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A NEW MODEL FOR THE EXPANDING UNIVERSE 

F. Hoyle 

(Received 1948 August 5) 

Summary 

By introducing continuous creation of matter into the field equations of 
general relativity a stationary universe showing expansion properties is 
obtained without recourse to a cosmical constant. 

1. Introduction.—Creation of matter was mentioned about twenty years ago 
by Jeans (1) who remarked : 

“The type of conjecture which presents itself, somewhat insistently, is that 
the centres of the nebulae (galaxies) are of the nature of singular points, at which 
matter is poured into our universe from some other and entirely extraneous spatial 
dimension, so that, to a denizen of our universe, they appear as points at which 
matter is being continually created”. Subsequent astrophysical developments 
have, however, shown little support for this particular form of creation. 

More recently Dirac (2) has pointed out that continuous creation of matter 
can be related to the wider questions of cosmology. The following work is 
concerned with this aspect of the matter and arose from a discussion with Mr T. 
Gold who remarked that through continuous creation of matter it might be 
possible to obtain an expanding universe in which the proper density of matter 
remained constant. This possibility seemed attractive, especially when taken 
in conjunction with aesthetic objections to the creation of the universe in the remote 
past. For it is against the spirit of scientific enquiry to regard observable effects 
as arising from “ causes unknown to science ”, and this in principle is what creation- 
in-the-past implies. 

The writer’s thanks are due to Mr H. Bondi for valuable comments on the 
present paper and also for many discussions on the general problems of cosmology. 

2. Newtonian Universes.—We begin by mentioning the difficulties occurring 
in current theories of the expanding universe. A comprehensive review of 
cosmology, based on Einstein’s general theory of relativity, has been given by 
Robertson (3). Milne and McCrea (4) have obtained the remarkable result 
that Newtonian analogues exist for all the more important models considered 
by Robertson. Although later we shall go over to the formalism of the relativity 
theory, it is convenient in these preliminary remarks to use the Newtonian 
equivalent models. 

The work of Milne and McCrea starts from the cosmological principle 
applied in the narrow sense. According to the narrow cosmological principle^ 

the distribution of material and momentum relative to an observer attached to a 
particular particle is identical with the distribution relative to an observer attached 
to any other particle, provided the comparison refers to the same value of the time. 
The latter proviso weakens the equivalence of observers. When the cosmological 
principle is used in its wide sense thiç proviso is removed and equivalence would 
have to be applied even if the two observers carried out their measurements 
at different times. It is important to notice that the cosmological principle 
ignores proper motions arising from local condensations of matter. That is> 
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we refer to an approximation in which the matter within the extragalactic nebulae 
is regarded as being smeared into a continuous background. This approximation 

will be used throughout the present paper, except in the general discussion in 
Section 5. 

Take an observer attached to a given particle and let r be a position vector 
measured by this observer. The relative motion of a particle situated at r at 
time t will be denoted by u(r, i). Then it is easy to show (4) that the narrow 

cosmological principle requires the material density p to be a function of t only, 
and that v(r,t) must be of the form F(t)ry where F{f) also depends only on the 

time. Defining R{t) by 

R(t) = exp I j'| F{t)dt^, (I) 

where £0 is arbitrary, we obtain 

v(r,t) = R'r¡R, (2) 

where R' =dRjdt. In the strictly Newtonian problem a particle at r experiences 
an acceleration G, relative to our observer, given by 

G=-47rypr/3, (3) 
where y is the Newtonian constant of gravitation. The equations of motion are 

dpldt + div (pv) = o, (4) 

dvjdt +1 grad v2 = G. (5) 

In deriving (5) from the standard Eulerian equation we neglect the hydrostatic 

pressure, which is small in the cosmological problem, and we take account of 
the fact that curl v = o. 

It can be verified that 

pR* = B9 (6) 

v2 = (STryp/s — klR2)r2, (7) 

where B, k are constants of integration, give the general solution of (4), (5). 
When k — o the material possesses the minimum kinetic energy necessary for 
unlimited expansion. Unlimited expansion also occurs in the case A<o, since 
the material then has excess kinetic energy. But when &>o expansion is of 
limited duration. These cases are conveniently described as parabolic, hyper- 
bolic and elliptic. As a description of the expanding universe, the elliptic 
case is evidently inferior to the parabolic and hyperbolic cases. Moreover, 
the parabolic case is superior to the hyperbolic case, since localized condensations, 
necessary for the formation of extragalactic nebulae, can readily occur in a parabolic 
but not in a hyperbolic universe. For in the parabolic case condensations will 
form even if the density only exceeds the mean value by a small margin, whereas 
an appreciable increase of density would be required in the hyperbolic case. 
Accordingly it is sufficient to confine the discussion of (7) to the case k — o. We 
then have the Newtonian analogue, derived by Milne (4), of the Einstein-de Sitter 
relativistic model in flat expanding space (5). 

With the simplification k = o, (7) may be integrated by using (2) and (6). 
This gives, for the^solution representing outward motion, 

v = 2rl3t, (8) 

p = l/Grryt2, (9) 
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the zero of time being arranged so that i? = o at * = o. Now the velocity-distance 
relation, found by Hubble and Humason from the observation of extragalactic 
nebulae, can be written as 

v==(5l3)- I0"17r (io) 

when time is measured in seconds. We see that for (8) to agree with (io), t 
must be about 4 x io16sec., which is about 1-3 x io9years. The corresponding 
value of p is about 5 x io~28 g. per cm.3. 

It is important to notice that, in common with all current cosmological models* 
no attempt is made to show how the required distribution of material and momen- 
tum comes to be set up. The implication of (8), (9) is that if these equations» 
are satisfied for one value of t, then they will be satisfied at all subsequent times. 
Thus, according to these equations, p, v2 were infinite at t = o; that is, about 
1-3 x io9 years ago. Although effects not considered in our equations would 

intervene to prevent strict divergence, the conclusion seems inescapable that near 
t = o the density would be very large compared with the present value. Quite 
apart from its unsatisfactory nature, this conclusion is in discordance with 
astrophysical data which strongly suggest that physical conditions have not 
changed appreciably over a period of about 5 x io9 years. In this connection 
it may be noted that geophysical studies give about 2 x io9 years for the age of 
the Earth. 

These difficulties suggest that alternative possibilities, based on the intro- 
duction of a cosmical constant into (3), be considered. When (3) is altered to 

G = K-4^yp + Ac2)r, (3') 

where A is a constant, the solution of (4), (5) is given by (2), (6) and by 

v2 = (Sirypls - k/R2 + Xc2/3)r2. (7') 

This solution admits of two cases that satisfy the wide cosmological principle. 
First, we have the analogue of Einstein’s static universe when 

47777)=Ac2 = k/R2. i11) 

These conditions give v — oy dvjdt = o, G = o, and R is independent of time. 
Since G = o, localized condensations may occur in this model. Second, the 
analogue of the de Sitter empty universe is obtained by putting k = o, p = o. 
Then physically observable quantities, such as V, are independent of time, but 
i?, which is not directly observable, varies like exp {(A/3)* ci}. Unfortunately 
neither of these cases satisfies observational requirements; the Einstein model 

has no expansion and the de Sitter model contains no material. 
The Friedmann non-stationary models can be obtained by taking other values 

of A, k. A specially interesting case, considered by Lemaître and Eddington, 
arises from a perturbed Einstein static universe. For, as Eddington (6) has 
pointed out, the Einstein model is unstable against a small change of R. A 
decrease in R leads to contraction, whereas a slight increase of R leads to unlimited 
expansion. In the Lemaître-Eddington model the latter case is assumed. 
The rate of expansion is at first very slow, but as the 8777^/3, k/R2 terms in (7') 
become small compared with the Ac2/3 term, the Lemaître-Eddington model 
tends asymptotically to the de Sitter empty universe. 

Objections to the Lemaître-Eddington universe are subtler than the diffi- 
culties occurring in other models. The force G is repulsive except during the 
pre-expansion stage. Thus, localized condensations can only be formed during 
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this stage (7, 8). This conclusion is in contradiction with astrophysical data 
which indicate that, quite apart from their general expansion, the extragalactic 
nebulae are in a vigorous state of dynamical evolution. Furthermore, there are 
aesthetic objections. For the Lemaître-Eddingtoh universe depends on the 
introduction of a cosmical constant which, as Einstein has remarked, is an 
tinsatisfactory device. Moreover, the wide cosmological principle is not satisfied. 

In this connection it may be noted that Lemaître now prefers a model with 
point-source creation. The constants A, k and the initial velocity of expansion 
are adjusted so that there is a stage in the expansion approximating to the Einstein 
static universe. Later stages in the expansion are then the same as in the Lemaître- 
Eddington model. 

The aim of the present paper is to overcome the difficulties outhned above. 
Using continuous creation of matter, we shall attempt to obtain, within the frame- 
work of the general theory of relativity, but without introducing a cosmical 
constant, a universe satisfying the wide cosmological principle that shows the 
required expansion properties and in which localized condensations are continually 
being formed. 

3. The Mathematical Formalism.—Following a procedure similar to that based 
on WeyFs postulate (Robertson 3), we first obtain a simple form for the Riemannian 
quadratic metric 

ds2, =gMV dx^1 dxv. 

Take the pencil of geodesics passing through a definite point O in the space- 
time continuum. Three independent coordinates are required to specify a 
particular geodesic belonging to this pencil. The first restriction placed on the 

metric is that there shall be a unique geodesic (remembering that we are considering 
the smoothed out problem) joining O to a general point P of space-time. Then 
P can be described by four coordinates in the following way. The three co- 
ordinates defining the unique geodesic give the “space” coordinates x2, x3 

of P, while the absolute length (interval) measured along this geodesic from a 
fixed reference point to P gives the product ct, where c is a constant and t is the 
“time” coordinate. Next we use the geometrical property that the reference 
points on the various geodesics can be chosen so that the time sections, defined 

by equations of the form t = constant, are orthogonal to the geodesics themselves. 
Accordingly, the metric can be written as 

ds — c2 dt2 gij{t^ #2, Vg) dxjdxj, /, 7 = 1, 2, 3. (12) 

The discussion of the previous paragraph is of a geometrical character. 

Connection with the physical world is introduced by the requirement that the 
narrow cosmological principle shall be satisfied in every time section. This 
condition can be converted into geometrical terms by using results due to Lie, 
Killing, and Fubini (see Robertson 3), which show that (12) can then be reduced 
to the more specialized form 

ds2 = c2 dt2 - R^h^x^ *2, x3) dxidxj ; i, j = 1, 2, 3, (13) 

where the subspace 

du2 = hy dxjdxj ( 14) 

has constant Riemannian curvature. We now introduce the final simplification 
of taking this curvature to be zero. Then it can be shown (3) that the coordinates 
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describing the geodesics through O can be chosen to give 

ds*=c*dt*-R\t)(dxl+dxi+dxt). (15) 

In this connection it may be noted that if a stationary universe showing expansion 
is to be obtained, then formal similarities with the de Sitter empty model must 
be expected. In Section 2 it was seen that £ = o in the Newtonian form of this 
model. Since the condition £ = o is the Newtonian equivalent of zero Riemannian 
curvature, the reason underlying the final reduction of (13) will be readily 
understood. 

For convenience in later work we note that the only non-vanishing Christoff el 
symbols are 

{ij,o} = RR'hijlc\ {io,j}=R'StíIR, = 2,3, (16) 

•where 8i;- is the Kronecker symbol. The only non-vanishing components of 
the Ricci tensor GMt, are 

Gy = - (RR" + 2R'*)8ijlc\ i, j = i, 2, 3, 

G00=3R"/R, (17) 

and the spur of this tensor is given by 

G = 6(RR" + R'2)/R2c2. (18) 

We now diverge from the usual procedure by introducing at each point P 
of space-time a vector of fixed length directed along the geodesic from O 
to P. The sense of this vector is always taken as being away from O. Thus, in 
terms of our coordinate system we have, at each point, a vector with components 
proportional to (1, o, o, o). The constant of proportionality which will be 
written as 3r/a, determines the length of the vector. Accordingly, the vector 
field is given by 

^ = 3^(1, 0,0, o). (19) 

By differentiation a symmetrical tensor field is obtained. That is 

cixv=dCJdxv - {fiv, oc}Ca. (20) 

Since dCJdxv is everywhere zero, we obtain, by using (16), the following non- 
vanishing components of 

C{j = - zRR'Sylac ; ¿, ; = 1, 2, 3. (21) 

The essential step in the present work is the introduction of the tensor into 
the Einstein field equations. Thus we write 

Gi*v - hgftvG + = -kT^ (22) 

where /c = 877y/£4 and TßV is the material energy tensor. Neglecting both kinetic 
energy terms and the hydrostatic pressure, the only non-vanishing component 
of Tßv is 

Too=Pc*, (23) 

where p is the proper density of matter. The CßV term in (22) plays a rôle similar 

tothat of the cosmical constant in the de Sitter model, with the important difference, 
however, that there is no contribution from the C00 component. As we shall 
see, this difference enables a universe, formally similar to the de Sitter model, 
to be obtained, but in which p is non-zero. 
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The field equations (22) now give 

2iUT + i?'2 - yRR'¡a = o, (24) 

3R'2=kPc*R2. (25) 

Choosing the zero of time so that i? = 1 at £ = o it is easy to see that 

R = Kpc2 = 3l a2 (26) 

is a solution of (24), (25). Thus we obtain a metric identical in form with the 
•de Sitter model, but in the present universe the proper density of matter is a 
constant non-zero quantity. 

The solution (26) is stable against fluctuations in the value of R'/R. Thus, 
suppose RrIR — occIa at t = oy where a 9^1. Then (24) can be integrated to give 

3ri/4a = tanh“1(2ai?7Cj^”I)“tanh''1(2a~I) ^ a<i, "1 

ytl^a = coth”1(2ai?7^ — 1) — coth“1(2a — 1) if a> 1. j 

It can be seen from (27) that R'¡R approaches c¡a in a time of order ajc even if 
a is appreciably different from unity. Thus we see that ajc is a natural unit of 
time. 

Taking the divergence of (22) we obtain 

(cn,= -K(?n> (28) 

since the divergence of G^ — ^g^G vanishes on account of the four identities. 
Using (16), together with the relation 

{C^X = dC^¡dxv + {xv, n}C«p + {ocv, v}C^, (29) 

it can be shown that 

(G’v)v — 0, ¿=1,2,3, 

(C°0„= -gR’2lac3R2. 

Thus 

(SO) 

(T% = o, ¿=1,2,3, 

K(T0P)v = gR,zla^R2. 

By working out (T0’),, the second of equations (31) gives 

9Æ'2 

^4^ ac3R*’ 

(31) 

(32) 

which reduces to dp/dt = o when (26) is satisfied. Equation (32) could have been 
•obtained directly from (24) ,(25). 

4. The Physical Interpretation of the Formalism.—We now consider the relation 
of physical measurement to the coordinate system used above. Since (C°*%^:0, 
matter is being created. But because {Civ\ = o for i = 1, 2, 3, the matter possesses 
zero momentum in our system of coordinates. Thus a particle created at a 
point P moves away from O along a geodesic joining O and P. In principle, 
changes in the coordinate t are given by the proper time measured by an observer 
attached to such a particle. In practice, however, an observer on the Earth 
has not exactly a geodesic through O as world-line. Deviations arise when 
local condensations are formed, since electromagnetic forces are introduced 
in the condensation process (through atomic collisions). Remembering, however, 
that local condensations only have a small effect on the large-scale problem, 
the proper time measured by an observer on the Earth gives a good approximation 
for changes in the coordinate t. 
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Similarly we neglect the effect of local condensation on the measurement of 
the space coordinates. The coordinates xly 

can be chosen so that 

#! = /• sin# cos<£, x2 = r sind sin<^, = r cos6, (33) 

where r, 0, <f> are spherical polar coordinates measured relative to a terrestrial 
observer. The angular coordinates 6, (/> are easily determined by the usual 
sextant type of observation, but the determination of r raises an important question. 
At a particular time t the absolute distance (interval) from the Earth of an event 
occurring at a point with space coordinates r, 0, </> is R(t)r and not the u parametric ” 
distance r. Now, according to the postulates of the relativity theory, a measuring 
rod has the same absolute length for all values of t. It follows therefore that 
distances obtained by surveying methods give R(t)r and not r. 

Large distances are in practice obtained from the apparent intensity of a 
standard light source. In the Galaxy and the nearer extragalactic nebulae 
Cepheid variables are used as the standard, while at the greatest distances the 
whole emission from a galaxy is employed. This method has been discussed 
by Tolman (9) and by Whittaker (10), who find that, when the time sections have 
zero Riemannian curvature, such measurements also give R(t)r. 

It is seen therefore that, neglecting the effect of local condensations, normal 
methods of measurement determine proper volumes and not “coordinate” 
volumes. Thus on the basis of (26) we expect that measurements of the mean 
intergalactic density would give a value independent of t. 

It will be noticed that practical measurement of r, 0, <¡> is entirely based on 
light tracks. In particular, it is a necessary consequence of the sextant method 
of determining 0, <f> that these coordinates are constant along a light track. Thus 
the path of a light pulse emitted by the observer satisfies the equation 

dr c , . 

dt~ R(t)‘ ^ 

Accordingly, a light pulse emitted by the observer at time tx reaches at time 
¿(>¿1) a point whose r coordinate is given by 

dtf 

“i Jti R{ty (35) 

Using (26) this becomes 

r — {¿{er6*11*1 — (36} 

which tends to ae^1^ as t->co. This means that a light signal emitted by the 
observer at time ^ can never reach points with r coordinates greater than aer^1^. 
Similarly a light signal emitted at time t± from a point with r coordinate greater 
than ae~^U a cannot reach the observer. This result may be stated in a more- 
significant form in terms of absolute distances. In any time section a light signal 
emitted at an absolute distance greater than a from a point on a geodesic through G 

can never reach an observer with this geodesic as world-line. Thus a may be 
described as the radius of the “observable” universe. 

According to (26) the total mass of material within the observable universe 
is independent of t and is given by 

4-na¡Kc\ (37> 

This result deserves comment. Ignoring local condensations, each particle 
has a geodesic through O as world-line. Now the r coordinate is constant along: 
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such a geodesic. Thus a particle with space coordinates r, 6, passes out of the 

observable universe at a time t given by 

r — aerct¡a. (38) 

Particles passing out of the observable universe are compensated by the creatioa 
of new particles in accordance with (31). It is only through the creation of matter 
that an expanding universe can be consistent with conservation of mass within 

; the observable universe. 
Next we turn to a comparison of (26) with the observed velocity-distance 

law. Consider light emitted from an oscillatory source with a geodesic through 
O as world-line, and let this geodesic be characterized by the space coordinates 
r, 0, (f>. Write tx+dtx for the times of two successive maxima of the source, 
where tx-\-dtx is taken such that 

r<ae~c(ti + dt'),ia. (39) 

Then light rays emitted at times h, h reach the observer at times t, t + dt 
given by 

rt+dt 

J h+dtr 

dt' 

R(ty 
(4°> 

For small d^ (26) gives 

dt/d^ = e^t~tl)la. (41) 

But dtjd^ is the ratio of the frequency, v say, of the source itself to the apparent 

frequency, v + dv say, of the light reaching the observer. Thus we have 

dv 

V 
(42) 

This apparent shift of frequency is towards the red, and corresponds to an 
apparent Doppler velocity 

(crja)^, (43} 

Accordingly a light source moving along a geodesic through O has an apparent 
recessional velocity at time t given by multiplying the absolute distance, at time 
ty between, the source and the observer by the constant cja. Remembering that 
physical measurements determine absolute distance, it follows by comparison 
with (10) that, when absolute distance is measured in centimetres and t is measured 

in seconds, the constant cja is given by 

c¡a=(5/3) x 10“17 sec.-1. (44) 

This equation, together with c = 3 x io10 cm. per sec., leads to the following 
results :— 

(i) the radius a of the observable universe is about i-8 x 1027 cm., 
(ii) the unit of time a¡c is about 6 x io16 sec., or about 2 x 109 years, 

(iii) the proper density p is about 5 x io~28 g. per cm.3, 
(iv) the mass within the observable universe is about i*2 x io55 g. 

At a given time the present model is analogous to a Newtonian universe in 
which the instantaneous values of 1;2, p are given by 

v2 = c2r2/a2y p = 3C2l87rya2. (45) 

•Eliminating a2 we can write 

V2 = 87Typr2!3, (46) 
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which is similar to the equation for u2 occurring in the case discussed in Section 2, 
in which Ä = o, À = o. The important feature of this case was that condensations 
were formed wherever the local density increased slightly above the mean value. 
It is therefore to be expected that localized condensations will continually arise 
in the universe discussed above. 

The following general picture of the condensation process suggests itself. 
Extragalactic nebulae are continually passing out of the observable universe, 
but the total number of nebulae within the observable universe remains approxi- 
mately constant on account of the formation of new condensations. Thus a 
nebula, or a cluster of nebulae, condensing at an absolute distance d from the 
observer passes out of the observable universe after a time of about 

2 x io9 loge (ald) years. (47) 

The smallest value that can be taken for d corresponds approximately to the 
observed mean intergalactic distance of about 1*5 x io24 cm. Accordingly, the 
oldest condensations within the observable universe (other than the condensation 
in which the observer happens to be situated, which may be of any age) has an 
age of about 1*5 x io10 years. It is attractive to associate these condensations 
with the great nebular clusters. The youngest condensations, which have ages 
of about 2 x io9 years, are conveniently associated with the single field nebulae. 
Astrophysical evidence indicates that the ulocal group” of nebulae containing 
our Galaxy has an age of about 5 x io9 years. It is therefore satisfactory that 
this group shows a moderate degree of aggregation. 

Hubble’s estimation of about 5 x io~31 g. per cm.3 for the mean density of 
luminous material, taken together with our estimate of 5 x io~28 g. per cm.3 

for the average density of all material, suggests that only about one part in a 
thousand of the intergalactic medium is at present in a condensed state. 

5. General Remarks,—The work of Sections 3,4 completes the main argument 
concerning the smoothed-out problem. The discussion becomes much more 
complicated when the effects of localized condensations are taken into account. 
Although such a discussion is outside the scope of the present paper, it seems 
desirable to make brief mention of the questions that arise. 

The metric can always, in the present model, be reduced to (12), but the 
simplification leading to (13) neglects local condensation and, therefore, cannot 
be used in a strict theory. A symmetrical tensor field can still be introduced, 
however, and field equations of the form (22) can be constructed. This question 
will be considered in a further paper. 

In the usual formulation of cosmology (3) Weyl’s postulate plays’an important 
rôle. Neglecting the effect of localized condensations, this postulate requires 
material particles to move along geodesics that form a pencil. Although the 
work of Section 3 is formally similar to that based on Weyl’s postulate, there is 
a difference of principle. For the status of Weyl’s postulate in its original form 
is not clear. It cannot represent a “Law of Nature”, since particles in local 
condensations do not in fact conform with the postulate. In the present model, 
on the other hand, there is a modified form for WeyPs postulate that can be applied 
even when local condensations are taken into account. This modified form 
defines the creation properties of matter. That is, at the time of its creation 
a particle follows a geodesic passing through O. But there is no requirement 
that it shall continue to do so and in fact the particle will subsequently move 
along a path not passing through O if it should be perturbed by an electromagnetic 
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field. Weyl’s postulate is evidently of deeper significance when expressed in 
this modified form. It must be admitted, however, that the nature of the point 
O remains mysterious. In this connection we note that an event occurring 
at O cannot be observed at a point with finite t. For in order to reach O, time 
must be followed back to ¿ = — 00. * 

The present model has both an infinite future and an infinite past, and in 
the approximation in which the effects of local condensations are neglected, the 
wide cosmological principle is satisfied. 

The origin of the fluctuations of density, necessary for the formation of local 
condensations, raises a question of interest. Such fluctuations evidently arise 
if condensations with proper motions are already present. But the presence 
of condensations is not a necessary condition, for density fluctuations will occur* 
even in the absence of condensations, provided matter is created in a quantum 
type of process. Quantum processes are not, of course, mentioned in the macro- 
scopic treatment of Section 3. Nevertheless, quantum effects must be considered 
in the physical interpretation of the theory, since it is only through discontinuous 
processes that statistical fluctuations can be imposed on the universe in the first 

place. Thus, fluctuations, leading ultimately to approximate thermodynamic 
conditions being realized im extremely localized regions (in stars, for example), 
probably arise on account of the discrete particle nature of matter. These 
considerations are important in relation to the measurement of the coordinates. 
For in a universe containing no statistical fluctuations and satisfying the wide 
cosmological principle, there is no possibility of introducing the rod and clock 
equipment postulated in the relativity theory. 

A further interesting feature is that the total “ entropy” within the observable 
universe does not increase with time. Although entropy increases in ä localized 
region, the total entropy remains approximately constant because local condensa- 
tions carry entropy out of the observable universe. Thus thermodynamics 
has only localized application. There is no general thermodynamic degeneration 
of the observable universe as a whole. 

It is not possible in the present state of nuclear physics to make a definite 
statement on the identity of the created particles. Neutron creation appears ta 

be the most likely possibility. Subsequent disintegrations might be expected 
to supply the hydrogen required by astrophysics. Moreover, the electrical 
neutrality of the universe would then be guaranteed. 

Finally, we notice that a dimensionless number is obtained by dividing the 
length a/3 appearing in (19) by the “ range ” k of nuclear forces. Using laboratory 
data for A, together with the determination given above for a/3 (on the basis of a 
comparison with the Hubble-Humason velocity-distance relation), we obtain 
about 4 x 1039 for this number. This value is close to the dimensionless number 

2*3 x 1039 given by the ratio of the electrical to the gravitational force between 
a proton and an electron. Allowing for uncertainty in the determination of a/3* 
and in the interpretation of &, this coincidence suggests that the relation 

a=3ke2/ymMy (48) 

where m, M are the masses of the electron and proton, is of deep significance. 
Since the creation process is likely to be of an essentially quantum character, 
the relation (48) may be regarded as being entirely concerned with microscopic 
properties. Weyl has interpreted a relation similar to (48) as giving a connection 
between the radius a of the observable universe and the physical constants, and 
Eddington, in particular, has attached much importance to this interpretation. 
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But this view, which Eddington has adopted as the basis of his work on physics 
theory, may well prove to be a misconception, for according to the above discussioi 
the radius of the observable universe is subsidiary to, and is determined by, th 
creation constant. Indeed, the possibility of interpreting (48) as an equatioi 
of microscopic physics gives perhaps the best indication that the work of Section ■ 
is not simply a formal device. 

Cambridge : 
1948 August 3. 
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