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ON THE INTERPRETATION OF ß LYRAE AND OTHER 

CLOSE BINARIES* 

GERARD P. KUIPER 

ABSTRACT 

In this paper a model for ß Lyrae is developed which attempts to account for the complex photometric 
and spectroscopic phenomena and which is consistent with dynamics. 

In the introduction the dimensions of the system are discussed, and the conclusion is reached that the 
components have a common envelope (they form a ^contact binary”). In section 2 it is shown that con- 
tact binaries with unequal components are unstable. It is shown that matter streams from ^4 to B as 
long as the masses are unequal; that Am and A(Spectral type) are abnormally large for the mass ratio; 
and that a system of currents will be set up (Fig. 4, b). These currents account for the satellite compo- 
nents of spectral lines observed near the primary minimum of ß Lyrae. 

If the common envelope attains great height and/or if the currents attain large velocities, ejection 
of matter from the outer point of B will take place. This ejection is considered to supply the source of 
the mysterious B5 spectrum and to cause the asymmetry and irregularity of the photometric minimum. 
Ejection of another type (type A), arising in a separated binary composed of one giant and one dwarf 
star, is also considered, and its application to peculiar emission stars with composite spectra is stressed. 
The theory of both types of ejection based on Jacobi’s integral is given in section 4. The orbits of ejected 
particles are determined in sections 5-7. Section 5 contains the first-order theory for the vicinity of the 
point of ejection; Figures 6 and 7 illustrate the results. Numerical integrations are used in sections 6 and 
7 with Figures 8-12 showing the orbits obtained. Section 8 gives applications to ß Lyrae and other stars. 
A schematic picture of the gaseous tail in which ß Lyrae winds itself is given in Figure 13. The effect is 
that of a giant pinwheel with one streamer. The shadow cast by B on the streamer appears to play an im- 
portant role in the spectral features, as it appears to de-ionize the gas. The change of period in ß Lyrae 
is also considered. It appears that both the process of mass transfer from ^4 to B and the ejection from B 
would tend to shorten the period. The effect on the period of the pressure at the interface of the com- 
ponents is examined in the addendum. 

I. INTRODUCTION 

It is a well-known fact that ß Lyrae shows peculiar asymmetries which have not yet 
found an adequate explanation. These asymmetries appear in the light-curve as well as 
in the spectral features. We mention below the chief data and the interpretation they 
have thus far received.1 

a) The light-curve.—Stebbins,2 using a rubidium cell, found “a marked asymmetry of 
the light curve at primary minimum, the decrease of light being more rapid than the in- 
crease. This difference extends as far as the maxima on each side of the minimum, the 
phases of the maxima being —2.95 days and +3.45 days respectively.” The depths of 
the minima were found to be 0.98 and 0.47 mag., respectively, and the maximum follow- 
ing the primary minimum was found to be 0.02 mag. lower than the other maximum. 
Such an inequality had already been suspected by K. Schwarzschild.3 

Huff er,4 using a potassium cell, confirmed the asymmetry of the primary minimum 
but found the maxima nearly equal in brightness. He obtained somewhat smaller values 
for the amplitudes, 0.88 and 0.40 mag. However, Smart,5 also using a potassium cell, 
found amplitudes in good accord with those of Stebbins (0.97 and 0.44 mag.), so that in- 
trinsic variations, rather than differences in the color sensitivity of the cells, may be re- 

* Contributions from the McDonald Observatory, University of Texas, No. 28. 
1 A complete bibliography is given in the Geschichte und Literatur des Lichtwechsels, 2,156, 1920, and 

Zweite Ausgabe, 2, 244, 1936. 
2 Lick Obs. Bull., 8, 186, 1916. * Pub. Washburn Obs., 15, 209, 1931. 
3 Pub. d. Kujfnerschen Sternwarte, 5, C 127, 1899. s M.N., 95, 647, 1935. 
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134 GERARD P. KUIPER 

sponsible for these differences in amplitude. Smart agreed with Stebbins in finding the 
maximum after the primary minimum about 0.02 mag. fainter than the other maximum. 

A good visual light-curve has been published by Danjon,6 who found marked changes 
in the light-curve during three successive observing seasons; but in all three seasons the 
primary minimum was strikingly asymmetrical, as is shown in Figure 1, which is repro- 
duced from Danjon’s paper. The amplitudes were 0.81 and 0.43 mag.; these values, in 
connection with the values found photoelectrically, suggest, as Danjon points out,7 that 
the star eclipsed at primary minimum is the bluer of the two, consistent with the ratio of 

the surface brightnesses found 
from the minima. 

b) The color.—Stebbins and 
Huffer8 found the color index to 
be — oIlai3 in their system, cor- 
responding to a normal B8 star. 
Hall's infrared index9 corre- 
sponds to about Ao. 

Of particular interest are the 
color measures related to phase. 
The visual determinations by L. 
Terkan10 were not confirmed by 
the more reliable photoelectric 
measures by Elvey11 and by 
Schneller.12 Both these observers 
found the binary to be reddest 
at primary minimum and bluest 
at secondary minimum. The 
range was found to be 0.03 mag. 
by Elvey (base line, 47 50-42 50A) 
and about 0.06 mag. by Schnel- 
ler. These results are consistent 
with those by Danjon and with 
the ratio of the surface bright- 
nesses. 

c) The spectroscopic observa- 
tions.—These are very numerous 
and need not be mentioned here 
in view of Dr. Struve’s article in 
this issue.13 

d) The interpretation.—Much progress in astronomy has been the direct result of at- 
tempts to interpret the observations of ß Lyrae. Plassmann seems to have been the 
first14 to emphasize that the double-star hypothesis, previously used to explain light- 
curves of the Algol type, would also be applicable to ß Lyrae if tidally elongated com- 
ponents were assumed. That this hypothesis was correct, rather than E. C. Pickering’s 
earlier suggestion of a single, rotating ellipsoid covered with spots,15 was already indi- 

Fig. i.—Primary minimum of ß Lyrae (Danjon) 

^ Ann. Obs. Strasbourg, 2, 114, 1933. 

7 Ibid., p. 130. 

* Pub. Washburn Obs., 15, 233, 1931. 
9 Ap. J., 79, 169, 1934- 
14 Cf. J. Stein, Die veränderlichen Sterne, 2, 307, 1924. 

^ Proc. Amer. Acad. Arts and Sei., 16, 270, 1881. 

10 A.N., 226,345,1926. 
11 Ap. J., 81, 173, 1935. 
12 Kl. Veröjf. Berlin-Babelsberg, No. 17, 1936. 
13 P. 104. 
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INTERPRETATION OF ß LYRAE I3S 

cated by Pickering’s observations of the spectrum16 and was conclusively shown by G. W. 
Myers17 with the aid of Belopolsky’s radial velocities of 1892. 

The first determination of the photometric elements was made by Myers,17 who de- 
veloped the necessary formulae for ellipsoidal bodies ; a summary of this work was present- 
ed at the dedication of the Yerkes Observatory.18 J. Stein found19 that some of Myers’ 
formulae needed correction, and he derived a new set of elements. By that time the 
photometric theory was practically complete. 

Several photometric solutions have been published; those prior to 1924 are listed by 
Stein.14 With the exception of some of von Hepperger’s solutions the darker star (in 
front at primary minimum) was found to be the larger. This is also true of Danjon’s 
solution6 and of several solutions made by Sandig.20 

TABLE 1 

Computed Absolute Magnitudes for ß Lyrae 

i .0. 
1- 5. 
2.0. 
2- 5- 
3- 0. 

Ma/Mb ma 

33 
78 

150 
255 
399 

mb 

33 
52 
75 

102 
133 

Mhoi(A) 

- 6.6: 
8.6:: 

10: 
ii : 

—11:: 

- 6.6 
7-7 
8.6 
9: 

— 10: 

^bol 

o.c: 
0.9: 
1.4:: 
2: 
1-2:: 

- 5-6: 
7.6:: 
9: 

10: 
— 10:: 

The fact that the same light-curve can be explained by such widely different ratios of 
the radii as assumed by von Hepperger (5 and 0.6) shows that other considerations should 
be used as well as the conventional ones. Struve has shown21 that the B5 spectrum is not 
due to a star and that only one component of the binary is visible. This means that 
Lb<^La. Hence the round maxima of the light-curve are due chiefly to the elongation 
of A, since B is too faint. Since the composition of B and A are presumably similar, the 
mass-luminosity relation may be used to derive the result MB<£Ma- The considerable 
elongation of A then shows that the center of B must be close to ^4, at the most about one 
radius of A from ^4’s surface. This shows that B cannot be larger than A. 

A lower limit to the mass ratio and the relative size of B can be set in the following 
manner. From measures of the B8 component Rossiter22 found the mass function to be 
8.3 2 O • In Table 1 we give the resulting masses of the two components for different mass 
ratios (B ^ A), adopting i = 90o in each case. (The masses so obtained will be mini- 
mum masses.) With the aid of an empirical mean mass-luminosity relation23 bolometric 
magnitudes may now be derived; but, owing to the great scatter in the upper part of the 
mass-luminosity diagram, the star may easily differ by 1 or 2 mag. from these computed 
values. 

We have the following information as to the true absolute magnitude of ß Lyrae. 
Spectroscopically Struve24 found the luminosity of the B8 component high, but less than 
that of Rigel, which by its double companion of type B5 may be estimated to be about 
— 8 visually. But ß Lyrae has also a visual companion. On the basis of the measures in 
Aitken’s Catalogue of Double Stars (after correction for precession in angle amounting to 

16 A.N., 128, 42, 1891. Cf. also Harvard Obs. Circ., No. 7, 1896; Ap. J., 4, 142, 1896. 
17 Untersuchungen über den Lichtwechsel des Sternes ß Lyrae, Munich, 1896. 
18 Ap. J., 7, i, 1898. 
19 Proc. Acad. Amsterdam, 10, 459, 1907. 22 Pub. Michigan Obs., 5, 86, 1934. 
20Zs.f. Ap., 8, 29, 1934. 2* Ap. J., 88, 489, 1938; 29 Canis Majoris was omitted. 
21 Observatory, 57, 265, 1934. 24 Ap. J., 93, 105, 1941. 
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136 GERARD P. KUIPER 

— o?Ó5 per century), the proper motions in Boss’s General Catalogue, and the radial 
velocities (—19.0 km/sec for ß1 and —13 + 5 for ß2), it is probable that the stars form a 
physical system. The magnitude of ft at maximum is 0.17 mag. fainter than the Ao 
star 7 Lyrae according to Smart,5 and 0.15 mag. according to Stebbins.2 For 7 Lyrae we 
find 3.37 IPv; hence, ftmax.) = 3.53 IPv. Adopting in the bright binary Aw = 3, for 
reasons given later, we find for the apparent magnitude of ^4, 3.6. 

The magnitude of the companion, ft, is given as 7.78 in the Henry Draper Catalogue, 
as 7.40 by Danjon on the basis of measures on 17 nights,25 and as 7.73 IPv by Mrs. Ga- 
poschkin.26 Danjon finds ft — ft (max.) = 3.95 mag.; this leads to ft = 3.53 + 3.95 = 
7.48. We adopt 7.5. The spectral type was found to be B3 + in the Henry Draper Cata- 
logue, B8n at Victoria, and B8 by the writer. The companion is probably itself a spectro- 
scopic binary; assuming Aw = 1.0 we find then 7.9, B8 for its brighter component. If the 
star is an ordinary main-sequence star, the distance modulus of ß Lyrae comes out to be 
about 8.1; and the absolute magnitude of the B8 component of ft, —4.5. The uncertainty 
of the distance modulus is probably about 1 mag. We see that this result is consistent 
with Struve’s spectroscopic determination. A third argument leads to the same value as 
an upper limit; the galactic longitude being 30o, the star would be expected to show the 
effects of galactic rotation if the distance were as large as 1000 parsecs; actually it shows 
only the reflex of the solar motion, so that the distance is probably not over 400 parsecs. 
We have, accordingly, M(A) = —4.5 + 1. 

This value, in connection with Table 1, shows that almost certainly Ma/Mb < 2. 
However, on account of the faintness of B, this ratio should well exceed unity. It seems 
difficult to obtain a more precise determination, and the compromise ratio, 1.5, will be 
adopted in the following pages. The results obtained are, with some numerical modifica- 
tions, also valid for other mass ratios. 

As a test of these considerations Dr. Wesselink made in 1938 a solution based upon all 
the major photometric series, assuming the size of B to be about two-thirds that of A. 
He found that a good representation could be made.27 Later S. Gaposchkin published28 

another solution, also assuming Rb < Ra- But he has not used the spectroscopic ob- 
servations of this star ; his mass ratio A/B = 3.8 would lead, in connection with Rossiter’s 
mass function, to masses thirty-seven and forty-seven times larger than those given in 
Gaposchkin’s two solutions. 

Wesselink’s solution has not yet been published.27 It is clear that the values are ap- 
proximate in view of the large indeterminacy of the solution and because of the roughness 
of the assumption that the stars are ellipsoids with uniform disks. 

On the basis of Wesselink’s or Gaposchkin’s solutions it follows that the components of 
ß Lyrae are very close. The writer has pointed out29 that for equal components built on 
the Roche model actual contact exists whenever az/a > 0.43 and ft/a > 0.38. Here 
and ft are the true dimensions of the “ellipsoids,” not necessarily those derived from the 
light-curve. More extensive data, also for different mass ratios, are given in Table 3. 
The relation between the empirical values of ax and ft and the true values cannot be found 
without extensive computations. It will be necessary to assume the bolometric intensity 
distribution over the surface to be given by the theorem H & g, although this cannot be 
(strictly) valid if the components are unequal; this is shown in section 2. The distribu- 
tion of gravity may be obtained from Figure 3 and Tables 4b and 4c, gravity being pro- 
portional to the reciprocal of the distance between consecutive equipotential surfaces. It 
appears that maximum brightness will be found in a belt at right angles to the line join- 
ing the centers. The effect will be an increase of the maxima of the light-curve and con- 

25 Op. cit., p. 121. 26 Harvard Obs. Mimeogr., 3, No. 2, 1938. 
v Pub. A.A.S., 9, 304, 1939. 
28 Proc. Amer. Phil. Soc., 82, 305, 1940; Struve, Ap. J., 93, 112, 1941. 
29Ap. J., 88, 497 and 501, 1938. 
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INTERPRETATION OF ß LYRAE 137 

sequently an exaggerated empirically determined ellipticity of the components. Near 
the minima a brightening toward the limb will be present, which, in view of the experi- 
ence that darkened solutions often give larger radii than uniform solutions, may be ex- 
pected to result in an underestimation of the radii. This enhances the probability that 
the components of ß Lyrae are in contact.30 

During the primary minimum the companion is much darker than at other phases, 
partly because of the low gravity at the outer point of B and partly because of obscura- 
tion to be discussed later. Hence, an exaggerated value of Aw is found from the photo- 
metric solution, and too late a spectral type is computed from the surface brightness or 
color. 

Although we have now obtained the approximate dimensions of the system, we have, 
as yet, no clue to the cause of the asymmetries mentioned earlier or to the source of the 
B5 spectrum. It is clear that any stable system will be symmetrical with respect to the 
plane through the components and the rotational axis. Hence, ß Lyrae cannot be a stable 
system. The fact that in all probability the components have a common envelope may 
introduce an instability. The writer had examined this question in 1932 and had found 
that von Zeipeks theorem cannot be valid for a binary of unequal masses with a common 
envelope and that a stream of matter from A to B is likely to set in until equality of mass 
is attained. But even this stream from A to B does not seem to be sufficient for explain- 
ing the B5 spectrum. Accordingly, a second instability should be present, which will, in- 
deed, arise if the envelope of A and B has such heights that it fills the largest equipoten- 
tial surface inclosing the two components (cf. Figs. 2 and 3). Then, at point L (corre- 
sponding to the Lagrangian point L2 of the problème restreint) instability will set in, and 
the matter will stream out, describing a free orbit, which may be found by integration of 
the equations of motion of the problème restreint. We shall see that this mechanism pro- 
vides the elements of explaining the asymmetries of the light-curve, as well as the spec- 
tral features of ß Lyrae. 

Before giving the analytical discussions we note another type of instability which may 
arise in close binaries, consisting of one large, tenuous star and another, much denser and 
smaller one. Instability at point G (Fig. 3) will cause matter from the large star to en- 
velope the small one in a manner discussed later. This type of instability seems of inter- 
est in interpreting such stars as Cl Cygni, AX Persei, e Aurigae, W Cephei, and perhaps 
also f Aurigae. 

2. INSTABILITY IN CONTACT BINARIES 

Since most of the further discussions are concerned with binaries of which the com- 
ponents have a common envelope, we shall introduce the short term “contact binary” 
for such a system ; it does not mean that mere contact exists, but a common envelope as 
well. For equipotential (or level) surfaces inside the common envelope we shall use the 
term “contact surfaces.” 

Von Zeipel has shown31 that, if in a rotating mass of gas (which may be a contact 
binary) the angular velocity a> is constant and if, further, mechanical equilibrium ob- 
tains, the total pressure P, the density p, and the temperature T are constant on a level 
surface, <j) = constant (<£ includes the potential due to gravity as well as that due to the 
centrifugal force). The argument is simply that in equilibrium 

dP = — pdcj) . (1) 

3° The effect of the theorem P œ g on the derived ellipticities of separated components has been studied 
by Luyten (M.N., 98, 459, 1938) and Russell (Ap. J., 90, 653, 1939). When this paper was practically 
finished, Dr. Sitterly, at the Wellesley meeting of the American Astronomical Society (September, 
1940), presented computations for components of equal mass in contact. The large effect on the empiri- 
cally determined radii found by Dr. Sitterly makes it practically certain that the components of ß Lyrae 
have a common envelope. 

31 M.N., 84, 665, 1924; Eddington, The Internal Constitution of the Stars, pp. 282-288. 
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ISS GERARD P. KUIPER 

On a level surface d(t> = o; and hence dP = o, or P = Solving equation (1) for p, 
we find that p must be a function of 0 only and must, therefore, be constant on a level 
surface. Finally, the same thing holds for T, found from 

RpT 
+ iaT*, (2) 

provided the composition (entering through ¡i) is constant over a level surface. 
It can also be shown31 that, under the same assumption, co = constant, the surface 

brightness is given by 17 oc g. 
Consider now two components having a given mass ratio and the same composition. 

If the components are well separated, certain empirical relations between R, L, Te, and 
M exist which will be of importance later. The significance of these relations is that they 
give central temperatures ( œ M/R) which lead to an energy generation equal to L, so 
that equilibrium will be maintained. We shall refer to these empirical quantities as the 
“physical” dimensions. We have, empirically,32 

L_ 

O 
and hence (3) 

valid for J < M/ O < 2%; the third relation was verified by directly plotting Te against M. 
For larger masses the exponents in the right-hand members decrease slowly as the mass 
increases, but their precise values become increasingly uncertain. For the interval 
10 < M < 100 we find the following approximate relations: 

L oc M2'3 ; R oc M0-6, and T* oc M1-1 . (4) 

On the basis of equations (3) and (4) we may compute the ratio and the sum of the 
radii of two components with constant average mass M0 (to which corresponds the radi- 

TABLE 2 

Empirical Values of the Ratio and the Sum of the Radii for 
Separated Components of Different Mass Ratio 

ma/mb 

i .0. 
1 • 5- 
2.0. 
2- S- 
3- 0- 

rA/rB 

I .OO 
I.36 
1.68 
1.99 
2.28 

{R^+Rß)/2R0 

\<M<2\ 

I .OOO 
0.996 
0.989 
0.982 
0-975 

ra/rb 
io<M <100 

1.00 
1.28 
1-52 
1-73 
1-93 

(rA+rb)/2r° 
io<M <100 

1.000 
0-995 
0.986 
0.977 
0.968 

us R0). Table 2 shows the result. We note that the sum of the radii increases as the com- 
ponents approach equality. It is easily shown that this is generally the case whenever 
R oc Mn, provided o < n < 1. 

If the two components are so close as to have a common envelope, the ratio of the 
radii is no longer free to adjust itself to the physical causes underlying equations (3) or 
(4) but is determined mechanically by the mass ratio. Strictly speaking, the ratio of the 
radii will depend not only on the mass ratio but also on the polytropic index of the com- 

Ap. 88, 472, 1938; 29 Canis Majoris was omitted. 
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INTERPRETATION OF ß LYRAE 139 

ponents. Recent work33 has empirically confirmed the older theoretical conclusion that 
the poly tropic index of ordinary stars is close to 3. This being the case, the shape of the 
stars will deviate only slightly from the shape computed on the simple Roche model, as 
was shown by Chandrasekhar34 for binaries with separated components. Chandrasek- 
har’s result is obviously a consequence of the fact that for each component about 90 per 
cent of the mass is less than half the radius away from the center, in which region the 
equipotential surfaces are nearly spheres; hence, the attraction on an exterior point is 
very nearly the same as that valid for the Roche model. This situation is not materially 
changed when the components have a common envelope; hence, the approximation of the 
Roche model is good also in that case. 

The equipotential surfaces of the Roche model are given by 

-12 = 
1 M M 

rx ' r2 

x2 + y2 

(5) 

in which 12 is the (negative) potential and and r2 are the distances of a point (x, y, z) 
to the mass centers, Mz = 1 —/x and M2 = pi; the co-ordinate system is rotating with 
the binary, the z-axis is the axis of rotation, the x-axis runs through the two mass centers, 
and the origin is at the center of gravity. The units are : the distance between the centers 
= i ; total mass = 1 ; angular velocity = 1 (or period = 271-). 

With the aid of equation (5) we may now compute the ratio of the radii of the level 
surfaces; we shall call them “mechanical” radii. There are two limiting surfaces for each 
mass ratio, defined respectively by the Lagrangian points Lx and L2. Lx gives the dimen- 
sions for the case in which the common envelope has zero height, whereas L2 gives the 
maximum extent of the common envelope; if the extent should happen to be larger than 
defined by this limiting surface, the excess matter would stream off at L2. 

The co-ordinates of Lx and L2 are y = z = o and x determined by d!2/dx = o. With 
the co-ordinates found, equation (5) gives the corresponding í2l, and then equation (5) 
is solved for the co-ordinates satisfying 12l just found. In this manner the principal axes 
a', a", ô, and c are found for each component and surface {a! refers to the outer dimension 
measured on the ^axis, and a" to the inner dimension). Further, b{Lx) and c(Lt) are the 
y and z dimensions of the outer surface at Lz ; they determine the maximum width of the 
bridge between the stars. As a unit we use the distance between the mass centers. On 
account of the pointed shape near Zi, we shall compute R from R = \/a/bc. 

The results are found in Tables 30-36 and are shown in Figure 2. The dots in Figure 2 
mark the positions of the centers of gravity; the distance between the stellar centers was 
taken the same for each figure. 

Before we can compare the “mechanical” dimensions of Table 3 with the “physical” 
dimensions of Table 2, we must know the change with changing mass ratio of the unit 
used in Table 3. We consider, therefore, a contact binary with total mass M = constant; 
with total orbital momentum Ji> — constant, but with variable mass ratio. In consider- 
ing Jio = constant we neglect possible variations in the rotational momentum of the two 
components. On the Roche model this rotational momentum would be zero, of course ; 
actually, it is not zero but is probably small compared to the orbital momentum except 
when the companion has a very small mass compared to the primary. Its effect is studied 
below. 

The total orbital momentum of the components with masses (1 — fx)M and ¡xM is, 
with respect to the center of gravity, 

cK> = (1 — ß)Mix2a2o) + mM(i — ¡x)2a2u = ¿1(1 — p)Ma2u = constant. 

33 Cowling, M.N., 98, 734, 1938; Russell, op. cit., p. 641. 
34 M.N., 93, 539, îQSS (cf. Fig. 9, p. 566, and pp. 569-571)- 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
4l

A
pJ
 

 9
3 

. .
 1

33
K

 

I4O GERARD P. KUIPER 

At any time co is found from Kepler’s third law, co2a3 = GM. After elimination of co we 
find 

/¿2(i — ß)2a = constant, (6) 

and for the period P 

— ¡jl)3P = constant . (?) 

From equation (6) it follows that a has a minimum for /x = J and starts from infinity with 
¡JL = o. For very small ¿¿-values, however, the rotational momentum of the primary will 

TABLE 3a 

Properties of the Innermost Contact Surface 

ma/mb 

i .0 
1.5 
2.0 
2-5 
30 

1/2 
2/5 
1/3 
2/7 
1/4 

o.00000 
.14162 
•23742 
.30723 

0.36074 

ß(Li) 

2.OOOO 
1-9905 
I.9728 
1-9537 
1-9353 

ai 

O.405 
-442 
.468 
.488 

0.505 

ai 

O.500 
•542 
•571 
•593 

0.611 

0.374 
.412 
•440 
.462 

0.480 

0.356 
•390 
.414 
•433 

0.448 

aá 

O.405 
•370 
•346 
•327 

O.313 

02 

O.5OO 
.458 
•429 
-4O7 

O.389 

b2 

O.374 
•337 
•313 
•295 

0.280 

C2 

O.356 
.323 
.3OO 
.283 

O.269 

TABLE 3b 

Properties of the Outermost Contact Surface 

Ma/MB 

1.0. 
1-5 
2 .0. 
2.5. 
30. 

L2 

I.1984 
I.2308 
I.2490 
1.2597 
1.2659 

Q(L2) 

I.7284 
1-7595 
1-7737 
1-7795 
i.7806 

ai 

0.698 
•589 
.583 
.586 

O.590 

h 

0.482 
.502 
.518 
.531 

0.542 

Ci 

O.437 
•456 
•471 
.481 

O.492 

b(Li) 

0.326 
•295 
-273 
•255 

O.243 

c(Li) 

0.289 
.265 
. 246 
.231 

O.219 

a'2 

0.698 
.631 
-582 
•545 

0.516 

0.482 
•427 
•390 
•363 

0.342 

c2 

0.437 
•392 
.361 
•337 

0.318 

TABLE 3c 
ííRADII,, of the Inner Contact Surfaces 

ma/mb Ra rb ra/rB ra+rb 

1.0 
1-5 
2.0 
2.5 
30 

0.378 
.414 
.440 
.460 

0.477 

0.378 
•343 
•319 
.301 

0.287 

i .00 
i. 21 
1.38 
1-53 
i .66 

0.756 
•757 
•759 
. 761 

0.764 

become of importance. The decrease of a with increasing ¿1 is quite appreciable even for 
moderate values of /x; for instance, if we start with Ma/Mb = 3 and if later the masses 
have become equal, the distance of the centers will have decreased by the factor 9/16. 
By (7) the period of revolution will have decreased by 27/64. Assuming that at all times 
the periods of rotation are very nearly equal to the period of revolution, we find that, as 
the components approach equality, the rotational momentum increases; this is shown be- 
low. Hence, the orbital momentum decreases as which proves that, in reality, the 
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distance between the components decreases even more rapidly than according to equa- 
tion (6) and the period of revolution will decrease more rapidly than according to equa- 
tion (7). 

Fig. 2.—Inner and outer contact surfaces for different mass ratios. Sections in xy plane left, in xz 
plane right. Axes of rotation (through centers of gravity) shown as broken lines. 

If yR is the radius of gyration of a star, its rotational momentum is y2R2Mœ; the total 
rotational momentum of the components is y2œ[R^M1 + RIM2]. Putting, as before, 
R = Mn (J < ^ < f) and using equation (7), we find that the total rotational momen- 
tum is proportional to 

72M3(i - m)M(i - M)I+2n + MI+2n} - 
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Evaluating this function for /x = J and for /x = we find that in the latter case the rota- 
tional momentum is 1.90 or 1.62 times larger than in the former, depending upon whether 
we use the one or the other extreme value of w, ^ or f. This proves the statement made 
above, at least if the approximation of a> = constant throughout the components is ade- 
quate. In view of the strong tidal forces, this approximation should be valid for the bulk of 
each star; the very central region, as well as the outermost parts (discussed below), may 
deviate, but their contribution to the momentum is slight. 

In view of the considerable decrease in distance between the mass centers as the com- 
ponents approach equality and the comparatively small change in the sum of the “physi- 
cal” radii shown in Table 2, it seems probable even at this stage that, if two unequal com- 
ponents once have a common envelope, they will continue to do so and that the envelope 
will become increasingly prominent. But, since the stars will be unable to retain their 
physical radii, we have to study the “adjustments” to the radii before certainty can be 
obtained as to the future of the envelope. 

Consider, first, two separated components of masses Tfi and M2, having “physical” 
radii Rj and R2, and internal energies E1(Mly Rz) and E2(M2, R2). Compare this combina- 
tion with a contact binary with the same masses but “adjusted” radii, Rz + hx and 
R2-\r h2. It seems probable that the adjustments in the radii will be made in such a way 
that the total energy of the system does not change. If this assumption is correct, we 
have 

Ez{Mz, R, + hz) + E2(M2y R2 + h2) = Rx) + E2(M2, R2) . (8) 

After a Taylor expansion this reduces to (retaining only first-order terms) 

hzE\Mz, Ri) + h2E
f(M2, E2) = o , (9) 

in which the derivatives are taken with respect to the radius. The internal energy is pro- 
portional to M2/R; the constant of proportionality will be the same for the two compo- 
nents if they have the same polytropic index and also the same ratio ß between the gas 
pressure and the total pressure.35 Equation (9) then becomes 

M2 

hz ^ + k 
Ml 

Rl 
= o (10) 

It is of interest to note that one finds the same equation by considering the work done in 
displacing against gravity a small fraction, a, of each mass in opposite directions, the 
mean displacements being hz and h2: hx aMz gi + h2 aM2 g2 = o, and g oc M/R2. 

Equation (10) gives only the ratio of the increments of the radii. In order to obtain an 
indication of their absolute amount, we shall assume that the “mechanical” radii can be 
reached, starting from the “physical” radii, by the same adiabatic change (eq. [8]). Ob- 
viously, the radii adopted by the contact binary will be intermediate between the physi- 
cal and the mechanical radii; we shall call them “compromise” radii. 

Because of the ill-defined shape of the “compromise” binary, we shall examine the 
question of whether the common envelope will continue to exist by comparing the “physi- 
cal” with the “mechanical” dimensions. Equation (10) plus the known ratio of the radii 
fixes the mechanical dimensions for each mass ratio, 

{Rp + h)z (Rm)i _ (MzY ( , 
(RP + h), (Rm)2 \Mj ’ Ui; 

35 Chandrasekhar, Stellar Structure, pp. 230-232, 1939. 
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in which Rp and Rm are the physical and mechanical radii, and the exponent m is found, 
from Table 3c, to be about 0.46. Using now in equations (10) and (11) the empirical rela- 
tion Rp = cMn (n = % for dwarfs, and about 0.6 for massive stars), we are able to solve 
for and h2 in terms of Mi and M2. Then, putting Mx = M0(i + 8) and M2 = M0(i — 8) 
we find, up to the second power of ô, 

h2 = R0(n — m)8{i + 2(1 — n)8} ; /?! = —R0(n — m)8{i — 2(1 — n)8} , (12) 

in which R0 is the physical radius corresponding to M0 (R0 = cMf). 
We consider first the change in the sum of the radii over the sum of the physical radii 

= 2(1 — n)(n — m)b2 . 
2j\.o (13) 

If ô = I, or Ma/Mb = 3, and w = f, the right-hand member of equation (13) is 0.036; 
iîn = 0.6, the right-hand member is 0.028. If we add these figures to the sum of the phys- 
ical radii found from Table 2 (0.975 and 0.968, respectively), we find 1.011 and 0.996 for 
dwarfs and massive stars, respectively. This shows that the sum of the “adjusted” 
mechanical radii (adjusted by means of eq. [10]) remains very nearly constant in compari- 
son with R0, i.e., in absolute measure, if the masses approach equality. Now we see from 
Table 3c that the sum of the mechanical radii remains very nearly constant if it is ex- 
pressed in terms of the distance between the mass centers. Hence, if the degree of con- 
tact were to remain the same during the process of mass transfer, the distance of the mass 
centers would have to remain very nearly the same (more precisely: for dwarfs the 
change would have to be by the factor 0.999, and for massive stars by the factor 1.014, 
for a change of mass ratio from A/B = 3toi). Actually, as we have seen, the distance of 
the mass centers changes by a factor less than 9/16 = 0.562. Hence, the degree of contact 
increases very considerably during the process of mass transfer—so much, in fact, that if the 
process should start with masses sufficiently different, instability on the outermost point 
of the companion would necessarily set in before equalization of masses would be attained 
(cf. Table 3, and Figure 2). 

Since ^ > w, we see by equation (12) that the primary will be compressed and the 
companion expanded over the physical dimensions. The ratio Ä2/Äi is found to be 

- ^ = i + 4(1 - m)5 , (14) 

which may also be directly obtained from equation (10). It shows that the secondary al- 
ways makes a larger adjustment to its radius than the primary. If w = ^, we find from 
equation (10) that the changes in dimension are such that the total volume of the com- 
ponents remains the same; if w = f, the total surface area remains unchanged. If ^ = 1, 
the sum of the radii would remain unchanged; but n is never so large. 

As was suggested before, the true dimensions of the components will be intermediate 
between the physical and mechanical dimensions. This appears inevitable because, first, 
the physical dimensions are ruled out, since they would not provide mechanical equilib- 
rium, the outer surface not being an equipotential surface; this is a consequence of n be- 
ing larger than m. But neither could an equipotential surface be the true boundary, be- 
cause it would require such a contraction of A, and expansion of B, that the internal tem- 
peratures ( cc i/R) would change materially, and even more so the energy generations 
( cc Tl8±). These changes would tend to restore, at least in part, the physical dimensions. 
Even after a long time the mechanical dimensions could not become equilibrium dimen- 
sions, because the empirical relations between L, R, and M would not exist. These em- 
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144 GERARD P. KUIPER 

pirical relations are equivalent to such theoretical relations as are given by Gamow,36 

based on the carbon-nitrogen cycle of nuclear transmutations in stellar interiors. This 
shows that the true dimensions of the components must be intermediate between the 
two extremes considered. 

This result leads at once to several important conclusions. The most important one 
is that on the outer equipo ten tial surfaces the pressure could not be constant ; in fact, some 
of these surfaces will be inside the envelope of A but already outside This result is con- 
tradictory to that derived on page 137 on the basis of constant angular velocity. Hence, 
co cannot be constant throughout, particularly in the envelope where these contradictions 
occur. The pressure gradient along the level surfaces will cause matter to stream from 
A to B. Obviously, this current will be the more intense, the greater the disparity be- 
tween the physical and the mechanical dimensions, or, in other words, the larger the mass 
ratio A/B. It will further depend on the extent of A beyond the lowest “contact sur- 
face.^ 

Since the components assume compromise dimensions, Ra is smaller than normal; 
hence, the central temperature of A will be increased, and the energy generation will be 
considerably increased. Hence, La is increased, and also Tj oc L/R2 (for two reasons). 
Opposite results follow for B. Hence, the magnitude difference, Am, is increased con- 
siderably above the value normal for the mass ratio ; also the ratio of the surface bright- 
nesses and the difference in spectral type. All these results are of interest in connection 
with ß Lyrae, where Am is definitely too large for the mass ratio. 

We shall now show that the greatest ratio between the pressures in A and B exists 
along the level surfaces in the outer parts of the common envelope ; but the greatest pres- 
sure gradient, being determined by the difference in pressure, will be further down inside 
the envelope. Both statements follow from the fact that the pressure gradient is smaller 
in the envelope of A than in that of B. This results from the following: 

We have shown that the effective temperatures of the components will differ more 
than according to the equilibrium relations (3) or (4). Hence, for components of un- 
equal mass, re(i) >>r6(2). Consider first isothermal atmospheres; we shall consider the 
pressure gradients along the “b”-axes, where the deviations from equilibrium will not be 
very large. Neglecting radiation pressure, we have 

p = pse-^/K1") , (15) 

in which /X is the mean molecular weight, g the surface gravity, and the co-ordinate h is 
measured in an outward direction from the level with pressure p0. For the “compromise” 
radii gt^ g2] and a high value of T will result in a low value of ¡jl, although, owing to the 
great abundance of hydrogen in stellar atmospheres, the variation in ju will not be great. 
The exponent in equation (15) is clearly less for the primary, having the higher tem- 
perature. 

Now, extending the computations to greater depths, we have the standard equations 

^=-gP, (16) P = RpT + iaT*, (17) 

T4 = Ti(i + fr) , (18) dr = . (19) 

In equation (18) we have assumed that the layers considered are not so thick that the ap- 
proximation of plane-parallel layers is invalid; then, also, g = constant. Furthermore, 

36 Ap. 89, 130, 1939. 
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equation (19) assumes that the hydrogen content of the two envelopes is the same;37 the 
exponent A will take care of the principal deviations from Kramers’ law in the envelope. 
The solution of these four equations is particularly simple if we assume a constant ratio 
ß between the gas and the total pressure; equation (17) then becomes ßP = RpT/(x. 

First we keep equation (18) and eliminate p; then we eliminate r and get 

dP 

P 
(20) and ^r8-3+A • dT = -P2 • dh , (21) 

in which 

and 
8 R2 

3 ’ TtK0ß
2p2 * 

(22) 

Now, eliminating dh from equations (20) and (21) and neglecting 7'o S+A in comparison 
with r8 s+A, we have 

8-5 + A 
2 

P2 ^ ABT*-^ , (23) 

which is valid except at the very boundary. Putting, for brevity, 8.5 + A = 2F (where 
F ^ 4), we have by equations (20) and (23) 

dT = —^ dh (24') or T = T* — ^h, (24) 

if r* = T(h = o). By equation (23) we then have 

,25) 

Now compare the two components on the ô-axes. Assuming A to be the same for the 
two stars, the pressure gradients given by equation (25) will depend on A and B. The 
values of g are almost identical. The value of ¡x need not be the same; but if hydrogen is 
as prominent in the outer parts as in the sun and in other stars (#: metals about 2000 by 
number),, fx will be close to ^ in either case because the ionization must soon be nearly 
complete. If, further, ft ^ ft, B1 ^ B2. But A <x P“4. 

Suppose, now, that the pressures of the two components were equal at the innermost 
“contact surface,” where the densities are highest, and that we count h from this surface 
upward. Then by assumption P* = P*, and by equation (25) A-ATH = A2T

2
2S] hence, 

F* * Pe
2/F . (26) 

The value of P* is, therefore, higher for A than for B, and by equation (24') this is 
true for any value of h in the envelope.38 We obtain here another interesting contradic- 
tion to the results derived on page 137 on the assumption of co = constant, quite inde- 
pendently from the previous discussion. Of course, this contradiction results from Pe(i)» 
Pe(2), which, in connection with gj = g2, is already in itself a contradiction of von ZeipePs 
theorems. 

37 Chandrasekhar, Stellar Structure, p. 293, 1939. 
38 Equal steps in h mean nearly equal steps in potential because gi ^ g2. 
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Since ri5lc > r2*, it follows from equation (24) that the envelope of A extends to a 
greater height than B above the level for which by hypothesis Px = P2] the ratio of the 
heights is [Te(i)/Te(2)]2/F. Now, expressing h in terms of the height of B’s envelope, we 
have by equations (25) and (26) 

Px 

p2 

hf 
h 

if 
2/F 

< I . (27) 

This shows that in the whole envelope above the level where the pressures are equal, 
(p < h < 1), the pressure in A is larger than in B, so that matter must flow from A to B. 

Summarizing the results of this section, we find : 
1. If two components of unequal mass are so close as to have a common envelope, the 

angular velocity co cannot be constant throughout the system, because, even if for some 
layer inside the common envelope the pressures were equal (as demanded by co = con- 
stant), the pressure above that level would be larger in A than in B, causing a stream of 
matter to flow from A to B. 

2. Owing to the fact that the equilibrium (“physical”) radii of stars differ more than 
the “mechanical” radii of a contact binary, the true dimensions of the components will be 
intermediate between them. This causes A to be the larger, and B smaller, than the “av- 
erage” level boundary surface. Hence, the pressures in the envelope will be larger in A 
than in B on the same level surface. This applies probably even to the deepest-level sur- 
face of the common envelope, so that the stream from A to B is probably more violent 
than that caused by the effect mentioned under 1. 

3. Since A is smaller and B larger than their respective “physical” radii, the internal 
temperatures and luminosities of the components differ more than normal for their mass 
ratio; Am and A(Sp.) are both abnormally large. 

4. During the mass transfer from A to B the components draw closer together, in- 
creasing the extent of the common envelope. This may lead to an instability on the out- 
side of B (at the Lagrangian point L2). Obviously, the decrease in distance will not be 
quite as much as computed on dynamical grounds alone, because of the pressure at the 
interface. 

The origin of a contact binary may be conceived in two ways : 
a) The binary had so little initial angular momentum that it could not develop two 

separated components with radii appropriate for their masses and composition. This is 
no more mysterious than the formation of a binary with a larger angular momentum and 
consequent larger separation. 

b) The process of stellar evolution (diminishing R content) may have caused an in- 
crease in the radii; this would cause the rotational momentum to increase and the orbital 
momentum to decrease, which would result in a decreased distance between mass cen- 
ters. The two effects would be additive. 

3. CURRENTS IN CONTACT BINARIES 

We shall now try to find some properties of the motion of the matter streaming from 
A to B. Although the general problem is very complex, some results may easily be ob- 
tained. 

It will be useful to have, first, more details about the shape of the equipotential sur- 
faces because they show at once, for instance, the distribution of gravity. We have de- 
rived for one case, Ma/Mb = 1.5 (or /z = 0.4), the cross-sections with the o;y-plane of 
four crucial surfaces. The value of ¡jl chosen is of no particular consequence, as all the 
significant features are also present for different mass ratios. The result of the computa- 
tions is found in Tables 4a and 4b and is shown in Figure 3. In addition, data for the 
^2-plane are given in Table 4c. 
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We note that there are three points on the o^-axis for which dti/dx = o; they are B, G} 

and L of Figure 3. They correspond to the Lagrangian straight-line solutions of the three- 
body problem; and equation (5), giving the equipotential surfaces, corresponds to the 
surfaces of zero velocity defined by Jacobi's integral. We shall make use of these circum- 
stances in determining the motion of ejected matter. 

A 
B 
C. 
D 
E 
F, 

TABLE 4a 

Values of * for Crucial Values of — œ 
(Ma/Ms=1.5) 

Point —£2 

1.760 
I .690 
1.760 
I.990 
2.167 
2.167 

■I.37O 
I . 162 
O.989 
O.842 

■o.781 
0.000 

G. 
H. 
I. 
K. 
L. 

Point -£2 

1.990 
2.167 
2.167 
1.990 
I . 760 

+O.I42 
O.279 
O.909 
O.97O 

+ I.23I 

TABLE 4b 

Values of ±y for Given Values of * and —q 
(Ma/Ms = 1.5) 

—£2 

2.167 1.990 1.760 i .690 1.690 1.760 

-I-3- 
— 1.2. 
— i. i. 
— i .0. 
-0.8. 
—0.6. 
-0.4. 
—0.2. 

0.0. 
+0.2. 
+0.4. 
+0.6. 
+0.8. 
+ 1.0. 
+ 1.1. 
+ 1.2. 
+1.27 

0.313 
•365 
.308 
.000 

. 222 
. 292 

o. 224 

178 
371 
412 
362 
202 
087 
280 
337 
287 

375 
485 
502 
458 
354 
300 
380 
427 
406 
305 
211 
055 

138 
285 
450 
530 
535 
496 
404 
355 
422 
466 
460 
415 
425 

0.444" 
0.763 
0. 928 
i-143 
1. 280 
1.368 
i .418 
1-436 
i .422 
1-375 
i. 290 
I.I57 
0.941 
0.759 

0.519 
0.767 
0. 932 
1.056 
1.236 
1-358 
1-438 
1.485 
i .501 
i .488 
1.444 
1.366 
1. 246 
i .065 
0.938 
0.758 
o.545t 

Second value, 0.141. f Second value, 0.105. 

The points B, G, and L have the x-co-or dina tes given in Table 4a; the values of —12 
are 1.690,1.990, and 1.760, respectively. At the center of gravity, F, —12 = 2^. The four 
surfaces defined by these values of the potential are those considered here. 

The largest possible envelope of a contact binary will extend to the surface passing 
through L. If the system were larger, matter would flow off at L because, in the rotating 
frame of reference, gravity reverses itself there (or, in a stationary frame, the centrifugal 
force becomes larger than gravity). 

Currents are defined as large-scale differential motions with respect to the condition 
co = constant. If co = constant, the level surfaces are also surfaces of constant P, p, and 
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T. In the preceding section we found several contradictions to these consequences of 
co = constant, so that currents must exist. 

On a “contact surface” the pressure is higher in A than in J5. A stream of matter must 
therefore flow from A to B, although conceivably part of this stream may return; in that 
case the outgoing stream must be stronger than the returning stream. If gas and radia- 

Fig. 3.—Four crucial equipotential curves in xy plane for ¿¿ = 0.4 

TABLE 4c 

Values of ±2 for Given Values of x and —œ 

(Ma/Mb = 1.5) 

-n -n 
X X 

1.990 1.760 1.690 1.990 1.760 1.690 

— 1.6. 
1 • 5 • 
1 -45 
1 -4- 
ï-S- 

1 -392 

0.727 
0.483 
0.252 

i .0 
0.7 

-0.4 
0.0 

0.287 
•390 

0.196 

0.389 
0.456 
0.319 

i .860 
i .048 
0.789 
0.583 
0.279 
0.213 
0.425 
0.480 
0.358 

+0.3 
0.6 
0.9 
i .1 
1-3 
1.4 
1-5 

+ 1.6 

0.194 
•323 

0.188 

0.308 
0.391 
0.323 
0.169 
o. 121 
0.371 
0.749 
1-389 

0.344 
0.418 
0-355 
0.289 
0.384 
0.621 
1.052 
1.852 

tion pressures were absent, and also viscous forces, the motion of the stream would be de- 
termined by the equations of motion of the problème restreint. These equations are39 

x = 

y = 

z = 

2y % 

2x y 

(1 

(I 

-(1 -m) 

/V*   /V* /\* v */v vvj vV 
m)  ^ ß 

x2 

ri 

- (i - mK - ß 

/with 

I rï = 0 — O2 + y2 + Z2 

Vi = 0 — x2)
2 + y2 + z2 

39 E.g., Moulton, Introduction to Celestial Mechanics (2d ed.), p. 280, 1914. 

(28) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
4l

A
pJ
 

 9
3 

. .
 1

33
K

 

INTERPRETATION OF ß LYRAE 149 

If 2 = o, ¿ = o; hence, if also ¿ = o, the motion will remain in the ^-plane. If 2 ^ o, we 
see that points symmetrical with respect to the ry-plane having symmetrical motions 
(i.e., the same x and y; and ¿1 = — z2) will also have symmetrical accelerations. Hence, 
the motions will remain symmetrical with respect to the xy-plane. Adding, now, the effects 
of the pressure gradient and viscous forces, this symmetry will not be disturbed—not, 
at least, if we start with the reasonable assumption of initial symmetry in the distribution 
of matter. Hence, the principal current should be symmetrical with respect to the 
ry-plane. 

Since two symmetrical currents in the z-direction would lead to a dissipation of energy 
not present in currents parallel to the ry-plane, it is very probable that the latter are the 
most important currents. We shall find their chief features by considering the motion in 
the xy-plane itself. Furthermore, in 
eclipsing binaries this is the plane in 
which observations may be made. 

Consider the point G (Fig. 3), and 
assume that the pressure difference be- 
tween the components gives rise to a 
current through G parallel to the Æ-axis 
(x — v; ÿ = 6). Equation (28) now be- 
comes 

x — finite; ÿ = —2V. (28/) 

The pressure gradient at G will have 
an ^-component, but none in y, if we 
start from a symmetrical distribution 
of matter. Also, the viscous forces act 
only in the direction of the current, 
i.e., in x. Hence, these additional forces 
affect in equation (28') only x. The 
current is going to be deflected in the 
—y-direction, owing to the well-known 
Coriolis force given by the second part 
of equation (28'). 

The same conclusion can be reached for any point on the “interface” between the 
components. As this surface we may define the locus of points passing through G where 
the potential gradient is perpendicular to the Æ-axis. Consider two symmetrical points, 
xx = x2; yi = — y2 = y, and again x = v,ÿ = o. We now have Xx = x2 \ but ÿ = — 2^ + 
/y, in which / is the same factor in the two cases. Starting again with a symmetrical dis- 
tribution of matter with respect to the ^c-axis, there will be a component of the pressure 
gradient in both co-ordinates, being equal and of the same sign in the ^-direction and 
equal but of opposite sign in the y-direction; its effect may be added to/y above. Hence, 
all currents passing the interface parallel to the Æ-axis are deflected in the —y-direction. 
The current from G (which will have a tendency to follow level surfaces) will therefore go 
principally in the direction of a (cf. Fig. 4, a) and not in the direction of 7. 

Given a strong current near a in the + ^-direction, what will its course be? Numerical 
integrations in section 7 show that, if the speed is below a certain value, the matter will 
go around the companion in the sense a, ß, 7. If, however, the speed is large, the matter 
will fly off near ß. The returning stream (in the — ^-direction) will experience a Coriolis 
force in the +y-direction. Above G the returning stream meets the outgoing stream ; but, 
owing to the opposite deflections in the y-direction, it is probable that part of the current 

Fig. 4.—Currents in contact binaries; xy plane 
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through 7 survives and will go around the primary to join afterward the main stream 
near G. 

The picture found is illustrated schematically in Figure 4, b. It is of great interest that 
Struve has actually identified these currents in ß Lyrae.40 The current near a has a veloc- 
ity (in a stationary frame) of about 300 km/sec; this current is very prominent. Near 
7 a weaker returning current is observed with a speed of about 200 km/sec. Since the 
velocities were measured when these currents projected themselves on the primary, it is 
obvious that the figures quoted apply without alteration to the rotating frame in which 
these phenomena were considered here. 

The true dimensions of the components are not represented by one level surface; hence 
the matter coming from the outer layers of A would practically find a vacuum over B. 
This is another reason why the current at a is more pronounced than that at 7. 

The considerable velocities present in ß Lyrae, in connection with the transverse effect 
of the Coriolis force, will make large departures possible from level surfaces, particularly 
where the potential gradient is low. This will be the case in the vicinity of point G as well 
as of L (cf. Fig. 3). In fact, the absorption due to the currents measured by Struve seems 
to be most prominent between G and a, and G and 7, respectively (Fig. 4, a) ; the dis- 
crepancy in the radii and the low effective gravity would combine to favor this region for 
the formation of extensive masses of gas of low density, as evidenced by the observed 
absorptions. 

4. EJECTION OF MATTER FROM CLOSE BINARIES 

In the introduction we noted two possible ways in which matter could be ejected from 
one of the components of a close binary; we shall refer to them as type A and type B of 
ejection. Type A takes place from the larger component (A ), and AX Persei seems to be a 
good example; type B takes place on the outside of the smaller component (B) and is to 
be identified with ß Lyrae. As is seen from Figure 3, type B arises when a contact binary 
“overflows” the level surface through L; type A arises if one of the components overflows 
the level surface through G and if the other component is much smaller than it would be 
according to this surface. 

Some general remarks about the motion of the ejected material may readily be made 
on the basis of Jacobi’s integral,41 

2V i - fi ^ I* ^ x2 + y2 

Ti ' f2 2 
- C, (29) 

in which v is the velocity of the ejected particle in the rotating frame of reference. The 
unit of velocity is the relative orbital velocity in the binary; for ß Lyrae, adopting 
Ma/Mb = 1-5, this is about 2.5 X 183 = 460 km/sec. For moderate velocities of ejec- 
tion, v0, the quantity is therefore quite small. For instance, if in ß Lyrae v0 ^ 50 
km/sec, %vl ^ 0.006, which is small compared to the constant C in (29); C equals 1.990 
for point G of Figure 3, and 1.760 for L, if = o in both cases. 

Now consider ejection either of type A or of type B. The value C0 of C in (29) depends 
on but will be only slightly less than the value computed for v0 = o. Since always 
v2 > o, we have for the future co-ordinates of the ejected material the inequality 

i - M i Ü ^ + y2 

r2 2 
> Co , (30) 

which means that the matter has to remain on one side of the “surface of zero velocity” de- 
fined by equation (30) after making the inequality into an equahty. These limiting 

4° Cf. p. 114. 41 Easily derived from eqs. (28); cf. Moulton, loc. cit. 
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INTERPRETATION OF ß LYRAE 151 

surfaces are illustrated in Figure 5; they are valid for small v0. If v0 should be large, the 
permitted regions will extend somewhat beyond the boundaries drawn, as is seen by 
comparison with Figure 3 ; the extensions are indicated by broken lines in Figure 5. The 
broken lines given for type B show the surface—Í2 = 1.690 and correspond therefore to 

= 1*760 — 1.690 = 0.070, or = 0.374, i.e., about 170 km/sec in case of ß Lyrae. 
Ejection of type A appears to have the curious result that the large star (“M” star) 

makes a shell or ring around the small (“B”) star. It is possible to derive from Jacobi’s 
integral the approximate radius of the ring. If v0 is not too large, the ejected particles 
start near their surface of zero velocity, and the orbit around B will therefore be eccen- 
tric. On account of the perturbations due to ^4, this orbit will have a rotation of the line 
of apsides; in addition the frame is rotating. Orbits of different particles will therefore 
intersect, and the result of collisions will be that a nearly circular ring will be formed with 
a radius determined by the available energy. 

Let the radius of the final, common orbit be a, and assume a to be a small quantity of 
the first order (the unit is the distance AB). The mass of B being fi, the angular velocity 
in a fixed frame is found from Kepler’s third law : co2a3 = We shall see later that the mo- 
tion around B is direct; hence the angular velocity in the rotating frame is cor = co — 1. 
The left-hand term of equation (29) therefore equals 

±v
2 = ±a2œ2

r = ^a2(ixl/2a~^2 — i)2 . (31) 

The right-hand member of equation (29) may be written as ¿7 — C, in which C is deter- 
mined from the boundary condition of \v2

0 = U0 — C, and in our approximation 

(32) 
ï cl 2 

Hence, a is found from 

- zY = ^ + ^ + -U0 + ivl . (33) 
I O' 2 

For ¡JL = 0.4 and = o we find a — 0.21 ; the value of a increases for increasing v0 and is 
found to be 0.25 if Vo = 0.5. These values of a are necessarily rough because of the ap- 
proximations used. A precise result may be obtained by deriving the variational orbit 
around the companion having the Jacobian constant determined by the boundary con- 
ditions at the point of ejection. For the case of equal masses and small v0 we find, by in- 
terpolation in a diagram by E. Strömgren,42 that a = 0.25; while for the extreme case of 
Ma/Mb = 10, considered by G. H. Darwin,43 we find that a ^ 0.13. The approximate 
result obtained above for ß = 0.4 is hereby confirmed. 

The correct order of magnitude for a is already obtained from the two-body problem, 
in which case the total energy in a circular orbit equals the potential energy at double the 
distance. According to this rule, the radius of the gaseous ring should be about half that 
of the curve of zero velocity, or about 0.2 for small v0. 

We may now take into account radiation pressure by a small, but hot, secondary. 
The example of the two-body problem would lead to the same radius of the ring as before 
if the radiation pressure does not exceed gravity; because, if a is the ratio between radia- 
tion pressure and gravity, the only effect will be to reduce the effective mass of the at- 
tracting star by the factor (i-a). In the three-body problem considered, the ring would 

*2 Bulletin astronomique, 9, 112, Fig. 23, 1935. The Jacobian constant is 16. 
43 Scientific Papers, 4, 70, PL IV. The appropriate Jacobian constant is 40.1821. 
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INTERPRETATION OF ß LYRAE 153 

reduce in size, as is easily seen by multiplying, in equations (31)-(33), m by (i-a) but 
leaving (i-ju) unchanged. Different results are obtained, however, if the ring should pos- 
sess a considerable optical thickness in ultraviolet light, so that the stream falling toward 
the ring should experience little or no radiation pressure. Finally, the collisions active in 
rounding off the orbits will, if inelastic, tend to diminish the final radius. 

Corresponding remarks may be made about ejection of type B. We see from Figure 5 
that the ejected material cannot possibly form a shell around ß Lyrae, as has often been 
assumed. The permitted region is shaded in Figure 5 ; but which part of this region is 
actually occupied can be found only from the equations of motion. If the velocity of 
ejection has a small z-component, the motion will be close to the ry-plane. It would 
again be possible to estimate the radius a of the ultimate orbit, by deriving the periodic 
orbit around the binary having the appropriate Jacobian constant,44 if this periodic orbit 
were so stable that even the boundary conditions of the ejected particles would lead to an 
orbit not very different from the periodic orbit. This, however, is not the case, as will be 
seen later. 

Further details about the orbits of the ejected particles can be obtained only by inte- 
gration of equations (28). These equations being of the sixth order, the integration can- 
not be performed analytically except for small regions of space, where a first-order theory 
of small co-ordinate differences may be used. We shall therefore subdivide the discussion 
of equations (28) into two parts: (1) the motion near the points of ejection and (2) the 
motion farther away from these points. The first discussion can start from the standard 
theory of the motion near the Lagrangian points Lz and L2 (the unstable straight-line 
solutions) ; the second has to use numerical integrations. 

5. THE MOTION NEAR THE POINTS OF EJECTION 

The purpose of this section is to express the co-ordinates of the ejected material in 
terms of the initial conditions. Collisions and radiation pressure will be neglected; their 
effects are examined separately. The equations of motion are therefore equations (28). 
As initial conditions we assume that at ¿ = o the particle has the co-ordinates of the li- 
bration point {L or G of Fig. 3) and the velocity components vx, vy, and vz. We shall keep 
the mass ratio arbitrary except in the numerical work, where we shall use Ma/Mb = i-5 
(or /x = 0.4). The discussion will be made to apply to ejection of either type A or type B. 
We shall use the same symbols as used in Moulton’s textbook45 and derive only such for- 
mulae as are not given there.46 

If y', and z' are the co-ordinate differences in the rotating frame with respect to 
L or G and if these differences remain small (<3C 0.1), the motion in z' is periodic and is 
found to be 

z sin Vt t. (34) 

The numerical values of A and other constants are found in Table 5 for both G and L; 
the period of the motion in z is 27r/ Vt ; its value, 4.77, for L, should be compared with 
27T for the binary. 

44 The radius of the periodic orbit around AB, corresponding to v0 — o, is about 2.4; the radius is 
smaller for positive v0. 

45 Op. cit. 

46 A review of the literature shows a vast amount of work carried out on the problème restreint, but few 
results are applicable to our problem which are not already contained in Moulton’s book. The reason is 
that most of the numerical work (by G. H. Darwin, Thiele, Burrau, E. Strömgren, et al.) was done in search 
for periodic orbits, to which group the orbits discussed here do not belong. 
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154 GERARD P. KUIPER 

The solutions for xr and yf are 

(35) 

in which the \y are the four roots of the equation 

X2 = - - ± v2|4
2 - ~2Á . 

2 (36) 

The values of A are such that the term under the square root in equation (36) is positive 
and that the values of X2 have opposite signs; the roots of equation (36) are, therefore, 
Xi, — Xï, +f<r, and — f<r, in which Xï and a are positive, real numbers. Their values are 
given in Table 5. 

TABLE 5 

Ejection Constants for ^=0.4 

Constant 

X  
A  
z-period. 

G (Type A) 

0.14162 
7.92936 
2.2313 

3•7646 
2.8710 

L (Type B) 

I.2308 
I.7320 
4-7742 

1-2957 
1-3953 

Constant 

— Ci = 4-C2. . 
C  

G (Type A) 

0.3568 
4-37i6 

0.089226 
0.25007 
0.020410 

L (Type B) 

1.0748 
2.2973 

05516 
0-5133 
0.2401 

The relation between the coefficients Lj and Kj, found by the introduction of equation 
(35) into the equations of motion, is 

T - x - rK JUj   j j • 
2 A?* (37) 

m = —n — hvy, 

p = kvx 

q = lvx 

in which h = 

k = 

ca — c2Xi Xi + o'2 ’ 

h 

cXi -f- c2(t c2 ’ 

l = 
C2 h 

cXi -j- C2(7 C 

(38) 

The constants Cj are also given in Table 5; c3 = —c4) is imaginary, = ci. If we now put 

KI K2 = m ; K3 + K4 = n 

Kj — K2 = p ; (A3 - K4)i = q,] 

we find, upon substitution of the boundary conditions in equation (35), 

o = m + n ] vx = \xp + erg ; 1 

o = — c2p + eg ; vy = — c^m — can . J 

The solution is 

(39) 

(40) 
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INTERPRETATION OF ß LYRAE 155 

The numerical values of h, k, and l are found in Table 5. Equation (35) now becomes 

xr = +w cosh \jt + p sinh — m cos at q sin at, 

y' = — c2m sinh \xt — c2p cosh + cm sin at + cq cos at. 

It is noted that equation (41) is homogeneous in the initial velocity components and that 
the constants of Table 5 are all positive. For small /-values equation (41) reduces to a 
simple form due to certain relations between the different constants. Series development 
gives, up to the fourth order of t, 

0Â   *2 Á   o 
%' = Vxt + Vyt2 d    VXt

3 “1 —  Vyt4 + . . . . , 

(42) 
44--3 a o 

y' = Vyt — vxt
2 7—^ Vyt3 vxt

4 +  
0 12 

Equation (42) gives fair accuracy for point L if / < 1 and for G if / < -|. Considering 
only terms up to the second order, we find that, if the ejection takes place with a definite 
initial velocity, v0 = + vl, but under all possible angles a, the trajectories are parab- 
olae, equal in shape but of different orientation. They resemble the effect created by a 
pinwheel (cf. Fig. 6). 

We return now to the case where t is not restricted. Again assuming ^0 to be constant 
but a arbitrary, we have 

vx = vQ cos a ; ^ sin a , (43) 

and by equation (41) 

— = B sin a + C cos a 
V0 

y' 
— — — D sin a — B cos a 
Vo 

(44) if 

B = Â(cosh \xt — cos at) 

C = hi — sinh \xt + - sin <r/) 
\c2 c ) 

D = h(c2 sinh Xi/ — c sin at) 

(45) 

The quantities B, C, and D depend on constants (which, in turn, depend on the libration 
point selected and on ju) and on the time. Table 6 gives their values for point L and the 
interval 1 ^ ^ 3, which, together with equation (42), covers the range needed. With 
B, C, and D known, equation (44) gives the position of the ejected particle for any a. 
The structure of equation (44) proves at once the following theorem: The locus of the 
particles ejected simultaneously with the same velocity, v0, hut in all possible directions, a, is 
an ellipse centered on the point of ejection; the scale of the ellipse at a given time is proportional 
to v0; and the orientation of the ellipse changes with time. 

The theorem is here stated in its two-dimensional form. Since the motion in the 2-co- 
ordinate and that in % and y are independent, the theorem also holds if v0 means the pro- 
jection of the velocity of ejection on the ry-plane. In either case the validity is restricted 
to the region around the point of ejection (within 0.1 from L). 

The equation of the locus is found by eliminating a from equation (44) : 

x2{B2 + D2) + y2(B2 + C2) + 2xyB{C + D) = (B2 - CD)2. (46) 
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The direction of the principal axes of this ellipse is found from 

tan 2(p = 
2B 

D — C ' (47) 

and their lengths, and a2, from 

a?,2 = 2CB2 - CD)2 { 2B2 + C2 + D2 + (C + D)V(D - C)2 + 4B2} ~I . (48) 

The value of ip lying in the fourth quadrant is found in Table 6. 
Figure 6 shows the orbits of particles ejected from L in various directions a; all multi- 

ples of 45° are shown, and the more important multiples of 150 as well. It follows from 

TABLE 6 

Constants for l if ^=0.4 

B 

i .0. 
1.2. 
1.4. 
1.6. 
1.8. 
2.0. 
2.2. 
2.4. 
2.6. 
2.8. 
3-0- 

+ 0.987 
+ i.419 
+ 1-938 
+ 2.559 
+ 3-30 
+ 4.20 
+ 5-30 
+ 6.68 
“b 8.42 
+ 10.66 
+I3-55 

+ I . IOO 
+ I.393 
+I.744 
+ 2.I79 
+ 2.73 
+ 3-45 
+ 4.38 
+ 5.60 
+ 7.20 
+ 9-22 
+ II.90 

- O.247 
+ O.079 
+ O.59O 

I.3I3 
2.27 
3.48 
5-00 
6.86 
9.14 

+ 11-95 
+ I5-43 

+ 
+ 
+ 
+ 
+ 
+ 

-27°5i' 
-32 35 
-36 43 
—40 12 
-42 59 
-45 08 
— 46 40 
-47 41 
-48 17 
-48 39 
-48 43 

equation (44) that if v0 is chosen as unit, one such diagram is sufficient; the validity of 
Figure 6 is limited only by the condition V#2 + y2 <<C 0.1. Hence, if = 0.01 (or 4.6 
km/sec for ß Lyrae) the whole of Figure 6 will be valid; but if = 0.1, only the vicinity 
of the origin will be valid. 

Some orbits will be physically impossible, either partly or wholly, because of inter- 
ference by the body of the star. The boundary of the star near the point of ejection is 
found from equation (5) ; putting x'= L + xf, y = y', we find for the :ry-plane up to the 
second order in x' and y' : 

0 0 « 2+ H- 1 /2 A 1 /2 r \ — Í2 = —H ^x 2 ^— y'2 . (49) 

This is valid for either Lor G (cf. Fig. 3). If we now put Q, = we find for the bound- 
ary of the star two straight lines through L (or G) : 

2Á + I 

+ - I 
x' = + 2.469X' 

= ±i.559x' 

for L 

for G . 
(So) 

A higher approximation than equation (50) can be made only if the unit v0 is specified 
numerically. 
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It is of interest to derive from equation (49) the equipotential curve equivalent to the 
“curve of zero velocity'7 specified by v0. From equations (29) and (5) we find the Jaco- 
bian constant C by 

+ C = — . 

Hence, for any point 

iv2 — — ^ — C = —Í2-1-Q£-1- • 

The curve of zero velocity in the ^y-plane is therefore, by equation (49), 

2^4 + 1 a, ^4 ~ i , 1 -, / \ 
 ^ * 2 ^— y 2 + ibo = O . (51) 

This is a hyperbola of fixed dimensions if x'/v0 and y'/v0 are used as co-ordinates, as in the 
case in Figure 6; the asymptotes are given by equation (50). Again, in a higher approxi- 
mation the curve of zero velocity would depend on z>0. 

The full-drawn orbits in Figure 6 are physically possible; they he outside the star. 
Particles ejected in directions a = — 450 and — 90o are seen to fall back into the star. 
Physically impossible orbits are indicated by broken lines. The heavy dots on the possi- 
ble orbits are spaced by 0.2 in t; they show how the velocity varies along the path (in the 
rotating frame). Furthermore, the surface density of these dots (except near the origin 
where obviously some dots have been omitted) is proportional to the density of matter in 
the ry-plane. 

The ellipses (eq. [46]) are also shown; the parts of physical interest are full-drawn, the 
other parts broken. It is interesting to note how these ellipses avoid crossing the curve 
of zero velocity. 

Figure 6 suggests that the orbits emanating from the origin tend to become straight 
lines, either in the second or in the fourth quadrant.47 From equation (41) it follows that 
for large values of t 

x' = + p) • eXii ; and yr = —%c2(m + p) • ex^ , (52) 

so that the motion tends toward the straight line 

/ = -ca’. (53) 

Whether the asymptote is in the second quadrant or in the fourth appears to depend on 
the sign of (m + p) or of the constant of (35). The limiting case, (m + p) = Kj = o, 
has curious properties. From equation (41) we then find, for any value of /, 

x' — me Xi* = Vm2 + q2 sin (at — \p) 

y' — mc2e~^t = c^m2 + q2 cos (at — p) 

The right-hand side shows motion in an ellipse with eccentricity e2 = (c2 — i)/c2, having 
the major axis parallel to the y'-axis. These ellipses correspond to the well-known class of 

47 Cf. also S. S. Hough, in G. H. Darwin, Scientific Papers, 4, 118 ff., 1911 

if 

m 

Vm2 + 

Vw2 + 

= sin \p 

= cos \p 
■ (54) 
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158 GERARD P. KUIPER 

(unstable) periodic orbits around the libration points L2, and Z3.
48 The curious fact 

is that the particle describes this orbit around a displaced center, given by the left-hand 
member of equation (54); the center of the orbit approaches the libration point 
asymptotically. The motion being around L or G, this limiting case, (m + ÿ) = o, is of 
no importance to the problem of ejection. 

— 10 i 2 3 4 S+6 

For point L and p = 0.4 the values of a corresponding to this limiting case are —42?94 
and +i37?o6. The latter value is of no practical importance, since it is inside the star. 
This shows that only material ejected between 

— 42?94 < a < +ii2?os (55) 

48 Moulton, op. cit., p. 304. 
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INTERPRETATION OF ß LYRAE 159 

will leave the star permanently; the upper limit corresponds to the slope of the boundary 
of the star according to equation (50). 

The previous discussion applies to ejection from point G as well as from point L if for 
each case the appropriate constants from Table 5 are used. It will therefore be sufficient 
to reproduce the result of the computations in Figure 7. The dots are here only 0.1 apart 
in t, against 0.2 in Figure 6. It is noted that the higher-order terms of equation (42) be- 
gin to become important much sooner than in Figure 6, so that the pinwheel effect has 
almost disappeared. Figure 7 may be taken to show orbits emanating from the more mas- 
sive star toward the less massive star, or vice versa, the diagram being point-symmetrical 
in the first-order theory. 

Fig 7.—Ejection of type A in first-order theory; m=0-4 

The geometry of Figure 7 is such that all particles ejected in a whole hemisphere will 
leave the star permanently; the line of demarcation in the xy-plane, given as before by 
(w + ÿ) = o, is io9?Ó4 ± 180? 

Figures 6 and 7 show that for a given velocity of ejection, but for any value of a, the 
orbits of physical interest are quite similar for ¿ >>> 1. But even the velocities at any 
point (x', yf) of the common asymptotic orbit are the same, independently of v0) for from 
equation (52) we find 

Í - >■*' ; Ï = v ■ «s« 

in which \i depends on the libration point and the mass ratio but not on v0. In the frame 
of the first-order theory, therefore, the motion of the ejected material is independent of the 
velocity and the angle of ejection except near the point of ejection itself. 

In the exact theory this invariance will be preserved if v0 is very small, for then the 
motion of the ejected particle has already approached the asymptotic properties at the 
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time it leaves the region where the first-order theory applies. Figure 6 shows that this 
requires v0 <$C o.oi. 

This completes the discussion of the motion of the ejected material for the vicinity of 
the ejection points. Its application is the wider, the smaller the velocity of ejection is in 
terms of the relative orbital motion of the two stars. In the next two sections we trace 
the further course of the ejected matter by means of numerical integrations. 

6. EJECTION OF TYPE AI ORBITS 

The equations of motion are given by equation (28) ; we use, as before, fj, = 0.4. If 
2^0, the acceleration z will be of opposite sign to z; hence, excluding the improbable 
case of large initial z, the values of 2 will always be small. The extension in the 2-direction 
will probably be largely due to a pressure gradient in the accumulated gaseous body and 
is therefore not determined by equation (28). For these reasons we shall consider the 
plane problem based on equation (28). 

The numerical integrations in this section and the next were carried out by using Tay- 
lor’s formula up to the third derivative. If the time interval be ô, we have for x (and 
similarly for y) 

x(t + ô) = x(t) + ô • x(t) + — x(t) + — A , 

x(t + ô) = x(t) + b • x{t) + ^ A , 
(57) 

in which the third derivative is replaced by A/ô, and A = #(/ + ô) — %(f). At the bound- 
ary x(t) and x{t) are given, and x\t) is found from equation (28). The difference A has to 
be found from extrapolation once the integration is under way; if the value found in this 
way afterward appears to be too much in error, a new set of values for æ, y, ÿ, ?t, and r2 

has to be computed. 
As each orbit requires several thousand numerical operations and as errors are cumu- 

lative, much work was carried out in duplicate, and numerous checks were made. All 
computations were made by the writer. A very useful check is found in Jacobi’s constant 
(C of eq. [29]), the computation of which requires little additional work. Its deviations 
from constancy will not only reveal appreciable errors but will also show whether the 
series (57) is adequate. 

Two orbits starting from the first libration point were computed, assuming = 0.1 
and 0.5, respectively, the direction being along the positive x-axis in both cases. The 
results are found in Tables 7 and 8 and are shown in Figure 8. The interval b was first 
taken as 0.1 ; but at ¿ = 0.7 in Table 7 and at 0.3 in Table 8 the approximation (57) be- 
comes too poor, as shown by the decrease in C, and smaller steps had to be taken. From 
then on, 0.01 was used, although not all steps are reproduced in the tables. The accuracy 
used in computing the increments, here as in the next section, was the nearest 0.00005 in 
x and y, 0.0001 in x and ÿ, and 0.001 or 0.01 in x and ÿ; but cumulative errors a few times 
larger than these values may be present apart from an error discussed below. 

Near t = 0.90 (Table 7) and 0.49 (Table 8) a serious rise in C is noted which later 
practically disappears. This is due to the large arcs (up to 48o) covered in one step dur- 
ing the approach to B. The omission of the fourth derivative in equation (57) causes an 
error in the increment of x which is 0/4 times that in x; this ratio is 1/400 if Ô = 0.01. 
This shows that the change in C is almost entirely due to errors in the velocities. The 
co-ordinates would be affected appreciably only after several additional steps, whereas 
actually for only a few steps v is in error. Tables 7 and 8 show, in connection with the 
values of ^2, also given, that the maximum errors in v are 4.3 and 2.0 per cent, respec- 
tively. 
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INTERPRETATION OF ß LYRAE 

TABLE 7 

0.00. 
. IO . 
.20. 
■30- 
• 40. 
•50. 
.60. 
•70. 
• 72. 
• 74- 
.76. 
.78. 
.80. 
.82. 
.84. 
.85. 
.86. 
.87. 
.88. 
.89. 
.90. 
.91. 
.92. 
•93- 

0.94. 

1416 
1518 
1633 
1778 
1973 
2250 
2657 
3286 
3452 
3635 
3839 
4068 
4327 
4623 
4968 
5164 
5379 
5616 
5874 
6142 
6368 
6455 
6391 
6252 
6089 

o.0000 
— .0010 
— .0041 
- .0095 
- .0175 
— .0287 
- .0441 
- .0639 
- .0683 
— .0728 
- -0773 
— .0814 
- .0854 
— .0882 
— .0890 
— .0880 
- .0854 
— .0801 
— .0706 
- -0536 
- .0257 
+ .0111 
+ .0454 
+ .0725 
+0.0935 

+0.100 
+0.106 
+0.127 
+0.166 
+0.230 
+0.332 
+0.497 
+0.790 
+0.871 
+0.966 
+ 1.079 
+ 1.214 
+ 1.381 
+ 1-594 
+ 1-874 
+ 2.049 
+ 2.2S2 
+2.477 
+2-674 
+ 2.61I 
+I.684 
+O.O45 
-I.I44 
-I.564 
-I.654 

0.000 
— 0.020 
— O.O42 
— O.066 
-O.O95 
-O.I3I 
— O.I76 
—o.219 
-0.225 
—0.227 
-0.223 
—0.208 
-0.174 
—0.104 
+0.042 
+0.172 
+0.372 
+0.698 
+ 1.258 
+ 2.216 
+ 3-376 
+ 3-7l6 
+ 3-087 
+ 2.37O 
•+I.856 

O.OO5 
O.O06 
O.OO9 
O.O16 
O.O3I 
O.064 
O.I39 
O.336 
O.405 
O.493 
O.607 
O.759 
O.969 
1.275 
1-756 
2.114 
2.605 
3- 3II 
4.366 
5.864 
7.116 
6.906 
5-418 
4- 031 
3.090 

i .986 
i .986 

98s 
98s 
985 
98s 
982 
975 

1.974 
1-974 
1-975 
1-975 
1.974 
1.974 
1.972 
i-973 
i;97i 
i.971 
1.994 
2.124 
2.594 
2.441 
2.042 
i .966 
1-952 

TABLE 8 

%v2 

0.00, 
10, 
20. 
SO. 
32. 
34 
36. 
38 
40 
42 
44 
45 
46 
47 
48 
49 
50 
51 
52. 
53 
54. 

o.1416 
1929 
2515 
3290 
3484 
3697 
3931 
4193 
4490 
4833 
5236 
5466 
5718 
5988 
6256 
6473 
6586 
6598 
6547 
6464 
6366 

o. 0000 
— .0051 
— .0205 
— .0465 
— .0528 
— .0594 
— .0663 
— .0730 
— .0793 
— .0842 
— .0858 
— .0840 
— .0792 
— .0694 
— .0520 
— .0256 
+ .0066 
+ .0381 
+ .0660 
+ .0899 
+0.1105 

+0.500 
+0.535 
+0.655 
+0.930 
+1.013 
+1.114 
+1.237 
+1.391 
+1.588 
+1.849 
+ 2.200 
+ 2.4II 
+ 2.623 
+ 2-745 
+ 2.524 
+ I.7OI 
+O.583 
-O.259 
—o.710 
-O.925 
— I .018 

0.000 
—O.102 
—o.208 
-O.309 
— O.326 
-O.338 
-O.342 
-O.33O 
— O.288 
— O.184 
+O.062 
+O.3OI 
+O.69O 
+ 1.312 
+ 2.206 
+3 028 
+3.272 
+2.992 
+2.579 
+ 2.212 
+ I.919 

O.I25 
O.I48 
O.236 
O.480 
O.567 
O.678 
O.824 
I .022 
I.303 
I . 726 
2.42I 
2.952 
3.678 
4.627 
5.619 
6.O3I 
5.523 
4.508 
3-577 
2.875 
2-359 

i .866 
1 - 865 
i. 862 
1851 
1.850 
1.851 
1.850 
1.850 
1.850 
1.850 
1.850 
1.852 
i .860 
i .912 
2.059 
2.192 
2.041 
i .911 
1-875 
i .864 
i .862 

161 
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162 GERARD P. KUIPER 

The velocities in the rotating frame, x and ÿ, are added in Tables 7 and 8 because of 
their astrophysical importance. If X and F are the velocities in a stationary frame hav- 
ing, at the moment considered, the same orientation as the rotating frame, we find X and 
F from 

X = x - y ; Y = y + x . (58) 

These values determine the Doppler shifts of absorption and emission lines. (The unit of 
velocity is the relative velocity of A and B.) 

As anticipated by the discussion of Figure 7, the orbits in Figure 8 are quite similar, 
and no further integrations seem necessary. The motion around B is direct, as was as- 
sumed in section 4 in the derivation of the radius of the ultimate mean orbit of the ejected 
gas. 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 

Fig. 8.—Orbits for ejection of type A; 11=0.4. Dots not equally spaced in time; they correspond to 
Tables 7 and 8. 

The integrations may be easily extended to include radiation pressure by a hot com- 
ponent, B. We multiply in equation (28) the mass /i by (1 — a) but leave (1 — y) un- 
changed. The Coriohs force (2ÿ or — 2x) remains the same, of course, and also the terms 
x and y, because the period of the binary is not affected by the radiation pressure. Be- 
cause of varying optical thickness (1 — a) will vary with position. 

7. EJECTION OE TYPE B: ORBITS 

We shall first investigate the fate of a stream of gas assumed to be parallel at some 
initial point near a of Figure 4, a, passing over the surface of B without friction. Struve 
found such a stream in ß Lyrae having a velocity of about 300 km/sec. We shall adopt 
v0 = 0.55, which corresponds to 250 km/sec for ß Lyrae, if Ma/Mb = i-5- This some- 
what smaller value was chosen to compensate in part for neglected viscous forces. 

For the initial ^-co-ordinate we adopt a; = 0.40; and for the velocity components of 
the parallel stream x = +0.44, and y = —0.33 (v0 = 0.55), which means that for y = 
— 0.30 the stream is directed away from the center of gravity {F of Fig. 3). We have 
made integrations for three initial values of y : —0.30, —0.34, and —0.38. The orbits are 
found in Tables 9-11 and are illustrated in Figure 9: for brevity 15 lines were omitted in 
Table 11. 

As in Tables 7 and 8, the Jacobian constant is added as a check of the numerical work 
and of the approximation (57). In one instance an experiment was made by integrating 
with larger steps (0.5) as well as with those used in the tables (0.1). In this case it was 
found that 0.12 of the error in C was due to errors in the co-ordinates, and 0.88 to the 
velocities, confirming the general remarks made on page 160. 

Figure 9 shows that the interior part of the stream will tend to swing around the sec- 
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INTERPRETATION OF ß LYRAE 163 

ondary, whereas the outer part will fly off into space. These results were anticipated on 
page 149. The inner orbits, as computed, intersect with the star; but in reality the matter 
will, of course, more or less follow the stellar surface, the pressure gradient near that 
surface having been neglected in the integrations. 

Figure 9 also shows the surface of zero velocity corresponding to the middle orbit 
(C = 1.690), taken from section 3. It shows that for the high velocity adopted here the 
outlet of B is, indeed, wide open. It would clarify the picture if additional integrations 
were made for — y = 0.35, 0.36, 0.37, 0.39, and 0.40. These would also show the width 
of the tail to be expected. 

TABLE 9 

0.0. 
. i 
. 2 
•3 
• 4. 
•5. 

0.6, 

+0.4000 
+ -4475 
+ .5o27 
4- .5666 
+ .6386 
+ .7134 
+0.7720 

■0.3000 
■ .3246 
■ .3317 
• .3193 
■ .2827 
■ .2132 
-0.1013 

+0.440 
+ .512 
+ -594 
+ +83 
+ -752 
+ -719 
+0.379 

-0.330 
—0.160 
+0.021 
+0.234 
+0.513 
+0.898 
+1.337 

0.151 
.144 
.177 
. 260 
.414 
.662 

0.966 

1-785 
1.785 
1-785 
i. 786 
1.789 
1.800 
1.850 

TABLE 10 

0.0. 
o. i. 
0.2. 
O.3. 
O.4. 
o. 5 ■ 
0.6. 
0.7. 
0.8. 
0. 9. 
i .0. 
1. i. 
1.2. 
1 3 - 

+0.4000 
+ -4457 
+ .4952 
+ .5492 
+ .6082 
+ .6717 
+ -7375 
+ .8005 
+ .8530 
+ .8871 
+ .9006 
+ .8980 
+ .8864 
+0.8707 

—0.3400 
- .3665 
- .3800 
- .3801 
- .3662 
- .3365 
- .2888 
- .2212 
- .1346 
- .0358 
+ .0642 
+ .1560 
+ .2348 
+0.3001 

+0.440 
+ -475 
+ .516 
+ .565 
+ .614 
+ .652 
+ .655 
+ -592 
+ .442 
+ .236 
+ -044 
— .082 
- .149 
—0.160 

—0.330 
—0.200 
—0.069 
+0.067 
+0.215 
+0.383 
+0.575 
+0.777 
+0.942 
+ 1.012 
+0.971 
+0.857 
+0.720 
+0.587 

0.151 
.132 
.136 
. 162 
. 212 
. 286 
.380 
•477 
.542 
.540 
.472 
•370 
. 270 

0.185 

i .691 
1.691 
i .691 
1.691 
1.691 
1.693 
1.695 
1.699 
1.703 
1.703 
i .698 
1.693 
i .689 
i .689 

The fact that we have neglected viscous forces may, however, have led to a velocity 
of ejection at the libration point L2 which is too high. This velocity is about 0.53, or 
some 245 km/sec for ß Lyrae. Obviously, a test is provided by the measured velocity of 
the B5 absorption spectrum, which is roughly — 70 km/sec, or — 50 km/sec with respect 
to the center of gravity. This value gives the radial component along the line passing 
through +, measured in a fixed frame of reference. Accordingly, we have to continue the 
integration of Table 11 indefinitely. Fortunately, if we surpass a point about three times 
the distance AB from the center of gravity, we may approximate the problem by a two- 
body problem, having unit mass in the origin and an infinitesimal mass moving outward, 
with initial co-ordinates and velocity components given by Table 11, last line. From 
equation (58) we find X and Y; the energy integral 

= = i (59) 
r a 
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164 GERARD P. KUIPER 

will then show whether the subsequent motion will be in an ellipse (a > o) or a hyper- 
bola (a < o). 

From the last line of Table 11 we find ~i/a = 0.3140, showing that the matter will 
move out in a hyperbola with a = 3.184. Furthermore, equation (59) shows that for 
large r the asymptotic velocity is 0.5604, or about 260 km/sec for ß Lyrae. The velocity 
nearer to the system will, by equation (59), be even larger, although without computa- 
tion it is not certain that this also applies to the component measured in the radial 
velocity. We shall show below that this is the case and that a smaller velocity of ejection 
at L2 is required. This makes it very probable that viscous forces are slowing down ap- 
preciably the current around B. 

TABLE 11 

0.0. 
0.2. 
0.4. 
0.6. 
0.8. 
i .0. 
1.2. 
1.4. 
1.6. 
1.8. 
2.0. 
2.2. 
2.4. 
2.6. 
2.8. 
30. 
3-I- 
3 •2 ■ 
3-3. 
3 -4' 
3 • 5 • 
3-6. 
3-7. 
3-8. 
3- 9' 
4.0. 
4- 1 • 

+0.4000 
+0.4899 
+0.5864 
+0.6924 
+0.8055 
+0.9174 
+ 1.0213 
+ 1.1200 
+ 1.2218 
+ 1-3319 
+ 1.4498 
+ 1-5703 
+ 1.6847 
+ 1.7816 
+i.8484 
+ 1.8717 
+ 1.8630 
+ 1.8386 
+ 1.7972 
+ 1-7375 
+ 1.6584 
+ 1-5590 
+ 1.4387 
+ 1.2970 
+1-1340 
+0.9496 
+0.7443 

■0.3800 
■0.4267 
■0.4369 
■0.4128 
•0.3568 
■0.2760 
■0.1880 
0.1145 

■0.0715 
■0.0683 
■o.1104 
-o.2017 
•0.3445 
0.5393 
0.7839 

■1-0731 
-i.23:19 
■1.3984 
-i.5710 
■1.7479 
■i.9271 
■ 2.1065 
■ 2.2838 
■2-4565 
■ 2.6222 
-2.7783 
■2.922I 

+O.44O 
+O.463 
+O.506 
+O.553 
+O.57I 
+O.542 

+0.5OO 
+0.495 
+O.528 
+O.573 
+O.602 
+O.596 
+0-538 
+O.42O 
+O.236 
— O.OI4 
— O.163 
— O.327 
-o-. 504 
— O.692 
— O.89I 
-I.O97 
-I.309 
-I.524 
-1-738 
-I.949 
-2.I55 

— O.33O 
— O.I4O 
+O.O36 
+O.203 
+O.352 
+O.44O 
+O.42O 
+O.3OI 
+0.121 
-O.O93 
-O.33O 
-O.584 
-O.845 
— I . IOI 
-I.34O 
-1-545 
— i .629 
— i.698 
—1•751 

-1.784 
-1.797 
-1.788 
-1-754 
— i.696 
— 1.613 
-1-503 
-1.368 

0.151 
o. 117 
0.128 
0.173 
0.225 
0.244 
0.214 
0.168 
0.146 
0.168 
0.236 
0.348 
0.502 
0.695 
0.926 
1 193 
1-340 
1-495 
1.659 
1.831 
2 .012 
2.200 
2.396 
2.600 
2.811 
3-030 
3-256 

i .610 
i .610 
i .610 
i .611 
i .612 
i .612 
i .611 
i .611 
i .611 
i .611 
i .612 
i .612 
i .612 
1.613 
1.613 
1.613 
i .614 
i .614 
i .614 
1.615 
1.615 
1.615 
i .616 
i .616 
i .617 
i .617 
i .617 

Instead of computing the elements of the hyperbola from the focus at the origin and 
from x, y, ÿ, and then computing an ephemeris, it was found simpler to continue the 
numerical integrations in a nonrotating frame by means of the equations 

(60) 

the accelerations being small; the interval used in equation (57) was now 0.5. The re- 
sults are shown in Figure 10 for a nonrotating frame and in Figure 11 for a rotating 
frame; Figure 11 extends Figure 9. The velocity vectors computed for a stationary 
frame are also shown. The projections along radii drawn from A appear to be only slight- 
ly less than the space velocities themselves, or about 300-400 km/sec for ß Lyrae, a value 
much higher than that observed. 
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INTERPRETATION OF ß LYRAE 165 

From the Jacobian constant computed for the last point, t = 9.6, we find that the two- 
body approximation has introduced an error in the velocity (or co-ordinates) well under 
i per cent. 

We now turn to smaller velocities of ejection. In order to avoid difficulties arising from 
viscosity, we start the following integrations at L2 (or Z, in Fig. 3). The following discus- 
sion therefore extends the theory given in section 5 to large distances from the libration 
point. 

Two velocities were adopted: = 0.1 and 0.01. Together with the orbit of Table 11 
(vQ = 0.53) they should suffice to determine the order of magnitude of responsible for 
the measured radial velocity of the B5 spectrum of ß Lyrae. 

The results are given in Tables 12 and 13 and are shown in Figure 12. For 
brevity, Table 12 shows for 0.0 < ¿ < 3.2 only half the steps used in the integrations, 

.4 .6 .8 i.o 1.2 1.4 

Fig. 9.—Orbits for ejection of type B; ^ = 0.4. Viscous forces neglected, and also presence of B7s 
boundary. 

and Table 13 shows only one-quarter. Since the amount of work done was already con- 
siderable, the integrations were not continued beyond the point where the radial-velocity 
test mentioned above could be applied. 

The energy integral (eq. [59]) is valid only in the two-body problem; but we may test 
empirically the error made if we use equation (59) too close to the binary system. From 
the integration for = 0.1 we find the data of Table 14. In all three cases a positive 
value of i/a is found, but the value has not yet reached its final value at r < 3. The 
asymptotic value for large r is probably still slightly above zero. The motion at r ^>> 3 is 
therefore in a very long ellipse (a 100) and, for practical purposes, in a parabola. 

From the orbit with 7^0 = 0.01 we find, at / = 5.5, that r = 2.24 and i/a= —0.1275. 
In view of the run of i/a in Table 14 and the similarity between the two orbits, we may 
expect the true value of i/a to be even somewhat smaller. Hence, the motion is in a 
hyperbola with a < 7.8; and vœ > 0.357, or > 164 km/sec for ß Lyrae. 

We have found the curious result that for v0 small (^0.01, or 5 km/sec for ß Lyrae), 
as well as large (^0.5, or 250 km/sec for ß Lyrae), the ejected matter will recede from the 
binary with a large hyperbolic velocity, but that at an intermediate velocity of ejection 
(^0.1 or 50 km/sec for ß Lyrae) the matter moves out in a roughly parabolic or even 
elliptic orbit. This shows that the observed velocity of recession, about 50 km/sec, is 
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within the range covered by our mechanism. It would be of interest to have additional 
integrations for v0 = 0.05 and 0.2 and also to investigate the effect of the angle a of ejec- 
tion. 

— 10 12 3 456+7 

Fig. 10.—Ejection of type B; orbit in stationary frame. Position of binary given for moment of 
ejection. (Turned 90o with respect to other figures.) 

— 6—5—4—3-2-10 i 2 3 4 5 6 7+8 

Fig. ii.—Extension of Fig. 9 for ejection orbit. Same orbit as in Fig. 10 but now in rotating frame. 
Dots are for t = o.i, . . . . , 9.6, spaced by 0.5 (cf. Table 11). Velocity vectors, measured in a stationary 
frame, are indicated by short lines. 

Radiation pressure may be introduced in the integration, as indicated earlier, but the 
complications due to eclipses and varying optical thickness will be serious. In view of the 
large velocities considered here, the effects of collisions on the # and y co-ordinates will 
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INTERPRETATION OF ß LYRAE 

TABLE 12 

167 

0.0 
o. 
o, 
o. 
0. 
1. 
I. 
1 -4 ■ 
1.6. 
1.8. 
2.0. 
2.2. 
2.4. 
2.6. 
2.8. 
3-0. 
3- 2. 
3 • 3 ■ 
3 -4' 
3 • 5 ■ 
3.6. 
3 • 7 • 
3.8. 
3.9. 
4.0. 
4.1. 
4.2. 
4- 3. 
4.4. 
4- 5 • 
4.6. 
4-7. 
4.8. 
4.9. 

+ 1.2320 
+ 1.2521 
+ 1.2726 
+ 1.2937 
+ 1.3154 
+ 1-3379 
+ 1.3610 
+ 1.3848 
+i.4088 
+ 1.4324 
+ 1.4542 
+ 1.4721 
+ 1.4830 
+ 1.4827 
+ 1.4660 
+ 1.4268 
+ 1.3585 
+i-3II3 
+ 1.2544 
+ 1.1870 
+1.1085 
+ 1.0182 
+0.9158 
+0.8008 
+0.6732 
+0.5327 
+0.3796 
+0.2143 
+0.0372 
—0.1510 
-0.3492 
—0.5566 
—0.7716 
— 0.9928 

o.0000 
■0.0040 
■0.0160 
•0.0361 
■0.0643 
■o.1008 
■0.1462 
■o.2011 
■O.2669 
0.3450 

■0.4374 
0.5459 

■O.6724 
■O.8183 
•O.9842 
I.1689 

■I.37OO 
1-4753 

■I.5829 
I.6918 
I.80IO 

•I.9096 
■2.OI60 
■2 . II90 
■2.2172 
• 2.309O 
■2.3929 
■2.4668 
■2.53OI 
•2.5806 
■2.6169 
■2.6374 
• 2.6407 
•2.6255 

+0.100 
+ 0. IOI 
+0.104 
+0.107 
+0. no 
+0.114 
+0.117 
+0.120 
+0.120 
+ O.II5 
+0.102 
+O.O76 
+O.O3I 
-O.O37 
-O.I34 
— O.263 
— O.426 
-O.519 
— O.620 
— O.729 
-O.843 
-O.963 
— I.087 
-I.213 
— 1.34I 
— I.468 
-1-593 
-1.713 
— i .828 
-1-934 
— 2.030 
— 2.114 
— 2.184 
-2.238 

0.000 
—0.040 
—0.080 
—0.121 
—0.162 
—0.204 
-0.250 
—0.301 
-0-358 
—0.424 
—0.500 
-0.586 
—0.680 
-0.779 
—0.878 
—0.967 
— i.040 
— 1.066 
— i .084 
-1.093 
— 1.091 
-1.077 
— 1.050 
— i. 008 
-0.953 
—0.881 
-0.794 
—0.691 
-0.572 
-0-437 
—o.286 
—o.121 
+0.057 
+0.248 

0.005 
0.006 
0.009 
0.013 
0.019 
0.027 
0.038 
0.052 
0.071 
0.097 
0.130 
0.175 
0.232 
0.304 
0.394 
0.502 
0.631 
0.703 
0.780 
0.862 
0. 950 
1- 043 
1. 141 
1.244 
1.352 

466 
584 
706 
834 
965 
IOI 
242 
386 

2- 535 

1-754 
1-754 
1-754 
1-754 
1-754 
1-754 
1-754 
1-755 
1-755 
1-755 
1-755 
1-754 
1-754 
1-754 
1-754 
1-754 
1-755 
1-755 

■1-755 
1-755 
1-755 
1-756 
1-756 
1-756 
1-756 
1-756 
1-756 
1-756 
1-756 
1-756 
1-757 
1-757 
1-757 
1-757 

TABLE 13 

i®3 

i-4< 
1.8, 
2.2, 
2.6, 
3-0, 
3 -4' 
3-8. 
4.2, 
4.6. 
5-0, 
5-4. 

+ 1.2494 
+ 1.2588 
+ 1.2738 
+1.2975 
+ 1.3331 
+ 1.3833 
+1.4467 
+1.5127 
+1-5548 
+ 1.5276 
+ 1.3682 

■0.0194 
■0.0326 
■0.0523 
•0.0831 
■0.1327 
•0.2129 
■0.3408 
•0.5381 
•0.8265 
■i. 2172 
■i.6971 

—0.019 
+ .031 
+ .050 
+ -077 
+ .in 
+ • 148 
+ .170 
+ -143 
+ .020 
— . 248 
—0.683 

■0.028 
■0.042 
•0.064 
■0.102 
•0.166 
•0.267 
•0.419 
■0.628 
■0.881 
■I .128 
■I.290 

0.001 
0.001 
0.003 
0.008 
0.020 
0.047 
0.102 
0.208 
0.388 
0.667 
1.066 

i. 760 
i. 760 
i. 760 
1-759 
1-759 
i. 760 
i. 760 
i. 761 
i. 761 
1-765 
1.769 

* The interval 0.0<£<1.4 is obtained from the first-order theory in section 5. 
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i68 GERARD P. KUIPER 

probably be negligible except near the point of ejection itself. The effect on the 2-co-ordi- 
nate will be to increase the vertical thickness of the tail over the dimensions determined 
by the 2-velocities at the point of ejection. 

8. APPLICATIONS 

Applications to the problem of ß Lyrae itself have been made throughout the paper. 
We may add that the asymmetrical light-curve (Fig. i) can now be attributed to obscura- 
tion by the tail. 

In section 5 we found the period for the motion in the 2-co-ordinate to be 4.77, based on 
the first-order theory. If at the moment of ejection the amplitude is zero, the maxi- 

mum amplitude will therefore be reached 
— i + 1 +2 at / = i. 19 ; this is on the very edge where 

the first-order theory may be applied (cf. 
Table 12). This maximum semiamplitude 
according to equation (34) is z^/Vi.73. 
If vz is of the order of the atomic velocities 
(about 0.01, compared to v0 = 0.1), we 
find for the total extension in 2 only 0.015. 
This is small, compared to the dimension 
of the “outlet” of B as determined by the 
surface of zero velocity; for^0 = 0.1 this 
dimension is about 0.2. We may therefore 
assume that the extension in 2 of the tail 
in the neighborhood of the binary is 
largely determined by the width of the 
outlet of B. This width is easily found 
from Jacobi’s integral for any value 
of v0. 

The tail, therefore, does not cover the 
whole of ^4’s disk when it emerges from 
eclipse after primary minimum but cuts 
out an equatorial strip roughly one- 
fifth of the diameter of the star. The rest 
of the disk is covered with the much 
more diluted gas of successive windings 
of the spiral which have acquired greater 
extension in 2, owing to random initial 
velocities and to collisions. 

The density measured per unit length along the tail (line density) falls off rapidly, as is 
seen from Tables n-13 and from Figures 6, 11, and 12. The line density is obviously 
oc i/?;, in which v is measured in the rotating frame. The space density falls off even more 
rapidly because of the increasing width of the tail in both co-ordinates perpendicular to 
its direction. 

The gas streaming off from B must be comparatively cool, because {a) B is cool; (b) 
the region of ejection is the coolest part of B, gravity there being almost zero; (c) this 
region is eclipsed from radiation by A. 

Some time after this cool gas has left B, it becomes exposed to radiation from A. If 
v0 = 0.1, this happens between ¿ = 2.0 and 2.5, or for ß Lyrae between 4 and 5 days 
after ejection. It would be of interest to determine theoretically the time required for 
this gas to become mostly ionized by A. Without computation it may be said that the 
absorption lines of H and He 1 will be strong at first, if the B8 star is viewed through this 
cloud. This will account in part for the excessive strength of these lines shortly after 

Fig. 12.—Ejection orbits of type B for vQ=o.i 
and 0.01. Velocity vectors in stationary frame are 
indicated for v0 = o.i. Dots spaced 0.2 in t: cf. 
Tables 12 and 13. 
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INTERPRETATION OF ß LYRAE 169 

primary minimum, although other factors, mentioned below, enhance the effect. The 
spectral type, roughly B2-B5, must be a combined effect of the low density of matter and 
the somewhat diluted radiation by the B8 supergiant. 

Proceeding along the first winding of the tail, we find (1) diminishing density—at first 
rapid, later more slowly; (2) increased extension in the z-direction; and (3) for the first 
1800 of the tail increasing ionization. Factors (1) and (3) will tend to diminish the 
strength of the absorption spectrum and (2) to increase it until the z-extension has 
reached the diameter of A. The observations show a pronounced decrease until after 
secondary minimum; then a slow increase takes place toward the next primary minimum. 
It seems possible that factor (3) reverses itself some time after secondary minimum, ow- 
ing to the increasing distance from A and the fact that the side of A then visible may in 
part be covered by a cool returning current coming from B (cf. sec. 3). 

At the completion of the first winding, the gas enters eclipse (cf. Fig. 11). The dura- 
tion of this eclipse is of the order of a day, depending on v The eclipse may well be 

TABLE 14 

total for the nearer windings. The effect will be a drop in the ionization; how much, only 
computation can show. This will result in a fresh absorption by the time the gas comes 
out of eclipse. At this time the z-extension is probably sufficient to cover most of A ’s 
disk; it is probable, therefore, that the effect of the second winding is even more impor- 
tant than the first one in producing a strong absorption after primary eclipse. Even the 
third and higher windings may have some effect, since the eclipse would affect them also. 

There is an observational reason, as well, which suggests that the second and higher 
windings contribute considerably to the observed blend in absorption. The recessional 
velocity in the first quarter of the first winding is large, of the order of 0.6, or some 275 
km/sec for ß Lyrae. This value is much in excess of the observed 50 km/sec. It is true 
that we made integrations for only three values of v0 (0.01, 0.1, and 0.53) and that a more 
favorable orbit could probably be found. But on dynamical grounds it seems certain that 
the recession of the first winding could not be brought below 200 km/sec (being about half 
the orbital velocity in the system AB). For the second and third windings the recessional 
velocity is much reduced, although perhaps not quite enough. If the ejection takes place 
in a highly elliptical orbit (a 10), the velocity v is not much larger than the recessional 
velocity, as observed from A (cf. Fig. 9, drawn for hyperbolic motion). The latter 
being 50 km/sec, v could not exceed 100 km/sec at the distance r where the “mean” 
absorption takes place. The energy integral (59) gives, for v = 0.2 (92 km/sec) and for 
different a values, the following distances,49 r: 

10. 
20. 
50. 

14 
22 
33 

100, 40 
So 

49 A more precise value of r giving dr/dt = 50 km/sec can be only found after the eccentricity or the 
parameter of the ellipse is specified. Our procedure underestimates r for large a. 
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170 GERARD P. KTOPER 

This shows that the ejection has to be in a decidedly elliptical orbit in order that the 
mean distance shall not be excessive. Nevertheless it seems difficult to make the mean 
distance less than 10. This result is essentially due to the fact that ß Lyrae is such a mas- 
sive system and that orbital motion in its vicinity must be fast. 

We conclude that the first winding is not of primary importance in producing the ab- 
sorption spectrum, because the 2-dimension of the tail is still insufficient to cover ^4’s 

Fig. 13.—The system of ß Lyrae in a frame rotating with the binary. Heavy dots indicate the central 
line of the spiral; light dots indicate schematically the width of the successive windings. 

disk; that the next one or two windings are most effective in the absorption process; and 
that the still higher windings become of increasingly smaller importance. Further, the 
eclipse of the tail must play a major role in producing the fluctuations with phase of the 
line intensity. The picture developed is shown schematically in Figure 13. Since the 
ejection could not be perfectly regular, minor fluctuations in the line intensities and the 
radial velocities, as have been observed, should be expected. Finally, the inclination of 
the orbit must be quite close to go° (within 20 or so). 

The observed emission will obviously come from the whole visible part of the spiral, 
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INTERPRETATION OF ß LYRAE 171 

with an intensity distribution depending on the density of matter and the degree of ion- 
ization. The problem is similar to that considered by B. Strömgren for interstellar mat- 
ter surrounding hot stars.50 The smoothness of the emission lines suggests that several 
windings of the spiral contribute to their formation. Their greatest width would be de- 
termined by the velocities of the inner winding; from Figure 12 we find about 2 X 0.9 X 
460 km/sec = 800 km/sec, in good agreement with observation. 

The irregularities in the light-curve at all phases are quite understandable on the basis 
of the picture developed. 

One problem yet to be discussed is the change in period of ß Lyrae. Various factors 
might be considered in this connection: (a) mass transfer from A to B, with constant 
total mass; (b) loss of mass and momentum by ejection of type B; (c) pressure at the 
interface between A and B. 

Effect {a) was considered in section 2, with the result that a considerable shortening 
of the period should result from it. 

The momentum per unit mass of the ejected matter is not constant as long as the three- 
body theory has to be applied; but as soon as the matter has receded far enough for the 
two-body approximation to become applicable, the momentum remains constant, be- 
cause this constancy is identical with the validity of Kepler’s law of areas. The momen- 
tum per unit mass of ejected gas may therefore be computed from the last line of Table 
12, flo = 0.1 being the most probable ejection velocity obtained. The value so obtained 
may then be compared with the momentum per unit mass in the binary. Suppose the 
ratio between these momenta is Q. We shall show that, if Q > 5/3, the period will de- 
crease; if Q < 5/3, the period of the binary will increase. 

Taking as units the mass of the sun, the astronomical unit, and the year, we have 

2Tra 
and cK> = /¿(i — n)Mav , (61) 

in which M is the total mass and cK the total momentum of the binary. Eliminating a 
and v, we have 

= 27174(i — . (62) 

Keeping the mass ratio constant, we obtain 

By definition 

hence, by (63) 

ddio _ 5 dM i dP 
c/t, 3 M 3 P 

-djio .dio = 

-dM 1 M ^ ; 

(63) 

(64) 

(65) 

Since dM is negative, dP will be negative if () > 5/3. The fact that we have kept n con- 
stant is no restriction to our discussion, as the effect of a variable mass ratio is examined 
under (a) above. 

s°Ap. J., 89, 526, 1939. 
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172 GERARD P. KUIPER 

From equation (58) we find the velocities X and Y valid for a nonrotating frame hav- 
ing the same instantaneous position as the rotating frame; X, F, x, and y therefore de- 
termine the momentum per unit mass. We find 1.76 for the orbit with = 0.1, and 1.78 
for the orbit with v0 = 0.53. In the same units the orbital momentum in the binary is, 
per unit mass, (1 — ¡i) ¡jl2 + — m)2 = ßi1 — n) = 0.24ÍÍ ß = 0.4. Hence, Q = 7-4 
5/3. Hence the period should decrease as a result of the ejection. 

As is well known, the period has been increasing during the interval of over a century 
covered by the observations. Of the three causes mentioned above only that under {c) 
might be able to produce such an increase. This question is examined in the addendum 
to this paper. 

Other applications may be made to the W Ursae Majoris stars which seem to be con- 
tact binaries composed of two dwarf stars. The shallowness of the minima after correc- 
tion for ellipticity apparently results from the great extent of the common envelope. The 
magnitude difference and the ratio in surface brightness should again be abnormally 
large for the difference in mass, so that from the near-equality of the components in sev- 
eral of these systems almost exact equality of masses must be concluded. The equaliza- 
tion of the masses, discussed in section 2, has in these stars reached, or nearly reached, its 
final stage. A closer spectroscopic study of the more unequal pairs of this class might 
show traces of currents around the components. 

Ejection of type A seems to be fairly common, as more and more pairs become known 
which are composed of a large giant and a small hot component, the latter being sur- 
rounded by gas that might well have originated in the former, as described in section 4. 
We refer to such stars as WY Geminorum, W Cephei, Z Andromedae, T Coronae Bore- 
alis, and several others recently studied by Merrill51 and by Swings and Struve.52 

The case of Antares53 is somewhat different, because, first, the primary does not nearly 
fill its first ^contact surface” and, second, the orbital motion is probably very small (less 
than 8 km/sec, depending on the projection factor in the observed separation), not larger 
than the atomic velocities. Under these circumstances there is no longer a closed surface 
of zero velocity within which the atoms around B are trapped. 

In conclusion, I wish to record my indebtedness to Dr. Struve for several discussions 
on the spectroscopic data concerning ß Lyrae. These discussions have helped materially 
in finding the significant processes operating in this complex system. 

Yerkes Observatory 
October 3, 1940 

ADDENDUM 

CHANGES OF PERIOD IN CONTACT BINARIES 

In the preceding pages the influence on the orbital period of the pressure at the inter- 
face of the components was mentioned but was not examined numerically. A brief sur- 
vey of the problem is made below. 

i. The numerical mine of the pressure.—In the dynamical problem to be considered 
later it is convenient to have the radial repulsive force, caused by the pressure at the in- 
terface, expressed in terms of the gravitational attraction between the components. We 
shall compute the repulsive force for the case of equal components, because in that case 
the large instabilities, present in unequal components, will be absent, so that von Zeipel’s 
theorem on the distribution of pressure should give a good approximation. 

51 E.g., Spectra of Long-Period Variable Stars, chaps, vi and vii, 1940. 
52 Ap. J., 91, 546, 1940; Pub. A.S.P., 52, 199, 1940. S3 Ap. J.} 92, 316, 1940. 
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INTERPRETATION OF ß LYRAE I73 

The procedure followed is this : By using the Roche model the variation of the poten- 
tial is found in the yz-plane (the interface) and along the 6-axis of one of the (equal) com- 
ponents. It is then assumed that the variation of pressure along the 6-axis is the same 
as that along the radius of a single star having the same mass. Using the theoretical pres- 
sures for a polytrope of index 3, the pressure at the interface is computed in terms of the 
central pressure of the star, Pc = 11.05 (GM2/R4),54 times an area, so that a comparison 
is possible with the gravitational attraction, GM2/r2, when R is fixed in terms of r. Dif- 
ferent ratios of R/r are possible, between the extremes of binaries just in contact and 
those with envelopes of maximum possible height. Taking 6 as a good measure of R (cf. 
Table 3), we find from Table 3 that R/r (i.e., b/r) may vary from 0.374 to 0.482. The 
repulsive force will be zero in the former case and will have its maximum value in the 
latter case. Since in the process of mass transfer R is nearly constant in absolute meas- 
ure, the variation of the repulsive force thus found will mean a variation with r; this is 
the relation needed in the dynamical problem. 

TABLE 15 

b/r 

0.3740. 
.3800. 
.4000. 

0.4200. 

-Q 

2.OOOO 
I.9804 
I .9192 
I.8647 

y/r 

o.OOOO 
.0756 
•1583 

o. 2112 

b/r 

o.4400. 
.4600. 

0.4823. 

—S2 

I.8158 
I.7720 
I.7284 

y/r 

0.2536 
. 2901 

0.3261 

For small distances from the x-axis (i.e., in the region where the pressures are largest) 
the potential on the interface (the ys-plane) is given by 

— ti=2 — 3I3;2 — 4 22 + terms of fourth order, etc. (66) 

Near the :r-axis the curves of constant potential are therefore ellipses with axes in the 
ratio 

We shall make the computations for a circular distribution and afterward multiply by 
0.935* 

The variation of the potential along the y-axis of the interface and the 6-axis of one 
of the components is given in Table 15. The first and the last lines correspond to the ex- 
treme cases of first contact and maximum envelope. 

The pressure is now found as follows: Consider, e.g., the last line of Table 15. R/r = 
0.4823 fixes needed in computing the gravitational attraction. The maximum value of 
P/Pc, found at y = o, equals the value at radius 0.3740/0.4823 = 0.775 of a single star 
of the same mass. From the British Association Mathematical Tables, II, we find that, 
for w = 3 and x/x0 = 0.775, P/Pc (= B) = 0.51-io“4. 

Similarly, the ratio P/Pc may be found for other points at the same interface and also 
for different values of R/r. Table 16 gives the results. The unit of P/Pc is io“6. 

The total pressure (or repulsive force) at the interface is 

F = 0.93 s Pc&J/zr £-£c-
d(£) = g-K2^- (67) 

54 S. Chandrasekhar, Stellar Structure, p. 230. 
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The coefficients g are shown in Table 17; they were obtained by quadratures. The total 
pressure will be equal to the pressure at the center of the interface times a certain area. 
If this area is taken to be a circle, its radius, a/R, is found in Table 17. It shows that the 
central region becomes of increasing relative importance for a smaller degree of contact. 
Finally, F may now be expressed in terms of the gravitational attraction; if we denote the 
ratio by / (a dimensionless constant), we have / = 11.05 XgX (r/R)2- The values of/ 
are found in Table 17; the maximum is only 1/1800. 

The results in Table 17 have been derived for the case of equal components; but we 
shall use them in the general case as well, since they will probably give a fair approxima- 

TABLE 16 

R/r 

0.4823 0.4600 0.4400 0.4200 0.4000 

y/r y/R P/Pc y/R P/Pc y/R P/Pc y/R P/Pc y/R P/Pc 

0.0000, 
.0756. 
•1583. 
. 2112, 
•2536 
.2901, 

0.3261. 

O.OOOO 
• 1567 
.3282 
.4379 
.5258 
.6015 

0.6761 

51-0 
38.6 
13 i 
3-5 
0.63 
0.04 
0.00 

o.0000 
.1643 
-3441 
.4591 
•5513 

o.6306 

20.5 
14.4 
3-7 
0.61 
0.03 
0.00 

0000 
1718 
3598 
4800 
5764 

71 
4.6 
0.74 
0.04 
0.00 

o.0000 
1800 
3769 
5°29 

i .68 
0.90 
0.05 
0.00 

o.0000 
. 1890 

0-3958 

0.17 
• 057 

0.000 

TABLE 17 

R/r g • 1011 a/R f r/R 

0.4823. 
.4600. 
.4400. 
.4200. 
.4000. 

0.3740. 

ii .6 
4-03 
i. 24 
0.23 
0.014 
0.000 

0.27 
■25 
•23' 
.21 
. 16 

0.00 

SSO 
210 

71 
14 
i 
o 

3 
o 
00 

2.073 
2.174 
2.273 
2.381 
2.500 
2.674 

tion and since no simple method seems available to determine the pressure between two 
unequal stars not in equilibrium. 

2. Secular changes of period;—The first question to examine is whether the secular 
changes already considered (mass transfer from A to B and ejection), which were 
found to cause a decrease in period if the repulsive force at the interface is neglected, 
could produce an increase if this force is taken into account. Because of the smallness 
of the ratio / there seems little reason to expect this. 

This expectation is confirmed by the following analysis. We are interested in secular 
changes of a nearly circular orbit, so that we put r = o in the equations of motion : 

o = no2 — (1 — /) , (68) or r3co2 = M(i — f) , (68') 
r 

and 
¡jl(j — yi)Mr2œ = cXd . (69) 
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INTERPRETATION OF ß LYRAE 175 

Here M = Mj + M2 = (1 — fi)M + ßM, and Jio is the total angular momentum of the 
binary. The first equation expresses the obvious fact that in the equilibrium orbit the 
sum of the centrifugal force and the repulsive force equals the gravitational attraction ; 
equation (68') gives the modified third law of Kepler. The second equation (eq. [69]), 
obtained after one integration, expresses the fact that only radial forces are operating; as 
the masses are variable, Kepler’s law of areas has been replaced by the corresponding mo- 
mentum integral. If ejection takes place, however, transverse forces will be present; 
they are automatically taken into account, if now, cK is considered variable anddcK/dM 
is taken from the theory of ejection. It is noted that the rotational momentum of the 
components has been neglected. Its effect is mentioned later. 

We shall now compare the binary at two epochs, t0 and far enough apart for changes 
of the first order to have taken place. We put 

r 

r0 

co 

COo 

Ü 
Mo 

I + Ô , 

I + e , 

I + X , 

If 

Mo 
i + 

trI + Qß’ 

f — fo + (P , 

(70) 

in which the increments are proportional to the interval, (t — t0) = At. (Hence, 8 = 
[1 /r0\ [dr/dt\At, etc.) We know ß to be negative or zero; its amount is known in principle. 
The ratio Q was defined on page 171 and was found to be about 7.4. Known in principle 
are also X, governing the rate of mass transfer, and 

dt dr dt dr 
3 + = h{-5 + 7) 

because (d//dr)Ar is found from Table 17, and (d//dt)At is known, in principle, after the 
changes in the radii and masses have been allowed for. There remain the true unknowns, 
8 and e; they are obtained by the introduction of equation (70) into equations (68) and 
(69). By differentiating equations (68') and (69) logarithmically and multiplying by 
At/dt, we get 

3Ô + 26 = /3 - , 

*' + /3+25 + e = <2ß, if v = \   — o . 
I Mo 

Solving equations (71) and (72) for 3 and e, we find 

t (2Q - 3)ß - + hy 
0 = rTk ’ 

= - {3Q - 5 - (<2 - + (3 — - 2^7 
e I + k 

(71) 

(72) 

(73) 
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The critical value of Q = 5/3 for the change of the period is confirmed by these general 
formulae; with Q > 5/3, ejection (ß < o) leads to a positive value of e, as does mass 
transfer (v > o). We found Q ^ 7.4. 

The maximum value of h occurs in the first interval of Table 17 ; from A/ = —h(&r/r) 
we find for the mean value in this interval, & = +0.0050. For the four successive inter- 
vals the mean values are +0.0031, +0.0012, +0.00027, and +0.000015. The changes in 
the sum of the radii will in general be small compared to the change in distance between 
the components. The change of the repulsive force is, therefore, in general due chiefly to 
the latter cause; or hy <<C hb and may be entirely neglected in equation (73). Since h (((3 
and h ((( ($Q — s)/(Q ~ 1) = 2.7, we must conclude that ike period of a contact binary 
should secularly decrease despite the pressure at the interface. The only escape from this 
conclusion provided by equation (73) is a rather sudden increase in the stellar diam- 
eter (s) , causing a large value of y during a limited interval. But such an increase in diam- 
eter would soon cause an increase in the rotational momentum of the stars (which was 
neglected in the derivation of eq. [73]), resulting in a decrease of the orbital period. In 
view of the weakness of the repulsive force, this opposite effect may well preponderate; 
so that a sudden decrease of the diameters might temporarily reverse the general trend 
of a decreasing period. 

If the masses are very nearly equal (y ^ o) and if no ejection takes place (ß = o), as 
is probably the case for several W UMa stars, the period should remain secularly con- 
stant, unless changes occur in the stellar diameters. 

3. Periodic variations of period.—Since we shall now consider fluctuations in r over 
shorter intervals, we have to retain r in the equations of motion but may neglect the mass 
transfer and the ejection. The equations of motion are now (the second one after one in- 
tegration) : 

M A 
r = re* --(1 -f) , ' 

r2è - h . 
(74) 

We eliminate 6 and obtain 

r 
hf 
rz 

M MN 
r2 + r2 

g—sr/R 
(75) 

Here we have replaced/by an exponential relation found from Table 17 : log/ = 7.15 — 
5(r/i?), which represents the most important interval, 2.07 < r/R < 2.4, quite well. We 
have, therefore, iV = io7-I5ands = (5/Mod) = 11.5. 

The oscillations of r determined by equation (75) are most readily obtained by a per- 
turbation method. If the orbit were circular, its radius would be found from equation 
(75) by putting r = o and r = a, the latter being the radius of the orbit. We shall refer to 
equation (75) in this form as equation (75') • Considering small oscillations, we put 
r = a (i + a) ; hence r = aä, and from equation (75) 

■J-. / h2 M . ( a . \ MN /J? , v 
a=-aB2, (76) if = 3 - - 2 — + 2j—e (77) 

The solution of equation (76) is a = ^4 sin (Bt + <p), in which the semiamplitude, A, 
and the phase, <p, are arbitrary and the period of the oscillation is itt/B. 

In order to see the relative importance of the terms in equation (77), we put first 
N = o. From equation (75') we then find h2/a* = M/a*, so that B2 = M/a*. Kepler’s 
third law for the orbit gives w2 = M/a*. Hence, B = co, or the period of the oscillation 
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equals that of the period in the circular orbit. We obtain, therefore, motion in a stationary 
ellipse. 

In the presence of the repulsive force equation (75O) or (74), gives as Kepler’s third 
law: 

w2 = ^ (1 - fo) ; (78) 

whereas from equations (77) and (75') we find 

52 = ^[I + (il~I)/o]- (79) 

Here/o is the value of / at r = a, the mean radius of the orbit. Hence, if II is the period 
of the oscillation and P that of the circular orbit, we find 

II  co  safo 

P~B~ I~zR' 
(80) 

For 5 we found 11.5; for we may put the mean value 2.2R; the coefficient of/0 is there- 
fore about —12.6. Since/o is, at most, about 0.00055 (cf. Table 17), we find that the only 
effect of the repulsive force is a slow regression of the line of apsides. The period Pr of the 
rotation of the apse is 

ç=(i2.6f0)-> > 152. (81) 

The period Pr is independent of the eccentricity of the orbit as long as e remains a quan- 
tity of the first order. (The ratio 152 is based on the correct limiting value of a, not on the 
mean value.) The effect (eq. [81]) will complicate the derivation of the density concen- 
tration from the rotation of the line of apsides whenever the components are in contact; 
and contact will exist \i R/r > 0.374, in which R is the true (not necessarily the photo- 
metrically determined) radius. 

Summary.—In the first section the repulsive force caused by the pressure at the inter- 
face of a contact binary is evaluated numerically for the case of equal components. The 
result is found in Table 17, in which / expresses the repulsive force, for different dis- 
tances r/R, in terms of the gravitational attraction between the components. Next, 
secular changes of period are examined; it is found that the repulsive force does not mate- 
rially change the rate of decrease of period caused by ejection of matter or mass transfer 
from A to B. Periodic changes are found to be limited to a rotation of the line of apsides, 
the period of which is given by equation (81). The conclusion is that only changes in the 
stellar radii can temporarily lead to an increase of the orbital period. 
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