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ABSTRACT 
It is shown that a horizontal magnetic flux tube in an electrically conducting atmosphere is buoyant 

and will tend to rise. This magnetic buoyancy is large enough to bring an occasional strand of flux from 
the general solar toroidal field up into the photosphere, if we assume general field densities of a few hun- 
dred gauss farther down. Identifying the intersection of such ropes with the photosphere as the source 
of sunspots, we may deduce several general characteristics of the spots, e.g., east-west orientation, 
bipolarity, appearance only in low latitudes, migration, reversal of polarity, etc. The linearized static 
equilibrium equations for a flux tube are developed. With a cooling mechanism, such as that suggested by 
Biermann (1941), we find from the equilibrium equations that a sunspot group should consist of a diffuse 
flux tube of 10-100 gauss and 106 km extent in the photosphere, forming eventually a number of cool 
intense cores of several thousand gauss. 

I. INTRODUCTION 

Hydromagnetic dynamo theory suggests that we should expect dynamo waves just 
under the surface of the sun in the convective zone migrating from the polar to the equa- 
torial regions. The waves are prevented from diffusing out of the convective zone by the 
high conductivity of the medium. The waves consist in part of bands of toroidal mag- 
netic field; the sense of the field alternates from one band to the next. The poloidal field 
is tt/2 out of phase with the toroidal field, essentially occupying the regions between the 
intense toroidal bands. This is shown schematically in Figure 1. Observations of second- 
ary magnetic phenomena such as sunspots indicate that there are two (or at most three) 
toroidal bands in each hemisphere at any one time and that about 22 (or 33) years are 
required for the migration of each band from the pole to the equator. Dynamical con- 
siderations indicate that the initial amplification of the relatively weak wave starting 
at the pole is primarily of the poloidal components; by the time that middle latitudes 
are reached, the decrease of cyclonic motions and the increase of the nonuniform rota- 
tion of the sun shift the amplification to the toroidal field. Thus the poloidal component 
of the traveling wave predominates from the pole to the middle latitudes; in low lati- 
tudes the toroidal field predominates until both the poloidal and toroidal fields finally 
vanish at the magnetic equator. 

The problem before us now is the question of what secondary magnetic effects might 
be expected around the fringes of the solar dynamo. We have in mind, of course, the 
obviously magnetic phenomena, such as sunspots and prominences, as well as those oc- 
currences such as spicules, flares, etc., which one suspects must be of magnetic origin be- 
cause no purely hydrodynamic explanation seems to exist. 

In this paper we discuss what we shall call “magnetic buoyancy.” Consider a magnetic 
flux tube running horizontally through a gaseous electrically conducting medium such 
as one finds in the sun. It is well known that the tensile stress in the tube is B2/2fi in 
mks units, where B is the magnetic-field density. The magnetic field also exerts an out- 
ward pressure, and, were the tube not impeded by the surrounding matter, it would 
expand. As it is, B satisfies the diffusion equation 

* This work was supported by the U.S. Office of Naval Research. 
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where vm is the magnetic viscosity. If the medium is a sufficiently good conductor, vm 

becomes small enough that 
dB n — ^ 0. 
dt— 1 

and the field does not diffuse through the medium. Hydrostatic equilibrium requires 
that the magnetic pressure pm be balanced by the gas pressure pe outside the tube. Thus, 
if pi is the gas pressure inside the tube, we must have 

Now 
Pe — Pi + Pm • (1) 

(2) 

Fig. 1—Schematic drawing of solar toroidal and poloidal magnetic fields in the outer half of the con- 
vective zone. The migration toward the equator is indicated by the large arrows. 

and is always positive. Thus pi < pe- Supposing that the temperature of the gas within 
the flux tube is the same as the temperature outside, we are led to the conclusion that 
pi < pe. Thus the flux tube is, in effect, a bubble and will try to rise: this is the “mag- 
netic buoyancy” referred to earlier. 

The buoyant force per unit length of a tube of cross-sectional area A is g(pe — Pi)A. 
The tension is AZP/lp,. Consider a length L of the flux tube clamped at both ends. If the 
tube is to be able to rise, we must require that the buoyant forces exceed the tension at 
the ends of the length, which will try to hold the length in place. Thus we must satisfy 
an approximate relation of the form 

2 AB2 

Lg (.pe — pi) A >— • (3) 
fJL 

Now 

P 
kTp 

m ’ 
(4) 
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FORMATION OF SUNSPOTS 493 

where k is Boltzmann’s constant and m is the mass of an individual gas molecule. Using 
equation (4) for pe and pi, equation (1) may be rewritten as 

and equation (3) becomes 

Pe Pi + 
m B2 * 

kTlji' 

L> 
2kT 
mg * 

(5) 

(6) 

Thus magnetic buoyancy is effective over any length of flux tube exceeding twice the 
scale height of the medium. 

It should be emphasized that magnetic buoyancy is not an instability in the usual 
sense. The buoyant force per unit volume is the quantity 

F - Oil 
b kT 2p’ 

(7) 

and a long horizontal flux tube can never be in static equilibrium. So long as Fb is large 
enough not to be overwhelmed by other motions, such as convection and turbulence, the 
tube will rise. 

Conditions within a flux tube that has undergone vertical displacement are investi- 
gated at some length in Appendixes II and III; it is found that raising a length of a 
long flux tube results in a flow of fluid along the tube which enhances the magnetic 
buoyancy in the raised portion. Thus, once the tube has begun to rise, it will not gen- 
erally stop. 

To obtain a quantitative estimate of the buoyancy force, consider a flux tube of 100 
gauss at a depth of 2 X 104 km in the sun. At this level 2.5 X 10-4 gm/cm3, 
Te ^ 2?5 X 105K. Equation (5) gives pe — pi^2 X 10“11 gm/cm3, which is only 
10-7 of the density pe. A temperature variation of 0?02 K would produce the same 
fluctuation in the density. We see, then, that magnetic buoyancy will be negligible for 
the general solar field. Consider, however, a relatively intense strand of field of, say, 103 

gauss, produced by an abrupt shearing in the turbulent convective motions at a depth of 
only 103 km. Now pe ^ 0.8 X 10~8 gm/cm3 and Te ^ 1?5 X 104 K; equation (5) gives 
Pe — pi^3 X ICC8 gm/cm3. Hence pe — Pi is now 0.04 pe and is equivalent to heating 
the region by 600° K; if the rope is not swept back down into the convective zone by 
some violent convective flow, it will rise to the surface of the sun. 

In the sun, then, we expect to find an occasional strand from the toroidal or poloidal 
fields bobbing up to the surface of the sun; the main field will be essentially unaffected. 
We expect these strands to come up where the buoyant force Fb is strongest and can 
overcome the random velocity and magnetic fields present in the convective zone. Thus 
strands of the toroidal field are expected to appear only below the middle latitudes. This 
leads us to a suggestion by Elsässer1 that sunspots seem most naturally explained as a 
portion of the toroidal field which has been heaved up to the surface of the sun by some 
dynamic mechanism. The mechanism here assumed is magnetic buoyancy, supple- 
mented to an unknown extent by the convective forces existing in the convective zone. 
Strands of the poloidal field may appear much nearer the pole than strands of the 
toroidal field, because, as was pointed out earlier, the poloidal field is amplified at higher 
latitudes than the toroidal field. Ropes of flux floating up from the poloidal field may be 
responsible for the prominence activity observed (Menzel 1953) in the middle latitudes 
shortly before the onset of a new sunspot cycle. 

If we identify sunspots with the strands of the toroidal field breaking through the 
photosphere, several of the general properties of sunspots follow immediately. The bi- 

1 Unpubfished. 
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polar character of the spots is due to the two passages of the flux tube through the 
photosphere, one exit and one entrance; the near east-west orientation of an individual 
group of spots results from the initial east-west direction of the flux tube; the appear- 
ance of the spots only below middle latitudes is due to the fact that the toroidal field is 
not intensely amplified until low latitudes are reached; the migration toward the equator 
of the region of spot formation is a result of the migration of the underlying toroidal 
field; the reversal of polarity every half-cycle occurs as a consequence of the alternation 
of sign of successive bands of toroidal field. 

II. FORMATION OF A SUNSPOT 

Having shown that several of the general characteristics of sunspots follow from the 
assumption that the magnetic buoyancy occasionally brings a strand of the solar toroidal 
field up to the surface, let us now investigate the configuration of such a strand upon 
reaching the surface. 

The flux tube forming a real sunspot is not at all slender but diverges abruptly. To 
take into account the resulting curvature of the lines of force results in nonlinear equa- 
tions, which have not yet been solved except for very special cases (Schlüter and St. 
Temesvary 1953). In this paper we shall confine our attention to slender flux tubes, 
neglecting the curvature of the lines in force, and so obtain linear equations which are 
easily solved. In this way we are able to determine how a flux tube will deviate from uni- 
formity, but our quantitative description of the extent to which the tube will taper can 
be only preliminary. Our purpose is merely to demonstrate that flux tubes do tend 
toward configurations suggestive of sunspots. A quantitative description of sunspots 
could follow only from extension of the nonlinear calculations of Schlüter and St. 
Temesvary. 

The relatively long life of a sunspot group suggests that the flux producing each group 
is near static equilibrium. Now consider a vertical flux tube (along the 2-axis), with the 
assumption that, after the tube has broken through the surface, the part located in the 
upper convective zone has a sufficiently steep inclination to be considered vertical. We 
shall also assume that, to begin with, the tube does not taper off rapidly. Let the field B 
be homogeneous across the tube. We shall denote the state of the gas inside the flux tube 
by pi, pi, and Tí; outside by pe, pe, and Te. For static equilibrium of the gas within the 
flux tube, we must satisfy equation (1). In addition, we must now require that the net 
force in the 2-direction be zero or at least approximately so. Thus, in mks units, 

Now 

0= _^i-gpt. + A[(vX5) XB]Z. 
cL % p 

[(V XB) XB] z = 
dBz dBy-\ _ YdBx dBz-\ 

dy d 2 J y L d 2 dx\ 
Bx. 

(8) 

(9) 

Our assumption that B is homogeneous across the tube means that 

and equation (9) reduces to 

dBz _ dBz 

dy dx 

[(VXB) XB}Z = 
d Bl+Bl 
dz 2 ' 

(10) 

Hence equation (8) becomes 

dpi 
d z 

Bl+Bl 

2m ' 
(ii) 
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FORMATION OF SUNSPOTS 495 

We assume that the gas outside the tube is in equilibrium, so that 

dpe 

d z — g Pe- (12) 

Differentiating equation (1) with respect to 2 and using equations (11) and (12), we 
obtain 

or. 
Tz(h)= s(pi~pe) + 

d_Bl+Bl 
d z 2fi 

d B2 

g \ Pi o z 1 ß Pe) • (13) 

Equation (13) is the equation for longitudinal equilibrium of a vertical flux tube; it 
states that any change in the longitudinal magnetic stress must be balanced by the local 
buoyancy. 

The assumption of a slowly tapering flux tube implies that Bx, By<^i Bz; so that, if B 
is the magnitude of B> equations (11) and (13) may be rewritten as follows: 

^h = -gPi+OHBx,By), g(Pi-pe) +0*(Bx,By). (14) 
az o z Iß 

Equation (14) applies to an oblique, as well as to a vertical, flux tube, as is shown more 
generally in Appendix I. 

Let us use the static equilibrium equation (14) to investigate the portion of the flux 
tube rising up from the convective zone through the photosphere. Assume that, as a 
consequence of the slowness of the rise up to the photosphere, the tube is in thermal 
equilibrium with its surroundings, Ti = Te. The sunspot which ultimately results from 
the flux tube is independent of whether Ti = Te initially; and so we shall not investigate 
the rate of rise and of radiative transfer to see whether the assumption is entirely justi- 
fied; observation indicates that it is. Given that Ti = Te, equation (1) may be rewritten 
to give 

__ m B2 

Pe~ Pi~We%i' 
(IS) 

where m is the mass of a gas molecule in grams and k is Boltzmann’s constant. Using 
equation (15), equation (14) becomes 

d B2 _ mg B2 dB _ __ mg 
d z 2ß kTe 2 ß ° dz 2 kTe 

Integrating, we have 

B(z) =B(0)exp[-fg
Zdz^\. (16) 

We see that the magnetic field decreases with height, with a characteristic length of 
twice the scale height of the atmosphere. In other words, B oc p1/2. The width w of the 
flux tube varies as pJ1/A. 

Between the base of the vertical flux tube in the convective zone and the upper end of 
the tube in the photosphere pe decreases by one or two powers of 10. Thus, if the flux 
tube had an initial field density of 100 or 1000 gauss before rising up to the photosphere, 
B oc p1/2 implies that we will find fields of only 10 or 100 gauss at the photosphere. This 
diffuse field will appear over a region of the order of 105 km. The configuration of the 
field is illustrated in Figure 2, a; the line PPr represents the level of the photosphere. 
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The diameter of the flux tube at the photosphere determines how close together the 
exit and re-entrance of the tube may be; we expect the halves of the bipolar pair forming 
a sunspot group to be separated by a distance of the order of 105 km. At this stage of 
development of the flux tube we introduce a cooling postulate (Biermann 1941 ; Kuiper 
1953). We assume that the presence of a magnetic field of the order of 100 gauss or more 
produces a cooling of the region occupied by the flux tube. BiermamTs assumption that 
the cooling follows as a result of the magnetic field’s inhibiting effect on convection seems 
the most stranghtforward explanation, though our conclusions do not depend critically 
on details. 

We find that the field intensity at the photosphere in a flux tube is remarkably sensi- 
tive to the temperature difference between the inside and the outside of the tube. Con- 
sider a vertical flux tube in static and thermal equilibrium with its surroundings. Suppose 
that, at the base of the flux tube, the field intensity is 100 gauss and that pe = 10“5 

gm/cw3, re = 4 X 10-4 ° K. Then, from equation (1), we find that (pe — pi)/pe = 10“5 

and pe — Pi = 10~10 gm/cm3. The important fact is that pe — pi is a very small quantity. 

Fig. 2.—The development of a toroidal flux tube into a sunspot, a, indicates in a rough way how the 
tube might look after being borne to the surface by the magnetic bouyancy; b, shows the concentration 
just under the photosphere due to cooling; c, indicates splitting of the tube as a consequence of the abrupt 
tapering above the cool region. 

If we decrease the temperature Ti inside the flux tube by Io K, about two parts in 105, 
then p¿, in order to maintain the static equilibrium condition (1), must increase by 2 parts 
in 106. Then pe — pi changes from + 1U-10 gm/cm3 to — 10-10 gm/cm3; from equation (21) 
we see that (d/ dz)[B2/2pi\ also reverses its sign without changing its magnitude. Thus, in- 
stead of the divergence of the flux tube with height, as indicated in equation (16), where 
we find that Be œ p1/2, the cooling by Io K of the interior of the tube results in the tube’s 
converging with height and B oc p~1/2. Hence a slight cooling effect in a vertical flux tube 
can result in a tremendous increase in field intensity at the upper end of the tube, as shown 
in Figure 2, b; this change of the static equilibrium configuration of the tube involves a 
large change in the volume of the tube, as may be seen by comparing Figure 2, a and b. 
The decrease in volume results in considerable flow of gas along the tube and is discussed 
in Section IV. 

To investigate the matter a little further, we write equation (1) in terms of tempera- 
ture and density. The resulting expression may be rearranged as follows: 

  Pe {qn 'T' \ ^ ^ /iti\ 
Pi Pe ÿT \Be Bi) f^p. ~2~fX * ^ 

For vertical equilibrium we put equation (17) into equation (14) and obtain 

d B2 _ peg , mg B2 

dz 2p Ti K 6 i} kTi 2p' 
(18) 
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FORMATION OF SUNSPOTS 497 

As a first approximation, let us assume that the cooling effect (Te — Z\) is simply pro- 
portional to the magnetic stresses. Then we write 

Te (19) 

where k is a constant. Equation (18) becomes 

d B2 _B2 mgVkpeK 
dz 2ß 2ß hTiV m 

(20) 

Upon integration, we obtain 

B2^ 
2ß 

(kpeK 
\ m 

(21) 

Then (kpetc/m) — 1 is integrated over distances several times the scale height kTi/mg 
and appears in the exponent. Thus fields of the order of 2000 gauss are easily obtained 
from afield of 100 gauss at the base of the flux tube, even though (kpeK/m) — 1 may be 
only slightly greater than zero. We do not need the intense fields throughout the outer 
layers of the sun that have been postulated by Gurvich and Lebedinsky (1946). 

In conclusion, then, we see that our calculations from the local lateral equilibrium 
equation (1) and the longitudinal equilibrium equation (14) have shown that the cooling 
and the intense magnetic field of a sunspot are mutually dependent; before cooling be- 
comes effective, we have at the level of the photosphere a diffuse flux tube of 10-100 
gauss over 105 km diameter. Giving a cooling effect, however, the diffuse tube forms a 
dense core. In our greatly oversimplified model the density of the core increases up to the 
level where the cooling is no longer effective; at higher levels = Te, and the flux tube 
diverges according to equation (16), as is discussed in the next section. We need not 
assume that the entire cross-section of the flux tube goes into the core, because there is 
undoubtedly a transition region near the surface of the flux tube where the cooling is not 
very effective. Thus we may expect a spot to be surrounded by a region of diffuse field. 

in. THE EVOLUTION OP A SPOT GROUP 

Now consider the field over a sunspot. If Biermann’s mechanism is correct, we expect 
no cooling because there is no convection above the photosphere; observation indicates 
that the gas in the chromosphere and the corona over a sunspot are at least not cooler 
than gas at the same level elsewhere in the solar atmosphere. Thus we are led back to 
Ti = Te and the resulting divergence with height (eq. [16]) of a flux tube in equilibrium. 
The diameter of such a tube increases with height as pj1^. Thus in a region T = 6000° K, 
yielding a scale height of 200 km, the flux tube increases its width by a factor of e every 
800 km; a spot with a diameter of 2 X 104 km at a height z will have a diameter of 
5.5 X 104 km at z + 800 km. The walls of the flux tube will make an angle of only 1?7 
with the horizontal. It must be remembered that this result is only approximate, because 
it was computed from equation (16), which was derived by assuming that the rate of di- 
vergence is small. But it serves to show how rapidly the tube is diverging and how the 
horizontal velocities of the Evershed effect may indeed be gas flowing along the lines 
of force rather than across them. 

The rapid divergence of the tube has interesting dynamic implications. Consider a 
tube which tapers off abruptly, as shown in Figure 3, a. The lines of force have no tend- 
ency to stick together and, because of the tension along the lines, will try to separate 
into several branches at the restriction, as shown in Figure 3, b. 

The tendency for such a breakup is readily demonstrated by showing that the energy 
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of the field is less after breakup has occurred than before. If we assume that the cooling 
within the flux tube is not affected seriously or large quantities of matter elevated, it 
will be sufficient to consider the energy of the two-dimensional periodic field given by 

^=o’ By= Kl]s,n ky(S)exp-S’ 

z2 

Bz — Bq ~f"B\ cos ky exp  
0/ 

(22) 

This represents an initial uniform field £o extending in the z-direction. The periodic 
disturbing field, characterized by Bh has the effect of bunching the initial field into 
bundles at intervals of 2ir/k along the y-axis. The field at the center of each bundle is 

Fig. 3.—Schematic drawing of the splitting of a flux tube at a constricted region 

£0 + Bi. These bundles merge into a uniform field a distance of the order of a on each 
side of the y-axis. 

The energy of the bundle lying in — tt/^ ^ y ^ + tt/# is 

1 /’+0O p+Tr/k 
E = / àz dy{Bl+B\) ¿ ¡X J— co J -v/k 

ß2 z’+co f+v/k r 4 / Z2\ 
sin2 ky + cos 

where E0 is the energy of the homogeneous component of the field. The first-order term 
in Bi drops out because of the integration over y. We finally obtain the energy due to the 
bunching as 

E —Eo 
3/2 t>2 

7T JDi a 
aP-kV' 

The energy per unit y is 

6 = A (£_£„) 
Z7T 

1/2 t%2 
7T (23) 

For given values of a and Bh e is a monotonically decreasing function of k. This demon- 
strates the tendency for flux tubes to split up where the tube changes size abruptly. 
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FORMATION OF SUNSPOTS 499 

The magnetic stresses at the surface of the sun are of the order of 0.2 times the gas 
pressure; we conclude that, unless some other effect is of large magnitude and opposite in 
sense to the magnetic stresses, the flux tube has sufficient potential energy to carry out the 
branching, pushing the gas out of its way as it does so. Therefore, at the surface of the 
sun we expect to find, after a time, not one, but several, flux tubes, each producing a 
small spot. Initially, the field from the spot was of the general configuration shown in 
Figure 2, b; branching results in something like Figure 2, c. 

Each branch of a flux tube in a spot group extends, on the order of 104 km or more, 
down into the convective zone and so is pushed around by the convective motions there. 
We should expect the portion of the branch above the surface of the sun to show some of 
this random motion, with the result that the spots of a group spread out from their 
initial position. Besides this branching process, one would expect the magnetic buoy- 
ancy, which was initially successful in heaving a region of relatively intense field up to 
the surface, to continue to operate, though more slowly than at first, to pull up more of 
the toroidal field. The process will not go far, because, as was shown in the first section, 
the magnetic buoyancy becomes unimportant as one goes to weaker fields and deeper 
layers. But, in so far as the process operates, it should result in a progressively larger re- 
gion of the toroidal field rising to the surface, with a subsequent increase in the separation 
of the two parts of the spot group. We conclude from the two effects discussed in this 
paragraph that each half of a spot group should slowly diverge within itself and from the 
other half. 

The eventual expiration of a given spot group follows from the fact that a flux tube 
rising from the convective zone up to the photosphere and descending again to the con- 
vective zone, to form an inverted U, does not constitute a regenerative portion of the 
solar hydromagnetic dynamo; in this prodigal state it dies from diffusion. We must 
remember that it is not the molecular diffusion, which is negligible, but the eddy dif- 
fusivity of the convective zone that is responsible for the decay of the spot; vertical 
convective velocities of 10 m/sec in the region of the convective zone under the spot 
give a decay time of only a few months. 

I should like to express my gratitude to Dr. Arnulf Schlüter for critical discussion of 
the linearized sunspot model presented in this paper. 

APPENDIX I 

KINEMATICS OF A FLUX TUBE 

To supplement the rather brief discussion in Section II of the equilibrium of a flux tube, let 
us consider the stresses within a tube of flux which may not be in equilibrium. Let us idealize 
the flux tube to be of square cross-section of side w and to contain a magnetic field B uniform 
over the cross-section. Let us confine the tube to the ys-plane. We assume a gravitational field 
of acceleration g in the negative 2-direction. We let s represent distance measured along the axis 
of the tube from left to right, and 6 the inclination of the tube. We shall take the tube to be 
sufficiently slender compared to the characteristic lengths of the medium in which it is suspended 
that 

dw 
ds «1 , 

de_ \ 
ds^w * 

(24) 

Let pi, pi, Ti, and pe, pe, Te represent the state of the material medium inside and outside the flux 
tube, respectively. Assuming the molecular weight of the medium to; be uniform throughout, 
we write 

Pi = (25) 
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We shall assume that equation (1) is satisfied, which puts the flux tube in local lateral equi- 
librium. Finally, we shall assume that the medium outside is in equilibrium, satisfying the baro- 
metric relation, 

dpt 

dz — Peg 
dpe dp( 

dx dy 
= 0. (26) 

Consider the element w2ds of the flux tube shown in elevation and plan view in Figure 4, a 
and by respectively. The angle between the sides and the axis of the flux tube is 

a = 
1 dw 
Ids' 

(27) 

Consider the force Fsds in the ^-direction on the element. The weight of the element is 
gPiW2ds. On the left-hand end there is a net pressure pi — B2/2p on the area w2) a corresponding 

/ 
/ 

Fig. 4.—a, elevation of flux tube. b} plan view of flux tube 
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FORMATION OF SUNSPOTS 501 

force is exerted on the opposite end of the element. The sides of the element parallel to the yz- 
plane experience a pressure pe inclined at an angle (tt/2 — a) to the axis of the element. Fi- 
nally, the remaining pair of sides experience pressures pe ± h(ßpe/dz)w cos 6. Multiplying the 
foregoing pressures by their respective areas and taking the 5 component, we obtain 

F8d s = — gpiW2 sin 6d s -f- 2pewad s 

W 
d S ) 

+ 

+ 

(i-+ï«7"cosl,)”(1_?î?) ’■d 

(28) 

Using equation (1) to eliminate pi, equations (26) to eliminate dpe/dz, and equation (27) to 
eliminate a, we may simplify equation (28) to 

Fs = J~s(^w2~^)Jr S®2 ?in 0 (p*— Pi) > (29) 

neglecting terms of second and higher order in dw/ds and dd/ds. 
Since we are considering a flux tube, it follows that the total flux is independent of s. Then 

$ 

and 

dt\ r) ß dsKvt'J 

Thus we may write equation (29) as 

w 

<f>2 

2 ’ (30) 

W 
2p d s VW ds2ß- 

i?s=w2[ÄS+gsinÖ(p‘_Pi)]- 
(31) 

Consider the forces normal to the axis of the tube. Similar to equation (28), we write 

Fnd s = — g piW2 cos 6ds — 2 Çpi — 

- (^+517 ^ cos (1 -1 Jj) ^s + “ 5 ” cos(1 “! ît) ^s ' 

which reduces to 

= w2[A A-(- g c°s e (pe— pi) J (32) 

Consider the special case where the tube is in longitudinal equilibrium. Then F8 = 0, and 
equation (31) reduces to 

d B2 

° = ¿7 2íA S SÍn 9('pe~ ^ ' (33) 

Now 
dz d d 

77" = == sm ^ ~T~ • ds ds dz dz 
(34) 
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Hence, for any inclination of the tube, we obtain 

n d B2 \ ( i 0 = -7- ö—b g (pe — Pz) , a z z ¡J, 
(35) 

which was obtained in equation (14) for a vertical tube. If we differentiate equation (1) with 
respect to z and use equation (26), we obtain 

dz-2 4" gPe 
dpi 
dz 

(36) 

Comparing equations (35) and (36), we find that equilibrium requires that pi obey the baro- 
metric law, 

dpi 
d z Pig • (37) 

The physically obvious fact that a flux tube is stable against a local constriction or expansion 
is readily demonstrated from equation (31). Consider a horizontal flux tube of uniform cross- 
section. Let us pinch the tube over a finite extent of its length. B is increased in the restriction. 
Approaching the restriction from the left, we have {d/ds)(B2/¡x) > 0. Equation (31) gives F8 > 
0, causing the fluid to flow into the restricted region and restoring the tube to its initial uni- 
formity. 

APPENDIX II 

FLUX TUBE IN THERMAL EQUILIBRIUM 

Consider a flux tube in thermal equilibrium with its surroundings. The static equilibrium of 
such a tube was investigated briefly in Section II. There we found that B ^J/2^ so that pm °c pe. 
From equation (1) it follows that pi oc pe. Since Bw2 is the total flux through the tube and is 
constant, we have w pj1^. We note that the mass per unit length w2pi decreases with height 
for a tube in either an isothermal or an adiabatic atmosphere. 

We shall now inquire into the longitudinal motions within a flux tube and the variation of the 
magnetic buoyancy as a segment of an initially horizontal flux tube is displaced vertically by 
the magnetic buoyancy. We should like to know whether the tube can be expected to tend 
toward the static equilibrium configuration discussed in the foregoing paragraph and whether 
the magnetic buoyancy continues to function even after large displacement; the fact that w2pi 
decreases with height implies that there must be a longitudinal flow away from the elevated 
portion of the tube. We shall find just such a flow from the following calculations; the flow allows 
an approach to B ^ pV2 and guarantees that the magnetic buoyancy will not fail after some 
finite displacement. 

Consider how conditions will vary when a flux tube, initially horizontal and of uniform cross- 
section, is displaced vertically by some small but varying amount ôz(y). We are particularly 
interested in finding whether an upward bulging of the tube will result in fluid flowing along the 
tube away from the bulge or toward the bulge. Thus we shall assume that 7\- — Te = T and 
constrain the fluid within the tube to move only in the s-direction, allowing no flow along the 
tube; we then investigate the longitudinal force F8, to see which way along the tube the fluid 
would flow if the constraints were removed. The tube will have to be held in place, of course, by 
external forces, because of the magnetic buoyancy and longitudinal stresses. 

We shall assume that dôz/ ds<£ 1. Then 

. n dôz , j 
sin 0^—ï—, ds^dy 

ds 
(38) 

Using equations (5), (30), and (36), we may write equation (29) 

_i>2 dôzï mg 2 dw 1 
8 pw2 dy 12 kT w dôz\’ 
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Consider (2/w)(dw/dbz). With the constraint that there be no longitudinal flow within the 
tube, it follows that 

Then equation (5) may be written 

/ / w\2 mBq 

w ~pi0 - \Wq/ 2ßkT 
= 0. 

(39) 

(40) 

Because we are considering only a small vertical displacement, bz{y), we may introduce the ap- 
proximation 

( 

w V 
-) = i + 
voj 

rá 

Vdz \w0J J 
ô 3 + 02 (5 z) , T = To + (~) \dz/o 

5 z +02 (5 z), 

Pe = Z +02 (Ô z) . 

(41) 

Solving equation (25) for pe, differentiating with respect to z, dividing by pe, and using equation 
(26) to eliminate dpe/dz, we obtain 

1 dp( mg 1 dTt 

Pe dz kTe Te dz ' 

Putting equations (41) and (42) into equation (40), we finally obtain 

P mO 

(42) 

d 
dhz 

(43) 

But 

= ÿeO + ÿ; ÿtoj (ÿeO + ÿmo) ^O^z). 

2 dw 1 dw2 

w dbz w2 dbz 
0 (bz) . 

Thus, to the degree of approximation used in equation (41), equation (43) gives (2/w){dw/dbz) ; 
the equation for F8 may be rewritten as 

F‘ = ^ï^\fè~ljêpe0+TTipi0] (P‘0+P-o)-1+OH8z)\. (44) 

If the medium through which the flux tube passes is of uniform temperature, so that dT/dz 
vanishes, then 

dbz $2 mg peo — p mO 
8 dy pw2 2kT Pe0~{-pm0 

If, on the other hand, it is an adiabatic atmosphere, then 

1 dT _ 7 — 1 1 dpe _ (7 — 1) mg 
y &T ’ 

(45) 

and 

T dz 7 pe dz 

= _ÎL (mZ\ {Pe0-Pm0 
dy pw2\ 7 / \2kT/xpeo-}-p 

mo\ 

mO/ 
(46) 
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We see from equations (45) and (46) that, for both an isothermal and an adiabatic atmos- 
phere, ddz/dy > 0 implies that Fs < 0, resulting in a flow of fluid out of the raised portions of 
the flux tube. This has the effect of increasing pm relative to pi and enhances the magnetic buoy- 
ancy in the upward bulges. Only when dT/dz is sufficiently negative to reverse the sign of 
will the longitudinal flow degenerate the magnetic buoyancy; certainly in any large-scale region, 
T never decreases at a rate significantly greater than the adiabatic rate because of the extreme 
convective instability that would result from a more rapid decrease. 

APPENDIX III 

ADIABATIC FLUX TUBE 

Consider a flux with an adiabatic interior. Here Ti no longer need be equal to Te, and many 
physical relations which are taken for granted in Appendix II are no longer obvious. We have in 
mind the same questions as when Ti — Te, viz., whether a flux tube displaced vertically by the 
magnetic buoyancy tends toward the static equlibrium configuration and whether the magnetic 
buoyancy vanishes after some finite displacement. The latter question no longer has the un- 
ambiguous answer it had when Ti = Te. 

Consider the static equilibrium of a flux tube with an adiabatic interior; the relation between 
pi and pi is, accordingly, 

Pi — Pío (47) 

If the flux tube is in equilibrium, we may combine equation (47) with equation (37). We obtain 
the familiar relations for an adiabatic atmosphere : 

Pi 
7—1 mg "jVCy-1) 
_kT7o ZJ 

7—1 mg IT/Cy-i) 

^rkf7o SJ 
(48) 

Pio, pio, and Tío are the values of p¿, pi, and Ti at 2 = 0. Using equation (1), the magnetic pres- 
sure for static equilibrium is 

Pm P e Pi 
mg_ 

kTio 

-|t/(t-i) 

J 
(49) 

The width w of the tube may be computed from the fact that it varies as pm1^- 
Consider the special case that the atmosphere outside the tube is an adiabatic atmosphere 

and, further, that Ti = at 2 = 0. Now, independently of the latter condition, Ti and Te 
vary linearly with height, according to 

Ti 
7-1 mg I 

7 kTio J ’ 
7-1 rag 1 

7 kT eo J 

Thus, setting Ti — 7% at 2 = 0 implies that Ti = rc at all heights in the atmosphere; the tube 
is in thermal equilibrium with its surroundings, even though insulated from them, and the rela- 
tions worked out in the previous section for thermal equilibrium in an adiabatic atmosphere are 
valid. 

The magnetic buoyancy depends on the sign of pi — pe, which must be investigated quantita- 
tively, because, in an adiabatic atmosphere, it depends critically on the initial conditions. 
Consider, then, a long horizontal uniform flux tube. There will be no longitudinal flow under 
these conditions, and B cc p{. Thus 

Pm P mO (50) 

The zero subscript denotes initial values. Comparing equation (50) with equation (47), it follows 
that pm varies more rapidly with the density than does pi, since 7 < 2. A vertical displacement of 
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the flux tube, with the resulting change in pe, results in pm taking up more than its share of the 
pressure change. Thus pi does not have to vary so rapidly, and we conclude that 

1 1 dpt 

Pi d z pe d z 
(51) 

The slower rate of variation of pi may be deduced quantitatively from equation (1). Differ- 
entiating with respect to z, we obtain 

dpi __ dpe B2 1 dB 
dz dz fi B dz* 

But, from equations (39) and (48), it follows that 

1 dB __ 1 dpi _1 1 dpi 
B dz Pi dz y pi dz * 

Putting equation (53) into equation (52) and solving for 0-/pi){dpi/dz), we obtain 

1 dpi _ dpt r i dpev 2-T^roi-i 

(52) 

(53) 

(54) 
pi dz dz 

Thus, with 7 < 2, we obtain equation (51). 
If the medium outside the flux tube varies adiabatically with height z, then, besides equation 

(51), we have 

JL (Lß± <_L (LEl (55) 
pi d z pe d z Ti d z Te d z 

To obtain relations between pe and p», etc., rather than just their derivatives, we put equa- 
tions (47) and (50) into equation (1), obtaining 

Pe = PiO (—) + #m0 (—) • 
V PiO/ \ PiO/ 

(56) 

Equation (56) gives pi in terms of pe; and pi, pm, and w may then be computed, using equations 
(47), (50), and (39), respectively. 

If the external medium is an adiabatic atmosphere, then 

and equation (56) may be written as 

PeO (—T = PiO (—Y + PmO (—Y * 
\PeO/ \PiO/ \PiO/ 

(57) 

(58) 

Consider how p¿ and pe compare near the top of the atmosphere, where pe approaches zero. 
Here pi also approaches zero, so that pi/pm <$C 1. Equation (58) reduces to 

Thus 

í = EjI (PA1,y — ((TioV- 
i Pi0\pe0/ \PioJ \TeO/ 

(59) 

For the special case that Tío = Teo, we have pe0 > pi0; equation (59) implies that pe/pi > 1 
as pe approaches zero. If, on the other hand, peo = p¿o, then Teo > Tío, and equation (59) tells 
us that pe/Pi < 1, which also follows from equation (55). Thus we have demonstrated that, 
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beginning with a flux tube initially in thermal equilibrium with its surroundings, the magnetic 
buoyancy is operative at all heights in an adiabatic atmosphere to which the flux tube may be 
displaced; the presence of flux tubes induces convection in an adiabatic atmosphere. If, on the 
other hand, the flux tube initially satisfies equation (1) by virtue of 7\0 < J^o rather than pt0 < 
Peo, then the flux tube is stable against vertical displacement; the presence of flux tubes inhibits 
convection in an adiabatic atmosphere. 

The critical condition giving an initial magnetic buoyancy which vanishes as pe/Pi —> 1 at 
the top of the atmosphere may be obtained from equation (59) by putting pe = p¿. We obtain 
the relation 

PiO = PeO ^ j - (60) 

This is the condition that the variation of the matter within the flux tube is adiabatic during the 
generation of the magnetic field. 

To determine pe/pi as pe—>0, we note from equations (47) and (50) that pm decreases more 
rapidly with decreasing pi than does pi. Thus pm/pi approaches zero as the top of the atmos- 
phere is approached, and equation (1) becomes 

(61) 
Pi Pi 

To compute Te/Ti as pe—>0, we use equations (25), (59), and (61). We find 

Ti \r,;o/ \pe0/ 

If, initially, T6q = 7^0, we have pi0 < peo and conclude from equation (62) that Ti > Tei the 
interior of the flux tube becomes hotter than its surroundings, which also follows from equation 
(55). If, on the other hand, p¿0 = peo, then 7\o < Teo, and we conclude that Ti < Te- Again the 
critical case leading to Ti = Te at the top of the atmosphere yields the adiabatic relation (60). 

As in the previous section, where Ti = Tef let us investigate F8 as a result of a small vertical 
adiabatic displacement of an initially horizontal and uniform flux tube in thermal equilibrium 
with its surroundings. We shall again introduce the constraint that there be no longitudinal 
flow; the resulting F8 will tell us whether the fluid would flow toward or away from an upward 
bulge of the tube if the constraint were removed. 

From equations (29), (30), and (38) we obtain 

F8 = 
dbz 
d s 

<i>2 1 pi 
pw2

0 PiO dbz (63) 

We shall compute the quantity in brackets, omitting terms 0(bz), and obtain F8 omitting terms 
02(bz). Thus, using initial values, we obtain, from equation (5), 

W2{pe—Pi) =wl(pe0- Pío) +0(Sz) 
$2 

kT(¡ \ 2 ) 
+ 0(02) 

Since the fluid inside the flux tube varies adiabatically, we obtain 

_L ÍF1 = i _! Îîl = il ri + 2 P™] ~l 

Pi dz y pi dz y pe dzV y pe\ ’ 

the latter by equation (54). Using equations (25) and (26), we finally obtain 

if£,-isr1+^fcr+0(M. 
Pío dz y &7oL y peA 

(64) 

(65) 
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Substituting equations (64) and (65) in equation (63), we obtain 

Fs = 
dbz mg <i>2 7-2 peo-pmQ 
ds kTo2fj.w2 7 peo-{- (2 — y/y) pm 

(66) 

which is to be compared with equation (56). Now dbz/ds > 0 implies that Fs < 0, indicating a 
longitudinal flow along the tube away from an upward bulge, as in the case worked out previous- 
ly where Te = Ti. The transport of matter from the raised, and therefore expanded, portion of 
the tube enhances pm relative to pi by removing part of the fluid producing pi and compressing 
B. This enhances the magnetic bouyancy and explains why pe/pi is greater than unity, as shown 
by equation (59), at the top of the atmosphere, even though pm, on which the magnetic buoy- 
ancy depends, drops off with pi more rapidly than does pi. 
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