 | 19 40 42
15 10 15
25 21 58
6 24 12
7 29 02 | 29 33 50
30 52 04
12 58 27
12 58 28
12 17 41 | 12 17 43
8 04 06
8 35 03
- 3 41 56
30 39 25 | 13 02 32
13 02 35
12 15 09
15 11 39
4 06 01 | - 0 39 37
- 2 50 25
11 00 40
11 01 01
8 41 35 | 8 39 21
- 1 05 54
- 0 48 30
- 7 41 12
- 7 33 09 | | R• A•
1950•0 | 9 21 58.0
9 23 40.6
9 40 49.7
9 40 48.9
9 53 48.7 | 9 37 03.3
10 01 24.1
10 20 12.6
10 46 10.6
10 46 27.9 | 10 03 12.8
9 53 46.1
10 21 41.4
10 21 41.2
10 20 44.6 | 10 20 44•1
10 18 52•3
10 16 30•1
12 36 42•1
10 01 20•3 | 10 23 58.4
10 23 57.9
10 46 46.1
10 47 40.1
10 38 11.7 | 10 38 57•3
10 39 51•4
10 59 36•5
10 59 33•5
11 04 13•8 | 11 08 06.7
11 13 17.3
11 11 24.9
11 11 21.1
11 09 39.5 | | T E U.T. | EB 10.2069
EB 9.3187
EB 10.2187
EB 10.2292
EB 10.2931 | EB 10•2931
EB 11•2181
EB 12•2125
AR 6•2542
AR 6•2542 | EB 11-1958
AR 1-2236
AR 5-2424
AR 5-2542
AR 5-2424 | 4R 5.2542
4R 5.2542
4R 5.2542
9R 4.3174
4R 1.2236 | AR 5.2424
AR 5.2542
AR 6.1937
AR 6.1937
AR 6.2542 | AR 6.2653
AR 6.2653
AR 11.2875
AR 11.3590
AR 11.3590 | AR 11.3590
AR 11.3701
AR 13.3722
AR 11.3812
AR 13.3604 | | Φ | × × 12 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 100
1100
1100
1100
1100
1100
1100
1100 | T X X X X | 51
51
51
51
51
51
51 | 51 MA
51 MA
51 MA
51 MA | X X Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z | | | R SURVEY
T NUMBER | CS1 H-42.2
CT1 H-43.5
CU1 H-51.2
CU1 H-52.2
CV1 H-53.1 | W1 H-53.3
X1 H-63.3
Y1 H-72.3
G H-84.4
H H-84.5 | Y H-61.4
Y H-61.1
G1 H-73.5
G1 H-73.3 | H1 H-74.2
K1 H-74.1
L1 H-74.7
T1 J-34.7
X1 H-61.2 | Y1 H-73.6
Y1 H-74.5
Z1 H-83.3
A2 H-83.4
B2 H-84.2 | C2 H-85.4
D2 H-85.5
E2 I-32.3
E2 I-33.2
F2 I-33.3 | G2 I-33.4
H2 I-34.5
H2 I-44.2
J2 I-35.2
J2 I-45.2 | | MINOF | 1951C
1951C
1951C
1951C
1951C | 1951C)
1951C)
1951C)
1951C
1951E | 1951E,
1951E,
1951E(
1951E(
1951E | 1951EP
1951EP
1951EP
1951EP | 1951E7
1951E7
1951E7
1951E7 | 1951E(
1951E(
1951E(
1951E(
1951E(| 1951E(
1951E(
1951E(
1951E(
1951E(| | | O - C
MOTION | | | | | | | |-------|-------------------|--|--|--|--|---|--| | | DAY | 59
67
837
62 | 68
36
58
62 | 0 4 0 4 8 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 | 0 | | 74
71
69
36
66 | | | 10 - 10
MOT IC | 1128-11-110-55-11-110-55-11-11-11-11-11-11-11-11-11-11-11-11- | 0.88
0.00
0.00
0.00
0.00 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2 · · · · · · · · · · · · · · · · · · · | | | ŋ | | | • | | | | | | MAG | 16.40
16.87C
16.83
16.46
16.35C | 16.28
16.05
15.68
16.40 | 16.18
16.12
16.31 | 15.06C
15.80A
15.69
16.42
16.13C
16.31
15.73 | 0 00000
4 00010 | 15.91
14.04
14.70
16.48
16.12 | | | VAR | | | | | | | | A | O - C
R A DEC | | | | | | | | TABLE | DEC
1950.0 | 18 53 29
15 21 28
9 21 09
7 57 24
5 54 22 | 6 07 04
2 48 52
3 27 22
4 52 47
4 35 50 | 4 18 41
5 06 29
- 6 26 56
21 41 06
7 59 17 | 10 06 40
-14 30 23
-20 17 38
4 48 59
4 49 04
- 0 43 13
- 0 43 13
- 19 04
- 4 19 04 | 52 52 52 1
53 53 54 1
12 13 15 15 15 15 15 15 15 15 15 15 15 15 15 | - 5 13 43
- 4 20 01
- 4 05 08
-18 37 37
- 3 04 17 | | | R• A•
1950•0 | 11 24 58.0
11 26 59.0
11 23 02.1
11 27 03.4
11 34 57.2 | 11 33 34.1
11 18 39.3
11 23 24.0
11 24 02.4
11 24 35.7 | 11 24 58.4
11 31 45.2
11 25 58.8
11 53 05.1
11 44 54.3 | 11 29 46.9
11 11 37.0
13 38 40.0
13 24 17.1
13 23 26.0
11 13 35.1
11 52 06.1
11 51 04.7 | 2 14 46.
2 14 36.
1 55 54.
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 12 24 46.3
12 31 52.9
12 30 05.0
12 31 51.3
12 35 28.0 | | | E U.T. | 13.2542
13.2542
13.2653
13.2653 | 15.3243
13.3722
13.3722
13.3722 | 13.3722
13.3722
13.3604
15.3833 | 31.2236
31.3083
8.2417
8.3889
9.2062
1.1993
1.2097
1.2194 | 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . | 2.2736
2.2736
4.3174
4.2410
4.3174 | | | A O | M M A A B B B B B B B B B B B B B B B B | M M M M M M M M M M M M M M M M M M M | MAR
MAR
MAR | A A A A A A A A A A A A A A A A A A A | A A A A A A A | A A P A P A P A P A P A P A P A P A P A | | | ۵ | 44444 | 4444 | 44444 | | 5 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 99999 | | | SURVEY
NUMBER | 1-42.2
1-42.3
1-43.4
1-43.6
1-43.6 | I-53.1
I-44.3
I-44.6
I-44.7
I-44.8 | I-44.9
I-44.12
I-45.5
I-51.4
I-53.2 | 11-5-66-69-7-66-69-7-6-6-6-6-6-6-6-6-6-6-6-6 | -62.
-72.
-72.
-73. | 1-74.3
1-74.6
1-34.3
1-76.3 | | | MINOR
PLANET | 1951EK2
1951EL2
1951EM2
1951EN2
1951E02 | 1951E02
1951EP2
1951EQ2
1951ER2
1951ES2 | 1951ET2
1951EU2
1951EV2
1951EW2
1951EW2 | 1951EX2
1951FC
1951GA
1951GC
1951GC
1951GO
1951GQ
1951GQ | 9516
9516
9516
9516
9516 | 1951GW
1951GX
1951GX
1951GY
1951GY | | | 0 - 0
NOIION | | | | | | | |------|--------------------|--|--|--
--|--|--| | | DAY
ON | 500 E | 6 9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 86
89
44
41
91 | 44800 6884
08880 6684 | | - 2
- 1
- 1 | | | 10 - DA)
MOTION | 7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | - 6 · 8 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 | 16.9
-10.2
-7.9 | 04040 | 00000 | 1 1 1 8 . 5 . 6 . 7 | | | ၅ | | | | | | | | | MAG
R | 15.35
16.42
15.78
15.11
15.39 | 15.43
15.04C
15.47C
16.60
15.70 | 16.32C
16.29C
15.89
15.79
15.84 | 15.90C
16.00
16.43
16.32C
16.32C
16.54
16.41
16.41 | 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 16.65
16.21
15.67
15.63
15.57C | | | C VA | | | | | | | | ۷ | 0 - C
R A DE | | | | | | | | ш | 0.0 | 7 10
2 47
2 17
1 01
3 42 | 0 51
6 14
6 13
5 51 | 9 09 7 00 09 09 09 09 09 09 09 09 09 09 09 09 | 66 55 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 40000 | 5 00
8 46
0 05
8 03 | | TABL | DE
195 | 11 3
11 5
11 5
- 8 5
-10 4 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 1198911 | | 223510 | 1 111
7 4 12 12 0 | | | R. A.
1950.0 | 12 55 53.9
13 10 51.3
13 06 08.2
12 49 45.5
12 54 26.9 | 13 25 51.0
13 25 18.3
13 25 17.8
13 13 21.7
13 11 48.1 | 13 42 06.9
13 40 57.9
13 54 47.4
13 54 46.7
14 13 05.7 | 14 04 44.7
14 01 18.7
14 01 12.3
14 01 07.3
14 19 45.5
14 19 00.9
14 21 50.2
0 0 | 4 20 56.2
4 21 256.2
4 22 54.5
4 27 34.6
4 26 41.0 | 14 04 20•3
14 25 29•2
14 26 25•7
14 45 50•5 | | | E U.1. | 4.3896
4.3896
9.1958
7.2715 | 8.3889
9.2062
9.2160
9.2160 | 8.3889
10.2417
9.3465
9.3562
10.3319 | 28.2042
2.1791
2.2937
2.2937
2.2937
2.1869
2.3042
3.1910
2.28333 | 2125
2833
2729
3167 | 3.2847
3.1910
3.2021
3.2125
3.2125 | | | 4 | A A A A A A A B B B B B B B B B B B B B | A A A A A A A A A A A A A A A A A A A | A A A A A A A A A A A A A A A A A A A | $\begin{array}{cccc} \mathbf{X} & &$ | ΜΜΜΜ Κ
ΜΑΑΑ Κ
ΑΑΑΑ Κ
ΑΑΑΑ Κ | X X X X X X X X X X X X X X X X X X X | | | ۵ | 2222 | | 20000 | | | 20000 | | | SURVEY
NUMBER | J-41.2
J-41.3X
J-51.1
J-44.4 | J-62.6
J-52.6
J-53.11
J-53.6 | J-62.8
J-71.1X
J-75.2
J-74.2
J-85.2 | K K K K K K K K K K K K K K K K K K K | 4 4 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | K-36.2
K-41.2
K-43.0
K-43.1 | | | MINOR
PLANEŤ | 1951GA1
1951GB1
1951GB1
1951GC1
1951GD1 | 1951GE1
1951GE1
1951GE1
1951GF1
1951GG1 | 19516H1
19516H1
19516J1
19516J1
19516J1 | 1951JK
1951JK
1951JK
1951JL
1951JM
1951JM
1951JN
1951JN | 951
951
951
951 | 1951JR
1951JS
1951JT
1951JT
1951JU | | 1951/14 C-55.5 51 MAY 4-1802 14 45 01.5 5 10 46 15 15 15 15 15 15 15 1 | MINOR SURVE
PLANET NUMBE | VEY
BER | ٥ | ⊢
∢. | E U.T. | R•
195 | • 0
• 0 | Ä | DEC
950.0 | 0 - C
R A DEC | VAR | MAG | ŋ | 10 -
MOTI | DAY | O - O
MOTION | |--|-----------------------------|------------|------|----------------|--------|-----------|------------|--------|--------------|------------------|-----|------|---|--------------|-----|-----------------| | 951JU K-55.6 | 951JU K-5 | • • | | MA Y | 4.188 | 45 | 7. | 0 | 4 4 | | | 5.6 | | 9- | | | | 991JJW K-55.5 51 MAY 4.1882 14 57 09.7 - 7 56 50 15.59 - 6.6 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 951JV K-5 | 5.6X | | W X | 4.209 | 43 | - rv | 1 ~ | 1 N | | | 9.0 | | 100 | | | | 951JJX K-55.8 51 MAY 4.1862 14 59 41.1 -12 11 54 15.92 -6.6 99 97JJY K-55.5 51 MAY 8.2507 15 01 03.7 -16 20 24 15.80 -9.8 91 97JJJA K-63.9 51 MAY 5.2208 15 52 16.2 -16 20 24 15.80 -9.8 91 97JJA K-63.9 51 MAY 5.2208 15 52 16.2 -17 54 41 15.80 -9.8 91 97JJA K-63.9 51 MAY 5.2208 15 52 16.2 -17 54 41 16.00 -9.8 91 97JJA K-63.9 51 MAY 5.2208 15 52 16.2 -17 54 41 16.00 -9.8 91 97JJA K-63.9 51 MAY 5.2208 15 54 4 -2 3 36 14 16.00 -9.8 91 97JJA K-63.9 51 MAY 2.7254 15 32 33.8 -13 33 12 15.80 -9.8 91 97JJA K-11.1 51
MAY 2.7254 15 34 34.4 -2 3 36 16 15.90 -9.8 91 97JJA K-11.2 51 MAY 2.7254 15 34 48.4 -19 58 16 15.80 -9.8 91 97JJA K-11.2 51 MAY 2.7254 15 34 48.4 -19 58 16 15.80 -9.8 91 97JJA K-11.2 51 MAY 2.82187 15 54 54.4 -10 58 16 15.89 -9.8 91 97JJA K-11.2 51 MAY 2.82187 15 54 54.4 -10 58 16 16.80 -9.8 91 97JJA K-11.2 51 MAY 2.82187 15 54 54.4 -10 57 12 16.81 -9.8 91 97JJA K-11.2 51 MAY 2.82187 15 54 54.4 -10 57 12 16.81 -9.8 91 97JJA K-11.2 51 MAY 2.82187 15 54 54.4 -10 57 12 16.81 -9.8 91 97JJA K-11.2 51 MAY 2.82187 15 54 54.4 -10 57 12 16.81 -9.8 91 97JJA K-11.2 51 MAY 2.82187 15 54 54.4 -10 57 12 16.81 -9.8 91 97JJA K-11.2 51 MAY 2.82187 15 54 54.4 -10 57 12 16.81 -9.8 91 97JJA K-11.2 51 MAY 2.82187 15 54 54.4 -10 57 12 16.81 -9.8 91 97JJA K-11.2 51 MAY 2.82187 15 54 54.4 -10 57 12 16.81 -9.8 91 97JJA K-11.2 51 MAY 2.82187 15 54 54.4 -10 57 12 16.81 -9.8 91 97JJA K-11.2 51 MAY 2.82187 15 54 54.4 -10 57 12 16.81 -9.8 91 97JJA K-11.2 51 JUN 2.2264 16 35 39.0 -28 09 05 91 97JJA K-11.2 51 JUN 2.2264 16 35 39.0 -28 09 05 91 97JJA K-11.2 51 JUN 3.2278 17 25 228 11 47 5 20 39 13 16.97 97JJA K-11.2 51 JUN 3.2278 17 99 19.5 -28 11 47 5 15.85 11 6.97 97JJA K-11.2 51 JUN 3.2278 17 99 19.5 -28 11 47 5 15.85 11 6.97 97JJA K-11.2 51 JUN 3.2278 17 99 19.5 -28 11 47 5 15.85 11 6.97 97JJA K-11.2 51 JUN 3.2278 17 99 19.5 -28 11 47 5 15.85 11 6.97 97JJA K-11.2 51 JUN 3.2278 17 99 19.5 -28 11 47 5 15.85 11 6.97 97JJA K-11.2 51 JUN 3.2278 17 99 19.5 -28 11 47 5 15.85 11 6.97 97JJA K-11.2 51 JUN 3.2278 17 99 19.5 -28 11 47 5 15.85 11 6. | 951JW K-5 | 3.5 | - | MAY | 4.188 | 25 | 6 | | 6 5 | | | 5.5 | | 8 | | | | 951JJY K-54.5 51 MAY 6.2507 15 01 03.7 -16 20 24 13 15.880 | 951JX K-5 | 3.8 | - | MΑΥ | 4.188 | 29 | 1• | - | 1 5 | | | 5.9 | | • | | | | 951JZ K-63.2 51 MAY 5-2208 15 22 16.2 -13 48 13 15.80 -9.6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 951JY K-5 | • | - | MΑΥ | .250 | | 6 | | 0 2 | | | 5.4 | | æ | | | | 991JJAI K-63.9 51 MAY 5.2208 15 5 01.9 -17 54 41 16.00 | 951JZ K-6 | • | - | MAY | .220 | | • 9 | ч | 8 | | | 5.8 | | 6 | | | | 951JUS K-84.4 51 MAY 8.3883 16 07 41.4 -23 36 14 16.00 -11.1 1 4.92 -9.6 4. 95 11.7 1 1 1 1 MAY 27.2504 15 24.4 -29 12 17 14.92 -9.6 4. 98 11.7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 951JA1 K-6 | • | _ | MAY | .220 | | <u>-</u> | | 4 4 | | | 5.85 | | 10. | | | | 951KC L-45.1 51 JUN 2.2264 16 32 54.4 -29 12 17 14.92 -9.6 49 951KR L-11.1 51 MAY 27.2514 15 33 33 12 15.92 -16.3 7 951KR L-13.4 51 MAY 27.2514 15 33 38 8 -13 26 11 951KU L-14.2 51 MAY 27.2514 15 47 21.5 -13 26 11 951KU L-14.2 51 MAY 27.2514 15 47 21.5 -13 26 11 951KU L-14.2 51 MAY 27.2510 15 36 48.4 -19 58 16 951KV L-14.6 51 MAY 27.2210 15 46 50.1 -25 06 46 951KV L-21.2 51 MAY 28.2187 15 58 40.4 -27 56 20 951KV L-22.2 1 MAY 28.2187 15 53 37.7 - 6 10 57 951KV L-22.2 1 MAY 28.2187 15 53 37.7 - 6 10 57 951KV L-22.2 1 MAY 28.2187 15 59 41.6 15.89 16.00 70 951KV L-22.2 1 MAY 28.2187 15 59 50.7 - 13 16 08 951KV L-22.3 1 MAY 28.2187 15 59 50.7 - 13 16 08 951KV L-22.3 1 MAY 29.3201 16 28 53.7 - 6 10 57 951KV L-42.3 51 MAY 29.3201 16 28 53.7 - 6 10 57 951KV L-42.3 51 MAY 29.3201 16 28 53.7 - 6 10 57 951KV L-42.3 51 JUN 2.2556 16 49 05.1 -14 14 29 15.83 | 951JB1 K-8 | • | ~ | MAY | .358 | | - | 2 | 6 1 | _ | | 6.0 | | 11. | | | | 951KR L-11.1 51 MAY 27.2708 15 24 00.7 - 4 23 14 15.97 - 6.4 - 89 951KR L-13.2 51 MAY 27.2514 15 47 33.38 - 13 33.12 15.95 15.95 - 10.3 7 951KR L-13.4 51 MAY 27.2514 15 47.2514 15 47.2514 15 47.2514 15 48.5 - 13 36.12 15.89 16 951KU L-14.6 51 MAY 27.2514 15 44 50.1 - 25 66 46 951KU L-14.6 51 MAY 27.2410 15 44 50.1 - 25 66 46 951KU L-15.1 51 MAY 27.2312 15 28 40.4 - 27 56 20 951KR L-15.2 51 MAY 28.2187 15 53 37.7 - 6 10 57 951KR L-22.2 51 MAY 28.2187 15 54 58.4 - 6 10 57 951KR L-22.2 51 MAY 29.2208 15 53 37.7 - 6 10 57 951KR L-32.3 51 MAY 29.2208 15 53 41.5 - 26 44 16 951KR L-32.3 51 MAY 29.3201 16 28 9.0 7 - 13 16 04 951KR L-42.3 51 MAY 29.3201 16 28 9.0 7 - 13 16 04 951KR L-42.3 51 MAY 29.3201 16 28 9.0 7 - 13 16 04 951KR L-42.3 51 MAY 29.3201 16 28 9.0 7 - 13 16 04 951KR L-42.3 51 MAY 29.3201 16 28 9.0 7 - 13 16 04 951KR L-42.3 51 JUN 7.2174 17 10 59.4 - 14 4 23 951KR L-42.3 51 JUN 7.2256 16 49 9.5 1 - 14 4 4 23 951KR L-42.3 51 JUN 7.2264 16 53 9.0 - 28 9.1 16 15.83 | 951KC L-4 | • | | NO
NO
NO | •226 | | 4• | 2 | 2 1 | | | 4•9 | | 6 | | | | 951KT | 951KR L-1 | • | - | MA∀ | 7.270 | | • | | 3 1 | | | 5.9 | | 9 | õ | | | 951KU L-13.4 51 MAY 27.2410 15 36 48.4 - 19 58 16 15.75 -10.3 1 15.75 -10.3 1 15.15 -10.4 | 951KS L-1 | • | ~ | MΑΥ | 7.251 | | 3 | _ | 3.1 | | | 5.9 | | æ | | | | 951KV L-14.2 51 MAY 27.2410 15 36 48.4 -19 58 16 15.89 -8.6 -1 15.89 -8.6 -1 15.84 L-14.6 51 MAY 27.2410 15 44 50.1 -25 06 46 15.99 15.99 -11.8 -1 10.8 | 951KT* L-1 | • | - | MAY | 7.251 | | -1 | _ | 6 2 | | | 5.7 | | 10 | | | | 951KV L-14.6 51 MAY 27.2410 15 44 50.1 -25 06 46 15.95 -11.8 -1. 951KW L-15.1 51 MAY 28.2285 16 01 20.6 0 38 27 15.98 -15.98 -9.88 3 951KX L-22.2 1 MAY 28.2287 15 53 37.7 - 7 57 12 16.07C -8.5 -29.8 3 951KX L-22.2 2 1 MAY 28.2187 15 54 37.7 - 7 57 12 16.07C -8.5 -29.8 3 951KX L-22.2 2 1 MAY 28.2187 15 54 37.7 - 7 57 12 16.07C -8.5 -29.8 3 951KX L-22.2 2 1 MAY 29.2208 15 53 41.5 - 2.6 44 16 15.59 15.59 -9.88 6.951KX L-22.2 2 1 MAY 29.2208 15 53 41.5 - 2.6 44 16 15.59 15.59 -10.09 951KB L-32.3 51 MAY 29.2208 1 6 28 53.7 - 13 16 04 16.39 16.39 -10.09 951KC L-34.3 51 MAY 29.2104 16 27 03.4 -21 32 31 16.34 16.39 -10.09 951KC L-34.3 51 MAY 29.2104 16 27 03.4 -21 32 31 16.34 16.39 -10.09 951KC L-34.3 51 MAY 29.2104 16 27 03.4 -21 32 31 16.34 16.39 17.00 -2.26 4 16.35 3.9 10.0 2.226 4 16.35 3.9 0.0 2.2 8 0.0 05 15.88 1 15.88 1 11.0 -2.2 8 0.0 05 15.88 1 11.0 -2.2 8 0.0 05 15.88 1 11.0 -2.2 8 0.0 05 15.88 1 11.0 -2.2 8 0.0 05 15.88 1 11.0 -2.2 8 0.0 05 15.88 1 11.0 -2.2 8 0.0 05 15.88 1 11.0 -2.2 8 0.0 05 15.88 1 11.0 -2.2 8 0.0 05 15.88 1 11.00 15.33 1 17.25 52.8 11.44 23 11.5 52 11.00 17.2174 17.30 12.3 -18 11.5 50 15.33 17.25 52.8 17.29 18.8 -17.5 7.29 18.8 -17.5 7.29 18.8 -17.5 7.29 18.8 -17.5 7.29 18.8 -17.5 7.29 18.8 -17.5 7.29 18.8 -17.5 7.29 18.8 -17.5 7.29 18.8 17.5 7.29 18.8 -17.5 7.29 18.8 -17.5 7.29 18.8 -17.5 7.29 18.8 -17.5 7.29 18.8 -17.5 7.29 18.8 -17.5 7.29 18.8 -17.5 7.29 18.8 -17.5 7.29 18.8 -17.5 7.29 18.8 -17.5 7.29 18.8 -17.5 7.29 18.8 17.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 | 951KU L-1 | • | -4 | MAY | 7.241 | | æ | ~ | 8 | | | 5.8 | | œ | _ | | | 951KW L-15-1 51 MAY 27-2312 15 28 40.4 -27 56 20 16.65C -10.5 98 3 27 6.2263 16 01 20.6 0 38 27 15.98 15.98 -9.88 3 951KX L-21.2 51 MAY 28-2285 16 01 20.6 0 38 27 15.99 15.98 -9.88 3 951KX L-22.2 51 MAY 28-2187 15 53 37.7 - 7 57 12 15.99 16.07C -8.5 -29.8 3 951KX L-22.2 51 MAY 29-2208 15 53 41.5 - 26 44 16 15.59 16.07C -8.5 -29.8 15.59 16.28 3.7 - 7 57 12 16.07C -8.5 - 20.8 15.59 1 MAY 29-2208 15 53 41.5 - 26 44 16 16.39 16.45C -11.6 -9.8 16.39 16.28 3.7 - 13 16.04 16.39 16.39 16.39 16.29 12.12 16.29 17.29 17.2 | 951KV L-1 | • | | MAY | 7.241 | | ° | 2 | 4 | | | 5.9 | | 11. | Ä | | | 951KX L-21.2 51 MAY 28.2285 16 01 20.6 0 38 27 15.98 -9.8 3 -9.8 </td <td>951KW L-1</td> <td>•</td> <td>~</td> <td>MΑΥ</td> <td>7.231</td> <td></td> <td>•</td> <td>2</td> <td>6 2</td> <td></td> <td></td> <td>6.65</td> <td></td> <td>10.</td> <td>n</td> <td></td> | 951KW L-1 | • | ~ | MΑΥ | 7.231 | | • | 2 | 6 2 | | | 6.65 | | 10. | n | | | 951KY L-22.1 51 MAY 28.2187 15 53 37.7 - 7 57 12 16.07C -8.5 -2.8 | 951KX L-2 | • | -4 | MΑΥ | 8.228 | | • | | 8 2 | | | 5.9 | | 6 | | | | 951KZ L-22.2 51 MAY 28.2187 15 54 58.4 - 6 10 57 15.81 -7.8 6 59.1 | 951KY L-2 | • | ٠,-4 | MAY | 8.218 | | | | 7 1 | | | 6.07 | | 8 | 2 | | | 951K81 L-25.3 51 MAY 29.2208 15 53 41.5 -26 44 16 15.59 -8.8 6. 951K81 L-32.3X 51 MAY 29.2211 16 29 00.7 -13 16 08 16.45C -11.6 -10.0 951K81
L-33.3 51 MAY 29.3201 16 28 53.7 -13 16 04 16.39 -10.0 -10.0 951K81 L-33.3 51 MAY 29.3201 16 28 53.7 -13 16 04 16.39 -10.0 -10.0 951K81 L-33.3 51 MAY 29.3201 16 28 53.7 -13 16 04 16.39 -10.0 -10.0 951K81 L-33.3 51 MAY 29.3201 16 28 63.7 -13 16 04 16.39 -10.0 -10.0 951K81 L-33.3 51 MAY 29.3201 16 28 63.7 -13 16 04 16.39 -10.0 951KC L-63.4 51 JUN 2.2264 16 49 11.8 -14 14 23 15.48C -11.0 -2 951LK L-42.3X 51 JUN 2.2264 16 35 39.0 -28 09 05 15.83 15.83 -12.1 2 951LK L-45.3 51 JUN 3.333 17 25 52.8 -12 15 58 16.32 -10.0 951LK L-63.5 51 JUN 3.2278 17 29 18.8 -17 57 29 15.83 -10.0 951LC L-63.4 51 JUN 3.2278 17 09 23.3 -28 11 47 16.07 -9.0 951LC L-63.4 51 JUN 3.2278 17 09 19.5 -28 11 46 16.07 -9.0 951LC L-63.4 51 JUN 3.2278 17 17 02.3 -28 11 47 15.05 -9.0 | 951KZ L-2 | • | _ | MΑΥ | 8.218 | | æ | | 0 | | | 5.81 | | 7 | | | | 951KB1 L-32.3X 51 MAY 29.2111 16 29 00.7 -13 16 08 16.495 | 951KA1 L-2 | • | _ | MAY | 9.220 | | - | 7 | 4 1 | | | 5.5 | | å | | | | 951KB1 L-33.3 51 MAY 29.3201 16 28 53.7 -13 16 04 16.39 -10.0 -10.9 51KB1 L-34.3 51 MAY 29.3104 16.27 03.4 -21 32 31 15.66 -10.9 15.66 -10.9 51KC1 L-34.3 51 JUN 7.2174 17 10 59.4 -19 33 46 15.45 -19.8 15.45 -10.9 51LC L-42.3 51 JUN 2.2056 16 49 11.8 -14 14 23 15.78C -11.0 -2 951LK L-42.3 51 JUN 2.2264 16 35 39.0 -28 09 05 15.23C -12.1 2 951LK L-45.2 51 JUN 7.3333 17 26 46.0 -12 15 58 15.81 -10.6 59.51LK L-45.3 51 JUN 7.2174 17 30 12.3 -18 11 50 15.64C -9.4 14 29 951LC L-63.5 51 JUN 7.2174 17 30 12.3 -18 11 50 15.65C -9.4 14 29 951LC L-63.5 51 JUN 7.2174 17 30 12.3 -18 11 50 15.65C -9.4 14 29 951LC L-64.2 51 JUN 7.2278 17 09 23.3 -28 11 47 15.65 15.65 -9.0 15.65 15.65 -9.0 15.65 15.65 15.00 17.2278 17 02.3 -28 11 47 15.65 15.65 -9.0 15.65 17 09 19.5 -28 11 47 15.65 17 09 19.5 -28 11 46 15.65 17 09 19.5 -28 11 47 15.65 17 09 19.5 -28 11 47 15.65 17 09 19.5 -28 11 47 15.65 17 09 19.5 -28 11 47 15.65 17 09 19.5 -28 11 47 15.65 17 09 19.5 -28 11 47 15.65 17 09 19.5 -28 11 47 15.65 17 09 19.5 -28 11 47 15.65 17 09 19.5 -28 11 47 15.65 17 09 19.5 -28 11 47 15.65 17 09 19.5 -28 11 47 15.65 17 09 19.5 -28 11 47 15.65 17 09 19.5 -28 11 47 15.65 17 09 19.5 -28 11 47 15.65 17 09 19.5 -28 11 47 15.65 17 09 19.5 -28 11 47 15.65 17 09 19.5 -28 11 47 15.65 17 09 19.5 -28 11 46 15.65 17 09 19.5 -28 11 47 15.65 17 09 19.5 -28 11 45 15.65 17 09 19.5 17 09 19.5 17 09 1 | 951KB1 L-3 | .3 | | MAY | 29.211 | | ċ | - | 9 | _ | | 6.45 | | 11. | | | | 951KC1 L-34.3 51 MAY 29.3104 16 27 03.4 -21 32 31 15.66 -10.9 951KC1 L-63.4 51 JUN 7.2174 17 10 59.4 -19 33 46 15.45 -8.2 15.45 -9.6 -1.9 33 46 15.45 -9.6 -1.0 951LC L-63.4 51 JUN 2.2056 16 49 11.8 -14 14 23 15.78C -9.6 -1.0 -2 951LK L-42.3X 51 JUN 2.2254 16 35 39.0 -28 09 05 15.81 -16.32 -12.1 2 951LL L-45.2 51 JUN 7.3333 17 26 46.0 -12 15 58 16.32C -12.1 2 15.81 L-63.5 51 JUN 7.2278 17 25 52.8 -12 15 58 16.32C -9.4 14 14.0 951LM L-63.5 51 JUN 7.2174 17 13 14.5 -20 39 13 15.664C -9.4 14.0 951LM L-63.5 51 JUN 7.2174 17 30 12.3 -18 11 50 15.63 15.63 -10.2 2 15.63 15.00 7.2278 17 29 18.8 -17 57 29 15.63 15.63 -10.2 2 15.63 15.65 15.65 15.00 7.2278 17 09 23.3 -28 11 47 15.63 15.63 -10.2 2 15.65 15.00 7.2278 17 17 17 02.3 -27 07 48 15.65 15.65 -9.0 -9.0 15.65 15.00 7.2278 17 17 17 02.3 -27 07 48 15.65 15.65 15.00 -9.0 15.65 15.00 7.2278 17 17 17 02.3 -27 07 48 15.65 15.65 15.00 -9.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 1 | 951KB1 L-3 | • | - | MΑΥ | 29.320 | | 9 | - | 9 | | | 6.3 | | 10. | | | | 951LC L-63.4 51 JUN 7.2174 17 10 59.4 -19 33 46 15.45 -8.2 -9.6 -1. 951LK L-43.3 51 JUN 2.2056 16 49 11.8 -14 14 23 15.78C -9.6 -1. 951LK L-42.3X 51 JUN 2.2958 16 49 05.1 -14 14 29 15.83C -11.0 -2 951LK L-45.2 51 JUN 2.2264 16 35 39.0 -28 09 05 15.81 -10.6 951LK L-45.2 51 JUN 7.3333 17 26 46.0 -12 15 58 16.32C -12.1 2 951LK L-62.3 51 JUN 7.2174 17 13 14.5 -20 39 13 16.32C -10.6 951LK L-63.7X 51 JUN 7.2174 17 30 12.3 -18 11 50 951LC L-63.7X 51 JUN 8.2278 17 29 18.8 -17 57 29 951LC L-63.7X 51 JUN 7.2278 17 09 23.3 -28 11 47 951LC L-64.2 51 JUN 7.2278 17 09 19.5 -28 11 46 951LQ L-64.4 51 JUN 7.2278 17 102.3 -27 07 48 951LQ L-64.4 51 JUN 7.2278 17 102.3 -27 07 48 951LQ L-64.4 51 JUN 7.2278 17 102.3 -27 07 48 951LQ L-64.4 51 JUN 7.2278 17 102.3 -27 07 48 951LQ L-64.4 51 JUN 7.2278 17 102.3 -27 07 48 951LQ L-64.4 51 JUN 7.2278 17 102.3 -27 07 48 951LQ L-64.4 51 JUN 7.2278 17 102.3 -27 07 48 951LQ L-64.4 51 JUN 7.2278 17 102.3 -27 07 48 951LQ L-64.4 51 JUN 7.2278 17 102.3 -27 07 48 951LQ L-64.4 51 JUN 7.2278 17 102.3 -27 07 48 951LQ L-64.4 51 JUN 7.2278 17 102.3 -27 07 48 951LQ L-64.4 51 JUN 7.2278 17 10 0.0 0. | 951KC1 L-3 | • | ~ | MAY | 29.310 | | ë | 7 | 2 3 | | | 5.6 | | 10. | 0 | | | 951LK L-42.3X 51 JUN 2.2958 16 49 11.8 -14 14 29 15.83C -13.0 -2 951LK L-42.3X 51 JUN 2.2958 16 49 05.1 -14 14 29 15.83C -11.0 -2 951LK L-45.2 51 JUN 2.2264 16 35 39.0 -28 09 05 15.23C -12.1 2 951LL L-45.2 51 JUN 7.3333 17 26 46.0 -12 15 58 16.32C -12.1 2 951LM L-62.3 51 JUN 8.2278 17 25 52.8 -12 15 52 16.32C -10.5 951LM L-63.5 51 JUN 7.2174 17 13 14.5 -20 39 13 15.64C -9.4 14 951LO L-63.7 51 JUN 7.2174 17 30 12.3 -18 11 50 15.65C -9.4 14 951LO L-73.1 51 JUN 8.2278 17 29 18.8 -17 57 29 951LM 15.33 -10.2 2 951LM L-65.5X 51 JUN 7.2278 17 09 19.5 -28 11 47 16.07C -9.1 27 951LM 17 02.3 -27 07 48 15.65 -9.1 27 951LM 17 02.3 -27 07 48 15.65 | 951LC L-6 | • | _ | S | 7.217 | | 6 | ┙ | 3 4 | | | 5.4 | | å | | | | 951LK L-45.3X 51 JUN 2.2958 16 49 05.1 -14 14 29 15.83C -11.0 -2 951LK L-45.2 51 JUN 2.2264 16 35 39.0 -28 09 05 15.23C -12.1 2 15.81 -10.6 951LM L-62.3 51 JUN 7.333 17 26 46.0 -12 15 58 16.32C -10.5 951LM L-63.5 51 JUN 7.2174 17 13 14.5 -20 39 13 15.64C -8.7 -8.7 -9.5 1.0 | 951LK L-4 | • | - | S | 2.205 | | - | ~ | 4 2 | _ | | 5.7 | | 6 | Ä | | | 951LL L-45.2 51 JUN 2.2264 16 35 39.0 -28 09 05 15.23C -12.1 2 10.6 951LM L-62.3 51 JUN 7.3333 17 26 46.0 -12 15 58 16.32C -10.6 10.6 951LM L-73.5X 51 JUN 8.2278 17 25 52.8 -12 15 52 16.32C -10.5 951LN L-63.5 51 JUN 7.2174 17 13 14.5 -20 39 13 15.64C -8.7 -9.1 15.64C -9.4 14.9 951LO L-63.7 51 JUN 8.2278 17 29 18.8 -17 57 29 18.1 47 15.63 -9.1 29 951LP L-64.2 51 JUN 7.2278 17 09 23.3 -28 11 47 15.63 -10.2 2 951LP L-65.5X 51 JUN 7.2278 17 09 19.5 -28 11 46 16.07C -9.1 29 951LQ L-64.4 51 JUN 7.2278 17 17 02.3 -27 07 48 15.65 -9.1 20 15.65 | 951LK L-4 | 6 | | NOC | •295 | | 5 | ~ | 4 2 | | | 5.83 | | 11. | N | | | 951LM L-62.3 51 JUN 7.3333 17 26 46.0 -12 15 58 16.32C -10.6 951LM L-73.5X 51 JUN 8.2278 17 25 52.8 -12 15 52 16.32C -10.5 951LN L-63.5 51 JUN 7.2174 17 13 14.5 -20 39 13 15.64C -8.7 -9.4 14 951LO L-63.7X 51 JUN 7.2174 17 30 12.3 -18 11 50 15.65C -9.4 14 951LO L-73.1 51 JUN 8.2278 17 29 18.8 -17 57 29 15.63 -9.4 14 951LP L-64.2 51 JUN 7.2278 17 09 19.5 -28 11 47 15.63 -10.2 2 951LQ L-64.4 51 JUN 7.2278 17 17 02.3 -27 07 48 15.65 -9.1 27 951LQ L-64.4 51 JUN 7.2278 17 17 02.3 -27 07 48 15.65 | 951LL L-4 | • | 51 | SCN | .226 | | 6 | 7 | 9 | | | 5.23 | | 12. | | | | 951LM L-73.5X 51 JUN 8.2278 17 25 52.8 -12 15 52 15.64C -10.5 | 951LM L-6 | ۳, | 51 | S | .333 | | • | ~ | 5 | _ | | 5.81 | | 10 | | | | 951LN L-63.5 51 JUN 7.2174 17 13 14.5 -20 39 13 15.64C -8.7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 | 951LM L-7 | 5 | 51 | N
S
S | .227 | | 2 | _ | 5 | | | 6.32 | | 10 | 7 | | | 951LO L-63.7X 51 JUN 7.2174 17 30 12.3 -18 11 50 15.65C -9.4 14 951LO L-73.1 51 JUN 8.2278 17 29 18.8 -17 57 29 15.33 -8.7 13 951LP L-64.2 51 JUN 7.2278 17 09 23.3 -28 11 47 15.63 -10.2 2 951LP L-65.5X 51 JUN 7.2389 17 09 19.5 -28 11 46 16.07C -9.1 29.1 2951LQ L-64.4 51 JUN 7.2278 17 17 02.3 -27 07 48 15.65 -9.0 | 951LN L-6 | iZ. | 51 | N
O
O | •217 | | • + | 2 | 9 1 | | | 5.64 | | å | | | | 951L0 L-73.1 51 JUN 8.2278 17 29 18.8 -17 57 29 15.33 -8.7 13 951LP L-64.2 51 JUN 7.2278 17 09 23.3 -28 11 47 15.63 -10.2 2 951LP L-65.5X 51 JUN 7.2389 17 09 19.5 -28 11 46 16.07C -9.1 29.1 29.51LQ L-64.4 51 JUN 7.2278 17 17 02.3 -27 07 48 15.65 -9.0 | 951L0 L-6 | 7. | 51 | S | •217 | | 2 | ⁻ | 1 5 | | | 5.65 | | 6 | 4 | | | 951LP L-64.2 51 JUN 7.2278 17 09 23.3 -28 11 47 15.63 -10.2 2 951LP L-65.5X 51 JUN 7.2389 17 09 19.5 -28 11 46 16.07C -9.1 2 951LQ L-64.4 51 JUN 7.2278 17 17 02.3 -27 07 48 15.65 -9.0 | 951LO L-7 | 3.1 | 51 | N
207 | .227 | | œ | ~ | 7 2 | | | 5.3 | | æ | 3 | | | 951LP L-65.5X 51 JUN 7.2289 17 09 19.5 -28 11 46 16.07C -9.1 2.951LQ L-64.4 51 JUN 7.2278 17 17 02.3 -27 07 48 15.65 -9.0 | 951LP L-6 | 4 | 51 | S | .227 | | 8 | 2 | 1 4 | | | 5.6 | | 10. | 2 | | | 951LQ L-64.4 51 JUN 7.2278 17 17 02.3 -27 07 48 15.65 -9.0 | 951LP L-6 | 5.5 | 51 | S | •238 | | 6 | \sim | 1 4 | | | 6.07 | | 6 | | | | | 951LQ L-6 | 4 | 51 | N
O
N |
.227 | | 2 | 2 | 7 4 | | | 5.6 | | 6 | | | 412 | | U Z
O | | | | | 0 10 | |------|------------------|--|---|--|---|--| | | 0 -
MOT I C | | | | | - 0 | | | DAY | -10
-31
24
-22
-49 | -51
-13
-13
-17 | 14500 | 1100
1100
1001
1001
1001
1001
1001
100 | 1 1 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | | 10 - [
MOT IC | -111.6
-10.5
-9.0
-11.0 | -10.6
-11.7
-11.4
-11.1 | 76009 | 111.5
111.2
111.2
11.2
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | ဖ | | | 12.02 | | 14.53C
14.80C
13.52C
13.52C | | | MAG | 15.99
15.48
15.85C
15.65C
15.81C | 15.58C
15.48
15.54C
15.48
15.43 | υ υ υ υ ο υ ο υ ο υ ο υ ο υ ο υ ο υ ο υ | 16.24
15.44
15.34
15.47
15.19C
15.88
15.88
15.88 | 14.16C
14.43C
15.56
15.47
14.97
15.11C
15.28C
15.28C | | | VAR | | | | | | | | - c
DEC | | | | | 00 | | ۷ | o ∢ | | | | | 0 0 0 1 1 | | ш | 0
•
0 | 5 52 6 15 2 33 3 3 11 | 3 18
6 50
6 55
7 47
7 36 | 40440 | 22 4 7 7 7 5 9 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 9 4 5 5 7 4 7 5 6 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 | | TABL | DE. | -31 3
-14 2
-19 0
-19 0
-31 3 | -31 3
-28 2
-28 2
-28 2
-19 4 | 2012
2002
4012
1002
1002
1002
1002
1002 | 1111 111222 | 111 1
1997 4400
1109 11099 | | | • 0
• • | 0.0
1.0
1.7
7.7
6.7 | 20156
2016
2016 | 20000 | 16664 26646
16666 6666 | 0 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | | R•
1950 | 17
35
33
36
25
26
27 | 6444
623
7446
7464 | 19840 | 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 42 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | | 71
71
71
71 | 71
71
71
71 | нинин . | 18
19
19
19
19
21
21
21
21 | 22
22
23
23
23 | | | E U.T. | 7.2389
8.2278
8.2278
8.2375
8.2472 | 8.2569
8.2472
8.2569
9.2986
8.3243 | 9.357
2.205
0.317
6.211
0.245 | 30.3271
30.3271
4.3382
27.2187
28.23187
6.2382
6.2479
6.3708 | 30.2125
30.3118
31.1625
31.2021
31.2799
30.3701
1.3333
3.3132 | | | ⊢ | N N N N
C C C C C
C C C C C | N N N N N | | AUG | SEP
AUG
AUG
AUG
SEP
SEP
SEP | | | ۵ | 51
51
51
51 | 2222 | 22222 | | | | | SURVEY
NUMBER | L-65.2
L-73.2
L-73.4X
L 74.2
L-75.4X | L-76.2
L-75.5X
L-76.4
L-85.1
L 83.1 | 84
44
44
44
44 | M-53.2
M-53.2
M-75.4
M-24.3
M-34.2
M-73.1
N-74.1 | P-43.1
P-53.1
O-13.1
O-12.2X
O-23.2X
O-22.1
P-52.2X
P-62.2 | | | MINOR
PLANET | 1951LR
1951LS
1951LT
1951LT
1951LU | 1951LU
1951LV
1951LV
1951LV
1951LW | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | • | 1951QA
1951QA
1951QU
1951QU
1951QK
1951QK
1951RB
1951RB
1951RG | | | O - O
MOTION | | | | | | | | |------|------------------|---|---|---|---|---|---|---| | | DAY | -24
-12
-97
-9 | -119
-113
-121
-121 | 1117
-22
-3
-84 | -30
-77
-30
-30 | 87
-78
60
1 | 88
 | - 22
- 23
- 23 | | | 10 - [
MOTIC | -9.0
-16.8
-10.9 | 4.0.7.1
1.0.7.1
1.0.0.0 | -12.8
-8.3
-9.8
-7.1 | -10.9
-10.5
-10.3
-10.4 | -10.8
-11.4
-9.3
-9.3 | 1 8 . 2
1 1 8 . 0
1 1 9 . 7 | -11.7
-10.7
-11.64
-11.2 | | | ŋ | | | | | | | | | | MAG
VAR | 14.92
14.45
15.10 | 15.23C
14.97
14.80
14.99C
15.34C | 15.08
15.83
14.66
15.66 | 15.29
15.13
15.45
15.14A
15.55C | 15.78
14.62
14.52C
15.98
16.20 | 14.80
15.58
15.44
15.32 | 16.08
16.77
15.80
16.10 | | ⋖ | 0 - C
R A DEC | | | | | | | | | щ | 0.0 | 9 41
1 10
5 25
4 24
2 20 | 00071 | 1 11
9 28
9 07
2 19
0 31 | 1 21
9 29
9 16
9 16
9 17 | 3 03 16 03 03 03 03 03 03 03 03 03 03 03 03 03 | 2 14
5 01
1 47
0 45 | 9 21
3 25
3 31
3 07 | | TABL | DE(
195(| - 8 1
- 3 3:
- 1 7:
- 1 5: | 1111 | -14 00
8 2
-12 2(| 2 4 2 6 0 1 6 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 10999
0099
0099 | 2000
2000
3000
44000 | | | R. A.
1950.0 | 38 40.5
59 38.1
15 09.9
59 46.7
58 46.9 | 42 12.7
42 11.5
23 42.6
23 38.3
22 31.5 | 01 05.0
45 12.5
55 22.1
51 29.9
32 30.3 | 27 10.3
18 14.3
28 43.3
01 58.1
24 31.1 | 10 24.3
39 25.9
09 51.3
38 52.2
42 30.4 | 38 02.5
38 56.0
06 52.7
06 46.3 | 46 19.3
47 29.5
08 33.1
08 30.5
07 23.5 | | | | 22022 | 23 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 0 0 0 0 8 | 00004 | 4 11 4 11 11 | w w 4 4 4 | w w 4 4 4 | | | E U.T. | 2.3035
2.3222
27.2965
2.2340
3.2382 | 2.1924
2.2215
3.2187
3.3319
5.2826 | 5.3292
5.3201
30.3118
30.3118 | 3.2174
3.1812
1.2910
3.2896
4.2014 | 22.1431
27.2924
4.2014
29.1590
29.1590 | 29.1681
29.1681
29.1771
29.2764
29.3396 | 29.2764
29.2764
29.2764
29.3035 | | | A | SEP
SEP
SEP
SEP | SEP
SEP
SEP | SEP
SEP
SEP
SEP | N N O O C O C O C O C O C O C O C O C O | NOC
NOC
NOC | >>>>
000000
2 | N N N N N N N N N N N N N N N N N N N | | • | ۵ | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 5255 | 50000 | | 4444 | 22222 | | | SURVEY
NUMBER | 0-43.2
0-53.4
P-34.1
0-55.5X | 0-44.2
0-54.3X
0-63.4
0-73.2
0-74.1 | 0-84.2
0-85.1
P-53.4
P-53.2
P-15.1 | Q-55.6X
Q-46.2
Q-52.1
Q-66.2
R-45.2 | R-44.4
R-21.1X
R-45.1
R-25.3 | R-26.1
R-36.2
R-33.4
R-32.3 | R-32.4X
R-32.5X
R-32.7X
R-42.2 | | | MINOR
PLANET | 1951RJ1
1951RJ1
1951RM1
1951RQ1
1951RQ1 | 1951RW1
1951RW1
1951RX1
1951RX1
1951RX1 | 1951RY1
1951RZ1
1951SB
1951SD
1951SW | 1951VA
1951VE
1951VF
1951VG
1951WG | 1951WL
1951WM
1951WQ
1951WT
1951WU | 1951WV
1951WW
1951WX
1951WX
1951WX | 1951WY
1951WZ
1951WA1
1951WA1
1951WB1 | | | 0 - 0
MOTION | | | | | | | | |------|------------------|---|---|---|---|--|---
--| | | DAY
ON | -15
-67
-70
-41 | 1122 | 1 + 40
1 + 46
1 + 50
1 + 16 | -21
-20
-11
-37 | 13
13
13
13
15 | 26
-17
-10
-5 | -13
-68
-66
26 | | | 10 -
MOTI | -111.0
-111.2
-10.7
-10.4 | -8-
-111-9-
-111-1 | -111
-110 • 8
-19 • 8 | -9.2
-111.2
-111.7 | 1 | -111.5
-111.8
-112.5
-112.5 | 111
- 100
- 100
- 120
- | | | o | | | | | | | | | | MAG. | 16.36
16.02
15.98C
16.27C
16.78C | 16.50
16.29
15.83
16.31 | 15.79
15.91
16.55
16.89
16.29 | 16.11
15.50
16.29
15.97
16.10 | 15.92
15.88
16.53
15.91
15.42 | 15.72
16.22
15.91
16.17
16.30A | 16.53
15.45
16.95
17.11C | | | > | | | | | | | | | ۷ | 0 - C
R A DEC | | | | | | | | | ш | 0 | 05
16
07
14
14 | 0 W W W 4 | 28
20
17
05
40
05 | 0 4 4 4 9 6 4 8 4 9 6 4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 4 4 4 4 4 5 4 5 4 5 4 5 4 5 4 5 6 6 6 6 | 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 39
17
15
48
11 | | TABL | DEC
1950 | 3 03
0 20
0 20
4 17
0 14 | 0 14
0 22
4 32
8 55 | 3 38
3 38
7 2 29
8 04 | 8 54
9 12
7 40
8 44
8 44 | 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 4 44
5 18
1 54
1 54
1 48 | 1 48
1 21
1 59
1 58
6 41 | | | | 60000 | 11000 | нана | нннн | e. | <i>~~~~~</i> | 00000 | | | A 0 | 21.7
10.1
09.5
50.7
34.3 | 33
40
38
38
38
9
9
9 | 21.9
21.1
37.3
11.3 | 0 0 0 0 4
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 | 54
53
53
50
50
50
50
50
50
50
50
50
50
50
50
50 | 25.4
16.5
28.2
23.9
21.8 | 18.1
25.5
18.1
13.2
29.7 | | | R•
195 | 04
74
54
74
74
74 | 45
00
00
00
00
00 | 0 0 4 4 0
4 4 6 8 4 | 55
01
07
07 | 44
49
50
20
20 | 20
20
20
20
20 | 24
27
27
27
19 | | | | 4 ~ ~ ~ ~ | m 4 4 m 4 | 44000 | w 4 4 4 4 | <i>~~~~</i> | 44444 | 4444 | | | E U.T. | 29.3035
29.1771
29.1861
29.1771
29.1771 | 29.1861
29.1771
29.1861
29.1861
29.1861 | 29.1861
29.1951
29.1861
29.1861
29.1861 | 29.1861
29.1861
29.1861
29.1861
29.2854 | 29.1951
29.2042
29.1951
29.2042
29.3035 | 29.3125
29.3125
29.2854
29.3396
29.2854 | 29.3396
29.2854
29.2854
29.3396
29.3396 | | | A T | N N N N N N N N N N N N N N N N N N N | >>>>>
00000
00000 | >>>>>
00000
00000 | >>>>>
000000
00000 | >>>>>
000000
00000 | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | | | <u>م</u> | | | | 20000 | | 5216216 | 2000
1100
1100
1100 | | | SURVEY
NUMBER | R-42.1
R-33.5
R-33.6
R-33.6
R-33.6
R-33.6
X | R-34.4X
R-33.12X
R-34.11X
R-34.2 | R-34.6X
R-35.6
R-34.7X
R-34.8X
R-34.9X | R-34.10X
R-34.12X
R-34.13X
R-34.14X
R-44.18X | R-35.1
R-35.4
R-35.4
R-35.4
R-42.5 | R-41.2
R-41.3
R-44.11X
R-43.3
R-44.14X | R-43.4
R-44.5
R-44.16
R-43.6
R-43.6
R-43.6 | | | MINOR
PLANET | 1951WB1
1951WC1
1951WC1
1951WD1
1951WE1 | 1951WE1
1951WF1
1951WF1
1951WG1
1951WH1 | 1951WJI
1951WJI
1951WKI
1951WKI
1951WMI | 1951WN1
1951W01
1951WP1
1951WQ1
1951WQ1 | 1951WR1
1951WR1
1951WS1
1951WT1
1951WU1 | 1951WU1
1951WV1
1951WW1
1951WW1
1951WX1 | 1951WX1
1951WY1
1951WZ1
1951WZ1
1951WA2 | | | O - C
MOTION | | | | | | | | |--------|------------------|---|--|-----------------|---
--|--|---| | | DAY
ON | 36
116
35
35 | 29
-117
-128
-17
-15 | ` | 1245 | -34
-110
-115 | -118
-27
54
11 | 122
122
157
150 | | | 10 -
MOT I | -11-9
-9-3
-9-7 | 111.6
112.0
112.0
112.0
112.0
112.0
112.0
112.0
112.0 | 200 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | -9.6
-12.7
-12.7
-10.4 | -10.6
-110.6
-9.8
-9.8 | 11.19.77.19.25 | | | ڻ
ا | | | | | | | | | | MAG | 15.50
16.65
16.43
15.98 | 15.84C
16.27
16.23
17.05
16.53A
15.88 | 86.9 | 16.42C
16.30C
15.88C
15.63
16.68C | 16.64
16.60C
16.80
15.55
16.66 | 16.46
16.40
16.14
16.86C
16.55C | 17.01
14.53
15.29
15.47 | | | VAR | | | | | | | | | ∢ | 0 - C
R A DEC | | | | | | | | | W
L | 0.0 | 6 9 5 5 6 6 9 6 9 6 9 6 9 9 9 9 9 9 9 9 | 04 88 95 0
04 60 0 4 6
0 6 7 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 | 200 | 2005
2005
2005
2005
2005
2005 | 2 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 2 17 11 23 14 23 14 25 1 | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | TABL | DE: | 22 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 14 to 1 | 3 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 08051
00405 | 1225 | 20037 | | | R• A•
1950•0 | 4 19 14.3
4 25 17.7
4 27 59.3
4 13 53.1
4 24 14.5 | 4 24 32.8
4 16 04.6
4 21 18.2
4 22 51.5
4 26 39.4
4 28 01.5
5 13.3
6 13.3 | 49 24
38 53 | 4 28 00.5
4 27 54.0
4 20 11.3
4 20 10.7
4 30 33.2 | w n n o w | 4 17 32.3
4 35 16.2
4 50 25.7
4 35 12.7
4 38 26.5 | 4 37 29.4
4 40 01.0
4 26 15.4
4 40 18.1
4 26 47.4 | | | E U.T. | 29.3396
29.3396
29.3396
29.2854
29.2854 | 29.2854
29.2854
29.2854
29.2854
29.2854
4.2104 | 5.253
3.143 | 4.2014
4.2014
4.2014
4.2104
4.2014 | | 22.1431
5.2625
5.2625
5.2535
4.2194 | 5.2535
5.2535
22.1431
5.2535
22.1431 | | | ⊢
∢ | >>>>>
00000
0000
0000 | N N N N N N N N N N N N N N N N N N N | | DEC
DEC
DEC
DEC | | DEC
DEC
DEC
DEC | DEC
DEC
DEC
DEC | | | ۵ | × | **** * | × | | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | SURVEY
NUMBER | R-43.8X
R-43.9X
R-43.10
R-44.2 | R - + + + + + + + + + + + + + + + + + + | -54.15
-54.3 | R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-455
R-55
R- | 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | R-53.2
R-53.2
R-53.4
R-553.4 | R-54.6
R-54.7
R-44.12
R-54.8
R-44.14 | | | MINOR | 1951WB2
1951WC2
1951WD2
1951WE2
1951WF2 | 1951WG2
1951WH2
1951WC2
1951WC2
1951WC2
1951WM2 | 951X
951X | 1951XL
1951XM
1951XN
1951XN
1951XO | 951X
951X
951X
951X
951X | 1951XR
1951XS
1951XT
1951XU
1951XV |
1951XV
1951XW
1951XW
1951XX
1951XX | | | O - C
MOTION | | | | | | | | |---------|---------------------|--|--|--|--|--|--|--| | | DAY
ON | -52
-22
-17
-17 | 4 00 4 0 | 1 4 4 1 1 4 4 5 6 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | -74
-72
-79
-51 | -83
-67
-29
-29 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | -51
-42
-87
-16 | | | 10 -
MOTI | -11.6
-7.2
-9.5
-9.5 | -8.9
-13.0
-12.1 | -7.4
-11.7
-11.2
-9.2 | 8 8 6 6 9
8 8 6 6 9
1 1 1 1 1 | 1100
1100
1100
100
100
100
100 | 110000 | 19.6
19.8
10.8
10.8 | | | g | | | | | | | | | | M A G | 15.91
16.60
16.72
17.09 | 15.21
16.64
15.58
16.28
16.19 | 16.42
16.43
15.59
16.53 | 16.56
16.76
16.75
16.69
16.10C | 16.88
16.79
17.09
17.00 | 16.64C
16.74C
16.93C
16.60
16.63 | 16.53
16.54C
15.39C
16.43
17.54 | | | O - C
R A DEC VA | | | | | | | | | TABLE A | DEC
1950.0 | 20 13 20
18 47 59
18 40 04
19 12 03
22 19 29 | 23 10 05
12 26 13
35 26 18
36 13 42
36 13 44 | 34 48 45
35 18 23
33 42 27
34 39 28
29 12 26 | 29 11 41
29 11 39
33 52 57
24 25 37 | 24 28 20
24 16 45
24 17 28
19 08 52
19 05 39 | 11 35 09
11 03 59
31 04 38
28 23 30
21 29 36 | 16 37 13
16 37 10
20 46 00
18 47 19
21 55 56 | | | R• A•
1950•0 | 4 46 45.3
4 26 10.2
4 47 51.7
4 48 15.1
4 38 16.1 | 4 22 10•1
4 51 13•0
5 06 37•7
4 45 42•1
4 45 42•1 | 5 11 56.4
4 58 31.5
5 01 18.1
4 41 50.7
4 26 40.8 | 4 26 36.5
4 26 36.1
4 26 22.0
4 26 20.3
4 10 27.5 | 4 28 19.3
4 28 19.3
4 28 13.3
4 30 06.1
4 29 19.1 | 4 13 16.5
4 14 22.1
4 38 49.2
4 33 42.7
4 32 37.3 | 4 42 01.5
4 42 01.1
4 43 52.7
4 49 21.7
4 51 51.7 | | | DATE U.T. | 51 DEC 5.2535
51 DEC 22.1431
51 DEC 5.2535
51 DEC 5.2535
51 DEC 5.2535 | 51 DEC 22.1340
51 DEC 4.2194
51 DEC 5.2896
51 DEC 22.2424
51 DEC 22.2514 | 51 DEC 5.2896
51 DEC 23.2611
51 DEC 5.2896
51 DEC 22.2424
51 DEC 22.1340 | 51 DEC 22.2153
51 DEC 22.2333
51 DEC 22.2153
51 DEC 22.2424
51 DEC 22.1340 | 51 DEC 22.1340
51 DEC 22.1340
51 DEC 22.2333
51 DEC 22.1431
51 DEC 23.1438 | 51 DEC 22.1521
51 DEC 22.1521
51 DEC 22.2424
51 DEC 22.2333
51 DEC 23.1438 | 51 DEC 23.1438
51 DEC 23.1528
51 DEC 23.1438
51 DEC 23.1438
51 DEC 23.1438 | | | SURVEY
NUMBER | R-54.10
R-44.11
R-54.11
R-54.12
R-54.14 | R-43.4
R-55.5
R-62.3X
R-52.7
R-51.1 | R-62.5X
S-12.2
R-62.7X
R-52.6 | R-42.2
R-53.5X
R-42.3X
R-52.1 | R-43.5
R-53.67
R-53.67
R-54.15X
R-54.1 | RR-1-4
RR-1-4
RR-1-45
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F-1-7
F- | R - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - | | | MINOR
PLANET | 1951XY
1951XY
1951XZ
1951XA1
1951XA1 | 1951XB1
1951XC1
1951XD1
1951XD1
1951XD1 | 1951XE1
1951XE1
1951XF1
1951XF1
1951YB | 1951YB
1951YB
1951YC
1951YC
1951YD | 1951YE
1951YF
1951YF
1951YG
1951YG | 1951YH
1951YJ
1951YK
1951YL
1951YM | 1951YN
1951YN
1951YO
1951YP
1951YP | | | 0 - C
MOT 10N | | | | | | | | |-------|---------------------|---
---|---|---|---|--|---| | | DAY | 10
23
14
10
15 | 25
-111
-10
-3 | 21
4
14
9 | 26
-19
-28
-25
1 | -12
-11
-11
-17 | w 0 1 4 8 | 31
18
16
11 | | | 10 -
MOTI | -1001
-7.6
-7.4
-8.2 | 111
1991
1691
16991 | 9.9.
1.4.5.
1.4.5.
1.4.5. | 111111111111111111111111111111111111111 | 1 1 9 9 9 1 1 1 1 0 9 9 9 9 9 9 9 9 9 9 | 111111111111111111111111111111111111111 | 113.7
-10.3
-10.3
-8.9 | | | o | | | | | | | | | | MAG
R | 16.95
16.65
16.89
17.01 | 16.21
16.68
16.71C
17.29
17.60 | 15.88
16.56
17.13
17.05C
15.11C | 16.21
16.14C
17.00
16.62
17.09 | 16.75
16.21
16.53
16.64
16.67 | 16.16A
16.08
17.01A
15.99
16.14C | 16.69
16.11
16.53
16.79
17.06 | | ¥ | O - C
R A DEC VA | | | | | | | | | TABLE | DEC
1950.0 | 21 55 49
9 57 51
9 57 48
8 33 41
26 18 57 | 24 11 42
22 33 39
22 33 41
22 40 14
22 40 18 | 20 05 59
14 54 34
7 29 04
7 38 05
5 29 33 | 42)8 12
38 32 42
33 47 41
33 47 25
24 19 13 | 22 45 07
27 34 40
25 20 20
25 20 22
20 40 07 | 15 23 42
19 59 26
15 27 47
6 23 25
2 28 25 | 36 43 38
32 20 06
28 46 55
21 15 21
21 15 16 | | | R. A.
1950.0 | 4 51 45.1
4 36 12.6
4 36 12.0
4 39 06.4
4 50 41.9 | 5 07 29•7
5 10 33•6
5 10 33•1
4 54 10•6
4 54 10•3 | 5 02 08 0
5 01 18 5
4 52 04 3
4 52 07 6
11 09 5 | 5 16 07 3
5 30 45 6
5 33 59 0
5 33 51 8
5 9 0 | 5 19 14.5
5 24 06.5
5 33 05.3
5 33 00.1
14 29.3 | 5 24 09.3
5 28 02.2
5 32 04.2
5 10 26.7
5 11.9 | 5 39 22.3
5 45 30.3
5 49 40.0
5 37 40.1
5 36 53.9 | | | A T E U.T. | DEC 23.2431
DEC 23.1528
DEC 23.1618
DEC 23.1618
DEC 23.2521 | DEC 23.2521
DEC 23.2431
DEC 23.2521
DEC 23.2431
DEC 23.2521 | DEC 23.2431
DEC 23.1708
DEC 23.2340
DEC 23.2340
DEC:23.2340 | DEC 23.3243
DEC 23.3243
DEC 27.1646
DEC 27.2729
DEC 27.1736 | DEC 27.1736
DEC 27.1736
DEC 27.1736
DEC 27.2639
DEC 27.1826 | DEC 27.1826
DEC 27.1826
DEC 27.1826
DEC 27.2007
DEC 27.2007 | DEC 27.2819
DEC 27.2729
DEC 27.2729
DEC 27.2639
DEC 28.1736 | | | ۵ | | | 2011 | | | 10000 | | | | SURVEY | S-14.1
R-55.5X
R-56.1
R-56.2
S-13.2 | S-13.5
S-14.10X
S-13.7
S-14.2
S+13.11X | S-14.6
S-15.3
S-16.1
S-16.2
S-16.5 | S-21.1
S-21.3
S-22.4
S-32.6X
S-23.1 | S-23.4
S-23.6
S-23.8X
S-33.1
S-24.1 | \$\\ \chi_{\chi\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi\tiny{\chi_{\chi\tiny{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi\tiny{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi\tiny{\chi_{\chi_{\chi_{\chi_{\chi\tiny{\chi\tin\tiny{\chi\tiny{\chi_{\chi_{\chi\tiny{\chi_{\chi\tiny{\chi\tiny{\chi\tiny{\chi_{\chi\tiny{\chi\tiny{\chi\tiny{\chi\tiny{\chi\tiny{\chi\tiny{\chi\tiny{\chi\tiny{\chi\tiny{\chi\tiny{\chi\tiny{\chi\tiny{\chi\tin\tiny{\chi\tin\tiny{\chi\tiny{\chi\tiny{\chi\tiny{\chi\tiny{\chi\tiny{\chi\tin\tiny{\chi\tiny{\chi\tiny{\chi\tiny{\chi\tiny{\chi\tiny{\chi\tin\tiny{\chi\tiny{\chi\tiny{\chi\tiny{\chi\tiny{\chi\tiny{\chi\tin\tiny{\chi\tiny{\chi\tiny{\chi\tin\tii\tin\tin\tii\tin\tin\tii\tiny\tin\tin\tii\tin\tin\tii\tin\tin\tin\tin | S-31
S-32.4
S-32.5
S-33.2
S-34.2 | | | MINOR | 1951YQ
1951YR
1951YR
1951YS
1951YT | 1951YU
1951YV
1951YV
1951YW | 1951YX
1951YY
1951YZ
1951YA1
1951YB1 | 1951YC1
1951YD1
1951YE1
1951YE1
1951YF1 | 1951YG1
1951YH1
1951YJ1
1951YJ1
1951YK1 | 1951YL1
1951YM1
1951YN1
1951Y01
1951YP1 | 1951YQ1
1951YR1
1951YS1
1951YT1
1951YT1 | | | O - C
MOTION | | | | | | | | |------------|-------------------|---|---|---|---|---|---|--| | | DAY | -25
-25
-25 | -133
-129 | 127
32
30
25
13 | 62
71
-20
-20 | -1
18
15
63
73 | 1 1 1 8
1 1 1 8
1 1 3 8
4 4 | -12
-12
-30
-22 | | | 10 - (1
MOT IC | -10.9
-11.5
-10.7 | -9.3
-19.2
-15.0 | -111.0
-10.7
-10.8
-9.6 | -10.7
-11.6
-10.7
-10.4 | -111.4
-111.8
-111.0
-110.5 | -9.6
-9.6
-12.2
-11.7 | 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | ၅ | | | | | | | | | | MAG | 16.20C
16.49
15.35
16.00 | 16.93
16.80
16.10
16.43
16.66 | 15.91
16.86
17.05
16.72
15.41 | 16.02
16.49C
16.13
16.19 | 16.39
16.98
16.14
15.81
15.99A | 16.21C
16.68
16.57
16.69
16.25 | 16.82C
16.46
16.90
17.15
17.01 | | | VAR | | | | | | | | | ⋖ | O - C
R A DEC | | | | | | | | | w <u>i</u> | 0.0 | 6 02
3 36
2 49
8 57 | 8 26 29 24 11 11 11 21 | 1 10
7 00
7 21
3 01
6 07 | 9 53
4 34
2 11
0 09 | 9 02 12 9 34 8 43 5 37 | 4 34
0 07
0 05
7 47 | 9 15
7 16
3 37
5 22
7 18 | | TABL | DE(
195(| 20 4
20 4
22 5
21 5
21 5 | 2223 | 1 4 4 6 6 1 1 1 3 3 4 4 6 6 6 1 1 1 3 9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 228
286
286
288
288
546
5 | 22 4 4 4 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 19 1
5 2
12 3
12 1
12 1 | | | R. A.
1950.0 | 5 38 14.9
5 37 17.5
5 41 02.5
5 47 11.8
5 52 04.3 | 5 57 33.1
5 57 31.9
5 55 53.8
5 54 32.9
5 54 18.7 | 5 39 29 8
5 53 49 4
5 53 39 5
5 39 57 2
5 41 48 9 | 5 51 43.3
5 51 38.3
6 13 45.1
6 18 40.5
6 17 38.1 | 6 08 15.9
6 10 32.7
6 11 06.7
6 17 24.5
6 16 20.9 | 6 08 22.7
6 14 16.3
6 14 15.0
6 35 42.9
6 29 34.3 | 6 33 42.5
6 21 10.3
6 02 01.9
6 24 28.3
6 26 27.9 | | | в
U•T• | 27.2639
28.1736
27.2639
27.2639
27.2639 | 27.2639
27.2910
27.2639
28.1736
28.3271 | 28 • 1736
28 • 1736
28 • 3271
28 •
1826
28 • 1826 | 28.1826
28.2549
27.3000
27.3000
28.3090 | 27.2910
27.2910
27.2910
27.2910
28.3000 | 28.3271
28.2549
28.2819
28.3000
28.3451 | 28.3451
28.2819
22.1250
28.2619
28.2619 | | | ∀ | DEC | | DEC
DEC
DEC
DEC | DEC
DEC
DEC
DEC | DEC
DEC
DEC
DEC | DEC | DEC
DEC
DEC
DEC | | | Δ | | ×
5000000000000000000000000000000000000 | | | 20000 | | 8888 | | | SURVEY
NUMBER | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | S-33.10
S-43.6X
S-33.12
S-34.8
S-44.8X | S-34.4
S-34.7
S-44.7X
S-35.3 | S-35.6X
S-45.1
S-42.2
S-42.3
S-52.4X | S-43.2
S-43.3
S-43.4
S-43.5
S-53.1 | S-444.6
S-145.4
S-550.1
S-530.9
S-540.2 | S - 54 • 6
S - 55 • 4
S - 65 • 4
S - 65 • 8
S - 65 • 6
S - 65 • 6 | | | MINOR | 1951YU1
1951YU1
1951YV1
1951YW1
1951YX1 | 1951YY1
1951YY1
1951YZ1
1951YZ1
1951YZ1 | 1951YA2
1951YB2
1951YB2
1951YC2
1951YD2 | 1951YE2
1951YE2
1951YF2
1951YG2
1951YG2 | 1951YH2
1951YJ2
1951YK2
1951YL2
1951YL2 | 1951YM2
1951YN2
1951YN2
1951YO2
1951YP2 | 1951YG2
1951YR2
1951YR2
1951YS2
1951YT2 | | | O - C
MOTION | | | | | | | | |-------|---------------------|---|---|---|---|---|---|---| | | DAY | 70
21
60
37
-31 | -25
203
199
32
31 | 126
33
33 | 7 6 4 4 0
0 4 4 0
0 0 0 0 0 | -216
-36
-36
8 | 16
99
23
5 | ら 4 ら ら 2
ら 8 2 6 6 5 | | | 10 - 1
MOTIC | 1110 | -10.7
-9.7
-7.9
-7.1 | 19.3
19.3
16.6
17.1 | -8.5
-10.1
-10.6
-10.6 | 127
110.5
112.1
110.9 | 1111 | 1 1 1 1 1 1 8 8 9 1 1 1 1 1 1 1 1 1 1 1 | | | ŋ | | | | | | | | | | MAG | 15.61
16.53
17.13
16.34
16.20 | 16.05C
13:72
13.73
16.88C
15.77C | 15.97
16.10C
16.28
15.07
14.87 | 16.75C
16.47
15.35
16.19C
16.01 | 15.56C
16.23
14.44
16.19
15.52 | 16.52
15.98A
16.25
15.57
15.67 | 16.58
16.25
16.14
15.42
15.39 | | A | 0 - C
R A DEC VA | | | | | | | | | TABLE | DEC
1950.0 | 24 14 15
20 52 38
18 10 13
20 21 06
1 59 26 | 1 56 37
26 04 21
26 24 44
23 13 20
31 16 27 | 35 39 28
29 08 06
29 08 10
16 13 20
16 13 27 | 23 15 34
19 26 04
18 11 56
8 45 42
8 54 59 | 42 24 11
34 22 46
31 25 35
31 14 30
4 34 01 | 14 51 43
15 13 29
19 00 35
12 21 19
11 42 09 | 8 57 13
8 19 44
8 20 10
1 23 38
28 25 45 | | | R. A.
1950.0 | 9 10 04.5
8 45 02.7
8 59 48.8
8 48 25.3
5 53 45.1 | 5 53 15.9
6 38 25.2
6 37 28.2
6 30 31.3
6 41 49.9 | 6 46 13.7
6 46 25.9
6 46 25.5
6 47 23.5
6 47 23.2 | 6 59 47•4
7 14 28•6
7 14 49•9
7 52 39•5
7 50 38•1 | 8 19 59.9
8 03 56.9
8 03 45.1
8 08 09.0
7 57 46.8 | 8 13 10.9
8 14 50.9
8 22 46.0
8 18 00.5
8 22 52.5 | 8 27 26.9
8 28 55.3
8 28 49.7
8 21 15.9
8 43 30.9 | | | E U•T• | 29.2285
28.3257
29.2375
28.3257
21.1160 | 22.1340
22.1611
23.1708
23.1257
23.1618 | 23.1618
23.1618
23.1708
23.2431
23.2521 | 25.1535
25.2799
25.2799
26.2049
28.1903 | 26.2951
26.2861
26.2861
26.2861
28.1993 | 28.2083
28.2083
28.2083
28.2174
28.2174 | 28.2174
28.2174
28.3076
28.2264
28.3347 | | | D A T | 2 C AN
2 C AN
2 C AN
2 C AN | 2 2 A A A A A A A A A A A A A A A A A A | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2 C C C C A N C C A N C C C A N C C C A N C C C C | 2 CAN
CAN
CAN
CAN
CAN | 2 C AN
C C AN
C AN
C AN
C AN | 2 JAN
2 JAN
2 JAN
2 JAN
2 JAN | | | _ | տատատ | មេហមមេហ | மமமைம | സസസസസ | M M M M | מ מ מ מ מ | സസസസസ | | | SURVEY
NUMBER | 1-72.4X
1-63.6X
1-73.3X
1-63.7X
S-36.1 | S-46.3X
S-53.3
S-63.1
S-54.7X
S-62.4 | S-62.5
S-62.7X
S-63.2
S-65.2
S-65.2 | T-13.1
T-24.3
T-24.4
T-35.2X | 7-41.1
7-42.1
7-42.2
7-42.3 | 1 - 5 4 4 1 1 - 5 5 4 4 1 1 - 5 5 4 9 1 1 - 5 5 5 1 1 1 - 5 5 5 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 | 1-55.3
1-55.4
1-65.3X
1-56.1 | | | MINOR
PLANET | 19528G
19528H
19528J
19528K
19528K | 1952BR
1952BS
1952BS
1952BT
1952BU | 1952BV
1952BW
1952BW
1952BX
1952BX | 19528Y
19528Z
19528AI
19528BI
19528BI | 1952BC1
1952BD1
1952BE1
1952BF1
1952B61 | 1952BH1
1952BJ1
1952BK1
1952BK1
1952BK1 | 1952BN1
1952B01
1952B01
1952BP1
1952BP1 | | | O - C
MOTION | | | | .0.2 -3 | | | | |-------|-------------------|--|--|--|---|--|--|--| | | DAY | 25
10
16
35 | 11
42
56
53
80 | 82
50
72
76 | 44
-3
-77
37 - | 108
99
18
-155
-48 | 31
33
13
8 | 55
45
49
32 | | | 10 - (I
MOT IO | -9.0
-11.2
-10.7
-8.6 | -111
-8.5
-8.5
-10.0 | -100
-180
-100
-100
-3 | -10.8
-9.2
-12.7
-7.9 | 11089 | 1108
1108
1108
1108
1108
1108
1108
1108 | - 17.3
- 17.2
- 18.3
- 10.8 | | | g | | | | | 12.47 | 12.57
12.77C | | | | MAG | 16.12
15.92
15.59
15.89
16.30 | 15.48C
16.63
16.36
16.40
16.36 | 16.32
16.44
16.79C
16.79
16.61 | 16.43
16.66
14.41
16.01A
15.64C | 16.07
15.69
16.63C
14.42
15.51 | 15.65
15.85C
16.13
15.65
15.78 | 16.71
16.01
16.64
15.84
16.10C | | | VAR | | | | | | | | | ⋖ | R A DEC | | | | | | | | | TABLE | DEC
1950.0 | 20 22 41
22 30 26
17 14 27
2 03 37
26 30 29 | 25 20 57
23 33 46
23 34 24
23 45 00
26 04 06 | 26 21 06
17 33 12
17 33 12
32 04 04
32 04 08 | 24 27 07 9 51 42 10 51 51 15 04 56 13 53 55 | 16 45 54
16 45 58
6 29 57
- 5 31 22
22 22 03 | 23 40 02
23 40 02
7 35 39
20 31 38
20 32 46 | 9 04 29
6 01 41
10 21 40
10 21 43
12 13 16 | | | R• A•
1950•0 | 8 38 24.2
8 39 26.4
8 37 03.7
8 37 59.7
8 56 12.5 | 9 10 43.1
9 15 11.3
9 15 04.7
9 13 25.3
9 12 13.5 | 9 10 13.3
8 57 22.1
8 57 21.3
9 33 32.3
9 33 31.1 | 9 16 55.1
9 14 55.9
9 16 17.8
9 16 07.0
9 28 55.9 | 9 14 58 2
9 14 57 5
9 31 22 1
9 33 22 9
9 30 44 4 | 9 14 35.4
9 14 34.7
10 43 35.7
10 06 29.3
10 05 40.7 | 11 12 52.9
11 10 15.1
10 52 37.3
10 52 36.8
11 05 05.7 | | | DATE U.T. | 52 JAN 28.3257
52 JAN 28.3257
52 JAN 28.3167
52 JAN 28.2986
52 JAN 29.2285 | 52 JAN 29.2285
52 JAN 29.2285
52 JAN 29.3549
52 JAN 31.3306
52 JAN 29.2285 | 52 JAN 31.3306
52 JAN 29.2375
52 JAN 29.2465
52 JAN 31.3403
52 JAN 31.3583 | 52 JAN 31.3306
52 JAN 29.3458
52 JAN 29.3458
52 JAN 29.3458
52 FEB 1.2583 | 52 FEB 17.2069
52 FEB 17.2160
52 FEB 1.2764
52 FEB 1.2854
52 JAN 29.3549 | 52 FEB 17.1979
52 FEB 17.2069
52 FEB 20.2410
52 FEB 19.2118
52 FEB 20.2229 | 52 FEB 26.2618
52 FEB 24.2493
52 FEB 24.2312
52 FEB 24.2493
52 FEB 24.2403 | | | SURVEY
NUMBER | 7-63.1
7-63.2
7-64.1
7-66.2
7-72.1 | 1-72.2
1-72.3
1-83.2X
1-82.6X | T-82.1
T-73.2X
T-74.2
T-81.2
T-91.3X | 1-82.2
1-84.2
1-84.3
1-84.6X | U-13.1
U-14.3X
T-95.3X
T-96.2
T-83.4X | U-12•1
U-13•9X
U-54•2
U-32•7
U-42•8X | U-733.1
U-633.4
U-53.8X
U-63.8X
U-62.8 | | | MINOR
PLANET | 1952BR1
1952BS1
1952BT1
1952BU1
1952BV1 | 19528W1
19528X1
19528X1
19528X1
19528X1 | 1952BY1
1952BZ1
1952BZ1
1952BAZ
1952BAZ | 19528B2
1952BC2
1952BD2
1952BE2
1952CB | 1952CB
1952CB
1952CC
1952CD
1952DA | 1952DA
1952DA
1952DF
1952DJ
1952DJ | 1952DR
1952DS
1952DT
1952DT
1952DW | | | 0 - C
MOT ION | | | | | | | | |---------|--------------------|---|--|--|--|--|--|--| | | DAY
ON | 40
94
99
199 | 32
31
48
100
78 | 22
68
98
98 | 110
109
80
33
37 | 78
14
9
-19 | 2 4 4 5 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 72
77
22
64
85 | | | 10 - DA)
MOTION | -11.5
-7.6
-8.2
-9.1 | 1 1 8 8 5 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | - 10 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | -11.0
-10.2
-9.8
-12.0 | -1110
-1110
-180
-600 | -7.2
-7.9
-8.7
-9.1 | | | 9 | | | | | | | | | | MAG |
16.39
16.14
16.54
16.34
16.66 | 16.18
16.40
16.64
15.94
15.21 | 16.69C
16.68
16.84
16.64C
16.76 | 16.51
16.19C
16.07
16.36
16.33 | 15.29
15.98
15.86
15.65C
15.61 | 16.64
16.14
16.06
16.18
16.29 | 15.85
15.84
16.20C
16.10
15.84 | | | VAR | | | | | | | | | | 0 - C
R A DEC | | | | | | | | | TABLE A | DEC
1950.0 | 17 08 24
13 51 42
14 01 13
19 54 49
20 51 45 | 16 51 47
16 51 49
17 15 50
18 22 15
10 33 18 | 19 45 21
17 56 27
9 24 52
9 31 24
4 54 36 | 5 05 00
5 04 59
23 51 20
15 55 13
16 54 19 | 10 45 13
5 22 21
5 22 17
8 02 29
8 02 30 | 23 28 29
11 16 49
11 07 24
5 41 12
5 41 10 | 5 47 26
5 47 30
- 0 16 41
15 21 53
18 18 07 | | | R. A.
1950.0 | 9 41 25.7
9 28 40.6
9 27 55.8
9 15 54.6
9 18 00.9 | 9 21 58•7
9 21 57•7
9 25 48•5
9 20 09•1
9 10 20•8 | 9 39 37 0
9 41 28 9
9 48 12 1
9 47 17 0 | 9 46 14.0
9 46 13.3
9 58 48.5
9 53 17.1
10 03 09.5 | 9 57 46.1
10 00 49.1
10 00 48.7
10 08 09.2
10 08 02.3 | 10 12 41.1
10 17 54.8
10 18 25.5
10 21 15.3
10 21 14.8 | 10 28 46.2
10 28 45.5
10 15 50.8
10 36 35.2
10 39 20.9 | | | T E U.T. | EB 18.2125
EB 17.2160
EB 18.2125
EB 17.2069 | EB 17.2069
EB 17.2160
EB 17.2069
EB 17.2069
EB 17.2160 | EB 18.2125
EB 18.2125
EB 18.2215
EB 19.2299
EB 18.2306 | EB 19.2299
EB 19.2389
EB 19.2118
EB 19.2208
EB 19.2208 | EB 19.2299
EB 19.2299
EB 19.2389
EB 19.2299
EB 19.3210 | EB 20.2229
EB 19.3210
EB 19.3210
EB 19.3111
EB 19.3210 | EB 19.3111
EB 19.3210
EB 19.3111
EB 24.2222
EB 24.2222 | | | O | 52 F
52 F
52 F
52 F | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 2252
2252
2223
444 | 7 7 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2222
2222
7222 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2222
2222
4422
4444 | | | SURVEY
NUMBER | U-23.5
U-14.5X
U-23.7X
U-13.2
U-13.3 | U-13.4
U-14.4X
U-13.5
U-13.11X
U-14.1 | U-23.2
U-23.4
U-24.3.4
U-34.3X
U-25.1 | U-35.2X
U-32.0
U-32.4
U-33.2
U-33.7 | U-34.3
U-34.4
U-35.1
U-34.6
U-44.1 | U-42.3
U-44.3
U-44.3
U-44.3
U-44.3 | U-45.5X
U-44.8
U-45.1
U-52.2
U-52.3 | | | MINOR | 1952DX
1952DZ
1952DZ
1952DA1
1952DA1 | 1952DC1
1952DC1
1952DD1
1952DE1
1952DE1 | 1952DG1
1952DH1
1952DJ1
1952DJ1
1952DJ1 | 1952DK1
1952DK1
1952DK1
1952DK1
1952DM1 | 1952D01
1952DP1
1952DP1
1952DQ1
1952DQ1 | 19520R1
1952DS1
1952DT1
1952DU1
1952DU1 | 1952DV1
1952DV1
1952DW1
1952DW1
1952DX1 | | | 0 - C
MOTION | | | | | | | | |-------|-------------------------------|---|---|--|--|--|---|---| | | DAY
ON | 71
-10
-11
112
79 | 4 5 7 5 7 5 6 7 5 7 5 | 109
96
83
83
83 | 4400W
W 00 4 00 4 | 41
91
34
132 | 59
61
47
75 | 106
99
9
14
77 | | | 10 - DA)
MOTION | -100.6
-100.6
-100.6 | 1 | 1 1 1 1 1 8 4 4 4 8 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | -8.7
-6.1
-7.2 | 1 | -7.8
-7.3
-7.1
-6.6 | -7.3
-7.1
-9.2
-8.2 | | | נה | | | | | | | | | | MAG | 15.69C
16.34
16.57
16.43 | 16.49
15.47
16.29
16.44C | 15.68
15.07C
15.94
15.13C | 16.03
15.54
16.41C
16.66 | 16.55
16.58
15.17
16.40
15.28 | 16.64
16.45
16.46
16.83 | 15.28
15.32
15.94
15.85
16.95 | | | VAR | | | | | | | | | ⋖ | O - C
R A DEC | | | | | | | | | TABLE | DEC
1950.0 | 19 04 00
- 5 12 35
- 5 12 45
19 14 00
12 26 04 | 12 42 16
- 0 59 26
21 40 12
14 29 47
10 02 04 | 8 21 43
7 45 01
6 07 23
18 20 13
4 40 21 | 4 09 04
5 09 11
0 35 58
1 50 35
0 31 01 | 2 48 20
- 7 27 08
- 4 16 00
- 4 26 41
16 32 25 | 0 06 26
0 06 22
- 3 04 05
- 2 40 31
- 2 43 20 | 1 19 49
1 19 51
- 6 25 08
- 6 25 05
- 1 26 19 | | | R• A•
1950•0 | 10 42 38.2
10 46 53.9
10 46 49.2
11 12 11.6
10 56 25.9 | 11 02 20.0
11 05 32.6
11 17 00.5
11 31 53.5
11 14 08.0 | 11 15 33.6
11 20 21.7
11 22 11.2
11 46 09.5
11 35 05.1 | 11 38 50.6
11 48 38.7
11 32 01.3
11 33 40.6
11 34 43.5 | 11 37 38.5
11 37 11.8
11 45 07.5
11 46 08.1
12 11 35.8 | 12 05 37.8
12 05 38.2
11 56 22.0
12 07 02.2
12 07 14.9 | 11 51 25.5
11 51 25.2
11 54 55.2
11 54 55.1
12 06 05.5 | | | DATE U.T. | 52 FEB 24.2222
52 FEB 20.2500
52 FEB 20.3132
52 FEB 20.3222
52 FEB 24.2403 | 52 FEB 24.2403
52 FEB 24.2583
52 FEB 26.2417
52 FEB 26.2528
52 FEB 26.2518 | 52 FEB 26.2618
52 FEB 26.2618
52 FEB 26.2618
52 FEB 20.3590
52 FEB 24.3681 | 52 FEB 24.3681
52 FEB 24.3681
52 FEB 26.2708
52 FEB 26.2708
52 FEB 26.2708 | 52 FEB 26.2708
52 FEB 26.2799
52 FEB 26.2799
52 FEB 26.2799
52 FEB 24.3771 | 52 FEB 26.3792
52 FEB 26.3701
52 FEB 26.3701
52 FEB 26.3701
52 FEB 26.3701 | 52 MAR 23.1993
52 MAR 23.2083
52 FEB 26.3611
52 FEB 26.3701
52 FEB 26.3701 | | | MINOR SURVEY
PLANET NUMBER | 1952DZ1 U-52.5
1952DA2 U-55.2
1952DA2 U-56.2X
1952DB2 U-61.3
1952DC2 U-62.5 | 1952DD2 U-62.6
1952DE2 U-64.5
1952DF2 U-71.1
1952DG2 U-72.2
1952DH2 U-73.2 | 1952DJ2 U-73.3
1952DK2 U-73.5
1952DL2
U-73.6
1952DM2 U-81.1
1952DN2 U-83.4 | 1952DD2 U-83.5
1952DP2*U-83.7
1952DQ2 U-84.2
1952DR2 U-84.3
1952DS2 U-84.4 | 1952D12 U-84.6
1952DU2 U-85.2
1952DV2 U-85.4
1952DW2 U-85.5
1952DX2 U-85.5 | 1952DY2 U-93.4X
1952DY2 U-94.3
1952DZ2 U-94.1
1952DA3 U-94.4
1952DB3 U-94.5 | 1952DB3 V-14.5
1952DB3 V-23.2
1952DC3 U-95.1
1952DC3 U-94.7X
1952DD3 U-94.12X | | | O - C
MOTION | | | | | | | | |----------|--------------------|--|---|---|--|--|--|--| | | A V | 38
135
98
98 | 94
105
93
51
46 | 42
62
104
33 | 55
74
74
81
23
10 | | | 81
94
45
45 | | | 10 - DAY
MOTION | -5.8
-7.2
-7.1 | 1 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | - 9 • 1
- 7 • 6
- 7 • 1
- 8 • 3 | 11011 | 1000 3 | -7.2
-8.4
-6.9
-8.2 | -7.6
-10.2
-9.4
-8.0 | | | g | | | | | | | | | | MAG
R | 16.29
16.52
16.49
15.95
15.39C | 15.46C
15.45C
15.46
15.63
15.56 | 15.85
15.75
16.62
15.32
15.55 | | 0000 U | 15.62
15.47
16.49
15.84C | 14.86
16.40
15.59C
15.99 | | | V. | | | | | | | | | ∀ | O - C
R A DEC | | | | | | | | | TABLE | DEC
1950.0 | -12 43 38
-12 43 27
- 6 57 31
19 18 11
21 30 22 | 21 30 28
3 10 41
3 10 45
- 1 45 35
- 1 45 30 | - 5 09 55
- 5 35 07
- 7 11 02
- 4 39 56
- 4 36 57 | 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 4 4 4 5 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 | - 4 52 00
- 5 15 31
- 3 13 52
- 2 31 20 | -19 07 44
- 9 51 27
- 7 52 15
- 8 30 54
- 8 33 28 | | | R• A•
1950•0 | 12 02 06•7
12 02 06•1
12 02 18•6
11 38 15•1
11 53 43•5 | 11 53 42.9
11 31 50.3
11 31 50.2
11 51 23.2
11 51 22.9 | 11 29 59•3
11 31 26•9
11 34 44•0
11 51 14•8
11 50 28•4 | 2 23 04.
2 15 19.
2 27 20.
2 27 20.
2 17 12. | 2 25 19.
2 16 56.
2 45 00.
2 44 59.
3 13 14. | 13 13 14•3
13 23 33•1
13 39 15•1
13 39 40•5 | 14 18 08 07 13 48 13 03 14 01 14 08 13 51 11 03 13 44 15 09 | | | T E U.T. | EB 26.3521
EB 26.3611
EB 26.3611
AR 22.1833
AR 22.1833 | MAR 22.2014
MAR 23.1903
MAR 23.1993
MAR 23.1993
MAR 23.2174 | MAR 24.1875
MAR 24.1875
MAR 24.1875
MAR 23.2174
MAR 24.1875 | RR 233.2228 | R 24 - 20 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | MAR 23.3535
APR 23.1903
APR 24.1951
APR 24.1951 | PR 26.2146
PR 24.2854
PR 24.2854
PR 24.2854
PR 24.2854 | | | ۵ | 7 2 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | α | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 00000 00 | 0 0000 | 0000
0000
0000 | 5222
5222
5224
5224 | | | SURVEY
NUMBER | U-96.2X
U-95.3
U-95.4
V-11.1 | V-21.1
V-13.1
V-14.7X
V-14.6
V-24.2 | V-15.1
V-15.2
V-15.3
V-24.4X
V-15.5 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | V-63.4
W-24.3X
W-33.8X
E-33.4 | W-55.3
W-43.13X
W-43.11
W-43.8
W-34.8X | | | MINOR
PLANET | 1952DE3
1952DE3
1952DF3
1952FU | 1952FV
1952FW
1952FW
1952FX
1952FX | 1952FY
1952FZ
1952FA1
1952FB1
1952FB1 | 9952F
9952F
9952F
9952F | 952FG
952FU
952FU
952FU
952FK | 1952FK1
1952HB
1952HH
1952HJ | 1952HL
1952HO
1952HS
1952HT
1952HT | | | 0 - 0
MOTION | σ. | ۰, | 8 | • | C | | 9 | io. | . | 3 | 2 | 89 | . | - | Э | 2 | 2 | æ | 7 | 0 | 7 | ·s | æ | d | S. | 8 | 20 | J | 2 | 6 | . | 0 | 6 | . | |------|------------------|--------|---|-------|------|-------|----------|---------|-------|----------|-------|-------|---------|----------|-------|------------|-------|--------|-------|---------|-------|---------|-------|-------|-------|-------|----------|-----------|-------|-------|-------|----------|---------|-------|----------| | | DAY | e. | | 4 | | | | 4 | | | | | = | | | ì | • | Ä | ã | 'n | Ä | | | | | 7 | Ã | 2 | 4 | 5 | | 2 | -2 | | | | | 10 -
MOT I | -11.5 | œ | 6.9- | 7 • | æ | - | 9•9- | - | ċ | 10. | ċ | -10.5 | 6 | 6 | 6 | ÷ | -8.7 | 6 | φ̈́ | · | -7.7 | 7 | ċ | 6 | ထိ | 6 | -8.8 | å | 9. | - | 11. | -11.9 | 12. | 10. | | | ၅ | MAG | 15.86 | 5.79 | 7.0 | 6.67 | | 6.2 | 16.52 | 5.69 | 6.3 | 6.5 | 5.9 | 16.08 | 0.9 | 6.5 | 6.8 | 6.1 | 17.02 | 6.3 | 6.3 | 6.5 | 15.64C | 5.80 | 5.2 | 4•19 | 6.1 | 6.5 | 15.65 | 6.1 | 7.1 | 6.8 | 5.7 | 15.97 | 6.2 | 6.2 | | | VAR | - C
DEC | ∢ | α
0 ∢ | E | 0 | 17 | ס יט | 'n | 4 | 0 | G | 2 51 | 0 | 4 | Ġ | n | 2 21 | 4 | 7 | 4 | ~ | 8 25 | 0 | 0 | 4 | 2 27 | 0 | 0 | S | 0 | 0 | 1 04 | 7 | 5 | 0 | 0 | 7 19 | 7 | 4 | | TABL | DEC
1950 | 8 33 | 7
7
7 | 1 LL | 4 | 0 | - | 5 12 | 4 | 0 | 0 | 9 | 9 | 9 | 9 5 | 0 | 4 5 | 3 | 1 4 | 0 | 0 | 12 52 | 2 4 | 6 2 | 3 1 | 3 | 2 2 | 7 3] | 7 | S | 3 | ß | 4 5 | 0 | 1 3 | | | | 1 (| 1 7 | | | 1 | | | ı | 1 | 1 | ١ | -1 | 1 | 1 | | ŧ | ı | 1 | 1 | | 1 | ı | 1 | t | ł | ı | • | | | | | 1 | 1 | ı | | | • o • o | 10.5 | • •
• • | 8 | 7 | • | • | 59.7 | 2. | . | · | 2 | 11.7 | ÷ | 6 | 1. | 6 | 29.4 | 6 | 6 | ~ | 16.5 | - | 3 | ۲. | 4 | 4• | 17.9 | 5 | 2. | œ | | 54.4 | 8 | 2. | | | R•
195 | 77 | | | | | | 28 | | | | | 43 | | | | | 48 | | 90 | | 05 | | | | | | 9 | | | | | 19 | | | | | | 13 | 13 | 14 | 14 | | | 13 | | | | | 13 | | | | | | | 13 | | 14 | | | | | | 14 | | | | | 14 | | | | | U•T• | 2854 | 85 | 13 | 22 | 77 | 72 | 1861 | 95 | 80 | 89 | 19 | 2764 | 53 | 80 | 86 | 89 | | 85 | 85 | 85 | 2854 | 05 | 9/ | 67 | 67 | 86 | 1965 | 96 | 96 | 96 | 96 | 3139 | 05 | 0.5 | | | ш | 24. | † 4 | • | • 9 | 2• | 3. | 24• | 4• | ÷ | ů | 4. | 24. | 3 | 3 | • 9 | 9 | 4 | 4. | • | 4 | 24. | • | 4• | 4• | 4 | 9 | 26. | • | • 9 | 9 | 9 | 26. | 9 | 9 | | | ⊢ | APR | A P P P P P P P P P P P P P P P P P P P | APR | APR | ۵. | α | APR | α. | ٩ | Q. | a. | APR | Q. | α. | <i>-</i> Δ | ۵. | APR | ٩ | α. | ۵ | APR | α. | ٥ | ۵ | ۵. | ٩ | APR | a. | α. | ο. | ۵. | APR | α. | ٥. | | | Δ. | 52 | | | | | | 55 | | | | | 52 | | | | | | | 52 | | 52 | | | | | | 55 | | | | | 52 | | | | | SURVEY
NUMBER | 2 4 | -44- | -62.2 | -61. | -13. | -22. | W-32.1 | -33.2 | -36 | 35. | 45. | W-44.1 | 26. | 36. | -40 | -35. | W-42.2 | -43. | -43. | -43 | W-43.12 | -54.1 | 77- | -45 | -45. | -52. | W-53.3 | -53. | -53• | 3.1 | -53 | W-62.1 | -54. | -54• | | | MINOR
PLANET | 1952HV | ν
υ
υ | 952HG | 952H | 952HY | 952HZ | 1952HA2 | 952HB | 952HD | 952HD | 952HD | 1952HD2 | 952HE | 952HE | 952HF | 952HG | 952HG | 952HH | 1952HJ2 | 952HK | 1952HL2 | 952HL | 952HM | 952HN | 952H0 | 952HP | 1952HQ2 | 952HR | 952HS | 952HT | 952HU | 1952HU2 | 952HV | 952HW | | | O - C
MOTION | | | | | | | | |------|--------------------|---|---|---|---|---|---
---| | | DAY
ON | 65
88
12
13 | 6
76
67
164
62 | 51
57
78
-19 | 8 6 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 71
6
9
13
13 | -112
-12
-13
13 | 139
139
139 | | | 10 - DA)
MOTION | 0000 | 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | - 9 - 0
- 9 - 5
- 9 - 9
- 11 - 4 | 8 - 1 - 9 - 0 - 9 - 0 - 9 - 0 - 9 - 0 - 9 - 0 - 9 - 0 - 9 - 0 - 9 - 0 - 9 - 0 - 9 - 9 | -111-7
-111-7
-111-7
-11-0 | 110000000000000000000000000000000000000 | -8.6
-8.8
-7.7
-7.1 | | | g | | | | | | | | | | MAG
R | 16.50A
16.62
16.21
16.88
16.88 | 17.04
16.11
16.62C
16.21
15.91C | 16.54
16.07
16.83C
16.71
17.28 | 16.27
15.74
15.31 | 16.33
15.63 | 16.140 | 15.61
11.76C
16.07
16.06
16.52 | | | VAR | | | | | | | | | ٥ | O - C
R A DEC | | | | | | | | | ш | 0.0 | 7 07 6 22 1 13 4 04 09 | 0 50
0 20
9 11
3 45 | 8 28
6 40
0 30
1 12 | 8 12
7 04
0 30
8 08
7 03 | 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 9 16
9 59
7 10
1 01
0 16 | 11 32 4 6 3 3 3 3 4 3 3 4 5 1 3 3 4 5 1 3 3 4 5 1 3 4 5 1 3 4 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 | | TABL | DE(
195(| 14 0
11 1
15 0
17 4 | -15 00
-11 59
-11 19 | 13
17
13
15
17
17 | -1-7
-1-7
-1-4
-1-4
-1-6
-1-6
-1-6
-1-6
-1-6
-1-6 | 21 1
20 2
20 2
15 4
18 2 | 118 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | -123
-16
-16
-16
-16
-16
-16 | | | R. A.
1950.0 | 07 38.0 -0 59.6 -0 47.7 -1 16 34.7 -1 16 33.8 -1 | 17 23.5 -
17 39.7 -
32 52.1
30 53.5 -
31 12.9 - | 29 45.6 - 32 34.5 - 33 54.1 - 35 31.1 - 35 59.1 - 1 | 43 18.9
43 10.3
47 59.5
49 55.5
49 46.5 | 34 08.3
46 02.6
45 53.1
56 42.5 | 02 09.6
01 14.7
51 13.3
04 31.9 | 43 14.3
17 24.4
08 22.1
51 40.3 | | | | 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 4 4 4 4 4 | 4 4 4 4 4 | 4 4 4 4 6 | 21 24 21 21 | 15
15
15
15
15 | | | E U.T. | 26.2056
26.2056
26.2056
26.2056
26.2056 | 26.2056
26.2056
26.3229
26.3049
26.3049 | 27.2167
27.2167
27.2167
27.2167
27.2167 | 27.2167
27.3708
27.2167
27.2167 | 27.2257
27.2257
27.3708
27.3799 | 27.3708
28.2778
27.3708
27.3708
28.2778 | 20.1764
28.2507
28.2868
20.2458
28.2868 | | | ∀ | A P R | A P P R A P P R A P P R P P R | APR
APR
APR
APR | APR
APR
APR
APR | APR
APR
APR
APR | APR
APR
APR
APR | MAY
APR
APR
APR | | | ۵ | 0 0 0 0 0
0 0 0 0 0 | 5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5 | 5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5 | 5222
5222
5222 | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 2222 | 2222 | | | SURVEY
NUMBER | W-54.4
W-54.5
W-54.6
W-54.6 | W-54.12
W-54.13
W-61.3
W-63.3 | X - 64.2
X - 64.3
X - 64.3
X - 64.5
X - 64.5 | W-64.9
W-75.1
W-64.10
W-74.1 | W-65.1
W-65.2
W-75.9
W-74.4 | W-75.10X
W-84.1
W-75.3
W-75.8 | X-15.1
W-83.2
X-14.2
X-14.2 | | | MINOR
PLANET | 1952HX2
1952HY2
1952HZ2
1952HA3
1952HA3 | 1952HB3
1952HC3
1952HD3
1952HE3
1952HF3 | 1952HG3
1952HH3
1952HJ3
1952HK3
1952HK3 | 1952HM3
1952HM3
1952HN3
1952HO3
1952HO3 | 1952HP3
1952HQ3
1952HQ3
1952HR3
1952HR3 | 1952HS3
1952HS3
1952HT3
1952HU3
1952HU3 | 1952HV3
1952HV3
1952HW3
1952HW3
1952HW3 | | TABLE A | •T• R• A• DEC 0 - C MAG G 10 - DAY 0 - C 1950•O R A DEC VAR MOTION MOTION | 868 15 28 46.5 -15 01 08 15.23 -7.6 27 458 15 11 34.7 -14 02 51 15 12 22 -7.3 19 729 15 10 02.8 -13 58 17 15.25 -7.2 20 74 14 6 34 15.91 -7.8 52 74 15 15 -7.8 52 | 97 15 16 90 15 16 90 -8.8 -1 97 15 16 16 90 -8.8 -1 10 15 15 15 15 15 15 10 16 16 16 16 16 16 16 10 16 < | 729 15 12 01:3 - 7 39 03 15.28C -8.8 -35 458 14 58 50.5 -16 47 11 16.19 -10.0 26 458 15 10 59.5 -11 54 52 16.39C -8.8 69 729 15 09 18.2 -11 41 19 16.65C -8.5 56 | 458 15 10 07.3 -17 19 44 15.32 -10.9 -28 729 15 08 00.0 -17 25 48 15.66 -10.4 -33 819 15 01 21.1 -2 52 27 16.20 -8.0 -8 819 15 16 45.9 -3 17 56 15.44 -9.2 -37 78 729 15 09 42.0 -6 17 02 16.12 -7.7 78 | 16.57 -10.1 42 15.32 19.0 -24 46.38 16.45 -10.2 -24 15.31 -29.30 19 16.31 -8.7 44 15.32 -29.30 19 16.13 -10.0 67 292 16.12 53.2 -19 43 05 15.97C -11.8 1 | 208 16 12 53.8 -19 43 02 208 16 23 48.2 -13 30 24 16.29 -9.8 52 208 16 24 48.8 -14 07 32 16.56 -8.7 53 097 16 23 00.6 -29 27 42 15.13 -12.5 1 097 16 25 45.8 -27 19 23 14.88 -9.1 51 | 278 16 25 44.8 -27 19 14 84 -9.5 52 215 16 24 39.0 -4 39 99 15.38 -6.7 18 132 16 41 48.6 -9 36 46 15.95 16.54 215 16 41 48.6 -9 36 33 16.54 15.56 -11.9 -40 278 16 28 11.1 -24 37 59 15.56 -11.9 -40 | |---------|---|---|--|--|---|--
--|--| | | C
EC | | | | | | | | | 4 | 0 4 | | | | | | | | | | • | 00460 |) NN4WN | 04044 | 44000 | ₩400 | 0144 | 40460 | | TAB | DE
95 | 15 0
14 0
13 5
21 4 | 13 2 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 16 4 3 11 5 5 11 5 5 11 5 5 11 5 5 11 5 5 11 5 5 11 5 5 11 5 5 1 5 1 5 5 1 5 5 1 5 5 1 5 5 5 5 1 5 | 17 1
17 2
2 2
3 1
6 1 | 22
22
22
22
26
26
26
26
26
26
26
26
26
2 | 19 4
13 3
14 0
29 2
27 1 | 24 3 3 4 3 4 3 4 3 4 4 3 4 4 3 4 4 4 4 4 | | | ⋖ • | 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | n ωων.
ω ω ν. ο ω | 88.0 | 25.00 | 3010 | w ω ω ο ν | 4.
9.
8.
1. | | | 95 | 5 2 2 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 6 2 3 6 7 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 12
58
10
10
09 | 10
01
01
16
09 | 665
665
125
125
125
125
125
125
125
125
125
12 | 6 12
6 23
6 23
6 23
6 25 | 25
24
41
41
28 | | | - | 868
458
729
778 | 5 9 7
2 0 8
0 4 9
2 0 8
0 4 9 | 729
458
729
729 | 458
729
819
819
729 | 097
937
028
028
292 | 208
208
208
097
097 | 278
215
132
215
278 | | | E U | 28 - 2
20 - 2
22 - 2
28 - 2 | 0 4 4 4 4 | 2000 | 2002 | 22 - 2
24 - 1
24 - 2
24 - 2
24 - 2 | 24.2
24.2
24.2
25.2
25.2 | 25.2 | | | A
T | A A A A A A A A A A A A A A A A A A A | M M M M M M M M M M M M M M M M M M M | ABA | A A A A A A A A A A | A A A A A A A A A A | M M M M M M M M M M | M M A A A M M A A A A A A A A A A | | | ۵ | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 52
52
52
52
53 | 0 0 0 0 0
0 0 0 0 0 | 52
52
52
52
53 | 52
52
52
52
52 | 52
52
52
52
52 | | | SURVEY
NUMBER | W-83.6
X-14.11X
X-23.6X
W-84.5 | | X-122
X-14.5
X-14.9
X-22.3
X-22.3 | X-14.10X
X-23.1
X-21.1
X-21.3
X-22.2 | XX - 36
X - 44
X - 45
X - 45
5 - 2
X - 5
5 - 5 | X - 53 • 1 × × - 53 • 1 × × - 53 • 2 × × - 55 • 3 × × - 55 • 1 × - 55 • 2 × - | X-64.1
X-61.1
X-62.2
X-61.2
X-64.2 | | | MINOR
PLANET | 1952HY3
1952HY3
1952HY3
1952HZ3 | 952KA
952KA
952KA
952KA
952KB | 1952KJ
1952KM
1952KM
1952KN
1952KN | 1952KO
1952KO
1952KP
1952KP
1952KQ | 1952KS
1952KT
1952KU
1952KV
1952KV | 1952KW
1952KX
1952KY
1952KZ
1952KZ | 1952KA1
1952KB1
1952KC1
1952KC1
1952KC1 |