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THE SECULAR PERTURBATIONS OF THE SATELLITES OF MARS 

By EDGAR W. WOOLARD 

Observations of the satellites of Mars at suc- 
cessive oppositions show that the orbits have 
large secular variations. The line of apsides of 
each satellite rotates in the orbital plane, while 
the position of the orbital plane in space varies 
in such a way that the pole of the orbit describes 
a small circle on the celestial sphere at a uniform 
rate in a retrograde direction around a fixed 
center. Discussions by H. Struve,1 Burton,2 and 
Sharpless3 of the oppositions over the interval 
1877-1941 have given the following values for 
the radius p of this circle, the rate Kf of the 
polar motion per tropical year, the orbital eccen- 
tricity, tropical mean daily motion, and semi- 
major axis at unit distance for each satellite: 

Phobos Deimos 
p U13 i?77 
K' I59-I457 ± °°5044 6?54382 ± o?00070 
e 0.0210 0.0028 
n Ii28?844i33 285?161922 
a 12? 895 32''389 

The line of apsides of Phobos is observed to 
advance about I58?5 per year. The principal 
cause of these variations is the disturbing force 
of the polar flattening of Mars, but the motion 
of each satellite is also appreciably disturbed by 
the sun; the satellites are so small and so close 
to Mars that possible mutual perturbations and 
perturbations by Jupiter may be neglected at 
present. 

In previous investigations, two theoretical 
relations have been applied in discussing the 
motions of the satellites. One is the principle 
that the rate of advance of the apsides is equal 
to the rate of the retrograde circular motion of 
the orbital pole; this principle is an approxima- 
tion, but in the case of the Martian satellites it 
proves to be valid within the accuracy to which 

the pericenters can be determined. The other 
relation is an expression for the ratio of the polar 
motion of Phobos to that of Deimos in terms of 
the sidereal mean motions: 

This relation also is an approximation; and 
it is not satisfied by the observed values. The 
ratio of the observed polar motions is 24.32 
=b 0.08, whereas the observed mean motions give 
{up/tid)11* = 24-79> a discrepancy amounting to 
six times the probable error. 

To investigate the source of this discrepancy, 
a more accurate expression for the ratio of the 
polar motions will first be derived. The disturb- 
ing function for the perturbations caused by the 
flattening of Mars is4 

i?o = ¿27«o(/-éK + |/2+ • • •) (i-sin2 , 

in which k2 is the constant of gravitation, m0 the 
mass of Mars, f the flattening, bQ the equatorial 
radius, k the ratio of the centrifugal force of 
rotation at the Martian equator to mean gravity 
on Mars, r the radius vector of the satellite, and 
d the angle between r and the equatorial plane 
of Mars. Within the parentheses, the further 
quantities are of the order of f2 or smaller; and 
the next term of Rq is of the order of the product 
of this first term by f(bo/r)2. The disturbing 
function for the action of the sun is5 

Ri = y1 {ßcos2 (r’ - I] + • • • I. 

in which mi is the mass of the sun, and ri the 
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distance of the sun from Mars; the next term 
has the factor (r/Vi)3. These functions may read- 
ily be expressed in terms of the orbital longitudes 
and elements of the satellite and its primary. 
The periodic variations in the disturbing force 
that depend on the position of the satellite in its 
orbit do not lead to any progressive changes, 
and their small short-period effects may be dis- 
regarded; therefore the quantities that depend 
only on the radius vector and true anomaly of 
the satellite may be replaced by their mean 
values. The terms that depend on the orbital 
longitude of Mars may produce appreciable 
periodic perturbations, for which allowance is 
made in reducing the observations; omitting 
these terms, and neglecting terms in f2 and in 
the higher powers of b0/r, r/ri and e, we have the 
disturbing function for the secular perturbations 
produced by the flattening of Mars and the 
action of the sun : 

£> _ 2,2 (/ - l'Qfto2 fl 1 • , , 
R k m° a3(i — e2)312 *3 2 sin~ 

3a2 

+ kimi 8«i3(i - ei2)3'2 * ^ + ^ cos21 ^ 

+ fe2 sin2 i cos 2(7t — Ü) 1P2 _ 1) 2e 3 ) > 

where 7 is the inclination of the satellite orbit 
to the Martian equator, i its inclination to the 
Martian orbit, tt and the longitudes of the 
pericenter and the node on the orbit of Mars, 
and ai and ei the semimajor axis and eccentricity 
of the Martian orbit. From this expression for i^, 
the theoretical secular variations may be derived 
by means of the classical equations for the vari- 
ations of the orbital elements6 referred to any 
desired fundamental reference plane. 

As the node and the inclination on the refer- 
ence plane vary, the pole of the orbital plane 
traces a curve on the celestial sphere. Since the 
eccentricities are so small, and no differentiation 
with respect to e occurs in the equations for the 
variations of the node and inclination, the form 
of this curve may be found without appreciable 
error by neglecting e2 ; and as a is constant to the 
order of approximation of (2), R then reduces to 
a function of only i and ß. Adopting the plane 
of the orbit of Mars at a selected epoch as the 
reference plane, it follows that an integral of the 
equations for di/dt and dil/dt is7 

R = Ci cos2 i + C'2 cos2 7 = const., (3) 

in which 

Ci = k2mi 3«“ 

C2 = k2m0(f 

8a1
3(i - ^2)3/2 

bo2 

2a0 

The relation (3) that must be satisfied by the 
angular distances of the pole of the satellite 
orbit from the poles of the Martian orbit and 
Martian equator represents the locus of the pole 
of the orbit on the celestial sphere. It follows 
from (3) by abstract geometry that this locus is 
the curve in which the sphere is intersected by 
an elliptic cylinder with an axis that passes 
through the center of the sphere and is perpen- 
dicular to the plane of the great circle through 
the pole of the Martian orbit and the pole of the 
equator of Mars.7 The locus is therefore a non- 
plane oval curve, with its longer axis on the 
great circle through the poles of the Martian 
equator and orbit; furthermore, the center of this 
oval lies between these two poles, at a distance 
Ii from the pole of the Martian equator that is 
given by 

G . 
— sin 271 

tan 2// = • ^ , (4) 
i + — cos 271 

02 

in which 7i is the inclination of the Martian 
equator to the Martian orbit. That is, the center 
of the locus is the pole of a fixed plane which is 
inclined at an angle Ii to the plane of the Mar- 
tian equator, and which passes through the inter- 
section ßo of the equatorial and orbital planes of 
Mars and lies between them. This fixed plane is 
the Laplacian plane, characteristic of satellite 
systems. 

However, in the case of the satellites of Mars 
the eccentricity of the intersecting cylinder is so 
great, and the oval is so small, that the path of 
the pole of the satellite orbit differs inappreciably 
from a circle: The radius vector p of the pole in 
its path is the inclination of the orbital plane to 
the fixed Laplacian plane ; and the angle ß' which 
this radius vector makes with the longer axis of 
the oval, measured eastward through the south 
from the vertex nearest the pole of the Martian 
orbit, is equal to the longitude of the node of the 
satellite orbit on the fixed plane, reckoned east- 
ward from ß0. In terms of p, ß', the disturbing- 
function (3) becomes 

^ = (Ci + C2)(cos2 p cos2 B 
+ sin2 p sin2 B cos2 ß'), (5) 
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in which B is an auxiliary defined by 

tan2 A = C2/C1, sin 2J3 = sin 71 sin 2A. 

Adopting the Laplacian plane as the fundamental 
plane of reference, the equations for the varia- 
tions of the inclination and node on this plane are 

dp Cl + C2 . -op- 
-— = + ^— sin p sin2 B sin 2I2 , 
dt no1 

dQi' Ci T C2 
dt 

= — 2 cos p cos2 B 
rvus* 

X {i — I tan2 j3(i + cos 2Í2')}. 

(6) 

for each of the disturbing influences separately. 
In general, however, this principle must be ap- 
plied with caution, because the approximation 
that it gives is sometimes greatly in error.8 

From (6), omitting the minute periodic terms, 
putting k2mi = wi2ai3 in Ci and 

&2mo = w2a3(i — %(t), 

in C2, we obtain for the solar component of the 
secular regression of the node on the fixed plane 

It is evident from the definition that A cannot 
be much less than 90o, and therefore 5 is a very 
small angle, while observation shows that p is 
always small; consequently the periodic variation 
of p with Í2' during the circuit of the pole around 
its path is negligible, while the rate of variation 
of Q' is practically constant. The orbital plane 
keeps a practically constant inclination to the 
fixed plane, while the node regresses on this plane 
at a virtually uniform rate and the pole of the 
orbit revolves in a circle in a retrograde direction 
at the same rate. 

The rate at which the line of apsides is dynam- 
ically rotated within the moving orbital plane 
by the disturbing forces is 

Vi - e2 dR _ 2C1Vi - e2 

end1 de no1 I sin2 7i¡ 

x'o=^(A=^cospcos2j5(l_è tan2jß)’ (9) 

and for the component produced by the flatten- 
ing of Mars 

K/ = (I - - %k) 

X^ttcospcos2^1 -ètan2^), (10) 

where 

cot2 A = K'q/K/, sin 2B = sin 71 sin 2A, (11) 

and the factor in a is the correction necessary to 
reduce the observed values n and a to the undis- 
turbed values to which Kepler’s Law applies.9 

Then, in place of (1), 

+ ~aT(i ^ <>2)2 » 1 - l(SÍn2 P + SÍn2 A) I - (7) 

in which R is given by (2), and the terms that 
have been neglected are inappreciable ; the varia- 
tion of the longitude of the pericenter referred 
to the Laplacian plane is obtained by adding to 

d£lf 

(7) the small kinematic term 2 sin2 ^p . Since 

the term in Ci due to the action of the sun is 
small, this advance of the apsides is at very 
nearly the same rate as the regression (6) of the 
node on the fixed plane: an example of the gen- 
eral principle that to a first approximation the 
pericenter of a disturbed body advances at a rate 
equal to the recession of the node on the orbit 
of the disturbing body or, in perturbations from 
polar flattening, on the plane of the equatorial 
excess of mass. It is evident from a comparison 
of (7) and (6), without actually deriving expres- 
sions for the motions of the node on the orbit 
and equator of Mars, that this principle is valid 

Kp' /sin Ad y [cosp cos2 J3(i — J tan2i?)]p 
Kd' \sinAp/ [cospcos2i?(i — ^ tan2 j3)]d 

in which a has been eliminated from the last 
factor by means of (8). 

To calculate the values of these theoretical 
expressions from the directly observed quanti- 
ties, the auxiliary angles A and B must first be 
determined by successive approximation: The 
angle B and the component Kf q are so small 
that a very good first approximation may be 
obtained by putting B — o; then K'q is easily 
calculated by means of (9), and subtracting it 
from the observed K' gives K/, whence a pro- 
visional value of A follows. The inclination Ii 
of the Laplacian plane to the Martian orbit is 
known from the elements of Mars and the ob- 
served center and radius of the path of the 
orbital pole of the satellite, whence the simul- 
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taneous solution of the relation I\ = y\ — h' 
with (4) gives 71 and J/; in this way, Burton 
obtained J/ = o?oi for Phobos and o°.g2 for 
Deimos, together with yi = 25?20 as the mean 
of determinations from the two satellites. From 
71 and A, a provisional value of B is computed, 
and the calculation then successively repeated 
until the values remain unchanged. From the 
final K/, the value of (/ — Jk) is found from 
(10); K may be determined from the period of 
rotation of Mars and the quantities n, a, bo, 
whence / follows. The flattening must lie be- 
tween the Clairaut limits f/c and ^k. 

The results obtained in this way from the two 
satellites differ very little; and the component 
K/, from which f — is evaluated, is such a 
large proportion of the total motion of the orbital 
pole, that in view of the much greater probable 
error of the observed Kpf we may adopt the 
value derived from Deimos as the best obtain- 
able, which is f — — 0.002920. Then with 
k = 1/218, we have / = 0.005214 = 1/191.8. 
The corresponding theoretical values given by 
(9), (10), (n) are: 

Phobos Deimos 
A 88°49Íi 78°24Í4 
B 30:2 4°49-5 

X'q o?o675 o?26432 
K'f i58°484i 6?27950 

Kf I58?55i6 -6?54382 

To these theoretical values of Kl should be added 
small corrections for the effects of neglecting 
terms in /2, e2, and higher powers of bo/r and 
r/ri\ the order of magnitude of these corrections 
is estimated at about +o?2 for Phobos, and 
+o?ooo9 for Deimos. 

These theoretical rates of motion agree satis- 
factorily with the observed values. Their ratio, 
excluding the estimated corrections that should 
be added, is 24.23 as compared to the ratio of the 
observed values 24.32 ± 0.08, and the agreement 
can be brought within the probable error by a 
reasonable allowance for the theoretical correc- 
tions; but this ratio of the two theoretical motions 
must be distinguished from the theoretical ratio 
(12) of the motions, the value of which is found 
to be 

(0.960) (1.0109) (0.99946) {np/nD)vz 

= (0.97) (2479) = 24.04. 

The factor that multiplies the previous approxi- 
mation reduces the disagreement with observa- 
tion from +0.47 to —0.28, but a significant 
discrepancy is still left because Kepler’s Law 
imposes on the mean distances of the two satel- 
lites a relation 

_ i1 — Í<t)p f npYß , , 
dp (i — toO-D \^z>/ ’ ^ 

which was used in forming the last factor in (12) 
but which is not satisfied by the observed values 
of aD, ap that are used in computing K'q, K/; 
the observed value of aD/ap is 2.51175, whereas 
the relation (13), with the observed mean mo- 
tions, givês 2.50216. Theoretically, from the two 
conditions that (a) the ratio of the semimajor 
axes must satisfy the relation imposed by Kep- 
ler’s Law, and {b) the motions of both the 
satellites must lead to the same value for the 
flattening of Mars, it would be possible to derive 
corrections to the observed mean distances; the 
corrected values would both give the same value 
for the mass of Mars. In practice, however, no 
significant results are obtained in this way. 
Corrections could also be determined from a 
sufficiently accurate value for the mass of Mars 
obtained independently of the satellites. 

I am indebted to Mr. B. P. Sharpless for 
drawing my attention to this problem ; and to the 
Superintendent of the U. S. Naval Observatory 
for the use of unpublished data. 
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