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The Formation of the Nebulae
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W. B. Boxnor, Ph. D.
With 3 Figures
(Eingegangen am 9. Januar 1956)

The growth of condensations in the preséure-free cosmological models of general
relativity (with 4 = 0) is studied by using a simplified model of a condensation.
Tt is shown that, although condensations can form from quite small perturbations
in the density of the cosmic medium, the perturbations required to account for the
formation of the nebulae by the present time are nevertheless much larger than

. those which would be expected from ordinary statistical theory. The Lemaitre
point-source model (with A == 0) seems no more favourable to the growth of conden-
sations.

It is concluded that unless some source of larger perturbations can be dis-
covered, it will be necessary to abandon the point-source models in favour of
others with a longer time-scale, for example, the disturbed Einstein model.

1. Introduction

From the field equations of general relativity

87 Ty = G5 915 O, (1.1)
it is possible to derive three different models of the universe (Boxpi,
1952). In two of these (the open models) the universe has infinite
extent, and in one (the closed model) it is finite. The three most im-
portant observed data of cosmology — HuBBLE’s Law, the average
density of matter, and the minimum age of the universe — can be
accommodated by each the three models by an appropriate choice of
constants, though in the closed model agreement with observation is not
very good.

As well as fitting these three observations, a satisfactory cosmological
theory should have something to say about the formation of the nebulae.
Here, however, one meets the difficulty that one does not know the
initial state of the universe, and on this the development of conden-
sations certainly depends. The three models satisfying (1.1) all start
from a singular state of infinite density at time ¢ = 0, but one does
not know what physical circumstances this state represents. Indeed,
since the equations (1.1) break down at ¢t = 0, some assumption about
the commencement of the models is necessary and one might prefer
to assume that the universe began say, 108 years later than the singular
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state of the models, in a slightly inhomogeneous condition. An assump-
tion of this sort would be quite compatible with the three fundamental
data, and would, as we shall see, effectively remove the problem of
the formation of the nebulae. Since the singular state at ¢ = 0 is, in
our present state of knowledge, a miracle, the question really is whether
one prefers one’s miracle then or later.

To this extent the problem — or absence of problem — of the for-

- mation of the nebulae depends on the philosophical assumptions one
cares to make. In my own opinion it seems preferable to extrapolate
the solutions of (1.1) back as far as possible, that is, to the singular
state at ¢ = 0. If one does this, one has to conclude that the tempera-
ture was initially so high that the very early spatial distribution of
matter was completely uniform (on a macroscopic scale), and to account
for the formation of the nebulae it becomes necessary to find some
cause which has developed inhomogeneity.

The most reasonable cause of non-uniformity seems to be the random
fluctuations in density and velocity which would be expected from
statistical mechanics. In the case of an ideal gas, the isothermal fluc-
tuation in the density of a group of NV molecules is given by

e—o¢ 1 2
R (1.2)
If it could be shown that density fluctuations of this order could produce
by the present time condensations like the nebulae, this would be an

important step in the solution of the problem.

This question has been studied by LirsmiTz (1946), who considered
the effect of small perturbations of a very general kind in the density
and velocity. He concluded that most perturbations would either die
out or not grow, but that certain types could eventually become large,
though not large enough to produce nebulae or stars in the time available.

LirsHITZ used equations which are linear in the perturbations, and
this enabled him to deal with a very general class of disturbances.
However, the field equations themselves are non-linear, and it is at
first sight possible that this non-linearity may lead to some process
which speeds up (or slows down) the process of condensation in a way .
not obvious in the linear approximation. It is for this reason that
I here study the problem from a rather different point of view. I take
a much simplified model of a condensation (explained in section 2)
which is supposed to be forming at a time in the history of the universe
when the pressure may be neglected. These simplifications enable me to
trace the process of condensation without neglecting any non-linear
terms in the field equations and to estimate the time required for con-
densation, starting with a perturbation of given magnitude.
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My conclusions are that although there can indeed be a speeding up
not predicted in the linear approximation, and although condensations
“certainly can form eventually in the models, the perturbations given
by (1.2) are very much too small to have produced nebulae or stars
by the present time. Put in another way, this means that the formation
of the nebulae is a tremendously improbable occurrence in these models
if ordinary statistical theory is used.

The plan of the paper is as follows. In section 2 I explain and justify
the model chosen to represent a condensation; in sections 3 and 4
respectively I consider the application of the model to the closed and
open models satisfying (1.1); in section 5 I discuss briefly condensation
in LEMAITRE’S model; and in the Conclusion, section 6, I summarise
the results and discuss some possible ways of overcoming the diffi-
culties suggested by them.

2. The model of a condensation

I take a spherically symmetric, pressure-free model of the universe
and use comoving coordinates. The most general line-element satisfying
these assumptions is, in pseudo-polar coordinates

ds?=—et dr2— ev(d62 + sin20 dDP2) + di?, (2.1)

where A and w are functions of » and ¢. The field equations of general
relativity, without cosmological term, give the following relevant
equations (ToLMAN 1934 a):

et =e® w24 o(r), (2.2)
S0 26k (l—a) — 4 (1), (2.3)

Smo=4e 320,

where - and ’ mean 0/0f and 0/dr respectively, and o« (r) and §(r) are
arbitrary functions of ». Equn. (2.3) may be written

de®l2 .
f Trre = B TLY (2.4)

where y(r) is another arbitrary function. The integral gives rise to
three different cases according as

l1—a20.
For the time being, let us suppose that

1—a>0; (2
10*

N9
Ot
N
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then, evaluating the integral (2.4) we find the solution in the following

form
e = B(1— )1 (1 — cosy), (2.6)
t+y=pB01—a)??(p—siny), (2.7)
8mo= % (1 — ) p3 cosecﬁé p(w') L. (2.8)

Let us suppose that the model represents an inhomogeneity inside
a region r = a of an ordinary pressure-free expanding universe of ge-
neral relativity: that is to say, for r < a (2.2), (2.6), (2.7) and (2.8) apply,
whereas for r > a we have

ds>=—[R(@#)2[(1 _ Er?)-1dr? 4+ 712 (d0? + sin? 6 dD?)] + di2, (2.9)
where k has one of the values 0, +1 or —1, and the field equations give
3k R\2

SJZQ‘:——R{ +3<_E) ,
k R\ 2R
8”10:—?“('3‘) -~ =0

Let us for the present take k= 41, so that (2.9) represents a

closed, homogeneous model; then the solution for it corresponding to
(2.6)—(2.8) is

R = K (1 — cos&), (2.10)
t = K(&—siné), (2.11) -
8mp =6 K/R3,

where K is a positive constant, and where I have omitted in (2.11)
the additive constant which corresponds to 3 in (2.7). (This simply
amounts to taking the origin of ¢ at £ = 0, when the model is in its
initial singular state.)

The problem now is to match the two solutions at the comoving
boundary r = a. According to the boundary conditions of O’Briex
and SYNGE (1952), the following must be continuous at r = a:

gaﬁ: agmn/axl> Té, Jam T’g— gﬁm ngn’ (212)

where «, # =1, 2, 3, 4 and m, n = 2, 3, 4 and where g, is the metric
tensor and T'; the energy tensor. In the present case these continuity
conditions are found to reduce to

ev(e:t) = g2 R2(t) (2.13)

o’ (a,t) = 2/a, (2.14)
_ x(a) =1—a? (2.15)
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If we compare (2.6) and (2.7) with (2.10) and (2.11), it is easy to verify
that the conditions (2.13)—(2.15) are satisfied if we choose the following :

a(a) =1 —a2, o (@) =—2a, (2.16)
B(a) =K a?, B’ (@) =3 K a?, (2.17)
y(a) =0, y' (@) =0. (2.18)

The purpose of the foregoing investigation is to show that solutions
(2.6)—(2.8) exist satisfying the boundary conditions at r = a. These
conditions do not, of course, uniquely determine the functions «, f
and y. There is still a wide choice of the solution (2.1) open to us.
Let us choose for 0 <7 < b < a (b constant) a solution given by

ds? = —[R* () [(1 — kr2)~1 dr? + r2(d02 4+ sin20 dD2)] + dz, (2.19)

where k = + 1, and where
R* = K* (1 — cos ),

t+ &= K* (n—sing),

K* and ¢ being arbitrary constants. This solution is a special case of
(2.6) and (2.7) corresponding to a homogeneous region. It means that
in the centre of the condensing region we choose a Friedmann model
with constants different from those specifying (2.9) which applies to
the universe outside r = a. For b < r < a we shall still need the more
general inhomogeneous solution (2.1), but we may let this region be as
small as we please, and it is clear from the above that we can choose
the arbitrary functions «, § and y so that the boundary conditions
(2.12) are satisfied at »r = a and r = b. Thus we idealize the conden-
sation by a homogeneous part for » < b (of different density from the
rest of the universe) and a transition region b <r < a and we study
its growth by comparing the behaviour of the homogeneous Friedmann
models (2.9) and (2.19).

In (2.19) we took k to be +1, so that the model is closed. This is
in accordance with the condition (2.5) on «. However, had we chosen
1— o <0 we could have integrated (2.4) and proceeded in an exactly
analogous way to the following solution (instead of (2.19)) for r <b:

ds?=—[R*@#)]2 [(1 + r2)~1 dr® 4 r2 (02 + sin? 0 dD?)] + d¢?,
R* = K*(coshu—1),
t+ ¢ = K*(sinh u — u).
If we do this, then to satisfy the boundary conditions at r = a it is
necessary that, in the transition zone b <r <a, 1— o shall change
sign. But this evidently will not affect the solution inside r = b, pro-

vided only that the solution in the transition zone satisfies at r = b
a set of conditions similar, mutatis mutandis, to (2.16)— (2.18).
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Indeed, the constant k£ in (2.19) may be chosen quite irrespective
of that in (2.9): we may choose the former to be +1, —1 or 0 whether
the universe outside » = a is closed (k = + 1) or open (k = 0 or —1).

3. Condensations in a closed universe

In accordance with the results of the previous section, we shall take
as a model for a condensation a comoving sphere r = b in which the.
line-element is

ds? = —[R* ()2 [(1—r2)~1 dr2 + r2(d 02+ sin? 6 dP%)] + &2, (B) (3.1)

where :
R* = K*(1 — cos 1), (3.2)
t 4+ ¢ = K*(n—sinny), (3.3)
8 7w p* = 6 K*|R*3, (3.4)

Outside r = a (> b) we suppose that there is an expanding homogeneous
world-model with line-element

ds?=— [RO)2[(1— r2)-1dr2+ r2(d 62 + sin2 6 dP?)] + d2, (4) (3.5)

where
R = K(1—cos§), (3.6)
t — K (¢ —siné), (3.7)
8mo=6K/R: (3.8)

For b <r < a there is a transition zone whose purpose is simply to
ensure satisfaction of the boundary conditions at » =a and r=2b.
Since we are using comoving coordinates, matter initially inside r = b
and outside r = g will stay there, so no matter enters or leaves the
transition zone. The important criterion for the development of conden-
sation is the change in the ratio g*/p.

Model (3.5) is supposed to represent the actual universe as a whole,
so we may calculate K by using contemporary observed data. I shall take

0 =2x10-28 gm./em3., (3.9)
R/R = 2.8 X 10-1° (yrs.)~1, (3.10)

The average density g is not known accurately, but (3.9) is within the

range allowed by observation; R/R is HUBBLE’s constant. Substituting
© (3.9) and (3.10) into (3.6)—(3.8) we find

K = 9.3 x 10? yrs. (3.11)
T = 2.2 x10° yrs.
&p=1.15rad.
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T, &7 being the present values of ¢, &. The figure of 2.2 X 10? years for
“the age of the universe’ is rather low; in fact, even with the recent
correction to HUBBLE’s constant, the closed, pressure-free model (with
/A = 0) has an uncomfortably short time-scale. This is seen from the
fact (ToLMAN, 1934b, p. 415) that the age of such a model (irrespective

of density) is certainly not greater than 2R/3R, that is, about 2.4 x
% 10° years. However, in view of the present uncertainties in the ob-
servations, it seems unwise to rule out the closed model.

We shall now compare the two models 4 (3.5) and B (3.1). Let us
for the moment put ¢ = 0 in (3.3): then both models start at, a singular
state of zero volume and p
infinite density at =0
(§ = n=0). They also finish
at singular states when & = ¢
= 27, and their life-times are
27 K and 27z K* respectively.
~ The model B has the shorter
life-time if K* < K. This case is illustrated in Fig. 1 which shows graphs
of the radii of the models (R and R*) plotted against time. As a rough
approximation we may take the singular state at f{; as representing
the formation of a condensation of the matter inside r = b.1 Thus to
~account for the fact that the nebulae have already formed we require
that t shall be before the present time, i.e.

2a K* =ty < T =22 x10°yrs. (3.12)

Let us suppose that the universe was initially homogeneous so that
in its early history the density in the region r < b followed curve A4.
Then if at a certain time, say ¢ = f,, a disturbance took place which
caused the matter in r < b to follow instead curve B, a condensation
would have formed by time fz. The problem which I wish to study
is that of finding the magnitude of the perturbation — in terms of the
change in g, and g, at time f, — which would have been necessary to
initiate the condensation.

The effect of putting ¢ = 0 in (3.3) is to make the initial singular
state of model B occur at time ¢ = 0. This is necessary if the inhomo-
geneity is present from the beginning of the universe; but if, as we are
now supposing, the condensation starts from a perturbation at some
later time #,, we are interested in model B only for ¢ > ¢, so there is
no reason why we should not consider models, such as B’ in Figure 1,
in which ¢ & 0. In the following, therefore, we shall take as equatmns
of the perturbed model (3.1)—(3.4) with ¢ == 0.

1 Of course, the model ceases to apply as the singular state is approached because
it is no longer permissible to ignore the pressure. However, to get a rough estimate
of the time of condensation this approximation is sufficient.

0 g Zp

Fig. 1. Condensation in closed models
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Let us denote the initial perturbations by

% = (05 — 00)/Qo» B = (95 — €0)/00;
where the suffix 0 means the value at { =¢,. Then from (3.3), (3.4),
(3.7) and (3.8) we find

1 + o = n8sin® L &, cosec® L 7, (3.13)
1+ p=n?sin® 4 &, cos 3 7, cosec® - 7, sec 1 &, (3.14)
where
ni— K|K*. (3.15)
From (3.13) and (3.14) we have
1+ 8 . cos%no_ (3.16)

(I+oap  cosiéy
Eliminating 7, between (3.13) and (3.16), we find

1+ p)?
n?— (14 oc)1/3{1 + [1 _ -El * i)T,] cot? 1 50} . (3.17)
This equation is exact; if, however, we suppose that « and f are so
small that their squares and products may be neglected, it gives

m=1+2do+ (3a—2p) cot?Lé,. (3.18)

The time ¢ of the final singular state of model B is given by
tg=2m K¥—¢
=n"3t,—e¢. (3.19)
Since t, (= 2 7 K) is known from (3.11) it remains only to find ¢ in

order to calculate {5 from (3.18) and (3.19). We can determine ¢ from
(3.3) and (3.7): '

ty= K (£,— sin&y) = K* (19,— sin 1) — ¢. (3.20)

Remembering that &,, the present value of &, is about 1.15, so that &,
must be less than this, and supposing that |«| and |§| are small, say
less than 1/10, we find from an approximate solution of (3.20) (together
with (3.13)) that ¢ is negligible compared with 2 7z K*, so that this
expression may be taken as the time of condensation, reckoned from
t = 0. Since from (3.11),

27 K =58x1010yrs,

we find, using (3.12) and (3.15), that for a condensation in r < b,

2n K

7=
Equations (3.21) and (3.18) give a minimum value for 3« —2 8 at
& =&, to produce a condensation. It is easy to verify that an initial

nd >

27. (3.21)
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increase in the density tends to produce a condensation, and so does an
increase in the rate of change of density. Decreases in ¢ and ¢ tend to
produce rarefactions.

From (3.17) we have approximately

tan? L £ = (3 a— 2 f)/(n2—1);

imposing now the condition (3.21) that a condensation shall have formed
by the present time, and once again taking |«|, |8] < &, we find

tan 1 &, < 1,
whence
& < ‘%
and :
tp <2 X 108yrs. (3.22)

Hence if the condensation formed as a result of a small perturbation,
this perturbation must have taken place earlier than 2 x 108 years after
the initial singular state. At times later than this, condensations cannot
be initiated except by perturbations of order 1/10 or greater.
Considering now values of #, less than (3.22), we find from (3.18)
that the minimum perturbation in the density o (with g = 0) at time £,
- required to produce a condensation by the present time 7' is given
approximately by

o= %(nz— 1) tanzéfo ~ %2 (n?—1) f%)’

where n3 = 27. Using (3.7) we find

1 6, \2/3
o~ gy 2= 1) ()

and substituting for » and for K
o~ 5x10-7¢2/3, (3.23)

Thus 1000 years after the start of the universe a perturbation of about
5 % 10-5 is required to produce a condensation; and after 108 years the
perturbation must be 1/10. If one takes « = 0, then values of § of the
same order are required.

From the above it is clear that the nebulae could have been produced
by fairly small perturbations in the density in the early history of the
universe. Of course, the simplification of putting the pressure equal
to zero would not be permissible at the earliest stages. At what stage
this does become admissible depends on the hypotheses made about
the singular state, which determines the amount of radiation sub-
sequently present.

The mechanism of condensation is worth noticing. A region where
the density is higher than the average expands independently of the
rest of the universe, and runs through its expansion and contraction
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more quickly. The motion of matter inside a comoving sphere is not
influenced by the matter outside. This recalls a result of Boxp1 (1947),
who proved this for a more general model than that considered here.

It should also be noticed that in the contraction occurring during
the later stages of the condensation process the velocities of the conden-
sing matter may become large. This is shown by the fact that as the model B

tends towards its singular state at ¢, R* tends to infinity. Now it was
shown by Hoyre (1951) that deviation from spherical symmetry in a
contracting mass can produce rotation. Thus the condensation process
might explain the rotation of the nebulae, and the large velocities
involved might account for the presence of turbulent matter in them.
On this theory, the turbulence must have appeared during the formation
of the nebulae, and not before.

Although small, the perturbations required to produce nebulae are,
however, very much too large to have been caused by the random
fluctuations of groups of molecules on ordinary gas theory, which
gives for a collection of N molecules of an ideal gas

% — N1, (3.24)

The mass of a nebula is about 10#gm. so if it is composed of hydrogen,
N = 3 x 10%7 and dg/p ~ 10-3%. Thus on this mechanism the formation
of the nebulae would be vastly improbable. Alternatively, if one cal-
culates from (3.24) the probable number of particles involved in a
fluctuation of magnitude, say 10-5, one finds that the number is 10°.
Thus on ordinary statistical theory the mass of the condensations would
be a minute fraction of one gram.

4. Condensations in open universes.

For an open (ever-expanding) universe the line-element is (2.9) with
k=—1 or 0. I shall deal only with the case where £ = —1; the case

k = 0 is similar, and the same conclusions apply. Taking k = —1, the
model is

ds*=—[R(@#)? [(1 + r?)~Ldr2 4+ r2 (d0? + sin? § dD?)] 4 dt?, (4) (4.1)
where

R = K(coshu—1),
t = K (sinh v — u), (4.2)
8mp=6K/R?,

K being a positive constant. Using the same method as for the closed
model, we adopt (4.1) for » > a, and for » < b, we take

ds? = —[R¥ (R [(1 + )1 dr? 4 12 (A0 + sin? 0 d@?)] + A2, (B)  (4.3)
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where
R* = K* (cosh v — 1),
t 4+ ¢ = K* (sinh v — v),
8w p*= 6 K*|R*3,
As contemporary data we may take

. 0=10"%gm [em?3.,
R/R =2 -8 x 10710 (yrs.) 1,

which give
K =13 x10" yrs., (4.4)
T = 3.5 x10°yrs.,
up= 6.3,

T and u, being the present values of ¢t and u. ,

If we compare the models (4) and (B) above, we find curves like
those shown in Figure 2, where in (B) we have taken & = 0, as it can
be shown that for small per- A
turbations ¢ must be too small
to affect significantly the time of
condensation. Both models start B
from a singular state at ¢=0,
but there is no later singular A
state, and in both the density
tends to zero as f{ —oo. To esti-
mate the development of con-
densation we have to study how
(o* —p)/o changes with time.
The present average density of a
nebula is about 10-2‘gm./ecm3.
so that the present value of
(0* — p)/o is about 10%. Taking, ,
as in §3,

K2
Tig. 2. Condénsation in open models
‘ n® = K/K*
and
%= (03 — 00)/00> B = (00 — 00)/00;
the problem now is to find the value of n, and hence of « and f at given
time ¢, of the perturbation, which is required to give a value of 106 for

(0*— p)/p at the present time 7'.
As in § 3 we find

nt=1++oa—(8a—2p)coth? L u,,

1, being the value of u at time ¢,. Let us now consider the value of
(0* — p)/o at some time ¢ later than the time #, of perturbation. For
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our purposes p*/p will be a sufficient approximation, and we have

1 6 1
¢ Sinh® §

0*
= ety (4.5
and
sinh v — v = n3(sinh w — u). (4.6)
As u, v tend to infinity (¢ very large), (4.6) gives approximately
e? = n? e¥, (4.7)
and from (4.5) and (4.7) we have
*le =n""% (4.8)

so that if n is small a condensation will eventually form. However,
at the present time u — 6.3, so that the approximation (4.7) is not
valid if » is, say, about 1/100. For this value of » and for small n we
may approximate (4.6) by

1 1

L3 1 43 ou
6’0—271,6,

so that
v=337y 8", (4.9)
Substituting (4.9) into (4.5) we find approximately
o* £3U 1
T = nb s = § ev.

With » = 6.3 this gives p*/p ~ 60, so that the amount of condensation
would not have been sufficient, even if » is small. (It is clear from (4.8)
that if » is not small, no significant condensation would have formed.)
Thus the mechanism suggested by Figure 2 cannot have been respon-
sible for the formation of the nebulae.

Another mechanism of condensation in the open universe is repre-
sented by taking for the line-element B (inside r = b) a portion of a
closed model, such as (3.1). As explained in §2, this is permissible
provided that the solution for the transition zone b < r < a satisfies
the boundary conditions. If instead of (4.3) we take (3.1), we have

ot esinhiiu
e = sin®iy
n —siny = n3(sinh u — u), (4.10)
and, approximately,
n?= (14 a)/3[—1 + (3 o« — 2 ) coth? L u,], (4.11)

where once again ¢ is neglected since the perturbations are small. As
in §3, the time of formation of the condensation may be identified
roughly with the time of the singular state of the model (3.1) which
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occurs at 7 = 2 . Therefore, from (4.10) we have the following condi-
tion for a condensation to have formed before the present time

27 < nd(sinh wp— ug);
substituting u, = 6.3, we find

nd > 0.024 . | (4.12)

From (4.11) and (4.12) we find, if |«|, || < 1/10, that approximately

coth? L u, > 2.2
whence
ty < 1.1 x 107 yrs. (4.13)

Thus the perturbation must have taken place very early in the history
of the universe.

If we consider perturbations at times earlier than (4.13), we find from
(4.11), taking f = 0, that the minimum perturbation in the density
at time ¢, needed to produce a condensation by time 7' is roughly

a =+ (1 + n?) tanh2 L u,,

where n is given by (4.12). Using (4.2) and (4.4) we find that for small ¢,
the minimum perturbation « necessary is given by

o~ 5x10-6¢2/3, (4.14)

Comparing (3.23) and (4.14) we see that, as would be expected,
the perturbation required to cause a condensation in the open model
is considerably larger than that needed in the closed model at the same
time. In both cases the mechanism of the condensation process is the
same — that is, in the condensing region there is eventually a con-
traction and approach to a singular state. In both cases also the pertur-
bation required to produce nebulae is much larger than could be ex-
pected from the random fluctuations of the ordinary kinetic theory of
gases.

5. Condensations in LEMAITRE’S model

In the models considered in the previous section I have taken the
cosmological constant, /1, to be zero. If /A is not zero there is a great
diversity of models which can be chosen to satisfy the three funda-
mental observed data mentioned in the Introduction. Of these, two
have been studied in some detail: the Eddington-Lemaitre model,
which arises from a perturbation of the static Einstein universe, and
the Lemaitre model, in which A is positive and which expands without
limit from a point source. Both these models have been thought to
offer favourable possibilities for explaining the formation of the nebulae.
I do not intend in this paper to discuss the Eddington-Lemaitre model,
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but I shall deal briefly with the formation of condensations in the Le-
maitre model.

If, instead of (1.1), one starts with the field equations
' —8a T =0 —2+Ggin+ Ags,

and takes the pressure to be zero, one finds that the following is a so-

lution
ds? =—[R()P[(1—1r3)1dr? + r2(d 02 + sin2 Od @?)] + de2, (5.1)
where
R\ 1 1 2K
(ﬂ =g d— 2t (5.2)
8mp =06 KR}, (5.3)

K being a positive constant. Equations (5.1)—(5.3) represent LE-
MAITRE’S model in the pressure-free case. If one puts A = 0, it reduces
to the ordinary closed point-source model (3.5).

The integration of (5.2) (which can be carried out with elliptic func-
tions) was studied by pE SiTTER (1931). Put '

y= R|2K, T=1t2K;
then (5.2) gives
. dy \2 1 =

(@) =y —1+re R

where
y=%4+K2/. (5.5)

With the help of (5.4) de SiTTER classified the solutions of (5.2) as
follows: :

I.if y > 4/27, there is only one solution, in which R increases from
zero to infinity;

IL.if 0 < y < 4/27, there are two solutions, in one of which R os-
cillates between 0 and R;, and in the other R decreases from infinity
to B, and then increases from R, to infinity, B, and R, being certain
constants;

IIL. if y < O there is one solution, in which R oscillates between 0
and R,.

The Lemaitre universe falls within Case I, and is represented by
curve I in Figure 3, which is adapted from DE SiTTER’s diagram. The
mechanism of condensation proposed by LEmAiTRE (1933) is as follows.
Let us suppose, as we did in sections 3 and 4, that the condensing region
r < b is represented by part of another homogeneous model; let us also
suppose that in r < b the initial density and velocity are such that the
motion follows the oscillating solution of Case II. This requires 0 < y <
=< 4/27. Then the matter in r < b will not go on expanding indefinitely
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but will follow a curve such as ITa or IIb in Figure 3. In the former
case (y = 4/27) the proper radius of the region, and the density, tend
to constant values as f{—>oco; and in the latter case there will eventually
be a contraction of the space and the density will start to increase as
the model approaches a singular state.
In either case a condensation will form.

In order to find the magnitude of
the perturbations which would be re-
quired to cause condensation in this
way, we need to estimate the values 1
of o and B (defined in section 3) needed
to cause an appropriate alteration in y.
From (5.3) and (5.5) we find

R

8mo=AytyS3,

. - d
87 —— |3 A3 V‘3/2?/‘4"djg‘- Ib
a t

Fig. 3. Condensation in LEMATTRE’S model

After a calculation, these, together
with (5.4), give

be (3_)/_37(?7?/_’ (5.6)

oL ==
e Y Y

3 9
_— -9 2 — 2
56 5y 3 ” 2yy Sy 4:'2?/ 3yy )
f= " 3y i e +7 i . (5.7)
y Tty —7—1+yy

‘Eliminating 6 y between (5.6) and (5.7) we have

Sy 1 9

Examining the Lemaitre model in the manner of DE SiTTER, we find
that to fit contemporary data we must take y greater than 0.149. On
the other hand, for LEMAITRE’S method of condensation to work we
need y < 4/27 = 0.14815. Thus the perturbations « and f must be
responsible for a change in y inside r = b of the order of 0.001, so that
dy/y ~10-2. It is easily found from (5.8) that to produce such a value
for dy/y (except at times so early that the pressure-free model does
not apply) the perturbations required are of the same order as those
needed in the models considered in the previous sections.

A more comprehensive treatment of the effect of perturbatlons on
the Lemaitre model would involve the solution of equation (5.2) and
an analysis similar to those of sections 3 and 4. However, in regard to
the process of condensation, the only important difference in the model
from those with A = 0 is the existence of the mechanism discussed
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above. Therefore there is no reason to suppose that the Lemaitre model
is more favourable than the others to the formation of condensations
from very small perturbations.

6. Conclusion

The main conclusion of this paper that in the world-models of general
relativity with zero cosmological constant the nebulae cannot have
resulted from gravitational instability following perturbations of magni-
tude predicted by ordinary statistical theory. Although this result
depends on the acceptance of a highly simplified model of a conden-
sation, there seems no reason to suppose that a more realistic model
would give radically different conclusions. It depends also on the use
of the pressure-free model of the universe throughout, which means
that the calculations apply to the later history of the universe; but
as LirsHEITZ found that in models with pressure perturbations could not
become large, it seems probable that only the pressure-free era is im-
portant for the formation of condensations.

To obtain a satisfactory theory of the formation of the nebulae it
appears to be necessary either to use a model with a longer time-scale,
or to find a source of larger fluctuations in density or velocity.

A longer time-scale would help the theory of condensations in two
ways. On the one hand, it would give the small perturbations predicted
by (1.2) time to grow, and on the other, it would, if long enough, permit
the occurence of occasional large fluctuations which could grow into
nebulae comparatively quickly. Models of general relativity with long
time-scales require 4 == 0. An obvious candidate (but not the only
one) is the Eddington-Lemaitre model which starts from a perturbation
of the Einstein universe. If, as is now thought possible, the heavy
elements can have a contemporary origin, the main objection to this
model (that it has no state of high density) is removed. Since the Ein-
stein universe lhas an infinite past, there is plenty of time for small
perturbations to grow, or for improbably large fluctuations to occur.

In regard to the second possibility, Gamow (1952) has suggested that
the large fluctuations required might have arisen from turbulence of
the cosmic medium. This does not help us very much unless the origin
of the turbulence can be explained. One might of course add to the
mystery of the singular state by postulating primordial turbulence, but
this would be only a last resort; and even then, it would have to be
shown that the primordial turbulence could have persisted through
the era of high pressure. It was shown in section 3 of this paper that high
velocities can arise in the course of condensation, and it is possible
that turbulence is a result rather than a cause of the condensation
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process. It seems preferable therefore to seek another reason for the
large perturbations.

Another suggestion is one of TERLETSKY (1952) that ordinary gas
theory may be quite inadequate to deal with very large masses of
gravitating gas. TERLETSKY considers that such large masses are liable
to much larger fluctuations than those predicted by (1.2). It may be
that the large perturbations required for the formation of the nebulae
can be accounted for by some development of TERLETSEY’S theory.
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