NOTES FROM OBSERVATORIES

The second secon

Bright Variable Stars in Southern Hemisphere (First List)

by
A. W. J. Cousins

The "Bright Star Programme" commenced at the Cape Observatory in 1945 to provide accurate photographic magnitudes for about eight-hundred stars south of the equator with H.R. magnitudes 50 or brighter is now nearing completion and it seems an appropriate time to present a first list of stars that appear to be variable. The present survey covers 400 consecutive stars on the working list.

The observations are being made by the Fabry method using Ilford Special Rapid plates and a blue colour filter and the equivalent wavelength is somewhat shorter than that of the international photographic system. The standard error of an observation made under favourable conditions is about \pm 0^m·012 and for three-quarters of the stars the standard deviation for unit weight is \pm 0^m·015 or less. Few stars were observed less than six times and suspected variables usually received extra attention.

		•	\cdot S	pect.	Vari	ation	r - *
G.C.	B,S.	Name	H.D.	Revised	Max.	Mi	n. Remarks
5617 5661 6234 6655 6944	1463 1492 1663 1788 1922	$ \nu $ Eri R Dor $ \eta^2 $ Pic $ \eta $ Ori $ \beta $ Dor	B2 M7 K5 B1 F5p	B2s M2 (Bok) cF6	3·38	3·52 6·82 3·03	Var. rad. vel. Long period. Eclipsing. Cepheid.
7898 9059 9276 9293 9604	2212 2580 2646 2648 2748	δ Pic o' CMa σ CMa 19 Mon L ² Pup	B1 K2p K5 B3 M5e	Bin cK5 Mo B3n M5e	4·13 5·76 5·49 4·47	4·28 5·94 5·58 4·54	Var. rad. vel. Long period.
9608 9734 9736 10802 11026	2745 2781 2782 3129 3187	27 CMa 29 CMa 30 CMa V Pup	B5p Oe Oe5 B1p Ko	Oqs Oqs B2n	4.4	4·8 3·96	Var. rad. vel. Eclipsing. Var. rad. vel. Eclipsing.
11034 11149 11208 12138 13192	3185 3225 3240 3498 3816	ρ Pup — f Car R Car	F5 K5 B3 B3 M5e	cF5 Mo B3n B3ne	3·04 6·32 4·60 3·92	6·38 4·71 4·02	Var. rad. vel. Var. rad. vel. Long period.

			Spect.		Variation		
G.C.	B.S.	Name	H.D.	Revised	Max.	Mi	n. Remarks
13462	3884	1 Car	Go	G ₇		•	Cepheid.
14133	4050	q Car	K_5	•	5.12	5.21	•
14185	4063		Ko	M2	6.37	6.44	
14489	4140	p Car	B_{5p}	B5ne	2.85	3.02	
14611	4163	Ū Hya	Nb	N2	-		Irregular.
14762	4200	w Car	K5	Мı	6·50	6.60	Var. rad. vel.
15818	4441	o' Cen	F8p	cG4	6.11	6.34	Var. rad. vel.
16176	4530	μ Mus	K_5	M2	6.44	6.65	
16584	4621	δ Cen	B_{3p}	B ₃ ne	2.14	2.20	
16724	4656	δ Cru	B_3	В3	2.25	2.31	
16764	4671	ε Mus	Mb		5.85	5.99	Var. rad. vel.
17179	4798	a Mus	В3	B_{5n}	2.17	2.24	
17516	4902	ψ Vir	$ extbf{Mb}$	M_3	6·50	6.64	
17959	5002	-	\mathbf{Ko}	K6	6.54	6·6o	
18084	5034		В3	B3n	5.91	6.07	
18239	508o	R Hya	М7е	M8e	· 		Long period.
18666	5192	g Cen	Мb	M 6	5.79	5.87	
18667	5193	$\stackrel{\smile}{\mu}$ Cen	B2p	Взе	2 ·68	2.77	Irregular (Hogg- <i>H</i> . <i>C</i> .
							451).
19453	5395	au' Lup	$_{\mathrm{B}_{3}}$	Вз	4.10	4.14	15/-
19656	5440	η Cen	(B3p (A2p	B3ne	1.83	1.95	Var. rad. vel.

The stars are identified in the above table by their numbers in the "General Catalogue" and in the "Yale Catalogue of Bright Stars". The Beyer or Flamsteed designation is added where available. The fourth and fifth columns give the spectra type according to the "Henry Draper Catalogue" and the revised type from the "Publications of Lick Observatory", Vol. XVIII. The following two columns give the range of variation as observed, the limits being defined by several observations and not by individual values. The extreme range was rarely less than o^m·10. The remarks column indicates those stars previously known to be variable in light or radial velocity.

The criterion for inclusion in the list is that the observations show a range of variation exceeding o^m·05. Faint stars and others which for any reason might be expected to be subject to larger uncertainties of measurement were treated more stringently. One star having a smaller range is included because it was at one time used as a standard star and an unusually large number of observations makes the variation reasonably certain.

For the well-known variables, β Doradus, 1 Carinae (Cepheids), R Doradus, L2 Puppis, R Carinae, R Hydrae (Long periods), U Hydrae (irregular) and V Puppis (eclipsing) no limits of variability are given as these stars were omitted from the observing list. Other known variables,

mainly of Algol type, are not included because the observations failed to show any certain variation. The supposed irregular variable N Velorum showed no variation.

There appear to be at least 40 variable stars among 400 stars—or one out of ten on an average. It will be noticed that nearly half the stars are of spectral type B5 or earlier and that only four (including two Cepheids are of an intermediate type earlier than Ko. The southern Milky Way is noted for the number of bright stars of early type and about one-third of the stars considered are in this category. Variability is roughly twice as prevalent amongst them as amongst the remainder of the stars, including the red stars where instability is generally recognised.

Royal Observatory, Cape of Good Hope. 1951 July 16.

PHOTOGRAPHIC MAGNITUDES OF THE BRIGHTEST STARS.

by A. W. J. Cousins

In the George Darwin Lecture last October Professor Stebbins drew attention to the disagreement between the magnitude of Sirius as measured by himself photoelectrically and the generally-accepted (H.R.) visual magnitude. (M.N., 110, 424, 1950). A note in the B.A.A. Journal (61, 165, 1951) refers to this result and remarks on the lack of accurate magnitudes of other bright stars. This prompts the advance publication of some results of the Cape "Bright Star Programme" and the associated photoelectric colour observations.

The table gives the photographic magnitudes and provisional colour indices of 23 stars of visual magnitude 2.0 or brighter and of one other star observed by Stebbins.

	B.S.		Pg	•
Name	Magnitude	Cpe	Magnitude	C.I.
Sirius	- 1· 60	- 0.19	- 1 ·64	- 0.24
Canopus	- o·73	- 0.04	- 0.79	- 0.05
a Centauri	0.40	+ 0.47	0.25	+ 0.58
Rigel	- o·o8	- 0.22	- 0.11	- 0.27
Procyon	o·66	+ 0.12	0.57	+ 0.12
Achernar	0.07	- 0.34	0.06	- 0.42
β Centauri	0.10	- 0.42	0.10	- 0.52
a Crucis	0.25	- 0.43	0.26	- o·53
Spica	o·46	- 0.43	0.47	- o·53
Antares	2.99-3.16	+ 1.50	2.65-2.82	+ 1.86
Fomalhaut	I·12	- o·o8	1.06	- 0.10
β Crucis	0.73	- 0.41	0.73	- o·51
γ Crucis	3.47	+ 1.26	3.18	+ 1.56
€ Canis Maj		- 0.32	1.00	-,0.40
λ Scorpii	1.11	- 0·41·	1.11	- o·51