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DYNAMICAL FRICTION 

II. THE RATE OF ESCAPE OF STARS FROM CLUSTERS AND THE 
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ABSTRACT 
In this paper a general method is described for determining the rate of escape of stars from galactic 

and globular clusters which is based on certain general statistical principles. Essentially the method con- 
sists in reducing the problem to a boundary-value problem in partial differential equations and in making 
use of the interpretation of the stochastic process in the velocity space as a diffusion process of a rather 
general type. 

The rate of escape has been evaluated, first, ignoring dynamical friction, and, second, making due al- 
lowance for it. It appears that the rate of escape of stars predicted on the first basis is too rapid to be 
compatible with a fife for galactic clusters even of the order of 5 X108 years. However, the rates of escape 
are drastically reduced when dynamical friction is allowed for and permits a time scale of the order of 
3 X109 years. It is concluded that in the very existence of galactic clusters like the Pleiades we can look 
for direct evidence for the operation of dynamical friction which was predicted on theoretical grounds in 
the preceding paper. 

1. Introduction.—In the preceding paper1 we have shown that stars must experience 
dynamical friction during their motion. This conclusion, first reached on the basis of 
certain very general considerations, was later confirmed by a more direct ánalysis of the 
fluctuating force acting on a star in terms of the two-body approximation for stellar en- 
counters. In this paper we propose to draw attention to certain facts of stellar dynamics 
which provide direct evidence for the operation of dynamical friction. 

Since the coefficient of dynamical friction is of the order of the reciprocal of the time 
of relaxation of the system (cf. I, eq. [14]), it is evident that it is only during times of the 
order of the time of relaxation itself that dynamical friction will have a chance to become 
an effective agent. Consequently, the effects of dynamical friction will be apparent only 
in stellar systems with relatively short times of relaxation. Such systems are provided 
by galactic clusters like the Pleiades, which are characterized by times of relaxation of 
the order of 6X107 years.2 Since the times of relaxation of the galactic clusters are of this 
order of magnitude, it is clear that an important factor in their evolution must be the 
escape of stars from them.3 For, in times of the order of the time of relaxation, the prob- 
ability that a star will, on account of accidental fluctuations, acquire a velocity equal to 
or greater than the velocity of escape must be appreciable. And, if this should happen, 
we can reasonably expect the star to escape from the cluster. The question now arises 
as to the rate at which stars will thus leave the cluster. In this paper we shall show how 
this rate can be evaluated on the basis of certain general statistical principles and how 

1 Referred to hereafter as “I.” 
2 Cf. S. Chandrasekhar, Principles of Stellar Dynamics, chap, v, University of Chicago Press, 1942. 

This monograph will be referred to hereafter as “Stellar Dynamics.” 
In Stellar Dynamics (p. 202) the time of relaxation of the Pleiades is given as 2.9X107 years. How- 

ever, in view of the fact that in a sufficient approximation ij-1 is equal to twice the time of relaxation as de- 
fined in Stellar Dynamics (cf. the remarks in I following eq. [14]), and since for our present purposes 17“1 

provides a better unit for measuring time, we have quoted in the text a value which is twice that given in 
Stellar Dynamics. 

3 This fact was first clearly recognized by Ambarzumian and Spitzer. For references to these papers 
and for a general discussion of the related ideas see Stellar Dynamics, chap v, §§ 5.2-5.4. 
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264 S. CHANDRASEKHAR 

precisely in this rate of escape we can look for evidence for the operation of dynamical 
friction. 

2. A general method for estimating the rate of escape of stars from galactic and globular 
clusters.—In the preceding paper we have shown that, when the diffusion coefficient, g, 
and the coefficient of dynamical friction, 77, are functions of u, the equation which 
governs the distribution W(u, /) of u at time t is 

dW 
dt 

= divu (q graduPF + , (1) 

where q and 77 are further related according to 

— = ^ I u 12 = constant. (2) 
V 

This differential equation for W leads to an important interpretation of the stochastic 
process which takes place in the velocity space. For, according to equation (1), we can 
visualize the motion of the representative points in the velocity space as a process of dif- 
fusion in which the rate of flow across an element of surface da is given by 

— {q gradiilF + riWu) • ldad(j , (3) 

where 1^ is a unit vector which is normal to the element of surface considered. With this 
interpretation of the stochastic process in mind, the following method for finding the 
rate at which a star may be expected to acquire a given velocity naturally suggests it- 
self. 

First, we find the probability, p(yo, t) dt, that a star with an initial velocity |u| = 
will acquire for the first time sl certain preassigned velocity, \u\ = fleo, say, between t 
and t + dt. We then integrate ^(fl0, t) over t from 0 to /, to obtain the total probability, 
Q(flo, /), that the star will have acquired the velocity fleo during the entire interval from 
0 to t. Finally, we average Q(flo, t) over the relevant range of the initial velocities fl0, to 
obtain the expectation, Q(t), that a star will have acquired the velocity floo during a 
time t. 

The advantage of formulating the problem in the manner described is that the func- 
tion ÿ(fl0, t) can be determined in terms of a spherically symmetric solution of equation 
(1) which satisfies the boundary conditions 

W (\u\, t) = Q for I u I = floo for all /> 0 (4) 

and 
5(|«l - ^o) as¿-*0, (5) 

47T Aq 

where ô stands for Dirac's ô-function. If W is such a solution, the required probability 
function />(fl0, t) is given by (cf. the interpretation of eq. [1] in an earlier paragraph) 

p ( ,0, 0 = -(4*Ç |u|2 (6) 

The probability <2(flo, i) that a star having an initial velocity fl0 will have acquired the 
velocity floo during a time t is then given by 

Q(vo,t)=f p ( vq, t) dt. (7) 
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DYNAMICAL FRICTION 265 

And, finally, the expectation Q{f) that a star will have acquired the velocity Vœ during a 
time t is given by 

QU) = f M Q(v0, t) f ( v0) d Vo, (8) 

where/(^o) governs the frequency of occurrence of an initial velocity v0. 
Now the coefficient of dynamical friction 77, as derived on the basis of the two-body 

approximation for stellar encounters, is (cf. I, eq. [32] for the case mi = m2 = m) 

rDa 112_i 1 r I wi 
, = 8^^1og[-^]w/ nv)dv. (9) 

According to this formula, 77 tends to a constant limiting value as | u | —> 0. But, as 
|u| —> 00, 77—>0; however, according to the relation (2), q also tends to zero simultane- 
ously with 77. Consequently, by allowing q and 77 to be constants and equal to their re- 
spective average values, we shall be compensating for the overestimation of 77 for large 
values of | u | by a corresponding overestimation in the diffusion coefficient q. In this 
paper we shall accordingly restrict ourselves, for the sake of simplicity, to the case where 
q and 77 are constants. In a later paper we shall present the results of a similar calculation 
in which due allowance will be made for the dependence of q and 77 on 11/1. 

3. The rate of escape of stars from galactic clusters.—For the reasons explained toward 
the end of the last section we shall suppose in this investigation that q and 77 are both con- 
stants and independent of | u |. Equation (1) can then be re-written as (cf. eq. [2]) 

Let 

dW 
dt 

^\u\^V\lW+rJôivu(Wu) . (10) 

77/ = r ; u= (§ 11/12) 1/2P ; (11) 

or, in words, r measures the time in units of the time of relaxation; and, if a Gaussian dis- 
tribution of the velocities 

44 e-^u\!du .3/2 (12) 

be assumed, p measures the velocity u in units of j-1. With the transformation of the 
variables (11) equation (10) becomes 

= JVp W + divp (W?) . 
OT 

(13) 

It should be noted that in our present choice of the units the diffusion coefficient has the 
value 

For a spherically symmetric solution, equation (12) reduces to 

dW 

d t 
1 d 

2p2 dp 
m/j. dW\ W+ej-), (14) 

where we have used p to denote | p |. And, according to our remarks in 
seek a solution of equation (14) which satisfies the boundary conditions 

and 
W (p, r) = 0 for po= poo (say) for r > 0 

W(p, r) 
1 

4lrPo 
5 (p — po) as r 0. 

2, we have to 

(15) 

(16) 
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266 S. CHANDRASEKHAR 

i) The, rate of escape of stars from clusters when dynamical friction is ignored.—When 
dynamical friction is ignored, equation (14) further simplifies to 

= 2 dW\ 
dr 2p2 d p\ dp)1 (17) 

and the solution of this equation satisfying the boundary conditions (15) and (16) is4 

W = 
1 

sin(^[pW^po) 
ZTTppcoPo'“ \ Poo / \pco / 

(18) 

In terms of the foregoing solution we can determine the probability p(p0, r) dr that a 
star with an initial velocity corresponding to po will acquire for the first time a velocity 
corresponding to pœ during r and r + dr. Remembering that in our present units the 
coefficient of diffusion has the value we have (cf. eq. [6]) 

(po, r) = —2xp^(^) ; (19) 
V d p /p=Poo 

or, using the solution (18), we have 

GO 

P (po, r) = V' n (— l)’‘+ie-«W2p2
0 PoPoo^J 

(20) 

The total probability (?(po, r) that the star would have acquired the velocity pœ during 
the interval (0, r) is therefore given by 

<2(po, r)= f p (po,r) d 
2 p. (_l)n+l 

n 
_ e-nWr/tp^ ) sin (“ Po) • (21) 

Finally, to obtain the expectation that an “average” star will have acquired the velocity 
Pœ in a time r, we must average the foregoing expression over all po. For this purpose we 
shall use for the distribution over po the radial Gaussian function 

4 
7T1/2 

(22)5 

and extend the range of integration from 0 to <*>. Strictly speaking, this is not a valid 
procedure, particularly the extending of the range of integration beyond pœ. However, 
for the values of pœ we shall be normally interested in (cf. eqs. [25] and [26], below), the 
number of stars with p > pœ forms a negligible fraction of the total number (see, e.g., 
Stellar Dynamics, p. 207, eq. [5.311]). With this understanding, the averaging of <2(po, r) 
over po leads to the formula 

Q(t) = 2 ^ (-1)"+1(1 - e_nW2',2<» ) e-’,v/4',2«o . (23) 
71 = 1 

4 See, e.g., H. S. Carslaw and J. C. Jaeger, Operational Methods in Applied Mathematics, p. 235 (Ex. 
16), Oxford, England, 1941. 

5 Remembering that in our present choice of the units J = 1. 
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DYNAMICAL FRICTION 267 

Now, in a star cluster we have the following relation between the mean square velocity 
of escape and the mean square velocity of the stars in the system (cf. ibid., pp. 206-207, 
eqs. [5.306] and [5.311]) 

(24) 

or, in our present choice of the units (cf. eq. [11]), we have 

7L=6. (25) 

However, in view of the circumstance that a star acquiring a velocity 2(| u|2)1/2 does not 
necessarily imply its leaving the cluster unless it acquires a somewhat higher velocity 
(cf. ibid., pp. 208-209), we shall suppose that 

P2
a5 = 8, (26) 

to allow a reasonable margin. Table 1 gives the values of Q{r) both for p«, = Vó and 
for pa, = Vg. 

TABLE 1 

The Expectation Q{t) for a Star To Escape from a Cluster during 
a Time t (Measured in Units of the Time of Relaxation) 

When Dynamical Friction Is Ignored 

ö(0 <2(0 
T 

0.25 
0.5. 
1.0. 
1.5. 
2.0. 

0.069 
.19 
.42 
.60 

0.73 

= 8 

0.023 
.081 
.25 
.43 

0.57 

2.5 
3.0 
4.0 
5.0 

= 6 P2oo=8 

0.82 
.87 
.94 

0.97 

0.68 
.77 
.87 

0.93 

Remembering that the time of relaxation of galactic clusters is of the order of 6X107 

years, an examination of Table 1 reveals that the rates of escape predicted (when dynam- 
ical friction is ignored) are far too rapid to be compatible even with lives for these clusters 
of the order of 3X108 years. This can also be seen directly from equation (23). For, ac- 
cording to this equation, 

Q(t) (1 — ) (r^l); (27) 

or, for plo = 6, respectively 8, we have the approximate formulae 

ß(T)~1.3(l-e-0-82') 
f (28) 

Q(T)~1.5(l-e-°-62') (pL = 8) J 

However, as we shall presently see, the rates of escape are drastically reduced from what 
we have just now found when proper allowance is made for dynamical friction. 

ii) The rate of escape of stars from clusters when allowance is made for dynamical fric- 
tion.—Passing now to the case when dynamical friction is not ignored, we have to solve 
equation (14), together with the boundary conditions (15) and (16). Introducing the 
variable 

w = Wp , (29) 
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268 S. CHANDRASEKHAR 

equation (14) simplifies to 

dw 

d T 

1 d2w 

2~dJ2 {-2w+ p 
dw 

dp‘ 

The boundary conditions (15) and (16) now become 

^ (p> r) =0 for both p = pm and p = 0 for all r > 0 

(30) 

(31) 

and 

w(p,t)—  ô (p — po) as r —>0 . (32) 
47TP0 

We shall now show how the solution of equation (30), together with the boundary condi- 
tions (31), can be reduced to a problem in characteristic values. 

First we notice that a separation of the variables can be effected by the substitution 

w = e~XT(j) (p) , (33) 

where X is, for the present, an unspecified constant. Equation 
ferential equation 

d2<2> 

dp2 2p^+ (2X + 4) 4> = 0 . 
a p 

Again, writing 
0 = e-P2/2^ j 

we have for ÿ the differential equation 

0+ (2X + 3 —p2)^=0; 

or, putting 

we have 

x=p—1, 

0+ (2p + 1 — p2) ^ = 0 . 

(30) now leads to the dif- 

(34) 

(35) 

(36) 

(37) 

(38) 

It is seen that the differential equation (38) for xj/ is the same as the familiar wave equa- 
tion for a simple harmonic oscillator. However, the boundary conditions with which we 
have now to solve equation (38) are different from those customary in solving the prob- 
lem of the simple harmonic oscillator in the quantum theory, for the solution we are now 
looking for must satisfy the boundary conditions 

^=0 for p = 0 and also for p = pœ . (39) 

In other words, the t^’s of our problem are the characteristic functions of a simple har- 
monic oscillator bounded at the origin and at p Poo) i.e., an oscillator in a “box.” It 
is, therefore, clear that the \¡/’s which satisfy the boundary conditions (39) form a com- 
plete set of orthogonal functions which can be further normalized. 

Let 
'I'U'f'i,   (40) 

represent the normalized characteristic functions of our problem belonging respectively 
to the characteristic values 

Plj P2> • • • • > Mn)  (^ 1 ) 
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DYNAMICAL FRICTION 269 

The general solution of equation (30) satisfying the boundary conditions (31) can there- 
fore be expressed in the form 

00 

W= (p) , (42) 
n=l 

where the An’s are certain constants which should be so chosen that the boundary condi- 
tion for T = 0 is satisfied. 

Now, since a ô-function can always be built up from any complete set of normalized 
orthogonal functions according to 

CO 

8 (p — Po) = ^ fn (p) 'I'n (po) , (43) 
n=l 

it follows that the solution which satisfies the boundary conditions (31) and (32) is 

00 

^ (p) (po) . (44) 
e-(p -pS)/2 

w = 
^PO n=l 

Thus our solution for W takes the form 

e —(p2—Po)/2 

W = —7 1)Ttn(p)'l'n(po) . 
47TPP0 " 

(45) 

Using the foregoing solution for W, we find that (cf. eq. [67]) 

pipo, r) 
¿Po \ PO 71 = 1 

or, for the probability <2(po, r), we have 

Q(p0, r) =^2- e-tplo-pS)^ 

d p ^P=Pc 
^n(po); (46) 

2po 
^(p0). (47) 

^ÍMn-1 V dp /P=Poo 

Finally, to obtain Q(t) we must further average the foregoing expression over the rele- 
, vant range of po. With this we have formally solved the problem. To make the solution 
; explicit, it remains only to specify the characteristic functions fa and the corresponding 

characteristic values nn. 
The nature of the dependence of the characteristic values ixn on the length of the “box” 

Poo can be obtained by following a procedure developed by Sommerfeld in his studies of 
the Kepler problem and the problem of the rotator in the quantum theory with “arti- 
ficial” boundary conditions.6 

First, it is clear that when 

poo—>00 , pn—>n {n = 1, 3, 5, ....). (48) 

(Only the odd integral values of n need concern us here, since the wave function has to 
, vanish at the origin.) It is further evident that the functions 

fa=e-^Hn{p) , (49) 

where the #n’s are the various Hermite polynomials, formally solve equation (38) with 
Pn = n; and, if w is an odd integer, these functions Sk* satisfy also the boundary condition 

6 A. Sommerfeld and H. Welker, Ann. d. Phys., 32, 56, 1938, and A. Sommerfeld and H. Hartmann, 
Ann. d. Phys., 37, 333, 1940. 
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270 S. CHANDRASEKHAR 

at the origin. If it should now happen that pœ coincides with a zero of one of the odd 
Hermite polynomials, then the corresponding wave function \f/n will satisfy the boundary 
condition at pœ as well. Thus, 

Z73= 8p3 — 12p (50) 

has a zero at p = (1.5)1/2. Accordingly, if poo = (1.5)1/2, ju = 3 is a characteristic value 
of our problem, and T3 for p ^ (1.5)1/2 is the characteristic function which belongs to 
it. This represents, then, a special solution to our problem. Similarly, the higher-order 
Hermite polynomials will further provide such special solutions. The advantage in ob- 
taining these special solutions is that by plotting the zeros of the various Hermite poly- 
nomials in a (p, poo) diagram (as in Fig. 1) we obtain at once a general indication of how 
the various characteristic values are modified by the “artificial” boundary condition at 
p = Poo- 

Now an examination of Figure 1 shows that for Pa> > 2 the first characteristic value 
of our problem must be extremely close to unity, so that pi — 1 must be a very small 
quantity. On the other hand, the higher characteristic values will lead to values of 
(pn — 1) ^ (w — 1) (n > 1, but an odd integer). Accordingly, for values of r of the 
order of unity and greater, the first term in the series on the right-hand side of equation 
(47) will provide ample accuracy. Thus, 

(?(po, t) 

Poo t—> :  
2p0 (pi— 1) 

6-Ko-^/2[1 _ ¿-C^-Qr] ^l(po) (t;> 1) . 
(51) 

Finally, to determine (pi — 1) corresponding to the “lowest state” of our artificially 
limited simple harmonic oscillator, we proceed as follows : 

Wri,inf (52) 
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DYNAMICAL FRICTION 271 

in equation (38), we obtain the differential equation 

9 ¿/_L9 / n 
J?~2pd~p

+2lif() 

Substituting for / the series 
/ 2c8p

8 , 

where 5 runs through all the odd integers, we obtain the recursion formula 

2 ip, — s) 
C s+2 = 

(s + 2) (s + 1) * 

(53) 

(54) 

(55) 

We already know that the particular characteristic value we are interested in must be 
very close to unity. Accordingly, writing 

Mi=l+e (56) 

and treating € as a small quantity, we find that all the coefficients Cz, C5, . . . . , contain 
€ as a factor. Retaining only the first-order terms in e and letting ci = 1, we readily 
find that we can write / in the form 

/=p(l-6X), (57) 
where 

X = ÍP2 + *P4 + ir^P6 + ThP8+  (58) 

The condition that / has to vanish at some specified pœ will determine e. Thus it was 
found that 

e= 0.059 (p2co = 6),) 

, r (59> €=0.013 (pL = 8);J 

and, as was expected, e is in fact a very small quantity. 
In a first approximation ^ can therefore be written as 

= ae“p2/2p (1 — ex) , (60) 

where a denotes the normalizing factor, which can be determined numerically in any 
given case. 

Substituting for \//i from equation (60) in equation (51), we obtain 

0(Po, r) 

d (p_epx) j (1_e-er) (T>i).j (61) 

2e Lap 3p=Poo 

It is found that for the cases = 6, respectively 8, the foregoing equation (after aver- 
aging over po) takes the simple numerical forms 

e(r)^(l-e-»»^) (^ = 6-T> 1)(| ^ 

<2(r)^(l-e-»-»^) (pL = 8;t>1)J 

Comparing the formulae (28) and (62), we see that when allowance is made for dy- 
namical friction the mean life of a cluster is increased by factors ranging from 15 (poo ^ 
2.5) to 50 (pœ ^ 2.8). More particularly, the rates of escape given in Table 2 should be 
compared with those of Table 1. 

It is seen that the rates of escape are sufficiently reduced to be compatible with a time 
scale of the order of 3X109 years. Physically, this drastic reduction in the rates of escape 
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272 S. CHANDRASEKHAR 

when dynamical friction is allowed for is readily understood, for dynamical friction oper- 
ates essentially in the direction of preventing a star from being accelerated by too large 
amounts with any appreciable probability (cf. the remarks in I, § 1), and it is clearly on 
this account that the probability that a star will acquire the necessary high velocities for 
escape is so small. Further, it is to be noticed that in the mathematical analysis this re- 
duction is brought about by the small numerical values of (jui — 1), where ¡jli corresponds 
to the lowest quantum state of an artificially restricted simple harmonic oscillator; and, 
as we have seen (cf. Fig. 1) for the values of pœ which come under discussion, (/u — 1) is 
not only a small quantity but it also depends very sensitively on the precisé value of pœ 

(cf. the values of [jm — 1] for the cases p%> = 6 and p2
œ = & given in eq. [62]). We may 

TABLE 2 

The Expectation Q(t) for a Star to Escape from a Cluster during 
a Time t (Measured in Units of the Time of Relaxation) 

When Allowance Is Made for Dynamical Friction 

5. 
10. 

Q(r) 

= 6 

0.26 
0.44 

0.064 
0.12 

20. 
100. 

Q(r) 

= 6 

0.95 

= 8 

0.23 
0.73 

therefore conclude that dynamical friction provides exactly the right kind of agency for 
preventing too rapid a disintegration of an isolated cluster; and thus, in the very exist- 
ence of galactic clusters like the Pleiades, we can look for evidence not only for the opera- 
tion of dynamical friction but also for the now generally adopted time scale of the order 
of 3X109 years. 

4. Remarks on further developments.—Our discussion of the rate of escape of stars from 
clusters has shown that dynamical friction must be a dominating factor in the dynamics 
of these systems. The question now arises as to how we can incorporate in a rational sys- 
tem of dynamics the stochastic variations in the velocity which a star suffers on account 
of the fluctuating force acting on it. It is evident that to build such a system of dynamics 
what we need is essentially a differential equation which will be appropriate for discussing 
the probability distribution in phase space in contrast to equations of the Fokker-Planck 
type, which describe the situation only in the Velocity space. In other words, we need a 
proper generalization of Liouville’s equation of classical dynamics to include terms cor- 
responding to the stochastic variations in u. Such a generalized Liouville equation can 
be readily found. 

Quite generally we may write (cf. I, eq. [6]) 

Au = KAt+ ôu (At) — rjuAt , 

Ar = uAt , 
(63) 

where K denotes the external force per unit mass acting on a star and the rest of the sym- 
bols have the same meanings as in I, § 1. Also, analogous to the integral equation in the 
velocity space (I, eq. [8]), we now have 

W (r, u, t+At) 

-f-oo s,+CO 
= f f W(r—Ar,u—Au,t)'i'(r—Ar,u—Au;Ar,Au)d(Ar)d(Au), J — CO J — CO y 

(64) 
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DYNAMICAL FRICTION 273 

where ^(r, u; Ar, Aw) denotes the transition probability in the phase space. We have (cf. 
I, eq. [9]) 

^(r, w; Ar, Aw) = 
1 

e- \ Au—grad^gAí+TjU Aí-^Aí] 2/4a Ai 
(47r<7A/)3/2 

X 6 (Aie — uxkt) b (Ay — Uykt) ô (A 2 — w2A/) 

(65) 

i Expanding the various terms in equation (64) in the form of Taylor series and proceeding 
as in usual deviation of the Fokker-Planck equation, we obtain7 

dW 
dt 

f w • gradr W + K • gradu W = divu (q gradu W + r]Wu) . (66) 

In the foregoing equation q and r¡ can be functions of r and u; they should, however, be 
related according to 

(67) 

at all points of the phase space. 
Equation (66) is the required generalization of Liouville’s equation of classical dynam- 

ics, and it is on the basis of this equation that the dynamics of the galactic and the globu- 
lar clusters should be developed. We shall return to these further developments on a 
future occasion. 

For details of the derivation see a forthcoming article by the writer in the Reviews of Modern Phys- 
ics. 
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