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DYNAMICAL FRICTION 

III. A MORE EXACT THEORY OF THE RATE OF ESCAPE 
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ABSTRACT 
A more exact estimate of the rate of escape of stars from clusters is made than in an earlier paper by 

properly allowing for the dependence of the coefficient of dynamical friction on the velocity. It is found 
that the probability that a star will have acquired the necessary velocity of escape (assumed to be equal 
to twice the root mean square velocity of the stars in the system) in a time r (measured in units of the 
time of relaxation of the system) is given by 

Q(j) = (1 - . 

On this basis, half-lives for galactic clusters of the order of 3 X 109 years are provided for, and it is further 
concluded that dynamical friction provides the principal mechanism for the continued existence of galac- 
tic clusters like the Pleiades for times of the order of 3 X 109 years. 

1. Introduction.—In the two earlier papers of this series on “Dynamical Friction”1 

we have shown how stars must experience dynamical friction during their motion and 
how in the rate of escape of stars from clusters we can look for direct evidence for the 
operation of this force. However, in estimating this rate of escape of stars from clusters 
in II we assumed (for the sake of simplicity) that the coefficient of dynamical friction, 
rj, and the diffusion coefficient, q (in the velocity space), were both constants. On the 
other hand, an explicit evaluation of the coefficient of dynamical friction on the two- 
body approximation for stellar encounters gave 

According to this formula, 
7] —>770== constant as | u | —>0 (2) 

and 
77—»constant | u | “3 as | u | —»0° . (3) 

In view particularly of (3) it does not appear entirely satisfactory that we ignore the 
dependence of 77 on | u |. It is therefore a matter of some importance that we make 
proper allowance for the variation of 77 with | u | according to equation (1) in estimating 
the rate of escape of stars from clusters. This is the main purpose of this paper. 

2. The general theory of the rate of escape of stars from clusters allowing for the variation 
of 77 with I u I.—As in II, we shall suppose that, in order that a star may escape from a 
cluster, it is only necessary that it acquire a velocity greater than (or equal to) a certain 
critical velocity, vœ, which we may call the “velocity of escape.” On this assumption 
the probability that a star will have acquired the necessary velocity for escape during 
a certain time can be determined very simply in terms of the probability, P(vq, t) dt, 
that a star having initially a velocity | u | = zjo at time ¿ = 0 will acquire for the first 
time the velocity \u\ = vm between t and t + dt. And as we have already explained in 

1 Ap. 97, 255 and 266, 1943. These two papers will be referred to as “I” and “H,” respectively. 
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DYNAMICAL FRICTION 55 

II, § 2, this probability function ÿ(z;o, i) can be derived in turn from the spherically 
symmetric solution of the equation 

dW 

dt 
divu ( q gradu W + r¡Wu) , 

which satisfies the boundary conditions 

IF ( 11/1, /) = 0 for 11/1 = z>œ for all / > 0 

1 
and 

W {\u\, t) 
4:TTVq 

Ô ( |w I — ^o) as /-^O , 

(4) 

(5) 

(6) 

where ô stands for the usual ô-function of Dirac. 
For the case under discussion we have (I, eq. [36]) 

■n = 8tNm2G2 (loge - i |u |$'(i|u | ) ] , (7) 

where $ and «F' denote, respectively, the error function and its derivative. Further, in 
equation (7), 7 is the parameter which occurs in the assumed Maxwellian distribution 
of velocities: 

r 
.3/2 e~i‘ 

The formula (7) for rj can be written more conveniently as 

V = Vov(j\u\), 
where 

(log. [Mÿ]) G4p)‘,!3^1 

and 

v(p) 
37T1/2 

p 3[F(p) — pF'(p) ] 

With v(p) defined in this manner, 

and 

(p) 

z'(p) as p-^0 

3 7T1/2 

p 3 as p—^00 . 

Again, since q and rj are quite generally related according to 

we have 

— 1 

? = §|u|2’7o»'(Í|u|)- 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

04) 

(15) 

The function v(p) is tabulated in Table 1. 
Returning to equation (4), we now introduce a change of the independent variables 

u and t. Let 

T = riot ; u= (f |u |2)1/2P . (16) 
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Equation (4) now takes the dimensionless form 

dW 
= divp [ |^ ( I P I ) gradp W -\-v(\$\)W9]. (171 

o r 

For a spherically symmetric solution | P |, r) equation (17) reduces to 

P 
dw 

dr 

TABLE 1 

The Functions v(p) and —d log v/dp 

(18) 

0.00. 
0.05. 
0.10. 
0.15. 
0.20. 
0.25. 
0.30. 
0.35. 
0.40. 
0.45. 
0.50. 
0.55. 
0.60. 
0.65. 
0.70. 
0.75. 
0.80. 
0.85. 
0.90. 
0.95. 
1.00. 
1.05. 
1.10. 
1.15. 
1.20. 
1.25. 
1.30. 
1.35. 
1.40. 

'(p) 

.00000 

.99850 

.99402 

.98661 

.97634 

.96332 

.94770 

.92962 

.90927 

.88684 

.86257 

.83666 

.80936 

.78090 

.75152 

.72145 

.69093 

.66016 

.62936 

.59872 

.56842 

.53861 

.50944 

.48104 

.45350 

.42692 

.40137 

.37689 

.35354 

d log v 
dp 

0.0000 
0.0600 
0.1199 
0.1795 
0.2389 
0.2979 
0.3563 
0.4141 
0.4712 
0.5274 
0.5827 
0.6369 
0.6899 
0.7417 
0.7921 
0.8409 
0.8881 
0.9336 
0.9772 
1.0188 
1.0584 
1.0958 
1.1309 
1.1636 
1.1939 
1.2216 
1.2468 
1.2693 
1.2891 

1.45. 
1.50. 
1.55. 
1.60. 
1.65. 
1.70. 
1.75. 
1.80. 
1.85. 
1.90. 
1.95. 
2.00. 
2.05. 
2.10. 
2.15. 
2.20. 
2.25. 
2.30. 
2.35. 
2.40. 
2.45. 
2.50. 
2.55. 
2.60. 
2.65. 
2.70. 
2.75. 
2.80. 
2.85. 

v(p) 

0.33133 
.31026 
.29035 
,27157 
.25392 
.23734 
.22183 
.20732 
.19379 
.18117 
.16943 
.15852 
.14839 
.13898 
.13025 
.12216 
.11466 
.10770 
.10126 
.09528 
.08973 
.08458 
.07980 
.07536 
.07123 
.06739 
.06381 
.06048 

0.05737 

d log v 
dp 

1.3062 
1.3206 
1.3323 
1.3413 
1.3477 
1.3515 
1.3528 
1.3518 
1.3486 
1.3432 
1.3358 
1.3267 
1.3159 
1.3036 
1.2901 
1.2754 
1.2597 
1.2433 
1.2262 
1.2087 
1.1907 
1.1726 
1.1544 
1.1361 
1.1179 
1.0999 
1.0820 
1.0645 
1.0472 

where we have written 
p = I p I and w = Wp. (19) 

According to equations (5) and (6), we require a solution of equation (18) which satisfies 
the boundary conditions 

w(p,t)=0 for both p = 0 and p = pœ for all r>0 (20) 

and 

w(p,t)-+- (Kp —po) as T —>0 . (21) 
47rpo 
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DYNAMICAL FRICTION 57 

Now, equation (18) is separable in the variables p and r. Accordingly, we write 

w = e~^T(j){p), (22) 

where X is, for the present, an unspecified constant; we then obtain for 0 the differential 
equation 

[»-(p) |èp (p2-§) </>j] + Ap0 = 0 . 
d<¡> 
dp 

If we now let 

equation (23) reduces to 

d20 d log v d\f/ 

dp2 dp dp 

(23) 

(24) 

It is now seen that, in order that a solution of the foregoing equation may vanish both 
at p = 0 and at p = poo, it is necessary that X take one of an infinite enumerable set of 
discrete values 

Xi, X2J . . . . , Xn, . . . . , (26) 

which may properly be called the ffcharacteristic values” of the problem. Further, if 

01, 02, • • - • , • (2 7) 

denote the solutions of equation (25) which satisfy the boundary conditions (20) at 
p = 0 and at p = P«, and belong, respectively, to the values Xi, X2, . . . . , Xn, , . . . , 
then it can be readily verified that these solutions form a complete set of orthogonal 
functions. Without loss of generality we can therefore suppose that these functions are 
all properly normalized. Consequently, in terms of the fundamental solutions 

wn= e~'xnre-p2/^n(p) (28) 

which satisfy the boundary conditions (20) we can construct solutions which will satisfy 
any further arbitrary boundary condition for r = 0. Thus, the solution 

w !_ e-(p^)/2^ e-^tAp) tnipo) 
4xp 

(29) 
n—1 

clearly satisfies the boundary condition (21) for r = 0. Corresponding to the solution 
(29) for w, we have 

W = 6-^n(p)^(p0) . 
47TPP0 

(30) 

Using the foregoing solution for W, we can write down the probability function 
P(po, t). For, since 

Pipo, r) =-2^(pœ)(^)^ (31) 

we have 

P (po, t) 
2po 

vipj ;)/2Ve-^(-^) vUpo) • (32) 
n=l ^ Clp/ p=px 
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58 S. CHANDRASEKHAR 

To obtain the total probability Q(po, r) that a star having initially a velocity correspond- 
ing to po will have acquired during the time r a velocity corresponding to pœ, we have 
simply to integrate equation (32) from 0 to r. Thus, 

Q(po,r)=f p (vq, t) dr ; (33) 

or, using equation (32), we have 

0(P0, r) tn(po). (34) 
^Po An \ dp/p=P„ 

Finally, to obtain the expectation, Q (r), that an f Average” star will have acquired the 
necessary velocity for escape during a time r, we must average the foregoing expression 
over all po. The final result can therefore be expressed in the form 

where 

and 

Q(r) = ¿Qn (t) , 
n=l 

Qn(r) =An{\-e~^) 

(35) 

(36) 

[^"(po)]. (37) 

3. Numerical results.—Now, since in a star cluster the root mean square velocity of 
escape is twice the root mean square velocity of the stars in the system,2 it is clear that 
the values of poo which come under discussion are in the general neighborhood of 

Poo = Vó —2.45 . (38) 

As we shall see presently, for these values of pœi Q(t) can be represented with ample 
accuracy by the first term on the right-hand side of equation (35). Accordingly, it 
would be sufficient to specify the lowest characteristic value of X (for a given pœ) and 
the normalized characteristic function pi belonging to it. For this purpose the following 
procedure appears suitable : 

First we assign a value for X and look for a solution Sk (p) of equation (25) whose be- 
havior near the origin can be described by a series expansion of the form 

Sk = p + a3p
3 + a5p

5 +  (39) 

For any prescribed value of X the coefficients az, etc., can be successively determined 
from the differential equation (25) for 4r. Thus az and az are found to be 

<*3= -K3 + 2X), 

a6 = *[2.2-1.2X + i(3 + 2X) (0.6 + 2X)]. 

The higher coefficients can be similarly found, but the explicit formulae in terms of X 
have no particular interest. However, it is clear that, starting a solution near the origin 
with a series expansion of the form (39), we can continue it for larger values of p by 

2 Cf., e.g., S. Chandrasekhar, Principles of Stellar Dynamics,pp. 206-207, University of Chicago Press 
1942. 
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standard numerical methods until we reach the first zero pœ (X) of Tr. Conversely, for 
the value of pœ thus determined, the solution SF satisfies the necessary boundary con- 
ditions at the origin and at p = pœ. The initially assigned value of X is therefore the 
lowest characteristic value of X for this value of pœ. If we now let a denote the nor- 
malizing factor for the solution 'F determined in this fashion, we can express Ai (cf. 
eq. [37]) alternatively in the form 

A' = £p<°v(p°>)e~pi/2(-TP 

\ rerf/2 

/p=p„L Po 
* (po)]. (41) 

Now, it is found that, for the values of pœ in the neighborhood of 2.45, X is very small 
and Ai is very close to unity. Thus, for X = 0.0075, a numerical integration of equation 
(25) gave 

pœ = 2.4518 ; Ai = 0.9966 (Xi= 0.0075). (42) 

Accordingly, for this case, equation (35) takes the explicit form 

CO 
Q(t) =0.9966(1 -And-e-^) (pa, = 2.4518). (43) 

n=2 

Since <2(t) must, by definition, approach unity as r —> oo ? it is clear that 

oo 

A„ = 0.0034 (pœ = 2.4518). (44) 
n=2 

Again, since X2 must be in the neighborhood of 2 (cf. II, p. 270) and the higher character- 
istic values still larger, it is evident that, for r > 5, sufficient accuracy will be pro- 
vided by 

Q(t) =1- (r>5). (45) 

The situation for other values of pœ is quite similar, as is apparent from Table 2, where 
the results for a few values of X are collected together. 

TABLE 2 

The Rate of Escape of Stars from Clusters Including Dynamical Friction 
and Allowing for Its Dependence on |u| 

Kp» ) -*'(Poo) [eP2/V0i*(p0)] Ql(r) 

0.0025. 
.0050. 
.0075. 
.0100. 

0.0125. 

2.6642 
2.5320 
2.4518 
2.3936 
2.3476 

0.07011 
.08148 
.08954 
.09601 

0.10156 

0.4077 
.5183 
.5932 
.6503 

0.6969 

2.3083 
2.3458 
2.3787 
2.4089 
2.4373 

0.9891 
.9813 
.9748 
.9689 

0.9634 

1.0000 (l-e"0 ^) 
0.9978 (l-e-o-oosor) 
0.9966 (l-e-o oorsr) 
0.9941 (1-g-o-oioor) 
0.9921 (1 —g-0»0125t) 

4. T/te half-life of a cluster,—From our results of § 3 it follows that for r ^ 5 we 
can write 

e(r)=l-e-V (r = ,o0 (46) 
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for the values of pœ which come under discussion. Since Q(r) gives the expectation that 
an average star will have escaped during a time r (in units of we can properly re- 
gard I/X1770 as a measure of the half-life of the cluster. Thus, 

Half-life of the cluster = (Xi^o) -1, (47) 

where rjo is defined in equation (10). The precise value of Xi will depend, of course, on 
circumstances; but it is clear that greatest interest attaches to a value of pœ ^ 2.45. 
For this value of pœ we have found that Xi ^ 0.0075, so that the half-life of the cluster 
may be defined by 

Half-life of the cluster =133t7“1. (48) 

For the Pleiades, 77^"1 is of the order of 2 X 107 years, so that its half-life is of the order 
of 3 X 109 years. In judging this value it should be remembered that, when dynamical 
friction is ignored, a half-life for the Pleiades of the order of only 5 X 107 years is pre- 
dicted, while our own earlier calculations in II, in which we ignored the dependence of 
the coefficient of dynamical friction on | u |, gave half-lives which are about seven to 
eight times shorter than those indicated by our present calculations. More explicitly, 
we have found that (cf. II, eqs. [28] and [62]) 

<2(r) ^1.3 (1 - 6-o.82r) 

Q (t) = (1 — e-0-059') 

Q (t) = (1 - e_0-0075r) 

(dynamical friction ignored), 

(dynamical friction included, but the depend- 
ence of 77 on I w I ignored), (49) 

(dynamical friction included and the depend- 
ence of 77 on I u I allowed for). 

There can thus be hardly any doubt that dynamical friction provides the principal 
mechanism for the continued existence of the galactic clusters like the Pleiades for times 
of the order of 3 X 109 years. But, even with dynamical friction properly allowed for, 
it will be hard to account for such clusters’ half-lives of the order of 1010 years. This, 
in turn, provides another strong argument in favor of the “short-time scale.” 

The results of Table 2 allow us also to infer something about the relative rates of 
escape of stars of different masses : for stars with masses appreciably different from the 
average value, pœ may be expected to change according to 3 

Pœ(m) =(ó =-) ' . (50) 

From Table 2 we now see that even a 10 per cent increase of p^ prolongs the half-lives 
by a factor of the order 3, while a similar decrease in pœ shortens the half-life by a factor 
of the order 2. The general conclusion to be drawn from this is simply that a cluster 
loses its less massive members rather more rapidly than the average ones, while the 
more massive members continue to remain, on the average, for longer times. We hope 
to return to these questions in greater detail on a later occasion. 

In conclusion, I wish to record my indebtedness to Mrs. T. Beiland, who undertook 
most of the numerical work involved in the preparation of this paper, and in particular 
for the care with which she performed the necessary numerical integrations. 

3/M., pp. 209-213. 
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