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ABSTRACT 
The Poynting-Robertson effect is shown to require about 1 ton/sec of small particles to maintain 

the zodiacal cloud, irrespective of particle shape, density, or dimension within the range of 10-4-1.0 cm. 
The zodiacal cloud is assumed to be of the nature deduced by van de Hulst and Allen from their studies 
of the Fraunhofer corona and the zodiacal light. The probable cometary contribution to the zodiacal 
cloud is here considered on the basis of the icy-comet model. Some 30 tons/sec of meteoritic material 
contributed continuously in typical comet orbits are mostly lost by the action of the following physical 
forces or processes as the particles spiral inward toward the sun by the Poynting-Robertson effect: 
(a) interstellar wind, (b) Jupiter’s random perturbations, (c) the Jupiter perturbational barrier, and (d) 
collisional destruction. Of these, b and d are found to be the most important. The final calculated contribu- 
tion is about the required amount. 

Collisions among the particles appear to be largely responsible for the cutoff in zodiacal particle 
size above about 0.03 cm, as found by van de Hulst. Corpuscular radiation from the sun will simulate 
the Poynting-Robertson effect but will simultaneously tend to destroy the particles. No allowance for 
this effect is included in the calculations because of uncertainties in the numerical quantities involved. 
Corpuscular radiation, however, if sufficiently powerful, may exceed the Poynting-Robertson effect in 
importance and may also demand a larger source of material for the zodiacal cloud. If so, the corpuscular 
radiation will also increase the critical cutoff dimension. 

I. INTRODUCTION 

From the original investigation by J. H. Poynting (1903) and the relativistic treat- 
ment by H. P. Robertson (1937a), it has long been known that “a drag, attendant on 
the pressure due to the solar radiation, constitutes a force which is effective in clearing 
the neighborhood of the Sun of small particles in astronomically-significant times” 
(Robertson). If the zodiacal light and Fraunhofer corona arise from the scattering and 
diffraction of sunlight by small particles somewhat concentrated toward the plane of the 
ecliptic, as demonstrated by the studies of H. C. van de Hulst (1947) and C. W. Allen 
(1947), then these particles must be replenished either continuously or sporadically. 
Sources of such small particles may exist in (a) the interstellar medium by solar capture, 
(b) the interplanetary gases by condensation, {c) the asteroidal belt by collisional frag- 
mentation, or (d) comets by ejection or disintegration. Source a has not been observed, 
while source b presents serious theoretical difficulties. Source c has been explored by 
S. L. Piotrowski (1953) and found to be adequate. The purpose of the present paper is 
to demonstrate the extent to which the cometary source d is also adequate. 

Any comet model that produces meteoritic material may well be extended to produce 
zodiacal dust; for example, J. H. Oort, in his valuable contribution (1950) on the dynam- 
ics of comets, makes such a suggestion without specifying the detailed structure of a 
cometary nucleus. V. G. Fessenkov (1914) was perhaps the first to suggest a cometary 
origin for the zodiacal light. The icy conglomerate model, as presented in the two previ- 
ous papers of this series (Whipple 1950, 1951), permits the determination of a quantita- 
tive relationship between comets and the zodiacal light. 

From the comet model we can calculate the rate of loss of meteoritic material. If the 
cometary nucleus is spherical of radius Rc, contains a fraction ß of its mass as non- 
volatile meteoritic material and a fraction 1 — ß as ices with a sublimation heat of H 
ergs per gram and if the efficiency of solar heat transfer to the ices is 1/w, then at a solar 

* An investigation carried out under Contracts Nos. NOrd-10449 and N5ori-07647 with the U.S. 
Naval Bureau of Ordnance and Office of Naval Research. 
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ZODIACAL LIGHT 751 

distance of r cm the comet will lose per second a mass of meteoritic material, Mk, given 
by (Whipple 1951), 

,, R\ßE 
Mk 4nr2(l-ß)H' (1) 

where E is the total solar energy radiated per second. 
We must integrate this loss of mass over all comets. Several comets are observed to 

pass perihelion per year; over the interval 1801-1850, the average number was 1.8; dur- 
ing 1860-1879, it was 5.4; and in certain recent years as many as 13. The apparent in- 
crease must arise largely from the improvement in observing techniques. The range in 
intrinsic cometary brightnesses is enormous. N. T. Bobrovnikoff (1942) derives the ab- 
solute magnitudes of 45 comets ranging from 1.7 to 10.4, where the absolute magnitude 
of Halley’s Comet is 5.6. More than a third of the comets selected by Bobrovnikoff are 
brighter than Halley’s Comet. It is probably pointless to calculate a precise estimate of 
the “average” brightness and frequency of comets. Since a few comets are intrinsically 
very much brighter than Halley’s Comet, I shall simply assume that the mass-loss by 
all comets equals the loss by Halley’s, were it always at 1 a.u. from the sun. This as- 
sumption is tantamount to the assumption that the total contribution by all comets is 
equivalent to a yearly return of Halley’s Comet as it was in 1910. 

If, according to estimates discussed previously, we adopt for Halley’s Comet Rc = 
106 cm, ß = H = 1.88 X 1010 erg/gm, r = 1 a.u., and 1/n = | in equation (1), we 
find, for the total meteoritic mass contributed by comets, If ^ = 2.8 X 107 gm/sec. Hence 
the total contribution of meteoritic material by the comets is of the order of 30 tons per 
second. The material is, of course, left near the orbits of comets, which, on the average, 
should roughly approximate the present distribution of comet orbits. The contribution 
of gases alone will be of the order of 100 tons per second. 

Various factors, however, require us to correct the calculated cometary contribution 
in comparing it to the zodiacal rate of mass gain and loss: (a) Jupiter perturbs the mo- 
tions of all the particles and eliminates a large fraction; (b) we do not know the distribu- 
tion in the dimensions of small particles ejected from comets; (c) an “interstellar wind” 
from the interstellar gas through which our system may pass will affect particle motions; 
{d) corpuscular radiation from the sun may assist the Poynting-Robertson effect but 
may also tend to destroy the particles; (e) encounters among the zodiacal particles may 
be destructive. Effects by planets other than Jupiter, by asteroidal material, and by in- 
terplanetary gases are other factors to be considered. In the following sections we shall 
attempt to evaluate these various factors. 

H. THE POYNTING-ROBERTSON EEPECT 

Robertson’s treatment of the Poynting-Robertson effect for light may be readily gen- 
eralized to include the corresponding effects by corpuscular radiation from the sun. 
Suppose the sun loses Mc gm/sec of material (radiation or very small particles) emitted 
isotropically with velocity Vc. This material then strikes and is momentarily retained by 
a particle of mass m and cross-sectional area A, moving in an orbit about the sun at a 
distance r with total velocity V and velocity V N normal to the radius vector. IÎV c^>Vn 

(or V), the radial repulsive force on the particle is closely AMcVJ(4xr2). If, further, the 
material is re-emitted from the particle, isotropically about the radius vector, the resist- 
ing force normal to the radius vector is equal to the radial force multiplied by Vn/VCi 

or AMcVn/(47rr2). 
Robertson introduces a quantity, a, such that the retarding force normal to the radius 

vector is given by amVN/r2. Equating these two statements of the retarding force, we 
evaluate the quantity a as follows: 

AMC 

47t m * 
(2a) 
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752 FRED L. WHIPPLE 

For the case of radiation alone, let the total energy emitted by the sun per second be 
given by E and equal to Mcc2 by Einstein’s relation, where c is the velocity of light. Then, 
from equation (2a), we have a given by Robertson’s relation, 

AE 
47T w c2 * 

(2b) 

For meteoric particles somewhat greater in dimension than the wave length of maxi- 
mum energy in the solar spectrum, equation (2b) is correct to the order of 10 per cent 
for likely materials with relatively low albedos. The result is little changed for perfect 
reflecting spheres. 

Robertson shows generally that a is the proportionality factor between the true 
anomaly of the orbital particle and the particle’s rate of loss of angular momentum (per 
unit mass) about the sun. In a differential time, dl, the parameter of the orbit, p = a(l — 
e2), will be reduced by an amount dp, given by 

^ a^pVHp 
dt= lap 

(3) 

Let us now consider the total energy of solar radiation, L, that is scattered or dif- 
fracted by a particle from the time that the particle is released in an orbit of parameter, 
po, until finally it spirals close enough to the sun to be vaporized at /> = pf. Generally, 
we may assume that the initial orbit is rather eccentric, while the final orbit is nearly 
circular (Robertson 1937a; Wyatt and Whipple 1950), although the latter condition will 
fail for particles from a few comets with very small perihelion distances. The energy, 
dL, scattered in time, dt, including the time average of 1/r2 in an eccentric orbit, is 
given by 

KAEdt 
(4) 

where K is the mean (with respect to both wave length and particle dimension) efficiency 
factor for total scattering by reflection and diffraction. 

Combining equations (4), (2Z>), and (3), we find the total energy scattered by the par- 
ticle spiraling through dp to be, 

dL,_Km^l (5) 

2p 

Integrated between the limits of po and pf, equation (5) gives, for the total energy, 
L, diverted by the particle during its entire life as an independent body, the equation 

L = \Kmc2 In • (6) 

This total scattered radiation is independent of the particle shape, the particle density, 
and the nature of the solar radiation, except for small indirect effects in K, the scattering 
coefficient. The energy is numerically little dependent upon the initial and final orbital 
characteristics within practical limits. The dimensions of the particle, however, are 
limited if K is to be accepted as independent of particle size over an appreciable range 
of wave length. 

Our application of equation (6) to the zodiacal light (or Fraunhofer corona) depends 
upon an equilibrium assumption, viz., that the zodiacal light is statistically constant or 
stable over long intervals of time, of the order of millions of years if particles of the order 
of 10—2 cm radius are to be considered (van de Hulst 1947; Allen 1947). The interval 
varies directly as the radii of particles that contribute most to the phenomenon. 
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ZODIACAL LIGHT 753 

To follow the consequences of the foregoing equilibrium assumption, let us designate 
the total energy scattered in all directions by the entire zodiacal cloud per second as Lz 
and the relevant mass contributed per second as a constant, Mz. We may adopt average 
values of K and log (po/pf) in equation (6). Over a sufficient interval of time, once 
equilibrium has been established, the average mass-input (and loss) rate will match the 
average energy-scattering rate according to the relation 

= ln(|^). (7) 

Our assumption of equilibrium thus leads to the conclusion that the total brightness 
(energy-scattering rate) of the zodiacal light and the Fraunhofer corona is proportional 
to the rate at which mass, distributed within the proper limits of size, is gained (and lost). 

To examine the theoretical space density of the particles with respect to the sun as 
determined by the Poynting-Robertson effect, let us consider a region near the sun filled 
largely with particles with almost circular orbits near the end of their spirals. Then 
a ^p and the time, dt, of fall through a distance, dr, becomes simply 

2a 

Since the distribution of the inclinations of the orbits will not change appreciably dur- 
ing these later stages of the spiral, the space density, pa, of particles with a given value of 
a is proportional to dt divided by the volume element, 7rr2dr, along a given radius, or, 
from equation (8), 

pa~ (ar) -1 . W 

Hence, in the neighborhood of the earth, the distribution of particles probably follows 
a space-density law close to the 1/r law, but corrected toward the 1/r2 law by the con- 
tributions of particles in more elongated orbits. A better evaluation of the space-density 
law should become available from meteor orbits obtained photographically by the 
Baker-Super-Schmidt meteor cameras or obtained by electronic techniques. Clearly, the 
exponent of r must exceed 2 at some moderate solar distance, or the mass integral will 
become excessive. 

III. THE FRAUNHOFER CORONA AND THE ZODIACAL LIGHT 

H. C. van de Hulst (1947) and C. W. Allen (1947) agree so well in their quantitative 
explanations of the Fraunhofer corona and the zodiacal light that only the briefest de- 
scription of their findings is needed here. Their solutions are not sensitive to the density 
distribution of the particles with respect to solar distance. Allen prefers a l/r1+ law, 
while van de Hulst adopts roughly a 1/r2 law to within 0.1 a.u. of the sun, where sub- 
limation of likely meteoritic compounds over long periods of time would eliminate the 
small particles. These results are quite in harmony with the Poynting-Robertson results, 
and I shall adopt 0.1 a.u. as the limiting value, />/, in applying the theory. 

A lower limit of particle size is set at about radius s = 3 X 10-6 cm for metallic-con- 
ducting particles, because the pressure of sunlight will exceed the solar gravitational 
attraction near this value and for smaller dimensions (van de Hulst 1946). For some 
types of dielectric particles the critical zone occurs near s = 1.5 X Iff-6 cm and extends 
for only a narrow range in dimension, below which Rayleigh scattering sets in and 
smaller particles may spiral into the sun. Neither Allen nor van de Hulst finds evidence 
for Rayleigh scattering; Allen’s measures indicate that the Fraunhofer corona has the 
same color or is slightly redder than the sun, while van de Hulst predicts a slight red- 
dening. 

Above the limiting particle size, Allen co-ordinates the observations of the Fraunhofer 
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754 FRED L. WHIPPLE 

corona and the zodiacal light for various particle sizes, covering approximately the range 
from 5 X 10“3 to 3 X 10“6 cm, while van de Hulst derives a law in which the number in 
range, ds, varies as s“2-6, with a reduction in this frequency distribution above s = 0.035 
cm. The resultant density of matter on the ecliptic at r = 1 a.u. is given by van de Hulst 
as 5 X 10~21 gm/cm3 and by Allen as (s = 10-3 cm), 6 X 10~23 gm/cm3. 

As for the integrated intensity of the entire corona and the Fraunhofer corona, re- 
spectively, in terms of the integrated intensity of the sun’s disk, van de Hulst finds 
1.4 X 10“6 and 4.2 X 10~7, and Allen, 1 X 10-6 and 1.1 X 10-7. I adopt the value 
3 X 10~7 of the sun’s intensity for the Fraunhofer corona as seen from the earth. 

We wish to derive the value of Lz, the integrated energy scattered in the Fraunhofer 
corona and zodiacal light over their entire extent and over all directions. We may crudely 
approximate Lz if we increase the foregoing value of the intensity of the Fraunhofer 
corona because of (a) the earth’s proximity to the sun and (b) the unmeasurable light 
diffracted within the sun’s apparent disk. At the same time, we must reduce the value 
below that of a spherically symmetrical cloud about the sun because of (c) the earth’s 
position in the ecliptic near the plane of greatest particle concentration for diffraction. 
Since only the correction for c can be estimated even roughly and since none of our cor- 
rections appears to be much larger than the discrepancy of a factor of 3 between van de 
Hulst’s and Allen’s values, I assume simply that the suggested corrections compensate 
each other and that the total energy, Lz, diffracted and scattered by the zodiacal par- 
ticles is 3 X 10-7 of the sun’s total energy of radiation per second. 

Equation (7) can now be applied to yield the value of Mz, the mass contribution per 
second to the zodiacal cloud required to maintain the Fraunhofer corona and the 
zodiacal light. The average value of the scattering coefficient K may be adopted as 1.1, 
made up of 1.0 for diffraction and 0.1 for albedo. The effect of diffraction on the Poyn- 
ting-Robertson effect would be negligibly small. A mean value of In (po/pf) =3.0 may 
be adopted, corresponding to a final orbital parameter, pf = 0.1 a.u., and an initial pa- 
rameter, po = 2 a.u. If, instead, p0 were taken as 1 or 4 a.u., In (po/pf) would be changed 
only to 2.3 or 3.7, respectively. 

A solution of equation (7) with these numerical data yields the result, Mz = 0.77 X 
106 gm/sec. Hence an addition of approximately 1 ion per second of meteoritic material 
will maintain the Fraunhofer corona and the zodiacal light indefinitely at their present 
luminosities. By a much less general theory, involving a distribution function of particle 
sizes and an assumed density for the particles, V. G. Fessenkov (1947) earlier came to 
a similar numerical conclusion. 

IV. EFFECTS OF THE INTERSTELLAR WIND 

Although no direct evidence for the fact exists, the solar system is probably moving 
through an interstellar gas (and dust) cloud. The interstellar wind thus created would 
tend to blow small distant particles from the gravitational attraction of the sun. Let us 
assume that the sun is moving through the cloud with velocity F¿, and that there are Ni 
hydrogen atoms (of mass mfi) per cubic centimeter. We neglect other gases as of a 
smaller order of magnitude. Suppose the interaction of the E atoms with spherical dust 
particles of radius s, density p8, and mass m to be one of momentary attachment and 
subsequent escape at thermal velocities. Then the force on the particles is TrmHS2NiV2, 
and that of solar gravity GmM/r2, where M is the mass of the sun. The consequent ratio 
of the force of the wind to that of the solar attraction becomes 

Force int. wind _ 3mHr2NiV* 
Force solar grav. 4:p8sGM 

The wind velocity Vi is probably about 20 km/sec, as a reasonable estimate based 
upon the solar motion. If we adopt the value for the density as ps = 4 gm/cm3, and 
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ZODIACAL LIGHT 755 

solve for the solar distance at which the wind force equals solar attraction, we find 

r (a.u.) = 6.87 X 105 (ii) 

Table 1 lists these critical distances in 1000 a.u. for various particle radii and hydrogen 
densities at which the solar and wind forces are equal. We should generally expect par- 
ticles to be lost to the system at distances exceeding those in Table 1. Since new comets, 
according to Oort’s study, will usually have aphelion distances exceeding 50,000 a.u., 
we see that the critical dimension for the retention of meteorite particles from them is 
near radius 10-2 cm, just below the limit for visual meteors. The solution is not ex- 
tremely sensitive to the interstellar H abundance, a value of 1 atom/cm3 probably being 
a reasonable estimate. We conclude, therefore, that new and relatively new comets, ac- 

TABLE 1 

Critical Solar Distances 

Ni(,H Atoms/ 
Cm3) s(Cm) 

IO"4. 
IO”3. 
IO"2, 
10-1. 
1... 

Critical r (a.u./1000) 

0.1 

22 
69 

217 
687 

2170 

7 
22 
69 

217 
687 

10 

2 
7 

22 
69 

217 

cording to the Oort definition, will probably not contribute appreciably to the zodiacal 
light. 

The interstellar wind will act generally as a resisting medium for particles that are 
not blown out of the system. The rate of the resulting increase in 1/a has been calculated 
for an orbital plane normal to the direction of the wind, giving the result A (1/a)/ 
period = 7.9 X 10~n a(a.u.)1/2 Nh/s for the circumstances postulated in this section. 
Since this rate is smaller than that given in equation (26) by the Poynting-Robertson 
effect for a < 4 X 104 a.u. and Nh = 1, the wind-drag effect will be neglected in this 
discussion. 

V. CORPUSCULAR RADIATION EROM THE SUN 

The recent auroral studies by C. W. Gartlein (1950), A. B. Meinel (1951), and L. 
Vegard (1952) demonstrate that hydrogen atoms strike the earth at velocities up to 3000 
km/sec during strong aurorae. L. Biermann (1951) finds that such corpuscular radiation 
from the sun may account for certain phenomena of cometary tails, while V. A. Am- 
barzumian (1952) holds that such corpuscular ejection is nearly a universal phenomenon 
for stars. Let us suppose that, on the average, Nc hydrogen atoms per cubic centimeter 
are crossing the earth’s orbit at a constant velocity, Fc, radially from the sun. Under the 
same physical conditions as those assumed in the previous section, a spherical particle 
of radius s and density p8 will experience an outward force which bears the following 
ratio to the sun’s gravitational attraction: 

Force corpuscles _ 3 mHNc Fc (1 a.u.)2 ^ 
Force gravity 4:p8sGM ’ 

independent of solar distance if Fc remains constant. 
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756 FRED L. WHIPPLE 

For Vc — 3000 km/sec, the ratio becomes 1.91 X 10“7 Nc/(pss). Thus the corpuscular 
radiation will blow away particles of 5 = 10-4 cm and ps = 4 gm/cm3 if Nc exceeds 
2.1 X 103 hydrogen atoms/cm3. We know, however, that Nc is limited to less than this 
value because the polarization of the zodiacal light sets an upper limit (Whipple and 
Gossner 1949; Behr and Siedentopf 1953) to the electron density at the earth’s distance, 
about 103/cm3. The hydrogen and other gases expelled from the sun must be ionized so 
that the number of nuclei will not exceed the number of electrons. Since the calculation 
is based on extreme values, we may neglect any direct loss of zodiacal particles by cor- 
puscular radiation. Electrostatic effects may possibly change the effective cross-sections 
of small particles to protons. At velocities of the order of 1000 km/sec or more, however, 
such effects may be neglected. 

For particles of the zodiacal light, the reduction in solar attraction by corpuscular 
radiation will not yield observable effects, because we cannot yet measure orbital 
periods. 

The fact that corpuscular solar radiation can produce an effect on the orbits of meteor- 
ic particles similar in form to the Poynting-Robertson effect was shown in Section II. 
The ratio of the corpuscular to the P-R effect, /, is given by the ratio of equation (2a) 
to (2b), or Mc fi/E, where Mc is the mass of corpuscles emitted radially and isotropically 
by the sun per second and E is the total radiant energy per second. In terms of the 
present notation this ratio becomes 

r 47rwff ^iVcTc (1 a.u.)2 

Thus the corpuscular effect equals the Poynting-Robertson effect when Vc Nc equals 
8.9 X 108 (cm/sec)/cm3. For Vc = 3000 km/sec the equality occurs when Ac = 3 pro- 
tons/cm3 at the earth’s distance from the sun. Since we have no adequate measure of the 
average corpuscular radiation from the sun, we cannot include the corpuscular effect in 
the present calculations. If later evidence indicates that Vc Nc is comparable to 109/cm2/ 
sec or larger, the consequent effect on the rate of spiraling toward the sun can be intro- 
duced into the final results by simply correcting the particle radius, s, for which the cal- 
culation has been carried through. For example, if Nc = 100/cm3 and Vc remains 3000 
km/sec, then a particle of radius 30s will experience the same rate of spiraling as is now 
calculated for a particle of radius s. 

It is of some general interest to explore a bit further some of the consequences of cor- 
puscular radiation from the sun. Under the postulated circumstances, the energy re- 
quired to maintain the corpuscular radiation is 1.6 X 10-5 Nc of the sun’s total radia- 
tion, not appreciable if Nc is small. Angular momentum changes on the sun, even for 
tangential expulsion, are small compared to the sun’s present angular momentum for 
3 X 109 years if Nc is small. For Nc > 103/cm3, the effect could become important, 
however. 

The interactions of corpuscles with meteoritic particles are important in a second fash- 
ion as cathode sputtering occurs, etching away the surfaces,of the particles. The subject 
of sputtering is well reviewed by H. S. W. Massey and E. H. S. Burhop (1952), who tabu- 
lated the measured sputtering rates of various positive ions on various metals. At 500 
ev, each ion knocks out 0.4, 0.15, and 0.6-0.7 atoms from the surfaces of Cu, Ni, 
and Ag, respectively. The sputtering rate increases with atomic (or molecular) weight 
but at a considerably smaher rate than direct proportionality. With increasing ion 
energy, up to a few thousand electron volts, the sputtering rate increases nearly linearly. 
At higher energies, the increase is probably less rapid. Contamination of the surface 
greatly reduces the sputtering rate; absorbed gases and oxide surfaces appear to be 
important restraining influences. The rate is apparently much reduced if the impinging 
ion can combine with an available atom within the surface. ; ; : 
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Since sputtering experiments on geological specimens have not come to the writers 
attention and since the chemical and physical structure of the surface on a cometary 
meteoroid is only vaguely surmised, we can only guess at the destructive action by cor- 
puscular radiation. At 3000 km/sec, the energy of our H+ ions, 50,000 ev, is about 100 
times that found in the experiments quoted above. The masses are reduced by half as 
protons replace H molecules. The crystal structures of the particles must be highly im- 
perfect and well contaminated with residue atoms of C, N, and O combined with hydro- 
gen in a wide variety of compounds and radicals. Thus the incoming H+ ion might com- 
bine easily. In all, the type of meteoritic particle envisaged here seems to present a poor 
sputtering surface. A sputtering rate of 40 atoms per proton appears to be an excessive 
upper limit, 10 per proton still a high rate, and 0.01-1 per proton a more probable range 
of values. A rate of 1 atom per proton corresponds to an energy efficiency of vaporization 
of about 10-4. 

Let us investigate the effect of sputtering by corpuscular radiation on the motions of 
particles about the sun. The combined spiraling rate of the orbital parameter, ÿ, pro- 
duced by corpuscular radiation and the Poynting-Robertson effect, will, by equations 
(3), (2a), {2b), and (13) take the form 

AWp1/2 

dt ma%l2 5 (14a) 

where W is defined by the equation 

W = 
£(!+/) 

2w c2 
(14b) 

Let us assume that each proton of corpuscular radiation that strikes the zodiacal 
particle removes Nc atoms of mass with negligibly small velocities. Since the particle 
has a cross-section A, the rate of mass-loss produced by corpuscular radiation on the 
particle of mass m will be 

dm _ ncmaANcVc{\ a,.VL.)2 _ AB 
'dt~ ^ ~72~’ 

where B is defined by the equation. Averaged over an eccentric orbit, the rate of mass- 
loss becomes 

dm _ AB 
~7T~ “ a3/2^i/2 • 

(15b) 

Equations (14a) and (15b) lead to the following relation between the mass-loss and the 
orbital parameter: 

dm _ m B 

Hp-JW' <16) 

which integrates to the relation 

(17) 

where wo is the initial mass of the zodiacal particle, corresponding to its constant mass 
under the Poynting-Robertson effect alone, and ÿo is the initial injection parameter of 
the orbit, as before. 

The rate at which radiant solar energy is totally scattered by the particle, dL/dt, re- 
tains its initial form as given by equation (4), although the scattering area A has now be- 
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758 FRED L. WHIPPLE 

come a variable. We change the notation from Z to Zc to indicate that the scattering 
rate will differ in time as A changes with loss of mass. If we now relate dLc and dp by 
eliminating dt in equations (4) and (14a), we find, corresponding to equation (6), 

(18a) 
dp 47rIF p 

We can now introduce the variable mass, w, by means of equation (17), to obtain 

dl* 
dp 

KE Mo 
4:TrWp^W 

-1) (18b) 

Thus, by integration, we find that the solar radiant energy that is totally scattered by 
the initial mass mo during its spiral from po to ÿ/, including the momentum effects of both 

TABLE 2* 

Mass Input for Corpuscular Radiation (l/lc) 
Compared with P-R Effect 

10 
o.i 

100 
o.i 

1000 
o.i 

10 
1.0 

100 
1.0 

100 
10 

1+/. 
B/W. 
L/Lc. 

1.67 
0.60 
3.6 

7.7 
1.30 

31 

68 
1.48 

306 

1.67 
6.0 

30 

7.7 
13.0 

302 

1.67 
60 

302 

7.7 
130 

3020 

* Calculated for Vc = 600 km/sec. For other velocities correct Nc by Fc/600 km/sec. 

corpuscular radiation and the Poynting-Robertson effect as well as mass-loss by corpus- 
cular radiation, is 

Note that this result is independent of the shape, density, or dimensions of the par- 
ticle as far as the dimensions lie within the limits specified for the similar Poynting-Rob- 
ertson result obtained in equation (7). Since the initial mass is linearly related to the 
total lifetime scattering by the particle in both equations (19) and (7), the rate of mass 
injection required to maintain the zodiacal light must be increased in the ratio of Z/Zc, 
if corpuscular radiation be active, as assumed here. The ratio of equation (7) to (19) is, 
then, 

11™ h-mB/W] (20a) 
Lc E ln (po/pf) L1 \PoJ -T 

The bracketed factor in equation (20a) is nearly unity fot practical cases of interest 
in which the sputtering effect is appreciable and the corpuscular effect exceeds the 
Poynting-Robertson effect. We may then adopt the earlier value ln(po/pf) = 3, and, 
from equations (15a) and (20a), obtain the approximate numerical result: 

L = 5. o X 10~snc]Vc Vc ■ - (20b) 
Le 

Values of LjLc from equation (20a) are given in Table 2 for various values of Wc and 
n0 and for Vc = 600 km/sec. Corresponding values of 1+ / and B[W are also included 
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for their general interest. Corpuscular radiation clearly demands a considerably greater 
supply of material, L/LCl to maintain the zodiacal cloud than does the Poynting-Robert- 
son effect alone, particularly if nc exceeds 1.0. Note in Table 2 that 1 + / is the factor 
of increase in mass rate of = 0. 

We shall neglect corpuscular radiation in the following sections because of the great 
uncertainties in its amount and in calculating its effects. Its possible important role, 
however, must be continuously borne in mind. 

VI. THE PERTURBATIONS OE PARTICLES IN LONG-PERIOD COMETARY ORBITS 

In this section we shall calculate the fraction of particles that attain a value oil/a = 
0.2/(a.u.) after release in orbits with the same distribution as is observed for cometary 
orbits of smaller 1/a. 

Particles ejected in long-period comets will be subjected to perturbations by the 
planets and by the Poynting-Robertson effect. The latter perturbations increase l/a 
secularly, while the former exhibit a random character. Particles with l/a> 0.2/(a.u.) 
will be perturbed in a different manner, particularly by Jupiter and Saturn, than those 
in much longer orbits, so that our approach to their subsequent history must be altered 
after we bring them to 1/a = 0.2/(a.u.). 

Attempts to cope with the large perturbations arising from relatively close approached 
of bodies to Jupiter have led to a number of extensive studies by H. A. Newton (1893), 
M. O. Callandreau (1902), H. N. Russell (1920), A. J. J. von Woerkom (1948), and E. 
Öpik (1951). These large perturbations are generally of little significance in our prpblfem 
for l/ö < 0.2/(a.u.) and will be neglected here. , a? 

The concept of “random” perturbations as suggested by Russell and Utilized 50 ef- 
fectively by Oort appears to present a sound approach to the problem for aphelia well 
beyond Jupiter’s orbit. Let us assume with Russell and Oort that the arithmetic meafi 
value of random perturbations ml/a produced by Jupiter is zero for a particle with a 
very long period, a random inclination, and perihelion within Jupiter’s orbit. As an 
approximation to a Gaussian distribution in A(1/ö) per revolution, Oort adopts the mean 
absolute perturbation | A(l/a) | = 0.00058 (a.u.)-1 per perihelion passage for “direct” or- 
bits and 0.00038 for “retrograde” orbits; the first value is very close to Russell’s deter- 
mination from fifteen passages of Halley’s Comet. We may assume that a comet under- 
goes such a perturbation (either positive or negative) in 1/a during each period. For small 
particles, there is superimposed upon this random change in 1/a, a systematically posi- 
tive change produced by the Poynting-Robertson effect. To determine the fraction of 
the particles ejected from very long-period comets that may spiral into short-period or- 
bits, we can apply the theory of the one-dimensional random walk, explicitly the prob- 
lem of the Gambler’s Ruin. 

Since we utilize a binomial-type expression for the Gaussian distribution in Al/a per 
period, an application of the well-known De Moivre-Laplace limit theorem indicates 
that the individual steps should be taken as.equal to the standard deviation, oi(l/a), of 
the perturbation in 1/a per period, not the mean absolute value. Let e represent the 
ratio of the Poynting-Robertson change in 1/a per period to the standard deviation, or 

hi/a 
a (1/a) 

(21) 

So long as e remains well below unity, we may accept a good approximate solution to 
our problem by considering the steps in 1/a per period as constant. Let Z be the ratio in 
probabilities of a positive change per period in.l/a to a negative change, as follows: 
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760 FRED L. WHIPPLE 

Then a particle released in an orbit of l/a0 will have a certain probability, Px, of at- 
taining an orbit of 1 /ax without being lost from the system (a0 > a^). Let the number 
of steps from 1/a = 0 to the two boundaries, l/a0 and l/ax, respectively, be 

(l/gp) 
o- (1/a) 

and _ (l/aJ 
o-(l/a) ' 

(23) 

The theory of the Gambler’s Ruin (W. Feller 1950) gives the desired probability as 
follows: 

if Z5¿1, and = ^ if Z=l. (24) 
% X Ax 

We are interested in the average number of revolutions of the particles, or the average 
duration of the process, only in the successful cases, i.e., when the particles succeed in 
attaining a = ax. In the usual presentation of the Gambler’s Ruin problem, both suc- 
cessful and unsuccessful cases are included in the duration. After a certain amount of 
manipulation, we find that the average duration, Dx, of a successful run is given by 

and 

Æ, 1+Z^x A, 1+Z^o 
x e 1-ZAr € 1-Z^o’ 

Dx = \{Al-Al), if Z = 

if Z 1, 
(25) 

The duration in our problem is, of course, the average number of revolutions about the 
sun made by a particle released in an orbit of a = a0 until it attains an orbit of a = ax. 
Those particles lost in hyperbolic orbits are neglected in this average. 

The rate of increase in l/a (5 1/a per period) by the Poynting-Robertson effect can 
be expressed conveniently in the form 

1_ 2ira (2 + 3 e2) 

a (GM)1/2ç3/2(1+ g)3/2- (26) 

where M is the mass of the sun, G the constant of gravity, and a the quantity of equa- 
tion (2a). 

Since g, the perihelion distance, remains practically constant until the eccentricity is 
greatly reduced from nearly unity and since the ratio (2 + 3¿2)/(l + e)z^ varies only 
from 1.77 to 1.50 as e changes from 1.0 to 0.5, we may adopt the ratio as 1.7, and q = 
Constant in equation (26) for orbits of long period. As a consequence, for spherical par- 
ticles of density 4 gm/cm3, we may evaluate a from equation (2a) to derive the following 
numerical result: 

1 _ 1.5 X 10~8 

a s g3/2 ’ 
(27) 

where s is the radius of the particle in centimeters and a and q are expressed in astro- 
nomical units. 

Hence Z can be determined from equations (22), (21), and (27). Let us accept 
o/l/a) = 0.000476/(a.u.) for retrograde orbits and 0.000727 for direct orbits, and cal- 
culate the probabilities of particle survival and duration from longer period orbits to 
l/ax = 0.2 (period = 11.2 yr.). For retrograde orbits eS = 3.15 X 10~5 cm, and Ax = 
420 steps, while for direct orbits eS = 2.06 X 10~5 cm, and Ax = 275, where 5 is 
defined by 

4 gm/ cnr 

where g is expressed in astronomical units. 
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Thus for q — 1 a.u. and pfi = 4 gm/cm3, we have S equal to s, the radius of the 
spherical particle. For a particle of some other perihelion distance or density, the proper 
relation between 5 and S is given by equation (28). In case the particle is not spherical, 
the appropriate value of s to be used here can be obtained by equating 3/(4sps) to the 
ratio, A/m,oî the average cross-sectional area of the particle to its mass. 

Typical results of the calculations for probabilities and durations of various-sized 
particles in direct and retrograde orbits from 1/ao to \/ax = 0:2/(a.u.) are presented in 
Table 3. Perhaps the most interesting fact shown by Table 3 is the greater probability of, 
a successful run for retrograde than for direct orbits among the smaller particles. Since; 
the Poynting-Robertson effect is a greater fraction of the average random perturbation; 
for retrograde than direct orbits, the spiraling is relatively more effective. On the other 

TABLE 3 

Probabilities (Pz) and Average Numbers of Revolutions 
(zy FROM l/a0 TO l/ax = 0.2/(A.U.) 

l/a( 0.0005 0.001 0.01 0.1 

Direct 

Retro. 

Direct 

Retro. 

Direct. 

Retro. 

Direct. 

Retro.. 

ÍP* 
[Dx 

rPx 
\DX 

ÍP* 

f-P* 
\DX 

/Px 
\DX 

P* 
Dx 

ÍP* 
{Dx 

ÍPx 
\DX 

0.342 
1310 

0.479 
1320 

0.039 
10,700 

0.061 
12,300 

0.006 
24,700 

0.007 
53,000 

0.002 
25,200 

0.002 
58,600 

5* = 10-4 cm 

0.567 
1310 

0.729 
1320 

0.995 
1260 

1.000 
1260 

¿'* = 10-3 Cm 

0.075 
10,700 

0.118 
12,300 

0.408 
10,600 

0.720 
12,100 

¿* = 10-2 Cm 

0.012 
24,700 

0.013 
53,000 

0.081 
24,600 

0.295 
52,700 

¿ = 00 

0.005 
25,200 

0.005 
58,6Q0 

0.050 
25,100 

0.050 
58,500 

1.000 
670 

1.000 
670 

0.996 
6600 

1.000 
6700 

0.630 
17,600 

0.770 
38,000 

0.500 
18,900 

0.500 
44,000 

* The quantity ¿ Í3 roughly one-tenth the particle radius, s. 
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762 FRED L. WHIPPLE 

hand, more revolutions are required for retrograde particles to obtain = 0.2 because 
the number of perturbation steps is greater. 

We have assumed that the orbit of a particle is identical with the orbit of the parent 
comet at the time of ejection. In fact, the particle will leave the comet with a small, but 
finite velocity of ejection, affecting 1/a. By neglecting this factor, we increase somewhat 
the calculated losses of particles in extremely long orbits because some particles will be 
shifted immediately into orbits with larger values of 1/a. The result of this neglect is not 
serious, however, as can be seen from Table 3, because the fraction of such particles that 
attain large values of 1/a is small unless the Poynting-Robertson effect is large, in which 
case neglect again is not important. 

VU. THE JUPITER BARRIER 

For larger particles, the nature of the perturbations changes markedly as their aphelia 
approach more and more closely to that of Jupiter. Since the frequency of comet orbits 
(on a log 1/a scale) shows a dip near 1/a = 0.15/(a.u.), our calculations in Section VI 
have carried the particles until they are essentially members of Jupiter’s “family,” 
analogous to the short-period comets. Here we meet the Jupiter barrier problem. Bodies 
in such orbits are “bounced about” by the relatively large perturbations of Jupiter. The 
Poynting-Robertson spiral must operate between the relatively close approaches to 
Jupiter until aphelion is reduced below Jupiter’s perihelion or until the particle meets 
disaster by (a) collision with Jupiter, {b) expulsion from the system, (c) collision with the 
sun or other planets, or (d) collisions with a sufficient number of particles or corpuscles. 

Öpik (1951) has discussed the problem of the Jupiter barrier for particles in nearly 
circular orbits. His analysis, however, must be altered considerably for particles with 
small perihelion distances. With its aphelion not far beyond Jupiter’s orbit, the particle 
will suffer changes in aphelion distance until eventually, in almost all cases, the aphelion 
lies very close to Jupiter’s orbit. Close approaches then may not occur for a number of 
revolutions because of the motion of the node, usually regressive for direct orbits and 
forward for retrograde orbits. A particle for which 1/a increases about 0.01/(a.u.) during 
the interval that the node turns progressively one-half revolution will withdraw through 
the range from Jupiter’s aphelion to perihelion, and thus be relatively safe from the 
Jupiter menace. The perturbation in the line of apsides may in some cases also play a 
role in these effects. 

The average value of AÜ per revolution for eleven typical short-period comets is 0?3. 
Thus a half-revolution of the node requires some 600 revolutions. The Poynting-Robert- 
son effect on 1/a is 1/70, 1/700, and l/7000 of 0.01/(a.u.) for S = 10~4, 10"3, and 10~2 

cm, respectively. The probability of penetration is practically unity for S = lO1-4 cm, and 
very high for 5 = 10-3 cm, because several good opportunities for crossing occur for each 
particle. The probabilities for crossing the Jupiter barrier are also appreciable for larger 
values of S, because the aphelion may be left near Jupiter’s perihelion after a close 
approach. 

For large particles in direct orbits, we may look to the comet statistics. Of the 63 
individual comets recognized since 1850 with 1/a > 0.116/(a.u.), in the list by F. Baldet 
and Miss G. de Obaldia (1952) and in the selected list by J. G. Porter (1952), 8 (or 13 
per cent) have aphelion less than 4.951 a.u., Jupiter’s perihelion, and 3 (or 5 per cent) 
approximately equal to it. Of the 17 recent comets not included in the catalogue by I. 
Yamamoto (1936), 6 (or 35 per cent) are included in these two categories. This remarkable 
distribution of cometary aphelia is shown in Figure 1 for the 63 comets of a < 8.62 a.u. 
The circles in the diagram represent the frequency distribution for intervals centered 
halfway between those represented by the connected points. Almost half of the aphelia 
(29) lie within Jupiter’s perihelion and aphelion. The frequency-curve passes fairly 
smoothly through Jupiter’s perihelion but suffers a dip near its aphelion. 

We must conclude, in fact, that the periodic comets have little trouble in penetrating 
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the Jupiter barrier, despite their relatively short lives. To what extent secular changes 
in period, as evidenced by Comet Encke, and others (Whipple 1950, 1951) may be re- 
sponsible for great reductions in qr is not known at present. More accurate determina- 
tions of secular or long-period changes in the periods of short-period comets should clari- 
fy this question. In any case, it appears reasonable to adopt the following as empirical 
probabilities that long-lived particles in direct orbits may cross the barrier: for S = 10“4 

cm, 1.00; S = 10-3, 0.95; 5 = 10~2, 0.67; 5 = 0.1, 0.30. For retrograde particles, the 
motions of the node are roughly — J those for direct orbits; we adopt as intentionally 
large values of the retrograde probabilities: S = 10~4 and lO1-3 cm, 1.00; 5 = 10-2, 0.80; 

Fig. 1.—Aphelia of 63 comets a < 8.62 A 

and S = 0.1, 0.67. These adopted probabilities are larger than those derived by Öpik, 
as they should be; Öpik was dealing with nearly circular orbits rather than elongated 
ones. 

The probability of capture by Jupiter appears not to be serious for particles less than 
about 1 cm in radius. Öpik’s theory, when applied to the orbits here considered, makes 
the probability of capture about 0.8 X 10-6 per revolution for low-inclination direct 
orbits, 10~7 for average direct orbits, and 3 X 10~8 for average retrograde orbits. The 
maximum average duration in Table 3 is 6 X 104 revolutions, making the probability 
of a capture by Jupiter rather small. Hence no correction for such captures has been in- 
cluded. For large particles the end result will be some sort of catastrophe, since the 
Poynting-Robertson spiral will be too slow to be effective in 3 X 109 years. This limit 
on particle size is roughly s = 10 cm for particles in short-period orbits. 

VIII. THE COMETARY CONTRIBUTION TO THE ZODIACAL CLOUD 

The adopted distribution of comet orbits into which potential zodiacal particles are 
initiated is shown in the second column of Table 4. It is based on Oort’s compilation for 
1/a up to 0.04/(a.u.). His distribution is proportional (not equal) to the number of com- 
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ets passing perihelion per year and amounts to 44 in all. I have added the shorter-period 
comets by a count of all comets observed in the interval 1840 to 1900 inclusive. This 
largely prephotographic interval was chosen as one in which the orbits are reasonably 
well determined, but in which the extremely faint short-period comets do not overweigh 
the distribution. These faint comets must contribute little to the zodiacal cloud. In all, 
258 comet appearances are listed in Yamamoto’s catalogue (1936), an average of 4.2 per 
year. A correction factor of 0.271 brings the comet distributions of 1840-1900 into agree- 
ment with Oort’s compilation for l/ö < 0.04/(a.u.). The total now becomes 70; a correc- 
tion factor of 4.2/70 or 0.06 reduces the distribution in Table 4 to the average yearly 
number between 1840 and 1900. Comet Encke is the sole contributor in the interval 
1/a > 0.41 /(a.u.). In the Table 4 listing of the proportional number of comets of various 
l/a, I have reduced the numbers of short-period comets by a factor of 0.1, to allow for 
a smaller contribution of zodiacal particles per revolution by these relatively faint 
comets. The factor of 0.1 is based roughly on determinations of the absolute magnitudes 
of comets. Thus the effective number of brighter comets is reduced from 70 to 50.92 in 
the table summation. 

Table 4 lists the calculated contributions to the zodiacal cloud by the average comets 
in terms of the probabilities that particles ejected by the comets will attain aphelion dis- 
tances less than Jupiter’s perihelion distance, 4.94 a.u. These probabilities are listed 
under the heading of “Prob.,” for particles with S values of 10-4,10~3,10-2, and 10-1 cm 
and for comets with 1/a values as given in the first column of the table. Listings for direct 
and retrograde orbits are separated. It will be demonstrated below that these probabili- 
ties roughly approximate the fraction of the total sunlight that would be totally scat- 
tered by given masses of particles released by the comets in terms of the light they would 
have scattered, had no losses been incurred. The effects of collisional destruction of the 
particles will be discussed in the next section. Neglecting these collisional losses in Table 
4, we may take the listed probabilities as proportional to the masses contributed con- 
tinuously to the zodiacal cloud by the observed distribution of comets in terms of 1/a 
(second column). Hence the columns headed “Contr.” list the effective amounts of the 
mass contributions to the zodiacal cloud by the comets, on the assumption that no fur- 
ther losses among the particles occur after an aphelion distance of 4.95 a.u. is attained. 

The probabilities in Table 4 are the products of three probabilities—A, B, and C— 
explained in more detail in the following paragraphs. 

Probability A.—A factor of zero for those particles swept away by the interstellar wind, 
as listed in Table 1 for = IE atom/cm3, or a factor of unity for other particles. 

Probability B.—A factor, Pz, calculated by means of the random-walk theory of Sec- 
tion VI to allow for the losses of particles from their Poynting-Robertson spirals as a 
result of the random perturbations by Jupiter. Table 3 lists a few typical values of this 
factor. That this factor is a fair measure of the fraction of the mass of the particles in so 
far as their effective light-scattering is concerned can be demonstrated as follows: Equa- 
tion (5) shows that the total sunlight scattered by a particle during its Poynting-Robert- 
son spiral through an orbital parameter change of dp is proportional to dp/p, which 
equals —qd(l/a)(2 + 2e)/{2 + 2>e2), where q is the perihelion distance. Since q changes 
slowly and e remains large in the early spiral period, the total light-scattering is closely 
proportional to d(l/a). Now from the solution of the Gambler’s Ruin problem (Sec. VI), 
as applied to the random Jupiter perturbations, we find that the average number of 
revolutions for particles before they either gain the desired value of 1/a or are lost at 
1/a = 0 is given by (AZPZ — A o)/e. Without perturbations, the number of revolutions 
to 1/a would have been (Az — Aq)/€. The average ratio in number of revolutions is, 
therefore, (Pz — Aq/Az)(1 — Aq/Az)-1. This ratio is P* if Pz = 1 or if Aq/Az Pz. 
Thus Pz is a good measure of the average fraction of the particles’ masses used in light- 
scattering when Pz is near unity, and an overestimate when Pz is small, over the range 
of change in 1/a when 1/a is small. Since Pz is, by definition, the fraction of the mass 
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TABLE 4 

Comet ary Contributions to Aphelion <4.95 a.u. 
DIRECT ORBITS 

0.1 Particle 
Radius* 

(1A*) 

No. 
Comets 

5 = 10-4 Cm 

Prob. Contr. 

5 = 10-3 Cm 

Prob. Contr. 

5 = 10-2 Cm 

Prob. Contr. 

5 = 10-i Cm 

Prob. Contr. 

0-0.00005  
0.00005-.0001. 

.0001-.0002.. 

.0002-.0005.. 

.0005-.001... 

.001-.002... . 

.002-.004... . 

.004-.006... . 

.006-.01  

.01-.02  

.02-.03  

.03-.04  

.04-.07  

.07-.1  

.1--2+  

.2+--41  
0.41-0.82... . . 

Fraction direct 
surviving. 

6 
2 
2 
2 
1.5 
1.6 
1.8 
0.7 
2.1 
1.6 
0.8 
0.3 
1.4 
1.0 
1.6 
1.63 
0.49 

28.52 

0 
0 
0.171 
0.342 
0.492 
0.650 
0.800 
0.910 
0.980 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 

0 
0 
0.342 
0.684 
0.738 
1.040 
1.440 
0.637 
2.058 
1.600 
0.800 
0.300 
1.400 
1.000 
1.600 
1.630 
0.490 

0 
0.036 

.037 

.037 

.059 

.089 

.156 

.221 

.304 

.509 

.675 

.797 

.903 

.942 

.950 

.096 
0.100 

0 
0.072 
0.074 
0.074 
0.088 
0.142 
0.272 
0.155 
0.638 
0.814 
0.540 
0.239 
1.264 
0.942 
1.520 
1.565 
0.490 

0.004 
.004 
.004 
.004 
.007 
.010 
.016 
.027 
.040 
.078 
.129 
.184 
.257 
.378 
.589 
.080 

0.100 

0.024 
0.008 
0.008 
0.008 
0.010 
0.016 
0.029 
0.019 
0.084 
0.125 
0.103 
0.055 
0.360 
0.378 
0.942 
1.304 
0.490 

0.001 
.001 
.001 
.001 
.002 
.003 
.004 
.008 
.011 
.022 
.038 
.054 
.080 
.128 
.240 
.045 

0.100 

15.759 8.889 3.963 

0.553 0.313 0.139 

0.006 
.002 
.002 
.002 
.003 
.005 
.007 
.006 
.023 
.035 
.030 
.016 
.112 
.128 
.384 
.734 

0.490 

1.985 

0.070 

* 5 is approximately 0.1, the true particle radius. 

RETROGRADE ORBITS 

0.1 Particle 
Radius* 

(1/0) 

No. 
Comets 

5 = 10-< Cm 

Prob. Contr. 

5 = 10-3 cm 

Prob. Contr. 

S = lO-2 Cm 

Prob. Contr. 

5 = 10-i cm 

Prob. Contr. 

0-0.00005  
0.00005-.0001. 

.0001-. 0002.. 

.0002-. 0005.. 

.0005-. 001... 

.001-.002... . 

.002-.004.... 

.004-.006.... 

.006-.01  

.01-.02  

.02-.03  

.03-.04  

.04-.07  

.07-.1  
0.1-0.82  

Fraction ret- 
rograde 
surviving.. 

Direct/ret- 
rograde. .. 

Fraction total 
surviving.. 

6 
2 
2 
2 
1.5 
1.6 
1.8 
0.7 
2.0 
1.3 
0.5 
0.2 
0.6 
0.2 
0.0 

22.4 

1.27 

0 
0 
0.240 
0.492 
0.730 
0.830 
0.980 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 

0 
0 
0.480 
0.986 
1.095 
1.328 
1.764 
0.700 
2.000 
1.300 
0.500 
0.200 
0.600 
0.200 
0.000 

0 
0.060 
0.061 
0.065 
0.118 
0.176 
0.322 
0.468 
0.597 
0.856 
0.955 
1.995 
1.000 
1.000 

0 
0.120 
0.122 
0.130 
0.177 
0.282 
0.580 
0.328 
1.194 
1.113 
0.478 
0.199 
0.600 
0.200 
0.000 

0.005 
.005 
.005 
.006 
.011 
.016 
.032 
.054 
.077 
.155 
.240 
.332 
.434 

0.581 

0.030 
0.010 
0.010 
0.012 
0.016 
0.026 
0.058 
0.038 
0.154 
0.202 
0.120 
0.066 
0.260 
0.116 
0.000 

0.002 
.002 
.002 
.002 
.003 
.005 
.010 
.017 
.024 
.050 
.084 
.121 
.177 

0.284 

11.153 5.523 1.118 

0.159 

1.41 

0.529 

0.079 

1.61 

0.283 

0.016 

3.54 

0.100 

0.012 
.004 
.004 
.004 
.005 
.008 
.018 
.012 
.048 
.065 
.042 
.024 
.106 
.057 

0.000 

0.409 

0.006 

4.85 

0.047 

*S is approximately 0.1, the true particle radius. 
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that attains a chosen value of 1/a after which losses are not assumed, Pz is nearly pro- 
portional to the mass contribution of a comet to the zodiacal cloud and to the zodiacal 
light. 

Probability C.—The probability factor that a particle with aphelion near Jupiter’s 
orbit will cross Jupiter’s perturbational barrier to an aphelion distance within Jupiter’s 
orbit (Sec. VII). 

The contributions to the zodiacal light and to the zodiacal cloud within Jupiter’s orbit 
are listed in Table 4 as the product of the probability for each particle size and the num- 
ber of cometary passages per unit time (16.7 years). The sums in the contribution col- 
umns represent the relative contribution by the various size groups, direct or retrograde. 
Direct orbits prevail with an increasing ratio for larger particles. The survival fractions 
must still be corrected for collision losses before and after the theoretical arrival within 
Jupiter’s orbit. 

The quantity S in Table 4 is the particle radius for a specific density of 4 gm/cm3, 
and g = 1 a.u. (see eq. [28]). The mean value of for 67 individual comets from 1840 
to 1870 inclusive is 2.16(a.u.)“3/2 or 5.67 if Comet 1865 I is included (g = 0.0258). Per- 
haps 3.0(a.u.)_3/2 is a fair compromise between these quite different means. A specific 
density of 4 gm/cm3 is probably too great for cometary particles (Whipple 1952c). The 
true average value may well lie below 1 gm/cm3. Since the exact value is not known, we 
adopt ps = 1.2 gm/cm3 to make s = 10 S by equation (28). Hence the true radii apply- 
ing to Table 4 are approximately ten times the tabulated values of S. 

A large fraction of the most fragile and most porous meteoroids probably break up 
during their many revolutions from long-period to zodiacal-cloud orbits. A correction to 
Table 4 is needed for this effect. Much of the broken matter, however, may well be in the 
range 5 > 3 X 10-5 cm, so that it can still contribute to the zodiacal light. Perhaps the 
greater probability of a successful orbital reduction for the surviving sizable pieces will 
compensate for the matter lost in finer dust. We make no correction for the surviving 
pieces because of the difficulty of estimating the gain, but we do use maximal values in 
calculating the destruction losses by the mutual collisions of zodiacal particles, in the 
following section. 

IX. COLLISIONAL DESTRUCTION 

H. Jeffreys (1916) has demonstrated the importance of collisons in revolving clouds 
of particles such as the zodiacal cloud and the Rings of Saturn. We adopt van de Hulst’s 
distribution of particle sizes and densities for a uniform zodiacal cloud in order to inves- 
tigate collisional effects. He finds that the number of particles per cubic centimeter, n{s), 
is given by the equation 

n(s) ds = C~xds , (29) 

where C = 3.5 X Iff-20 and x = 2.6 for particles with radii in the range 3 X 10~5 < 
$■ < 0.035 cm. 

A particle of radius so, in traveling 1 cm through the cloud, will collide with the fol- 
lowing number of particles at rest in the range of radius Si to s2: 

N (sly s2) = ttC J (so+s)2s xds. (30) 

If the particle s0 moves at velocity V and encounters cloud particles with a mean rela- 
tive'vëlocity VR, then the velocity correction factor to A/si, ^) is VR/V. The encounter 
with a particle of radius s and mass m will, for s <<C So, release kinetic energy equal to 
0.5 mVr. At velocities of several km/sec, both s and so will suffer destructive action in 
vaporization, fusion, and fragmentation. The experiments of J. S. Rinehart and W. C. 
White (1951) suggest that the loss of mass by the more massive body is comparable to the 
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kinetic energy divided by the heat of fusion, f (Whipple 1952a). Thus the relative mass, 
Arao/wo, lost by the particle in a collision with a similar, but much smaller, particle of 
mass m is given by 

A Wo = FrS3 

Wo 

We assume that the particle so is destroyed when — 1. Thus destruction oc- 
curs by collision with a particle of radius greater than Si, given by 

5l= 50(2fF72)l/3 . ' (32) 

Hence our particle, in traveling a distance D through the zodiacal cloud, is subject to 
the probability P(si, s2), of destruction, as given by 

PUi, S2) =DN(sly s2) VrV~l , (33) 

where $1, as given in equation (32), is applied in equation (30). Attrition by smaller par- 
ticles and the ready shattering of fragile meteoroids are to some extent included in the 
relatively large collisional cross-section, tt{sq + s)2, that we have adopted. 

For our potential zodiacal particles in elongated orbits near perihelion, let us accept 
D = 5 a.u., F = 50 km/sec-1, S2 = 10“1-5 cm, and f = 1010 ergs/gm. We may average 
the nearly circular velocities of the true zodiacal particles, as combined vectorially with 
V to give roughly 

Vr= FU + 2-3/2), (34) 

where the + sign applies to retrograde and the — sign to direct motions. These means 
are weighted slightly in favor of low i, as compared to random orientations at perihelion. 

In finally correcting the cometary contributions of Table 4 for collisional destruction, 
we adopt as the true particle radius, s0, ten times S listed in Table 4. Values of So are given 
in the first line of Table 5. The lower collisional radius, $i, in the third line is derived from 
equations (33) and (34) for direct and retrograde orbits. No particle radii below 10~4-6 

cm are permitted. Table 5 then lists (fourth line) the probability that a particle will be 
destroyed in a single revolution according to equation (33). In the fifth line follows the 
mean number of revolutions required for particles starting in long-period orbits to at- 
tain arl = 0.2 and (sixth line) 0.6/(a.u.). The probability of survival (seventh line) is 
given by exp( —Prob, loss/rev. X number of revolutions), and listed to a-1 = 0.6 and 
also from 0.2 to 0.6/(a.u.) in the eighth line. The number of cometary particles surviving 
with no collisional destruction follows in the ninth line, as copied from Table 4. The cor- 
responding number (tenth line) to arl = 0.6/(a.u.) is then derived from the ninth line 
and the earlier probabilities in Table 5, in terms of 50.92 comets as total. The fractions 
of the 50.92 surviving are then listed in the eleventh and twelfth lines, followed by the 
ratio of survivors, ííDirect/retrogrâde,,, in the last line. 

X. CONCLUSIONS 

The rapid calculated drop in particle frequency should occur near ¿o = 0.035 cm, ac- 
cording to the deduction by van de Hulst. In Table 5 there is a striking cutoff near this 
value, beginning with some decline slightly below 5 = 0.01 cm. For more exact compari- 
son between van de Hulst’s and the present distribution of particle sizes, his function 
n(s) ^ s-2-6 should be corrected by s“1 to give the injection distribution; the Poynting- 
Robertson rate of loss varies as s-1. The distribution must further be changed to a dis- 
tribution function in mass, resulting in a law of the form slA — slA. This law gives an 
increase of 2.512 in the mass between successive intervals spaced by factors of 10 in s. 
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The agreement between the present calculations and those of van de Hulst is quite satis- 
factory in view of the various uncertainties, particularly in the original distribution of 
particle sizes from comets. The agreement could be improved by including the destruc- 
tion rates. Piotrowski (1952), however, uses an even larger crushing rate for asteroidal 
material, by adopting f in the range of 107-109 ergs/gm instead of 1010 ergs/gm. I believe 
that the present values of the collisional destruction are high rather than low because 
of the high velocities involved. 

The considerable fraction of retrograde particles predicted is not necessarily incon- 
sistent with the observed ecliptic concentration of the zodiacal light, in view of the fact 
that, as the orbits become smaller and more circular, the losses in direct orbits continual- 
ly decrease, while those in high-inclination orbits remain nearly constant. Nevertheless, 
the present calculations indicate that the zodiacal cloud should contain a small but ap- 

TABLE 5 

Cometary Contributions to the Zodiacal Cloud 

Particle Radius (Cm) 
5 (Cm)  

10-4 
10-5 

Dir. Retro. 

10-3 
10-4 

Dir. Retro. 

10-2 
10-3 

Dir. Retro. 

10-1 
10-2 

Dir. Retro. 

logical (cm)  
Prob, loss (rev.^XlO6. 
No. rev. to a-1 = 0.2X 

10-3  
No. rev. to a-1 = 0.6X 

10-3  
Prob. surv. or1=0.6. . . 
Prob. surv. a-1 = 0.2 to 

0.6  
Table 4 surviving  

No. surviving. . . . 
Fraction tot. surv. 

Fraction dir.+retro. 
Direct/retrograde... 

-4.50 
0.45 

<1.000 

<3.0 
0.99 

0.99 

-4.50 
0.95 

<1.0 

<3.0 
0.97 

0.98 

-3.91 
1.26 

1.31 

3.98 
0.95 

0.97 
15.8 

-4.12 
4.43 

1.32 

3.99 
0.84 

0.89 
11.2 

-2.91 
2.56 

10.7 

37.4 
0.38 

0.50 
8.9 

-3.12 
9.83 

12.3 

39.0 
0.022 

0.072 
5.52 

-1.91 
4.06 

25 

292 
7X10-6 

2X10-5 

3.96 

- 2.12 
19.7 

53 

320 
IQ-28 

10-2S 
1.12 

18.2 
0.358 

11.9 
0.234 

15.1 
0.296 

9.4 
0.184 

4.1 
0.081 

0.12 
0.002 

0.010 
10~4 

10-28 
10-30 

0.592 
1.52 

0.480 
1.60 

0.083 
35 

10~4 

1024 

preciable fraction of fairly small particles in high-inclination orbits, although the concen- 
tration to the ecliptic wül be higher than suggested by the “Direct/retrograde” ratios 
of Table 5. Among larger particles (¿o > lO-2,6 cm), only low-inclination direct motions 
will remain. 

To estimate the fraction of the total cometary contribution of meteoritic material that 
actually becomes a part of the zodiacal cloud, we must assume an original distribution 
of particle sizes. The distribution, w(¿), proportional to s~4, derived for meteors by F. G. 
Watson (1941), leads to the simplest result, a constant mass in each logarithmic interval 
of s. If we limit the radii to ten logarithmic steps from atomic dimensions, 10-8 cm, to 
10 cm, Table 5 indicates that the fraction, 0.116, of the cometary meteoritic material 
effectively contributes to the zodiacal light. Thus 3.5 tons of the estimated 30 tons are 
added effectively to the zodiacal cloud per second. The agreement with our prediction of 
1 ton sec-1 required by the observations is excellent indeed. 

If we adopt van de Hulst’s distribution function in mass, corrected as shown, we find 
that the fraction depends appreciably upon the selected upper limit of particle radius. 
For upper limits s = 10, 1, and 0.1 cm, we find that Table 5 leads to a cometary con- 
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tribution to the zodiacal cloud of 0.7, 1.7, and 4.2 tons/sec, respectively. Thus the 
cometary hypothesis provides about the proper quantity of matter for maintenance of 
the zodiacal cloud. The effective mass may be somewhat larger than the present calcu- 
lations indicate, because our “destruction” of particles involves considerable breakage 
only, not entirely a loss of mass to vapor. 

The present theory explains another discrepancy; van de Hulst pointed out the fact 
that his distribution of particle sizes leads to some 104 times the rate of terrestrial 
meteoritic accretion predicted by Watson. The prediction by van de Hulst has powerful 
confirmation in the observations of deep-sea sediments by H. Patterson and H. Rotsche 
(1950). Other less conclusive confirmation is also available from rocket soundings 
(Whipple 1952ft) and the collection of micrometeorites (Hoffleit 1952). 

In fact, Watson’s low prediction (corrected for an error) of about 5 tons per day for 
the entire earth is based on an extrapolation below the particle sizes observed as meteors. 
The perturbational and collisional losses sustained by larger particles before they can 
complete their Poynting-Robertson spirals accounts for a discontinuity in the distribu- 
tion function of particle sizes between radii of 10-1*5 and 10“2-5 cm, almost exactly as 
predicted by van de Hulst. Öpik’s explanation of this phenomenon as a consequence of 
the Jupiter barrier alone appears inadequate, at least for cometary contributions includ- 
ing retrograde orbits. 

Piotrowski (1953) calculates that the asteroidal belt should produce between 20 and 
600 tons/sec of finely divided material by collisional crushing. Even though his estimates 
of the total mass and crushing rate may be much too high, the asteroids appear also to 
offer an adequate source of zodiacal material. 

Whether the comets or the asteroids predominate in zodiacal contribution must be 
decided on the basis of other criteria than those described here, presumably from meteor- 
ic and micrometeoritical information as well as from the shape of the zodiacal cloud. 
The recent researches of A. Behr and H. Siedentopf (1953) on the zodiacal light should 
be invaluable in this latter respect. Certain available data, however, do bear on this 
problem. 

There can be little doubt that asteroids constitute the major source of meteorites. As 
we consider smaller bodies, we find that comets contribute about 90 per cent of the bright 
photographic meteors (Whipple 1954). Is it possible that the asteroids again become the 
main contributor of extremely fine dust? Piotrowski’s frequency distribution law of s~z 

for asteroidal particles cannot compete well with Watson’s s~4 law for meteoroids in the 
region of small s, if the actual frequencies match at some moderate value of s. In fact, the 
preponderance of cometary particles among the photographic meteors as compared to the 
meteorites may well be a measure of the difference between these two frequency laws. 
If so, the asteroidal contribution to the zodiacal cloud must be vanishingly small. 

The present theory has not yet been tested to determine whether it predicts the 
proper distribution of the zodiacal light on the sky. The author intends to use the results 
of the present paper as a first approximation to improve the calculations of the rate of 
collisional destruction. Then all the calculations can be improved, particularly by more 
subdivision of the orbits with respect to inclination, so that a valid prediction can be 
made concerning the average spatial distribution of the particles and their total scatter- 
ing. Perhaps, also, better values of the pertinent parameters of corpuscular radiation 
and sputtering will permit a better estimate of the effects produced by corpuscular 
radiation. 

It is interesting to note that an increase of the spiraling rate introduced by corpuscular 
radiation would require more mass input to maintain the zodiacal cloud and would also 
increase the critical dimension of zodiacal particles at the cutoff. Thus the observed value 
of the cutoff dimension sets a limit to the amount of the corpuscular radiation. Part of 
the required increase in the required mass input would be provided by the increased rate 
of spiraling and consequent reduced loss of larger particles by perturbations and colli- 
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sions. Both the cutoff dimension and the mass input would be increased theoretically 
by sputtering. Laboratory data relevant to the sputtering problem are badly needed. 

The author is grateful to Dr. H. C. van de Hulst for his critical review of this paper 
in manuscript and for his suggestions that have served both to increase the clarity of 
presentation and to eliminate certain errors. 
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