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DYNAMICAL FRICTION 

I. GENERAL CONSIDERATIONS: THE COEFFICIENT OF 
DYNAMICAL FRICTION 
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ABSTRACT 
In this paper it is shown that a star must experience dynamical friction, i.e., it must suffer from a sys- 

tematic tendency to be decelerated in the direction of its motion. This dynamical friction which stars ex- 
perience is one of the direct consequences of the fluctuating force acting on a star due to the varying com- 
plexion of the near neighbors. From considerations of a very general nature it is concluded that the 
coefficient of dynamical friction, r}, must be of the order of the reciprocal of the time of relaxation of the 
system. Further, an independent discussion based on the two-body approximation for stellar encounters 
leads to the following explicit formula for the coefficient of dynamical friction: 

„=wl {mi+g log. , 

where mi and m2 denote the masses of the field star and the star under consideration, respectively; G, the 
constant of gravitation; Dq, the average distance between the stars; |u |2, the mean square velocity of the 
stars; N(vi) dv\, the number of field stars with velocities between v\ and V\ + dvi, and, finally, v, the veloc- 
ity of the star under consideration. It is shown that the foregoing formula for 17 is in agreement with the 
conclusions reached on the basis of the general considerations. Finally, some remarks are made con- 
cerning the further development of these ideas on the basis of a proper statistical theory. 

1. General considerations.—In a first approximative discussion1 of the fluctuating part 
of the gravitational field acting on a star we may conveniently describe it in terms of two 
functions: a function W(F), which governs the probability of occurrence of a force F 
per unit mass acting on a star, and a function T( | F | ), which gives the average time dur- 
ing which such a force acts. On this assumption we can properly visualize the motion of 
the representative point in the velocity space as follows : The representative point suffers 
random displacements in a manner that can be described in terms of the theory of ran- 
dom flights.2 More specifically, the star may be assumed to suffer a large number of dis- 
crete increments in velocity of amounts | F | T( | F | ) occurring in random directions. The 
mean square increase in velocity which the star may be expected to suffer in a time t 
(large compared to the mean periods of the elementary fluctuations in F) is then given 
by 

I Au 12 = |F|2r(|F|)¿. (1) 

Equivalently, we may describe the same situation by asserting that the probability func- 
tion W{ut t), governing the occurrence of the velocity u at time /, satisfies the difusion 
equation 

dW 
 = 0 V2 w 
dt * u ’ 

(2) 

1 S. Chandrasekhar, Ap. /., 94, 511, 1941. 
2 For a general discussion of this and related theories see a forthcoming article by the writer in the 

Reviews of Modern Physics. 
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where the difusión coefficient q has the value 

q = i\F\*T. (3) 

If the star has a velocity i/o at time ¿ = 0, then the solution of the diffusion equation (2) 
which will be appropriate for describing the distribution of u at later times is clearly 

W (u, t; Uo) =-(4^)172 (4) 

It is now seen that formula (1) is an immediate consequence of the foregoing solution 
for W. 

We shall now indicate why the considerations of the preceding paragraph can be valid 

only for times which are short compared to | u |2/1 F12T, where | u |2 denotes the mean 
square velocity of the stars in an appropriately chosen local standard of rest. For, if 
W(uy t; uo) according to equation (4), described the stochastic variations of u for all 
times, then the probability for a star to suffer any assigned arbitrarily large acceleration 
can be made as close to unity as we may choose by allowing t to be sufficiently large. 
This conclusion is, however, contrary to what we should expect on quite general grounds, 
namely, that W(u, t; i/o) tends to a Maxwellian distribution, independently of i/o as 
t^> . Expressed somewhat differently, we should strictly suppose that the stochastic 
variations in the velocity which a star suffers must be such as to leave an initial Max- 
wellian distribution of the velocities invariant. Defining, now, a stochastic process as 
conservative if it leaves a Maxwellian distribution unchanged, it is clear that the process 
described by equation (2) is nonconservative. Consequently, equation (2) is suitable for 
describing the underlying physical situation only for times t which satisfy the inequality 

The question now arises as to how our earlier approximate considerations can be 
modified so as to make the underlying stochastic process conservative. Now, as has been 
made familiar in the physical theories of Brownian motion by Ornstein, Uhlenbeck, and 
others,3 this can be achieved by the introduction of dynamical friction. More particular- 
ly, we suppose that the acceleration, Au, which a star suffers in a time A/, which is short 
compared to the time intervals during which u may change appreciably but long com- 
pared to the periods of the elementary fluctuations in F, can be expressed as the sum of 
two terms in the form 

Au = bu (A/) — rjuAt , (6) 

where the first term on the right-hand side is governed by the probability distribution 
(of. eq. [4]) 

\p(8u [Ai] ) =-(4^¿)172 e_|{u_srad“9Ai|V44Ai • 

and where the second term represents a deceleration of the star in the direction of its mo- 
tion by an amount proportional to | u |. The constant of proportionality, rj, can therefore 
be properly defined as the coefficient of dynamical friction. 

With the underlying stochastic process defined as in equation (6) the distribution 

3 See the article quoted in n. 2 for further amplifications of what follows in the text. 
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function PF(w, / + At) at time tAt can be derived from the distribution W{u, t) at the 
earlier time t by means of the integral equation 

W(u,t + At) = f W (u—Aii,t)il/(u—Au',Au) d(Au) , (8) 
J — 00 

where Au) denotes the transition probability (cf. eqs. [6] and [7]) 

ÍÍ.U-, Au) 
1 

(47r?A/)3/2 
e-\Au—grad^g Aí+tjU Aí|2/4g A¿ ^ (9) 

Expanding W(uy t -\r At), W(u — Au, t), and ^(u — Au; Au), which occur in equation 
(8) in the form of Taylor series, evaluating the various moments of Au according to the 
distribution (9), and passing finally to the limit At = 0, we obtain the following equa- 
tion, which is of the Fokker-Planck type: 

dW 

dt 
divu (ggraduIF) +divu (riWu) . (10) 

At this point we may explicitly draw attention to the fact that the foregoing equation is 
valid also when q and rj are functions of u. 

Finally, the condition that the Maxwellian distribution 

/ s \ 3/2   

fefsT3) (>» 

satisfy equation (10) identically requires that q and rj be related according to 

— = § I u 12 = constant. (12) 
V 

Now the solution of equation (10) appropriate for describing the distribution of the 
velocities at time t, given that u = u0 at time ¿ = 0, is 

ire, l; „,) - [2T-U|,(j _ |!-„,) . (13) 

In writing down the foregoing solution we have assumed that q and 77 are constants. We 
readily verify that W(uy t; u0), according to equation (13), tends to our earlier solution 
(4) for t <<C 77-1 in virtue of the relation (12) ; moreover, it tends to the Maxwellian dis- 
tribution (11) as / —> 00 . Accordingly, 77-1 can be taken as a measure of the time of relaxa- 
tion of the system. Combining equations (3) and (12), we have 

7; |F|2r’ v y 

which agrees with the customary definition of the time of relaxation except for a factor 
2.4 

Summarizing the conclusions reached, we may say that general considerations such as 
the invariance of the Maocwellian distribution to the underlying stochastic process require that 
stars experience dynamical friction during their motion and that the coefficient of dynamical 
friction be of the order of the reciprocal of the time of relaxation of the system. 

2. An elementary derivation of the coefficient of dynamical friction on the two-body ap- 
proximation for stellar encounters.—In the preceding section we have seen how the exist- 

4 Cf. Chandrasekhar, Ap. 94, 511, 1941 (see particularly §§ 7, 8, and 9). 

U 
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ence of dynamical friction can be inferred on quite general grounds. We shall now show 
how the operation of such a force can also be derived from a direct analysis of the fluctu- 
ating force acting on a star. It is perhaps simplest and most instructive to examine the 
problem on an approximation in which the fluctuations in F are analyzed in terms of 
single stellar encounters each idealized as a two-body problem. On this approximation 
the increments in velocity, Az/| ¡ and Avj_ ,which a star with velocity t/2 = fl>21 and mass 
m2 suffers as the result of an encounter in directions which are respectively parallel to and 
perpendicular to the direction of motion are5 

and 

AVm 

Aüii = 
2 nil 

Ml+M2 
[(v2 — Vi cos 6) cos \p+ Vi sin 6 cos 0 sin ÿ] cos \// (15) 

2 Wl [ z>i+ z>2 — 2 ViV2 cos 6 — { (v2 — Vi cos 6) cos x// 
' mi+m2 

+ zq sin d cos 0 sin \//}2]1/2 cos \f/, , 

(16) 

where mi and Vi denote the mass and the velocity of a typical field star and the rest of the 
symbols have the same meanings as in Stellar Dynamics, chapter ii (see, particularly, pp. 
51-64). 

According to equation (16), and as can, indeed, be expected on general symmetry 
grounds, Av^, when summed over a large number of encounters, vanishes identically. 
But this is not the case with Afl| |, for the net increase in the velocity which the star suf- 
fers in the direction of its motion during a time At (long compared to the periods of the 
elementary fluctuations but short compared to the time intervals during which v2 may 
be expected to change appreciably) is given by 

9*- 7)o r2ir,Q 
HAvw = Atj dvij ddj d(pj dDJ (vi, 6, (p) V DAv\\] , (17) 

where the various integrations are, with respect to the different parameters, defining the 
single encounters. The integration over 0, the inclination of the orbital plane to the 
fundamental plane containing the vectors vi and v2, is readily effected, and we are left 
with 

2Afl|| = — 47t 
mi 

2tt _£>o 

mi + m2 
AtJ'dviJ'ddJd(pJdDN (zq, 0, (p) 

X F ( zq — zq cos 0) 
D 

1 + 
D2F4 

G2(mi+m2)
2 

(18) 

where we have substituted for cos2 xp from Stellar Dynamics, equation (2.301). The inte- 
gral over the impact parameter D when extended from 0 to œ diverges ; but for reasons 
explained in Stellar Dynamics, page 56, we allow for D only a finite range of integration, 
namely, from 0 to Do, where Do is of the order of the average distance between the stars. 
Performing, now, the integration over D, we obtain 

2Azq| = — 27TWi (w;+w2)G
2A£f dvif ddjd<pN (zq, 0, £>) 

h (19) 

X (zq — zq cos 0) log ( 1 + ^2F4), J 
6 Cf. S. Chandrasekhar, Principles of Stellar Dynamics, p. 229 (eq. [5.721]), University of Chicago 

Press, 1942. This monograph will be referred to hereafter as “Stellar Dynamics.” 
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where we have written 

£ (20) 

If we now assume that the distribution of the velocities Vi is spherical, then N(fli, 0, <p) 
has the form (cf. Stellar Dynamics, eq. [2.336]) 

NÍV!, d,,p) =N(v1)^-sm e. (21) 
47T 

Substituting the foregoing form for N(v\, 6, p) in equation (19) and performing the inte- 
gration over (p, we obtain 

/'00 r* 
2Afl|| = w2) G

2Atj dviN ( ^i) j dB 
sin 6 

r (22) 

X (v2— Vicos 0) log (1+^2F4) .J 

To effect the integration over 6, we shall use the relative velocity V as the variable of 
integration instead of 6. Since 

F2= fl2+ z>2— 2 ^1^2 cos 0 , (23) 

we have 

FdV = ViV2 sin Bdd , 

V2 — Vi cos 0 
2v2 

(V2+vl-vl) . 
(24) 

Using relations (24), we find that equation (22) can be reduced to the form 

G2 rœ 1 
2Afl|| = —bTrmi(mi+ m2)—7: At I —N (vJJdvi, 

v2
2 Jo Vx 

where we have used J to denote 

/,(vi+V2) ✓ 2  
J = f h+3^J!iji0g(i+^F4)¿F. 

hx-v2l ^ v / 

(25) 

(26) 

After an integration by parts the expression for J becomes 

^U-^) log ( 1 + F4) 
(t?l + V2) 

hi —V2| 

F2 ) 1+^2F4 dV. 

(27) 

Now, under most conditions of practical interest ^F4 is generally very large compared to 
unity (cf. Stellar Dynamics, eqs. [2.323] and [2.347]; also eq. [5.215]). Hence, to a suffi- 
cient accuracy we have 

(28) 
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After some further reductions we find that the foregoing equation becomes 

'2zqlog (l+ÿ2[zq+ fl2]4) ( 1 + “ ^2] 4) Oi < *>2) > 1 

/ = < 2zqlog (l + 16ff2^) -8fli (^1= 2^2), i (29) 

2 Vi log l+V2(Vl+V2)* 
l+^2(v1— v2)

4 16v2 ( 2^1 > ^2) . 

Again, since tf2(vi + ü2)4 and ^(vi — î;2)
4 are also generally very large compared to unity, 

we can further simplify equation (29) to 

J = l 
4zqlog é^T/2 — 8fli 

O -i 2^1+ V2 8 Vi log 16 
Vl — V2 

( 2^1 < v2) , 

(2^1= 2;2), 

( 2^1 > 2^2) . 

> (30) 

The foregoing formula for J shows that in an approximation in which we retain only the 
“dominant term” (cf. Stellar Dynamics, pp. 62-64) we have 

/ = 
8 zq log ÿ I u 

0 

(2>i< 2>2) , 

(2>i> 2J2) , 
(31) 

where | u |2 may be taken to denote the mean square velocity of the stars in the system. 
According to equations (30) and (31), we have the remarkable réshlt that to a sufficient 
accuracy only stars with velocities less than the one under consideration contribute to 2Aü||. 
As we shall see presently, it is precisely on this account that dynamical friction appears 
on our present analysis. 

Combining equations (25) and (31), we have 

G2   rv* 
2Az>|| = —47tWi (wi+w2) —£ log \u\2) M f N {vi) dvi. (32) 

V2 *0 

Finally, if we assume that the velocities Vi are distributed according to Maxwell’s law, 
then 

ffi-N ( i/i) ¿ ^ vldv^, (33) 

where N denotes the number of stars per unit volume and j is a parameter which meas- 
ures the dispersion of the velocities in the system. Expressing the integral on the right- 
hand side of equation (33) in terms of the error integral 

=~U2 fQ 
e~x2dx, (34) 

and substituting the result in equation (32), we find that 

2Afl|i = — 4^^^! (wi+ w2)-2 log (^ I u 12) At [4> (^o) — Xo$; (xQ) ] , (35) 
2J n 

where we have written Xo = jv2. 
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Equation (35) shows that the star does, in fact, experience dynamical friction and that 
the coefficient of dynamical friction has the value 

r) = 4:TrNmi(ml+m2) — \og (V \u\2) [$(tf0) “ *0$'(#o) ] • (36) 
^9 

It is now of interest to see that with the coefficient of dynamical friction defined as in 
equation (36) we can directly verify the existence of a relation of the form (12). For, ac- 
cording to equations (2.356) and (5.724) in Stellar Dynamics, we have 

2Az;|| =§TrNm\(^1 | u |2 log (ÿ | tf |2) At[$(x0) — Xo<$'(x0) ] . (37) 

Hence, 

DAflfi _ 2 mi 
rjAt 3 mi + m2 

(38) 

which is to be compared with equation (12). It is thus seen that a detailed analysis of the 
fluctuating field of the near-by stars in terms of individual stellar encounters idealized as 
two-body problems fully confirms the conclusions reached in § 1 on the basis of certain 
general principles. 

3. Dynamical friction as a consequence of the statistical properties of the fluctuating 
gravitational field of a random distribution of stars.—The discussion of dynamical friction 
in § 1, while sufficiently general for a first orientation in the subject, suffers, nevertheless, 
from certain drawbacks. For example, in writing down the probability distribution for 
ôu (A/) (eq. [7]) we have assumed that it has spherical symmetry. However, to be entire- 
ly general we should rather suppose that \l/(8u[At]) has the form 

P(Ôu [At] ) .3/2 

an ai2 ai3 

0,21 tt22 023 
asi a32 a33 

e—{ailôul+a22ôul+a33ôul + 2al2ôuiôu2+2a23ôu28u3 + 2a31ôu38u1)/At ^ (39) 

where ôu = (ôui, ÔU2, ÔU3) and (aM„) is a symmetric tensor of the second rank. The com- 
ponents of (auf) can very well depend on u. While it would not be difficult to write down 
for the correspondingly more general form of the transition probability the appropriate 
generalization of equation (10), we should not be able to make much practical use of 
such an equation without some direct knowledge concerning (tv). In other words, a de- 
tailed statistical analysis of the fluctuating part of the gravitational field acting on a star 
must precede a discussion of the necessary generalization of equation (10). A start in 
this direction has recently been made by Chandrasekhar and von Neumann in two pa- 
pers.6 Particularly in their second paper, where all the first and the second moments of 

F for given F and v have been evaluated, a direct indication for the existence of dynami- 
cal friction on the statistical theory has indeed been found. However, a complete solu- 
tion of the problem will require a more far reaching discussion than has yet been under- 
taken. But the general outlines of such a theory are not difficult to foresee. For, the essen- 

tial information which is needed is, of course, the average force, Ft, per unit mass acting 
on a star at time t when a force F0 acted at time 2 = 0. The statistical problem is thus 
merely one of finding the joint distribution W{Fq, Ft) of F0 and Ft, where 

(40) 
i \Ti\ 

6 Ap. 95, 489, 1942, and 97, 1, 1943. 
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and 

i 

Ti + Vit 

\Ti + Vit\*‘ 
(41) 

In equations (40) and (41) and Vi denote, respectively, the position and the velocity of 
a typical field star relative to the one under consideration. By an application of Mark- 
off’s method (cf. the papers of Chandrasekhar and von Neumann) we readily find that 
the required distribution is formally given by 

+ 00 

e-H9-F,+<r-Ft)A (p, <r) ¿p¿(r, (42) W (F0, Ft) 
64'7Te 

-foo 

// 

where P and <r are two auxiliary vectors and 

A (p, o') = 

and where 
00 00 00 

C(p.o).//|[l iOM r.p. (r+vt) 
|r|3^|r+7/|3 '}]r (7,Af) dMdrdV. 

(43) 

(44) 

In equation (44) r(V, M) governs the probability of occurrence of a star with a relative 
velocity V and with a mass M. 

For our purposes it would, however, be sufficient to know the first moment of Ft for 
given F and v, in which case we shall need only the behavior of C(p, (r) for | <r | —> 0. It is 
not difficult to push the formal theory a little further, but without going into these de- 

velopments here it is clear that in terms of Ff(F0, v) we shall be able to solve the entire 
problem of the stochastic variation of F acting on a star. More particularly the consid- 
eration of the integral 

HTtiFo, v)dt (45) 

will not only provide us with the means of giving a precise meaning to the notion of the 
mean life of F but will also disclose in a direct manner the existence of dynamical friction 
on the statistical theory. We shall return to the development of the theory along these 
lines on a later occasion. 

4. General remarks.—To avoid misunderstandings we shall make some remarks (which 
are otherwise obvious) concerning the reasons for introducing the new notion of dynami- 
cal friction and avoiding the usage of the term “viscosity.” First, the physical ideas un- 
derlying the concepts of dynamical friction and viscosity are quite distinct: thus, while 
the “coefficient of dynamical friction” refers to the systematic deceleration which indi- 
vidual stars experience during their motion, “viscosity,” as commonly understood, refers 
to the sheering force exerted by one element of gas on another. Second, dynamical friction 
is an exact notion expressing the systematic decelerating effect of the fluctuating field of 
force acting on a star in motion, in contrast to viscosity, which, as a concept, is valid only 
when averaged over times which are long compared to the time of relaxation of the sys- 
tem and over spatial dimensions which are large compared to the mean free paths of the 
individual molecules. Thus, while the introduction of dynamical friction in stellar dynam- 
ics presents no difficulty, the circumstances are very different for a rational introduction 
of “viscosity” in the subject (cf. Stellar Dynamics, pp. 76-78 and 184). 
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