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Observable relations in relativistic cosmology.
o By W. H. Me Crea.
With 1 figure. (Received December 10, 1934.)

The assumptions underlying the formulation of the line-element of the expanding
universe, and the derivation of “world-pictures” in such a universe, are reca-
pitulated. This enables one to know what assumptions are being tested by any
particular comparison with observation. Formulae are given for ‘‘distance”
in an expanding universe as judged by apparent size, apparent luminosity,
parallax, rigid measuring rods. Problems of spectral displacement and spectral
energy distribution are discussed. The number-density of nebulae, and the
information to be obtained from counts of nebulae, are studied. Application
is made to the cases of MILNE’s “hydrodynamic’ universe, and the EiNsTrIN-
pE SirrEr “‘flat’ universe. Observable differences between general relativity
and NEwWTONIAN models are examined.

1. Introduction. The problem of spatial distance in relativity has been
extensively studied by E.T. Warrraker and his school!) . Independent
studies were made also by Touman?). These investigations arose from the
fact that any specific astronomical measurement of ‘“‘distance’” supposed
carried out in any relativity model of space-time must lead to a result which
depends upon the particular operations of measurement, and not upon the
particular coordinate system used to describe the space-time. The writers
named sought therefore to formulate invariants corresponding to various
astronomical “distances” depending on observations of apparent magnitude,
apparent size, and so on. A comparison of the properties of these invariants
with the properties, for example the dependence on time, of the ,,distances”
of stars and nebulae in the actual universe would then provide the first
step towards a proper observational test of the predictions of relativity
theory for large scale phenomena.

The present work was designed to give a simplified version of these
calculations adapted to the usual models of the expanding universe. It
was prompted by questions put to me by Professor E. A. Mm~e3) as to
what ‘‘world-pictures”, to borrow his own phrase, would be formed by

1) B. T. WrEITTAKER, Proc. Roy. Soc. London (A) 133, 93-—105, 1931;
A. G. WarLkEer, Monthly Notices, R. A. S. 94, 159—167, 1934, with references
there given. — 2) R. C. Tormaw, Proc. Nad. Acad. 16, 511—520, 1930. —
%) Forthcoming work by Professor MiLNe will discuss ‘‘world-pictures’ from
other points of view. He has in several papers emphasised the importance
of calculating ‘“world-pictures”, and, writing in December 1933, has stated
fully the programme of such calculations needed in the ultimate test and com-
parison of cosmological theories, Observatory 57, 24, 1934.
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observers in these expanding universes. I am much indebted to him for
opportunities to discuss the work with him.

The usefulness of this type of work is twofold. As already pointed out
it is necessary for the observational test of the relativity theory of large
scale phenomena, and in particular of the expanding universe. In the
second place it is necessary for the proper comparison of different theories
of these phenomena. For example, to compare the general relativity theory
and Mmsge’s theoryl) it is necessary to enquire if their observable conse-
quences are different, and if so which agrees better with experience. Or
again, it has been shown by Miuxe2?) that NEwron’s and FINsTEIN'S
laws of gravitation lead to equations of motion for the expansion of the
universe which are identical in form. It will be shown below that the two
cases are, however, observationally distinguishable.

Before this paper was ready for publication one dealing with the same
subject was published by pe Srrrer®). There are however certain discre-
pancies between his results and the present ones, the reasons for which
will be indicated. Also, after the present calculations had been performed
it was found that many of the results are given in Professor Torman’s
book%) which has just recently appeared. Nevertheless, on account of
certain differences of emphasis and application, the publication of the
present work appears to be justified. It is difficult to give the new features
apart from their setting in the general development. In presenting it the
results already given by Tomax and others will therefore be derived as
briefly as possible, and references given to their work.

2. Metric of the expanding unwverse. It is well-known that the metric
of the .general relativity expanding universe is expressible (e. g., ToLMAN,
§ 149) in the form
i — & dtQ__RQdr2—f—r2d'z92—;—rﬂsin919dq92, 0

1 4+ kr?/4)?
where R (f) is a real function of ¢ only, and k/R? is the curvature of the
section ¢ = const. The constant k is positive, negative, or zero according
as this section represents space of elliptic, hyperbolic, or euclidean type.

1Y E. A. MiuwNg, ZS. f. Astrophys. 6, 1—95, 1933. — 2) E. A. MiLNE,
Quart. Journ. of Math. 5, 64— 72, 1934; W. H. Mc Creas, and E. A. MILNE,
ibid, S.73—80. — 3) W. pE SirTER, B. A. N. 7, 205—215, 1934. This contains
a much fuller discussion of the more practical aspects of the comparison
with observation. — %) R. C. TorLmax, Relativity Thermodynamics and
Cosmology (Oxford 1934), p. 462—482. Results in this book will be quoted
by page numbers, equation numbers, or paragraph numbers, thus: TorLmaw,
462—482.
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The assumptions upon which the use of this metric rests are of a very
general character. It is sufficient to suppose that the four-dimensional
continuum is R1eMaNNIAN, with the usual signature, and that there exists
in it a fundamental set of observers having the following properties: one
of their world-lines passes through each point of the continuum, and each
sees the universe as locally symmetrical about himself?).

It follows from the last condition that these observers’ “‘world-lines”
are geodesics, which, when the metric is given in the form (1), are the lines
r, ¥, @ = const. From this it follows that all these observers see the same
sequence of world-views. Further it is clear that if these observers are
supposed attached to free particles then their world-lines will be the natural
world-lines of the particles, whatever the laws of motion may be. For each
of these particles would see itself as permanently central in the universe
and so no law of motion could distinguish any particular direction in which
it could start to move in its own frame of reference. Hence 1t must remain
at rest in that frame.

These points are dwelt upon in order to show how the general features
of the motion of the fundamental observers depend upon only a few very
general assumptions. The only one of these which is characteristic of general
relativity, rather than any other kinematic system, is that which leads to
the use of Riemannian geometry. (We do not need even to assume that
the paths of free particles 1n general are geodesics.) We do not assume any
laws of motion, nor any field-equations. Yet the only properties of (1)
which remain to be determined are the constant % and the function R (f).
The latter can so far be any real function of {. The general theory shows
that R, k are finally determined only by a knowledge of the field-equations
and the properties of matter in the universe.

We shall now study the world-pictures seen at t = {, by the observer,
A say, whose world-line is r = 0. Since from (1) ¢t measures proper-
distance along A’s world-line, then according to the usual interpretation of
general relativity, ¢, 15 the actual reading of his clock, from the appropriate
origin, at the instant of observation.

This statement can be further analysed physically, once we have
admitted that dt is proportional to a short lapse of proper-time for A. For

1) A. G. WALRER, “‘On RIEMANNIAN spaces with spherical symmetry about
a line, and the conditions for isotropy in general relativity’”. Quart. Journ. of
Math. in press. I am indebted to Dr. WALkER for allowing me to see this paper
before publication.
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one then supposes A supplied with some periodic mechanism to serve as
a “clock”, and enquire if the value of dt for one period is the same at all
epochs. That is to say, does the expansion or contraction of the universe
affect the rate of A’s clock in units of {2 We can see that there is no such
effect to be taken into account since we can suppose the forces driving the
clock to be made arbitrarily large compared with the general field in (1).
Indeed the case of the hydrogen atom in an expanding universe studied by
Mc Virrirt) illustrates this. Using an appropriate wave-equation he finds
that the frequencies of the spectral lines in units of ¢ are unaffected by the
expansion.

In virtue of the form of (1) any one of the lines r, 9, ¢ = const. can be
transformed into any of the others without a change of ¢. Hence if an
observer, B say has the world-line », &, ¢ = r,, ¥, ¢; = const., then at
the event (ry, ¥y, @y, ;) the reading of his clock will be ¢;. The coordinate ¢
determines the cosmic time of an event only in the sence of giving the time
ascribed to it by that one of the fundamental observers who directly experi-
ences it.

3. Laght-tracks. In order now to work out the observable phenomena
in the universe described by (1) we must introduce some assumption about
light-tracks. According to the standard procedure of general relativity we
identify them with the null geodesics.

Now by symmetry, or by actually writing down the equations, it is
seen that the null geodesics through r =0 are given by ¥, ¢ = const.
Also along such a geodesic ds = 0, and so

dr/(1 + kr2/4) = -+ cdt/R (%),

where R is the positive square root of B2 in (1). Hence if (ry, 9y, @y, t;)
is the event in B’s experience witnessed by A at time #;, then

Tt to

dr cdt
fm - [ )
0 iy

It is this relation which determines how much of the universe can be
seen by A at time ;. Consider for instance the case k > 0. Then in (1) we
may have 0 < r; < oo. Also from (1), (2) we may have {, =1t > — oo,
as far as any hitherto imposed conditions go. Now the lefthand-side of (2)
is a monotonic increasing function of r;, which for k > 0 tends to z/Vk

1) G. C. Mc Virrie, Monthly Notices, R. A. S. 92, 868—877, 1932.
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as r; > oo. Also the right-hand side of (2) increases monotonically as t;
decreases from #, to — oo, but may or -may not converge according to the
form of R (f). Ifit converges to a limit [, then Iis a function of {,. If I <z/ Vk
then r; —r,,, say, ast; — — oo, andr; determines the furthest (fundamental)
particle visible to A at time #,. The value of r;; depends on I, and so on
to> and hence the number of (fundamental) particles visible at #, depends
on fy. If however | > m/{k, or if the right hand side of (2) tends to
oo as t; — — oo, for any values of {,, then r; — oo as i, —t;_, say, where
1o > — oc. For these values of #, all the fundamental particles are
visible to A. Corresponding results hold for k< 0.

4. Doppler shift. The well-known result for the Doppler shift of light
emitted at B and observed by A is

Ao/ty = B[Ry = D, say, 3)
where 4y, A, are the wave-lengths of the light as measured by A, B respecti-
vely. (e.g., Touman, §155.)

We need also to find the Doppler effect for light emitted at B by a
source in motion with respect to B. Let this source be at B at local time #,,
and at r; + dry at local time ¢; + d¢;. Then the local proper distance in
the r-direction between these two points is

Ry 7y /(1 + kr?j4) = v,0t,,

where v, 1s the r-component of the local velocity v of the particle relative to B.

Now let ty, t, + Oty be the times of arrival at A of successive wave-
crests of light emitted by the moving source at t;, ¢; + d¢;. Then by differen-
tiating (2) we have

Ory /(L -+ krl /4) = ¢dty/Ry— cdty /Ry,
or, using the previous result,
0to/0ty = (Bo/Ey) (1 + v,/0).

But times 84y, 6¢, must be proportional to the wavelengths of the light as
measured by A and as measured at the source, where 6t'1 for an observer
moving with the source corresponds to d¢; measured by B, and therefore

owing to the time-dilatation 8¢, = 6t, V1 — v*/c2. Hence, using (3) we have

do/Ay=D- (1 + vr/c)/Vl — v?[c?. (3)

Thus if we interpret the fundamental Doppler effect D as being due
to a radial velocity ¥, and suppose for the moment V, v, < ¢, then we
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have from (3') for the whole apparent Doppler effect Ay/4; = (1 + V /o)
(1 +wvfe)=1+ (V +v,)/c, which is the ordinary classical additive law.
But we see that a more precise way of observing local velocities at B is
given by (3'), even i1f D corresponds to a velocity V' not small compared
with c.

Suppose that B is a nebula whose speed of rotation we wish to deter-
mine. We suppose also that the resulting local velocities are small compared
with the velocity of light ¢, so that we may replace 1 —v?[¢® in (8") by
unity. Then the mean value of Ay/A;, over the whole nebula will give just D,
since B is the local centre of the universe so that mean local velocities with
respect to B must vanish. Hence to find the r-component v, of the local
velocity at any point in the nebula we have merely to observe 4,/4; for
that point, divide by the mean value of Ay/A; for the whole nebula, and
the resulting ratio is 1 + v,/c. In practice, however, the result would be
some sort of mean value for the whole thickness of the nebula in the line
of sight.

5. Spatial distance. Let dl be the lenght of a unit rigid scale placed
at B perpendicular to AB in the plane ¢ = const. Then using the property
of local proper distance with dt = dr = d¢@ = 0, we have

dl=V—ds® = Byr dd/(1 + kr[4), (4)

where B, = R(t;). But now, from the fact that the light tracks to A have
¥ = const., dd is also the angle which dl appears to A to subtend at A.
Hence if A adjudges the “‘distance’” of B by the angle subtended by the
unit scale he will define it by the ratio

Length of scale ~ dl R
Angle subtended at A d¢ (1 +kri/4)

It is natural to term S distance by apparent size.

= S, say. (5)

The same result may be got in another simple way by merely noting
that the proper area of the sphere r = r; at t = ¢, is by (1)

dmr? R? /(1 + krl/4),
whereas it must of course be 47S? if Sis its apparent distance as judged
by its area. :
The value (5) is also that obtained by A.G.Warker?) (equation (40))
and by Torman (equation (180.8)). It differs from that given by e SrrrEr?)

1y A. G. Warker, Monthly Notices, R. A. S. 94, 159—167, 1934. —
) W.oe Srerer B. A. N. 7, 205—215, 1934.
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(equation (19)) in having R, in place of Ry ( B=(f)). This is due to his
having attached a certain amount of physical reality to the “cosmical
space” deseribed by do?, when (1) is written as ds* = ¢®d? — R?do?.
This space does not in any way represent what is seen as “‘space” at any
instant by any observer. For what he sees at different distances corresponds
to different values of t.

6. Parallaz. The distance Sis not in general the same as that determined
by parallax. Suppose unit length 61 is held at A perpendicular to A B, and
let 09 be the angle between the
apparent directions of B as viewed
from the two ends of 0l. Then
the ‘‘distance” P 1s measured
according to the usual astrono-
mical practice by the ratio d1/69.
Actually this is not an important quantity for the practical study of
large scale effects in the universe, since direct parallax measurements
are not possible for “large” distances, but for the sake of completeness
we shall find an expression for P.

g 7

Since we are going to consider light diverging from B we shall in this
case transfer the origin O of (r, ¢, ¢) from A to B, so that r =1, i =1,
for A; r =0, ¢t = ¢, for B. Suppose then that the light pulses which meet
the extremities of 1 at time ¢, leave B at time ¢; in directions inclined to
each other at angle d. We have to calculate d¢, the apparent angle between
their directions as determined by A.

In fig. 1 let p, q be the ends of dl, and let p’, ¢’ represent the corre-
sponding points on the light-tracks for a change of r from 7, to ry + dr.
Then the length pp’, q¢ measured by A is Bydr/(1 + kr}/4), and the
difference in time ¢ for the arrival of the signal at p, p’ (or g, ¢') is

dt = Rydr/e(l -+ kvl [4), (6)
since the local velocity of light is always c.

As in (4) with {y, {; interchanged, the lenght measured by A is

pq= 6l = Ryr;d9/(1 + kr; 4). ()
Therefore the lenght p’q" measured by A is
p'q = 0l+d(6l) = 6l+a(6l)dt—|— aglzdr

ot an
— 814+ Rydrd® (1 — kri/d + Ryn o)/ (L + krij4)?, (8)
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using (6), (7). Further the angle ¥ defined above is measured by
(p'q — pq)/pp’, which from (8) gives

_ adl) 1—Fkr}/4+ R‘I)rl/c.dﬁ.

59 =
Py 14 kri/4

)

Thus, as we should expect, 89 == d9 in general, but 04 reduces to dd for
r, = 0. Hence, using (7), (9), the distance by parallax P of B from A is
by definition

l B,y

0
= T = . ]_
F 09 1—kri/4+4 Ryryc 10)

7. Another defimition. Again for the sake of completeness we mention
the definition of “spatial distance” stated by Krrmack, Mc Crea, and
Warrrakkr!) and shown by Ruse?) to be equivalent to his definition of
“distance” which provides the closest analogue in general relativity to
that determined in ordinary physics by the use of rigid measuring rods.
If the equations to the null geodesics are written in the standard form

Tar (qrydo do

dpr U lpldp dp 7
where a first integralis given by g,, Z%) . g—f
between two events on the same null geodesic is taken to be proportional
to the parameter u integrated along it between the two points. The constant
of proportionality is chosen so that the resulting distance reduces to ordinary
local distance in the neighbourhood of the observer. In the present case
1t is easily shown that the distance A B so determined is K, say, where

= 0, then the spatial distance

™

dr
R e= ot

4]

(11)

8. Luminosity. We now come on to quantities of greater astronomical
significance. In the first place we wish to calculate the apparent brightness
of a source of light at B as seen by A. We do this by finding the amount
of light from B which falls per unit time on unit area placed at A perpendi-
cular to A B.

1) Kermack, Mc Crea, and WaiTTakER, Proc. Roy. Soc. Edinburgh 53,
31—47, 1933. — 2) H. S. Rusg, ibid, p. 79—88.
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By Pranck’s law the energy of a photon is inversely proportional to
its wave-length, and so using (8) we have for any photon emitted by B

Energy of photon observed at A 4, R, (12)
Energy of photon emitted at B~ 4, R,
3)

Also the same calculation as that which leads to (8) can be interpreted as

showing that
Number of photons arriving at A per unit time B,

— = 138
Number of photons emitted at B per unit time R, 13)

Further the angle d? subtended at B by unit length 41 placed at A perpendi-
cular to A B is again given by (7).

Now the energy of the radiation from B which falls in unit time on
unit area at A perpendicular to A B is proportional to
(Number of photons arriving per unit time) x (energy per photon) x (solid

angle at B into which the quanta are emitted).

Using (12), (18) this is proportional to

(B1/By)* d 92,
which using (7) is proportional to
R} (1 4 kr?/4)2/R)r?. (14)
If then we define a quantity L by the relation [Tormax (178.10)]
R? 7

L =— (15)
the apparent luminosity of B is proportional to 1/2 Also L reduces to
the usual measure of “distance’ for small 7,. Hence we call L the “distance
by lumanosity”. 1t is in fact the distance so defined which is derived in
practical astronomy by any method which depends upon a comparison of
apparent with absolute luminosity. This apples to distances of extra-
galactic nebulae deduced from the apparent magnitudes either of the
nebulae themselves or of stars contained in them.

There 1s however one additional consideration which might in some
future observations prove to have a measurable consequence. For it must
be remenbered that any periodic phenomenon in an extra-galactic nebula
must show, on the present theory, the same Doppler effect as does the
radiation. Thus, if we could observe the periods of Cepheids in the most
distant nebulae yet studied, for which the Doppler shift corresponds to
about 1/10 of the velocity of light, we should have to ascribe to these stars
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true periods about 10 per cent shorter than those observed. A similar
correction would have to be applied to the period of rotation of the whole
nebula, or more precisely, the procedure described at the end of § 4 should
be adopted in order to find the period. This consideration, whenever it
has an appreciable effect, must be taken into account when these periods
are used to derive absolute magnitudes.

9. Spectral emergy distribution. Suppose now the source B emits
energy K (A,)dA; in the wave-length range (4;, 4; + d4;) per unit solid
angle. Then by (14) this contributes to the energy falling on unit area at A
an amount proportional to

[B? (1 + kr [42/Riri1 E(A) d ;. (16)

But by (8) the observer A will ascribe to this radiation a wave length
Ao = A, D. Hence the radiation (16) is

[R; (1 + kr} [4)% | Rir; 1 E (Ay/D)d . : (17)

1

As far as the relative intensity distribution goes, the effect of the red-
shift is merely to replace E(4) by E(4/D). The resulting effect on photo-
graphic magnitude and colour index, which is of course an effect over and
above the effects on fotal luminosity discussed in the last paragraph, has
been discussed by Torumax § 177, and more fully by pe Srrrer (1. ¢.). The
discrepancy between the latter author’s determination of distance and the
present one has, however, a counterpart in his determination of total
luminosity.

10. Relation between ‘‘distances”. Returning to (5), (15) we now have
the result

Apparent brightness ofj? . %Si _ < By )4= ®

Apparent area of B ? R, D*’

where » 1s a constant depending only on the intrinsic properties of B at the

epoch of emission of the radiation. (Tormaw (180.5), (185.8); the result for

general space-time was given by A. G. Warker?), eq. (5).) Let us apply

this to the nebulae, and assume that the average properties of the nebulae

at a given distance are independent oi that distance. Then if we average
over all nebulae for each value of D we should find according to (18)

(18)

log (apparent brightness) — log (apparent area) = 4logD + const. (19)

The bars denote mean values for given D. This result should be susceptible
of observational test. Since nebulae can be observed with Doppler shifts

1) A. G. WarLker, Monthly Notices, R. A. S. 94, 159—167, 1934.
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corresponding to about 1/10 of the velocity of light the formula (18) would
predict for these cases a 40 per cent difference between the brightness
estimated from a measurement of the total amount of light from them, and
that deduced from a measurement of their total area.

Such a test would however provide, not a test of any relativity theory,
but of the general correctness of ascribing the red-shift to the Doppler
effect of the expansion of the universe. If the shift were due merely to a
“degradation” of the energy of the light quanta, and not to the motion of
the nebulae, then only the agency taken account of in (12), and not the
effect (13) nor the aberration effect of the solid angle calculated by (7),
would be effective. Hence in (18) we should have to replace D* by D. The
difference for the above-mentioned extreme cases so far observed would
be about 80 per cent, so that one might hope it could be separated from
other effects in analysing observational data.

Uncertainties in conclusions drawn from these tests will arise from
the averaging process suggested in (19), both from the difficulty of getting
a large enough number of observations to form significant averages, and
from the assumption that such an average would be the same at all distances.
Tor we see a nebula B, according to the theory, at an epoch %, i. e., when
1t 1s a length of time ({, — ¢,) younger than our own nebula. If this is suffi-
ciently small compared with the “life”” of a nebula, then we may expect
that its luminosity and size have not appreciably changed in that time, and
so the assumption should be legitimate. For this reason it might prove
more profitable in this connection to apply the theory to more accurate
measures for not too distant nebulae, than to attempt to apply it quite
generally. The trouble is that at present we do not know what may be
interpreted as ‘“‘not too distant’’.

11. Luminosity and Doppler-Shift. It is easy to see that (8), (15) give
as a first approximation when (f, — #,) 1s small

(D—1) o< L, (20)

which of course reproduces just HusBrLE’s law that the apparent velocity
of recession is proportional to the distance. This has been discussed fully
by other writers.

If then we suppose %, r; eliminated between (2), (3), (15) we should
have a theoretical relation between D, L, for any epoch of observation t,,
to which (20) is a first approximation. This will depend upon the value
of k and the analytical form of B (f). If also the values of D corresponding

© Springer-Verlag * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1935ZA......9..290M

FI935ZA - 22202 “Z90M!

Observable relations in relativistic cosmology. 301

to all values of L could be observed for the actual universe and the results
expressed as a functional relation between D, I, then a comparison with
the theoretical relation would yield a differential equation for R (f) in-
volving k.

This procedure would be quite impracticable. It has been shown by
A. G. Warkerl) however that if we can obtain from observation the next
approximation to (20), i.e., the values of coefficients a;, a, (say) in an
approximation L = a;(D —1) 4 a,(D —-1)2, then a comparison with the
theoretical law will give wvalues of R; /Rg, R;’ /Rg . Now if we assume the
truth of the gravitational field equations, we can express gq, Py, the mean
proper density and pressure of the contents of the universe at local time {,,
in terms of these ratios, together with k/R? and the cosmical constant A.
Hence if we consider the density and pressure as also observable magnitudes,
we have an observational means of finding the values of k/R;, A for the
model universe corresponding most closely with the actual one. The limits
within which these values probably lie are discussed by Tormaw (§ 183).

The value of extensive observational data on the apparent magnitudes
of the nebulae and the corresponding red-shifts is evident. It appears that
it 1s better to express the magnitude in terms of a quantity such as L,
rather than in terms of a ‘“‘corrected’” distance. Provided only that in
finding the apparent bolometric magnitude m allowance is made for the
effect of red-shift on the photographic magnitude, the “distance” L in
parsecs of an object of absolute bolometric magnitude M is given by

5log (L/10) = m — M, (21)
in virtue of the relation

Luminosity at 10 parsecs
(L/10)* ’

Apparent luminosity = (22)
which defines L, and of the relation between magnitude and luminosity.
The quantities L, D may therefore be regarded as convenient “observables’
and 1t 1s most profitable to express the observational data as empirical
relations between such magnitudes. Then one should demand that theory
also should state its predictions in terms of relations between these “obser-
vables”. For this provides not only the best way of comparing these
predictions with observations, but also the most direct method of comparing
the predictions of different theories.

1) A. G. WALkER, Monthly Notices, R.A. S. 94, 159—167, 1934.
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12. Number of nebulae. We shall now once and for all identify the
“particles” to which the fundamental observers are attached with the
extra-galactic nebulae in our model universe. The world-lines of these
particles have r, 9, @ = const. So the number of these world-lines in a
given range dr, di}, d g of these variables is a given constant which, in order
to presserve the equivalence of world-views of all the observers must be
the same for all equal coordinate volume elements. Now from (1) the proper
volume element for given dr, d¥, d¢ is

R372sin ddrddd @ /(1 4 kr2[4)3,

or R? times the coordinate volume element. Hence the proper number-
density of nebulae n, being equal to the number of intersections of world
lines with unit proper volume, is inversely proportional to R3. Hence
we write i

n = a/R3. (a = const.) (28)

This result 1s independent of any gravitational field equations. It is
also independent of the existence of mass in the form of matter other than
the nebulae, or in the form of radiation, and in fact depends only on the
assumption that the nebulae retain their individuality for all values of ¢.
It is however the significant “‘density” for those observations which consist
in counting the nebulae in different ranges of apparent magnitude, apparent
size, red-shift, etc. We proceed to give the theoretical results of such counting
processes. :

The number of particles d N observed by A to lie in the shell of radius 7y,
thickness dr, is the number in the corresponding proper volume at time t
and is therefore by (28)

AN = n(t,) - 4w Riridr, [(1 + ko] /43
= dmar;dr, [ (1 + kr} [4)3, (24)

which is of course constant as it ought to be. This can now be expressed in
terms of the corresponding ranges of D, S, L. ‘

From (2), (8) we have respectively, for given i,

dry /(1 4 kr?/4) = — cdt, /R, dD/D = — R dt,/R,,
so that
dry /(1 +kr}/4) = ¢dD/R.D.
Hence from (24)
r} ¢ dD

IN = Ame R D

(25)
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In this relation 74, ¢{; and so 15"1 are to be considered known in terms of
ty, D in virtue of (2), (3), though the elimination of 74, ¢, cannot be performed
explicitly without a knowledge of the explicit form of E (%).

The relation (25) is therefore one that can in principle be compared
directly with observation. For all that is needed for the comparison is a
measurement of the redshift for a sufficiently representative number of
nebulae and thence an estimate of the total number of nebulae in each
range of values of the shift. This would give dN/dD in (25), and hence
working backwards from that relation we should be able to find the form
of R (¢). Thus a knowledge of the functional form of dN/dD would give
us the same information as a knowledge of the functional form of the L, D-
relation treated in § 11. At first sight it appears moreover to offer a more
certain practical method, depending as it does on the measurement of a
spectroscopic wave-length change and an operation of counting. Apart
from the difficulty of getting the spectra in the first place, and the further
difficulties and labour of getting them in sufficient number, it would seem
that these observations could be made with any desired degree of accuracy.
The observational determination of the L, D-relation on the other hand,
requires besides the spectroscopic measurements a measurement of apparent
magnitudes and a knowledge of corresponding absolute magnitudes in
order to get L values, and these are subject to larger uncertainties. In
particular the effect of obscuring matter cannot be accurately allowed for.
But it has now to be remembered that we could get some important in-
formation from a knowledge of the empirical L, D-relation to a certain
order of approximation. The further question then arises as to the order
of approximation to which the empirical N, D-relation would have to be
known in order to obtain the same amount of information.

We can express (f,—1t;) as a series in ¢ =D — 1 from (8), and r,
as a series in (t,— t;) from (2), and hence as a series in g. Using such series
in (25) we find?!)

adN é 2 " ,
U40) 55 —4ma g {aﬂ + g OB, B — B o?
+ gy (1 R — 46 RP R By + 45 R R,
0

10 R,R) R — APk R2) ot 4 } 26)

1) I am indebted to Mr. K. K. MirrA for checking this calculation.
Zeitsehrift fir Astrophysik. Bd. 9. 21
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Tor sufficiently small ¢ we have N oc 03, as we expect from the assump-
tion of local uniform density and the fact that o is then proportional to
ordinary distance. Existing observational data probably provide a check
of this first approximation.

Now (26) shows that for sufficiently large shifts o the terms after the
first will become important. If a second approximation can be got obser-
vationally it will provide a value of Ry R’ /R.? if this ratio is not too small
compared with unity. From (27) its value is found to be (1 + 2 I*/k*2)
where I*, k* denote the quantities “I”, “k” used by TorLman -(§183).
According to his estimates the upper and lower bounds of this function
would be (1 + 8). But now to get values of k/R}, A as discussedin §11 it is
necessary to know R;/R?), R;’/Ri separately. As we should expect, since
dN/do involves in « a. constant additional to those occuring in L, the
second approximation does not provide this information. KEven the next
approximation would however not suffice for from (26) it would involve
yet another parameter R;"/R‘;. We therefore conclude that the N, D-
relation is of less practical value than the L, D-relation.

The N, S-relation corresponding to (26) is similarly found to be given by

dN . dmay/_, Ry
= Z0 88 2
as R} <S +4CR 5 ) : &0

0

There is an analagous N, L-relation. These show what information can
be got from counts of nebulae in different ranges of “distance”. This is
not what is given directly by observation, for counts are actually made for
different ranges of apparent magnitude, or apparent size if this is measured,
whereas the L or S values must be derived from a comparison of these
quantities with an assumed absolute magnitude, or absolute size, in each
separate case. It has however been shown by pr SrrrER (I. ¢. § 5) that the
actual counts can be compared directly with theory if we assume, say,
a normal law of distribution of absolute magnitude. The “dispersion” of
the distribution then provides an additional parameter to be derived from
the observations.

Special Cases.

The remainder of the paper will be devoted to an application of the
foregoing theory to some special cases. Those chosen have the advantage
of being among the simplest examples and it proves possible in these
cases to write down explicit expressions for most of the relations
discussed above. The physical meaning of these expressions can readily
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be appreciated, and so it becomes easier to know what phenomena to expect
In more general-cases.

13. MI1LNE’s hydrodynamical case. The simplest example of MiLne’s
cosmology?l) has been shown?) to be at any rate kinematically equivalent
to the particular case of (1) for which k is negative and R is proportional
to . Changing the units of + we can then write (1) in the form

x? 2
— e
where #2 oc — 1/k. To get precisely Mmmne’s case we must take » — c.

Equation (2) then becomes '

A2 4,

ds? = ¢ de* — ar* +r*d9? + rsin?d de?), 0<r<?2) (28)

(29)

The whole universe in this case has 0 << r; < 2, and from (29) we see that
as r increases from 0 to 2, ¢, decreases from #,to 0. Thus the whole universe
1s in view at any instant t;, and points. close to the boundary r; = 2 are
always seen at local time close to t, = 03).

Again (3) becomes ‘

D = tofty = (1 +1,/2) /(1 —7y/2): (30)
(5) becomes
S = olgry /(1 + 74/2) (31)
= ctyry /(1 —17/4) (32)
= o (12 —1)/21, (33)
using (29); (10) becomes
P=ctyry /(1 +7,/22 =28 (34)
by (81); (11) becomes ‘
K = ctylog {(1 +7,/2) | (1 —1y/2)) (35)
(15) becomes
L = ctyry [ (1 —11/2)?, (36)
=Sty /ty = oty (ty —11)/21; (87)
using (38).
From (34), (36) we see that as r; — 2
P=S8 —c¢ty2, L - oc. (88)
1) E. A. Micxg, ZS. f. Astrophys. 6, 1—95, 1933. — ?) W. O. KERMACK

and W. H. McCrea, Monthly Notices, R. A: S. 93, 519—529, 1933; H.P.
RoserTsoN, ZS. f. Astrophys. 7, 163—166, 1933. — 3) E. A. MiLNE, Monthly
Notices, R. A. S. 93, 668— 680 1933. »

21 *
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Thus the distance of the most remote nebulae, when judged by their size
or parallax, is always a finite constant, while that judged by their luminosity
is infinite. This illustrates the fact that there may be no unambiguous
answer to the question: Is the universe spatially infinite ? Obviously the
answer depends upon the definition of “distance”. But this simple model of
MiL~E’s shows that two natural definitions of distance, the one depending
on the apparent size of an object and the other on its apparent brightness,
may lead to a finite extent for the universe measured one way, and an
infinite extent when it i1s measured the other way.

The last result is just that given by Mixe when he shows that the
luminosity of the most distant nebulae seen is vanishingly smalll) and we can
recover his expression of it. For if we write 7, T for his 7, { we have?)

¥=ctr/(1—r2/4), T =1t +r2/4)/(1—1%/4). (39)
Hence in the first place, if 7, corresponds to ¢;, r; then from (32)
?1 = S,

so that MiuNe’s coordinate r for a nebulae at the instant when it 1s
seen measures also its distance by apparent size. Substituting (89) in (36)
we then find

L=Ty,V/1—7V]e), (40)

where T, = t, gives the time of observation, and V = r/T 1s the same
as in Mm~e’s work. This relation expresses the same result as MiLye’s
equation (16)3).

Again, using (39) in (80) we find, if V, applies to (ry, %),
D* = (14 Vy/o) [ (1 —V4/e), (41)

which is the usual special relativity Doppler effect for radial velocity V.
We may notice that from (31), (36)
as 8 T dL L 14

L 4

— = = = 492
at, t, T, at, t, 1—V/e’ “2)

for any given nebulae, for which r; is of course constant. These quantities
also define apparent ‘“‘velocities” of the nebulae, in the sense of rates of
change of “distance’” with time of observation. But it i1s seen that they

1) E. A. Miuyg, ZS. f. Astrophys. 6, 1—95, 1933, 8.95. — 2) W. O.
Kermack and W. H. McCrea, Monthly Notices, R. A. S. 93, 519—529, 1933.
— 3) E. A. MuxE, ZS. f. Astrophys. 6, 1—95, 1933, S. 95.
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are not identical with the velocity V. We may note also that the value
of D corresponding to any particular nebula, i.e., to a given value of 7y,
is a constant independent of the time of observation.

We may now obtain explicit distance-shift relations. From (30),
(38) we have

S = ¢ty (D2 —1)/2 D2. (43)
This by (41) reduces to

S =4V +V/e), or V= 8/(t,— S/e), (44)
which is Mm~E’s1) equation (4). Again from (80), (87), (41) we have

L = CtO (DZ— 1)/2,
= t,V/1 — Vo), as in (40). (45)

In this case it is possible to obtain from (24) explicit expressions for
the number of nebulae in given ranges of D, S, L. We find from the ex-
pressions (30), (81), (86) for these respective quantities, and the general
result (24),

ANJAD = 7o (D? — 1)2/D?, (46)
dN/dS = 47maS?%/cty(ct,— 2 S)2, (47)
ANJAL = 4mal?fety (cty - 2 L), (48)

Equation (47) is just that given by Mmnr!), equation (5).

If for the moment we suppose all nebulae have the same absolute
magnitude, then the total light reaching A from a nebula at “distance”
L is proportional to 1/L2. Hence from (48) the total light reaching A
from the whole universe is proportional to

(AN 4ma{ 4L 270
j—LT = ot { (ct, +2L0)° ~ 12

0 0

(49)

This, as has again been indicated by MiNE, is a finite quantity proportional
to 1 /ts, even though the number of nebulae is itself infinite, as is clear from
any of the expressions for dN.

It may be of some theoretical interest, though scarcely of practical
value, to calculate the spectral distribution of this energy. We shall suppose
for this purpose that all the nebulae behave like black bodies of tempera-

1) E. A. Miuxg, Monthly Notices, R. A. S. 93, 668— 680, 1933.
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ture T, and all have the same absolute luminosity. Then by (17) the ra-
diation from B reaching A per unit time in the range (4y, Ay + d4y) is
ORI(—nijap  DSdi
e R@eomEir— 1)’
where @' is a constant. Then to get the total energy in this range we have

to multiply (50) by dN as given by (46) and integrate for all r, or D. This
gives for the energy a value

(50)

Qdi( DaD’
tgAs ) et —1°
1

where @ = 47aQ)’/c?and b = he/dgk T. If bis sufficiently large the integral
is approximately ¢~ /b and the quantity (51) is proportional to

(kT/heye=heltokT j=tgp.. (52)

On the other hand, if b is sufficiently small the integral is approximately

(51)

o0

b‘QJ' zdz/(e® —1), and the quantity (51), is proportional, with the same
0
factor as in (52), to

(kT /hc)? (72/6) A3 % dAg.

14. EINsTEIN-DE SITTER Universe. This is the model with k= 0. Ap-
plying the gravitational field equation to this case, and assuming zero
pressure and / = 0, one finds?)

R = at’l,

where a is constant, and ¢ is measured from a suitable origin.
Thus (1) becomes

ds? = 2dt2— a?t'ls (dr2 4- 1292 4 r2sin2 9d ¢?), (0 < r < oo).
Equation (2) then gives '
ry = 8 (c/a) (tys — t,13), (58)

from which t; — — oo as 7y — oc. Thus, if all values of t; in — 0 < ¢; < 1,
are allowed, then all parts of space with 0 << r; < oo are visible to ‘A at
any time ¢, and the local time when they are observed tends to — oc, as
the coordinate distance r; — oo. If however we suppose the universe has
only a finite past, extending to t = 0, say, then only the part with 0 < r,
<3 cty3 Ja 1s visible to A at time #,. Therefore only this region exists for A
at time .

1) EinsTEIN and pE SiTTER, Proc. Nat. Acad. 18, 213, 1932; Torman § 164.
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Again (3) becomes

D = (ty/ty)""s; (54)
(5) becomes
8 = atlsr) = 8 ct’ls (1;ls —112), (55)
or
ty = (S/arl)s/2 + (S/e) + (Sa3r]3/904)1/2 + (ary/8¢)%; (55")
(10) becomes
P = atlar /(1 + 2 ary/8 ct,%); (56)
(11) becomes
K = at)3ry; (57)
(15) becomes
L = atéla t 2l3 =38 ct‘f)fa T 23 (t(l)la — t;‘-”). (58)
The explicit S, D- and L, D-relations are therefore from (54), (565), (58)
S =8e¢tyD"*2(YyD—1), L =3ct,D'2(yD—1). (59)

Equation (59) may be written for sufficiently small S in the form
D=1+428/8cty+ T8S272c%} + - - -. (59")
Also using (53) we can write (54) in the form
D = 1/(1 — ary/8 cti4)2, | (54
Hence for a given nebula, i. e., for fixed ry, as {yincreases from — oo, D starts
by decreasing from unity to 0 for {, = 0, then increases to oo forty, = (ar;/8¢)3,
then decreases again and tends to unity as #, — oc. This last is the result

that the apparent velocity of recession decreases with advancing epoch of
observation?).

In this case further (24) leads to
AN = dmar? dry, (60)
which gives from (53), (54)
AN/AD = 27 (8 cfa)ty (YD — 1)2/D°P, (61)
while expressions for dN/dS, dN /dL cannot so easily be expressed explicitly
in terms of S, L respectively.

From (55) we see that as {; — — oo, S — oo monotonically. On the
other hand, from (58)

L~ ocast, -0, L -0 as il——>——oo.

1) W. H. Mc Crea and E. A. Mizyxe, Quart. Journ. of Math. 5, 73—80
1934. .
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Thus, if values of ¢; less than 0 are allowed, S is a two-valued function
of L. The reason for this is made clear by (54) which gives

D — oo as ity -0,D -0 ast; »— oo,

and D=1 for ¢{; = 41, Thus D >1 for t, > ¢, >—t,, and we have a
red-shift which tends to weaken the apparent total energy of the correspon-
ding radiation, and for the particular value ¢; = 0 all the light has been
shifted to zero frequency which gives zero luminosity and so infinite *‘di-
stance by apparent brightness”. For ¢; << —1{,, on the other hand, D <1
and we have a violet-shift which tends to increase the apparent total energy
of the corresponding radiation. Since D is small for large negative t;, the
corresponding luminosity is great, and so the distance by apparent brightness
is small.

The same effect manifests itself through the total radiation received
at A in a given range of wave-length. The radiation from B reaching A per
unit time in (4y, Ay + d4,) is, from (17),

Q' D*d A,
atifsry Ab (ehe Dok T _1) ’
making the same assumptions about the radiation of the nebulae as those
leading to (40) in MiuNE’s universe. With (60) this gives for the total energy
in this range

(62

o oo

da D'=dD " D':dD
oiitle=s + lessl )
where ¢ = 67wca)’/a®. ' 0
If b is large this is approximately
Qy (d2o/2/3) (6 T [he)™ (64)
while if b is small this is approximately
2Qy [A2o/A,%) (kT/he)’'2 1, (65)

where y = j V;da; / (e*—1). Thus (64) shows that for small wave-lengths
0

the energy increases as A~ "2, whence it follows that the total radiation
reaching A per unit time is infinite, though the amount in any range not
including A = 0 is finite. Actually, of course, this result reveals an in-
consistency in the model, since on relativity theory there could not be an
infinite energy density at any event where the curvature of space-time is
finite. The trouble arises from the fact that in assuming zero pressure
we necessarily neglect the effect of radiant energy on the curvature of
space-time.
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The physical reason for the various novel features of this model is
that the nebulae have such large accelerations in the neighbourhood of the
singular epoch ¢ = 0 that the light which at any instant reaches A from
the more distant nebulae left them before they reached ¢ = 0. Hence those
that are sufficiently remote on the r-scale appear to be approaching the
observer with velocities which are such that the consequent Doppler in-
crease in the apparent frequency of their radiation makes their apparent
luminosity increase with increasing ». Thus the background of the sky
would appear increasingly bright when observed in increasingly high fre-
quencies.

In his Joule Memorial Lecture?), Professor MILNE has recently suggested
a priory reasons for the impossibility of observing anything corresponding
to epochs before ¢t = 0. It is difficult however to find analogues of his
arguments strictly within the framework of general relativity theory.
This may be a deficiency in the latter theory, but since at the moment
we are concerned with the observational test of models proposed by this
theory it remains merely as a matter for observation to decide whether it
finds evidence of events before the singular epoch ¢ = 0. Such evidence
would be provided by the velocities of approach just discussed. Individual
nebulae having these velocities could probably not be observed on this
model, but evidence might sometime be found for the background of short
wave-length radiation.

15. Newtonian Universe. 1t has been shown by Miuxe?), and generalised
by Mc Crea and Mrung?), that there exist models of the universe which
are analagous to the general relativity ones but which obey the Newtonian
law of gravitation and Newtonian ‘“‘relativity”. It then emerges that the
differential equation for the function R (f) is the same on both theories.
Therefore the question arises as to whether models with the same R (f)
would be observationally different in the two theories. We naturally expect
divergences for “local” phenomena; for example in central orbits where
general relativity predicts the advance of the perihelion and Newtonian
theory does not. But we are here treating only large scale effects in the
smoothed out universe, and since then both theories predict the same
coordinate velocities any difference must enter in translating these into
observed velocities. That is, it must be due to different laws of propagation
of light.

1) E. A. MiLyE, Mem. and Proc. Manchester Lit. and Phil. Soc. 78, 1934.
— %) E. A. Mixg, Quart. Journ. of Math. 5, 1934. — 3) W. H. McCrEa and
E. A. Miuxg, Quart. Journ. of Math. 5, 73—84, 1934.
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For definiteness we discuss the Newtonian universe with “‘parabolic”
velocities, which is the analogue, of the EINSTEIN-DE SITTER universe
discussed in § 14. Here the Newtonian velocity v at Newtonian distance 7
from the observer at time ¢ after the singular epoch is (MILNE 1), equation (5))
v = 27r/31, giving

r=arth, (66)

where a7y is a constant for a particular nebula written to correspond to the
constants used in §14. Here ¢ is universal Newtonian time.

It will be noted that (55), (57) reduce to (66) in the limiting case of
¢ — oo. Further in classical theory the Doppler effect is given by

D = 2/2 = |1 4+ v/c|, (67)

where A is the wave-length emitted by a source having radial velocity v
away from the observer who then observes wave length 4,. Applying (67)
to (66) we have :
D = |14 2ar,/3ct's] (68)

as the analogue of (54'). For small r,, it agrees with (54°) as far as the first
term in 7, but not in higher terms. For a given nebula, 1. e., for fixed r,
as ¢ increases from — oo, D decreases from unity to 0 at ¢ = (— 2 ar,/3 c)3,
increases to oo for ¢t = 0, and decreases again towards unity as ¢ — oo.
This behaviour is qualitatively like that in the EiNsTrIN-DE SITTER uni-
verse, but owing to a different power of ¢, the epoch of observation, the
quantitative rate of change is different and constitutes in principle an ob-
servational difference between the two models.

The distance S in this model is ordinary Newtonian distance measured
to the point at which the lightsource 1s actually seen. So using (66) in an
elementary calculation the distance S at time ¢ of the nebula identified
by parameter r; is given by

t = (Sfary)™ + (3/e). (69)
This is seen to agree with (55') as far as terms in 1/c. Also the relation
between distances S, L expressed by
L=S8-D? (70)
continues to hold in this case.
If now we eliminate r; between (68), (69) we find
D =|1+28/3¢ct'ls (t— S/c)"3| (71)
=14+28/8¢ct+ 452922+ ---, (72)

1y E. A. Mizxg, Quart. Journ. of Math. 5, 64—72, 1934.
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for sufficiently small S. This is the analogue of (59') with which it agrees
as far as the second term, but again the terms in 1/c® are different. The
comparisons are made by taking the observer’s time t,in the general relativity
case to correspond to the Newtonian time {. We must however expect
a divergence between the two theories for terms in 1/¢? since purely classical
theory cannot give unambiguous results to this order. These terms are
affected by the choice of the observer with respect to whom the velocity
of light is taken to be c.

Is may be noted that in comparing models for which the parameter k
is not zero there is an additional difference. For in place of (24) the Newtonian
models will always give

AN = dmar? dry. (78)

Mrxg!) has pointed out that all the at present observable large scale
properties of the universe could have been predicted on Newtonian me-
chanics alone. The present paragraph however indicates some of the features
which should be studied, if more refined data were available, in order to
see which theory ultimately gives the best account of the facts.

16. Discussion. This paper has sought to make clear what particular
set of assumptions are being tested when comparison is made with any
particular set of observational results. The broad conclusions to which we
are led are these:

If we compare a relation like that connecting apparent size, apparent
brightness, and red-shift we are testing merely the correctness of our inter-
pretation of the observed quantities, and not any particular theory of them. -

If we make all possible observations on the.‘‘distances”, red-shifts,
and numbers of the extra-galactic nebulae we are testing the possibility of
representing them as the fundamental particles in a universe of the type (1),
and the correctness of the derivation of “world-pictures” in such a model.

In order however to choose between such models and classical ones
it will in general be necessary to test terms of the order (1/¢?), or, in virtue of
equation (78), terms in k in expressions involving the numbers of nebulae.
' The observations of ‘“‘distance’, red-shift, and number of nebulae
are used to test the theory without the assumption 6f any equations of
motion or field equations. The question arises as to whether, wn principle,
1t 1s possible to know from these observations alone if we should take k < 0,
k=0, or k> 0 in the model universe. Clearly we cannot decide on the
basis of one type of observation alone. For suppose we could observe the

1y E. A. MiLNE, Quart. Journ. of Math. 5, 64— 72 (1934).
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distance S as a funetion of the Doppler effect D. Then we could deduce a
function R (f) from the S, D-relation for any assumed value of k. This
leads us to enquire if the various functions R (%), corresponding to various
values of k, would lead to different forms of dN/dD (say). It is fairly evident
that this must be so, but it is not easy to prove generally that dN/dD
cannot be expressed as a function of S (D) and its derivatives, without
explicit mention of k. A simple example however should prove convineing.
If in some particular hypothetical model we were to find, say,

S=2R,(D—1)/(2D—1),
then, under the assumption k = 0, we should find
dN/dD = 827 « D2 (D —1)2(2D2—2D + 1)/(2 D — 1),

while, under the assumption k = — 1, we should find a different result
given by
dN/dD = 327 aD? (D — 1)3/(2 D — 1)3.

i

This is sufficient to show that observation of both distances and numbers
of nebulae as functions of their Doppler shift would determine k, and thus
show whether we should use models with elliptic, euclidean, or hyperbolic
spatial sections. Other sets of observations yielding the same information
could be proposed.

The determination of k by this means is of interest in principle, but
could not at present be used in practice. The most useful practical method
1s probably still that proposed first by Warker, and depends upon finding

" the second approximation in the observed relation between L and D, and
upon observing values of the density and pressure in the universe. The use
of these latter data does however assume the truth of the gravitational field
equations. Conversely the truth of these equations could be tested if we
could derive values of k in both ways and compare the results.

London, Imperial College of Science, December, 1984.
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