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FORMATION OF GALAXIES, STARS, AND PLANETS* 

By GUSTAF STRÖMBERG 

ABSTRACT 
The galaxy is supposed to have been formed from a primordial gas, extending to dis- 

tances greater than its present dimensions. The original motions in the gas may be of 
any kind; in any case, continuous, fluid motion will gradually be established, owing to 
viscous forces, if the mean free path of the particles of which the gas is composed is 
smaller than the dimensions of the system. The hydrodynamical laws can then be ap- 
plied. This implies also that the particles are exceedingly small (atoms or molecules). 
It is assumed that an approximately steady state of motion is developed, such that the 
velocities everywhere can be regarded as a finite, continuous, and single-valued function 
8-31-8-25 Bernhardt 11-22-34 Ls5-L58-Dec Astro-oo-Stromberg-Wilson-Wifliams 1—7 
of position, and that the terms defining the explicit dependence on the time are small 
in comparison to the inertia terms. It is shown that, if these conditions are satisfied, 
and if we follow a portion of the gas in its motion, its scalar velocity does not change 
with time. The motions—at least in the interior of the system—are such that the sys- 
tem contracts, generally or locally. At the surface there is a loss of matter owing to 
escape of particles. The contraction proceeds until the gas has developed into one or 
more bodies. If the system originally had a finite angular momentum, the bodies formed 
rotate in the same direction as the system. 

If the system has symmetry about the axis of rotation, the motions in the gas are circular 
in parallel orbits. If smaller condensations are formed before the larger ones have been 
developed, the system is very flat. The stars formed after the steady state has been 
reached also move in circles about the axis and in a common plane. Stars formed before 
this state was reached may have any rotation and any motion, but the velocity must be 
less than that of escape. 

If the relative motion of two massive condensations is circular, then, as long as the gas- 
eous envelope has sufficient density, the motions in the gas are along “surfaces of zero 
relative velocity” with constant scalar velocity. Smaller bodies formed from this en- 
velope move in the same way, but only bodies formed close to a primary can retain this 
motion after viscous forces and pressure gradients are no longer acting. It is suggested 
that retrograde sateflites are either captured or formed from the gas when in a locally 
stable state of retrograde motion corresponding to a near coalescence of the two loops in 
the known periodic orbits in the problem of three bodies. 

Application of the theory to the solar system indicates that the planets were not 
formed in situ but at great distances from the sun. The theory seems to account for the 
existence of nearly circular orbits for the massive planets and for the general behavior 
of the motions of the asteroids and the satellites. If the gas from which the planets 
were formed was once in the interior of the sun, it may have been expelled either during 
an encounter with another star or during an explosion like that of a nova. On the first 
alternative, planetary systems are very rare; on the second, they are a very common 
phenomenon in the universe. 

INTRODUCTION 

In Mount Wilson Contribution No. 4921 the writer has attempt- 

ed to explain the observed facts of stellar motions, in particular the 

* Contributions from the Mount Wilson Observatory, Carnegie Institution of Washing- 
ton, No. 503. 

1 Ap. J., 79, 460, 1934. 
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s' 

predominance of circular orbits, the asymmetry in stellar motions, 

and the relationship between the motions and the physical properties 

of the stars, as results of viscous forces acting during the general con- 

traction of a very large system, the stars being formed by local con- 

densations in the primordial gas. After the paper had been sent to 

press, LindbladV article appeared, dealing partly with the same 

problem. Lindblad studies the problem from a different viewpoint, 

but his principal results are the same, namely, that in a system with 

axial symmetry, in which the density increases toward the center, we 

may expect circular “planetary” orbits in a common plane of motion. 

He emphasizes the fact that the escape of particles at the surface 

contributes greatly to the general contraction of the system. Al- 

though he does not explicitly introduce viscous forces, his analysis 

has certain things in common with that of fluid motion. To the pres- 

ent writer it seems that the motions of the stars are determined by 

conditions existing at the time of their formation, and that the problem 

can only be studied by regarding the primordial gas as a viscous, 

compressible fluid and by finding the probable development of such a 

fluid. In doing this opportunities will arise for a further explanation 

of some of the results in Contribution No. 492. 

Let us think of a “gas” consisting of small “particles” freely 

hovering in space. The particles may be atoms, molecules, or dust 

particles; but any volume we study must include a great number of 

them, in order that statistical laws may be applied. Under what con- 

ditions may we regard such a gas as a “fluid” in the hydrodynamic 

sense? The particles are, in general, in motion, owing to the general 

attractions in the system; and we can certainly apply the concept 

of viscosity to the gas, since this implies nothing but a mixing of par- 

ticles in adjacent regions, resulting in a transfer of momenta. The 

longer the mean free path and the greater the velocity dispersion 

(“temperature”), the more freely does the mixing take place and the 

greater is the coefficient of kinematic viscosity. This circumstance 

may or may not produce “continuous” motion like that in a fluid. 

If the mean free path is much greater than the dimensions of the 

system, each particle will describe an independent orbit and no con- 

tinuous motion will result from the mixing. We must hence assume 
2M.N., 94, 231, 1934. 
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FORMATION OF GALAXIES, STARS, AND PLANETS 329 

that the mean free path is small compared with the dimensions of 

the system, which implies the assumption that the particles are ex- 

ceedingly small, probably of the size of atoms or molecules.1 The 

velocity of a particle is then little changed between collisions, which 

is a necessary condition for the applicability of the hydrodynamic 

laws.3 Under these conditions the gradient of the gas pressure is a 

force acting on the particles themselves. 

Darwin3 was probably the first to realize fully the importance of 

viscous forces in the development of cosmic systems. On account 

of the high viscosity, most writers have assumed that the final steady 

state of the fluid is a rotation as a solid, although Jeans4 has shown 

that, in the interior of the stars at least, we must have an angular 

velocity which decreases outward. The further development of a 

fluid with constant angular velocity has been extensively studied 

by many prominent investigators. In this case, the dissipation func- 

tion, which is never negative, has reached its ultimate minimum, 

which is zero. But we know from the work of Helmholtz5 and Korte- 

weg6 that, if the inertia terms can be neglected, the motions in a 

viscous, incompressible fluid, with fixed boundary conditions incom- 

patible with rigid-body motion, can reach a steady state in which 

the dissipation function is a minimum greater than zero. Lord Ray- 

leigh7 has generalized Korteweg’s theorem to include velocities of 

any size by “introducing” forces parallel to the vector product of the * 

linear and angular velocities. From these results we see that it is 

important to consider the developments in the fluid previous to the 

establishment of rigid-body motion. 

STEADY MOTIONS IN A COMPRESSIBLE VISCOUS ELUTD 

In most applications of the hydrodynamics of viscous fluids it 

has been assumed that the fluid is incompressible and that the coeffi- 

3 Cf. G. H. Darwin, “On the Mechanical Conditions of a Swarm of Meteorites and 
on Theories of Cosmogony,” Scientific Papers, 4, 391, 1889. 

86, 328, 444, 1926. 
5 “Zur Theorie der stationären Ströme in reibenden Flüssigkeiten,” Wissenschaftliche 

Abhandlungen, 1, 223, 1882. 
6 Phil. Mag. (5th Ser.), 16, 112, 1883. 

7 Ibid., 36, 354, 1893. 
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330 GUSTAF STRÖMBERG 

dent of viscosity is constant throughout the fluid. We cannot make 

either of these assumptions. Hardly anything has been done on the 

motions in compressible fluids of variable viscosity. Knowing the 

mathematical difficulties in studying, for instance, the figures of 

equilibrium for incompressible fluids of constant angular motion, it 

may at first sight seem as if we could make little or no headway in 

the more general case. But in the absence of forces at the boundary 

the fluid can adapt itself to the gravitational forces, which are the 

only forces we shall consider, and it will be found that it is then possi- 

ble to establish some general relations which are important for a 

study of the development of such a fluid. 

Using Stokes’s expressions for the stresses in a viscous fluid ele- 

ment, we can write down the equations of motion of an element of 

unit volume : 

(Du dG 
p{Dt+te 

àpxx, dpyx, dpi dp' 

dx dy dz dx 
¡jlV2u 

/ du ^\dfx /du dv\d¡ji /dw du\dfjL 
\ da: / dx \dy dx/dy \dx dz / dz ’ 

, MÖ . ö du dv dw 
r 3 dx dy dz 

(i) 

In this equation, u, v, and w are the velocity components in an inertial 

reference frame, p the density, p the static pressure, p the coefficient 

of viscosity, 0 the divergence, and pXx, pVx, pzx, the components of 

the stress tensor. The factor 1/3 occurring in p' implies the assump- 

tion that the pressure depends only upon the density and tempera- 

ture of the gas and not upon the rate of expansion.8 The other two 

equations of motion can be found by cyclic permutations. 

In the beginning the motions in the fluid may be of any type. 

Large or small vortices, vortex sheets, and vortex rings may develop 

and be dissipated, and the temperature may be distributed in an ir- 

regular fashion, giving rise to convection currents and escape of par- 

ticles of high velocity. If at any one point the gradient of the angular 

velocity is abnormally high, a large part of the gross motion will be 

8 Cf. Lamb, Hydrodynamics (3d ed., 1906), pp. 534, 586. 
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FORMATION OF GALAXIES, STARS, AND PLANETS 331 

converted into heat motion, the temperature will rise at that point, 

the coefficient of viscosity will increase, and the dissipation of me- 

chanical energy into heat motion may for a time proceed at an ac- 

celerated rate. We shall first suppose that all the heat generated by 

friction is retained as heat motion in the system and that no energy 

is lost or gained in the form of radiation or by subatomic processes. 

When the fluid is compressible, we have no reason to believe that 

any unique steady state of motion exists. For instance, the fluid 

may contract uniformly or locally in a way we cannot predict. We 

shall assume, however, that “continuous” motion will gradually be 

established. We will also limit ourselves to those cases for which a 

co-ordinate system exists such that the motions referred to this 

system are nearly, steady. For convenience we will call this a 

“steady” state of motion. When it is necessary to take into account 

the change in motion at any particular place, we shall assume that 

the terms depending on the partial time-derivatives of the properties 

of the system are everywhere small relative to the inertia terms. The 

theory is hence applicable to systems in which there are progressive 

changes in density, temperature, and pressure, as well as to systems 

the properties of which are subject to periodic changes, although 

these changes must always be sufficiently slow. On account of the 

condition of continuity and steadiness of the motion, we can regard 

the velocity vector, if referred to the proper co-ordinate system, as a 

continuous, finite, and single-valued function of position, containing 

also small terms changing slowly with the time. 

On account of the progressive change in density, it is convenient 

to reduce the equations of motion in (1) to unit mass. We write 

them in the form 

with similar equations for the y and z components, where /x, /y, and 

jz are the components of the accelerations due to pressure gradients 

and to viscous drag. 

Let us study a portion of the fluid which at time / occupies a rec- 

tangular volume element dxdydz having its center at Æ, y, 2. Calcu- 
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332 GUSTAF STRÖMBERG 

lating the rate at which work is being done by the tractions on the 

pairs of opposite faces, we obtain9 

d d 
^ (pxxU+pxyV-^pxzW)-^-^ (pyxU-\-pyyV-\-pyzw) 

+— (pzxU+pzyv+pzzw)^dx dy dz= (A+B)dx dy dz , 

in which A and B are defined by the equations : 

A = dpxx I dpyx J I idpxy j dpyy ^ ^Pzy\^ I (dpxz I dpyZ ^ dp¿ 

dx dy dz dx dy dz dx dy dz 
w (3) 

A represents the rate at which the tractions on the faces of an ele- 

ment of unit volume are doing work in increasing its kinetic and 

gravitational energy. B is the rate at which work is being done in 

producing changes in the volume and the shape of the element, which 

result in changes in its temperature, density, and pressure. We may 

also say that A is the rate at which the gross mechanical energy in- 

creases, while B is the rate at which the microscopic energy increases. 

Putting ^4+i3 = C, we see that C is the rate per unit volume at 

which the total energy is increased. 

The “surface” of the body of fluid is defined by a negligible den- 

sity; and since there are no tractions on this surface, we must have 

jJfc dx dy dz=J'—dm=o . (5) 

C is hence positive in some regions and negative in others, and on 

the average equal to zero. It is known that B is, in general, positive. 

A is thus a predominantly negative quantity. 

Multiplying equations (2) by u, v, and w, respectively, and intro- 

ducing equation (3), we obtain the equation for the conservation of 

energy : 

— (T-\-G) = ufx-\-vfy-\-,wfz= —= —<p , 
Dt P (6) 

2T = U2+V2A-W2 . 
9 Lamb, op. cit., p. 540. 
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FORMATION OF GALAXIES, STARS, AND PLANETS 333 

The function <p is predominantly positive and represents the rate 

per unit mass at which mechanical energy is dissipated after the 

steady state has been established. It can vanish everywhere only if 

there is no dissipation of energy at all; the body can then have no 

other motions than a general rotation with constant angular veloc- 

ity, although for the simple case of constant ju we can, in addition, 

have a uniform contraction or expansion. 

We shall now vary the velocity of an element of the fluid and the 

path it describes under the influence of inertia, gravity, pressure 

gradients, and viscous forces, first studying the case in which the 

proper co-ordinate system is an inertial frame. 

From the definition of T, w, v, and w, we find 

AT= %A(u2+v2+w2) = uA +vA +wA 

= u^t (Ax)+v (Ay)+w ^ (Az) = ß~t (uAx+vAy+wAz) 

(Du . x Dv K , Dw . 
-\DtAx+DtAy+DtA2 

Hence 

jT (aT+^ Ax+^¡ A^jdt=[uAx+vAy+wAz]^ . (7) 

At the fixed times ^ and t2 the variations Ax, Ay, and Az are supposed 

to vanish, and the integral must hence be equal to zero. 

Multiplying equations (2), respectively, by Ax, Ay, and As, add- 

ing, and using equation (7), we obtain 

(AT—AG-\-fxAx-\-fyAy-\-fzAz)dt=o . (8) 

According to our assumptions both G and T can be regarded as 

continuous, finite, and single-valued functions of x, y, and s, con- 
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334 GUSTAF STRÖMBERG 

taining terms changing slowly with time. We can then replace T 

and G by their mean values. We write 

T— Tm~\~ (t trn) — , 

G= (t—tm) — , 
Ot 

where ^m= (^+/2)/2, and Tm and Gm indicate average values of the 

kinetic and gravitational energies, reduced to unit mass. 

T and G may depend explicitly on the time, however, without af- 

fecting our conclusions. The important thing is that we limit our- 

selves to the cases in which the motions become more and more 

steady, so that we can regard T, when referred to a proper co-ordi- 

nate system, as being a function of x, y, 2, and t, and not of the veloc- 

ity, as in the usual Lagrangian equations. 

Equation (8) can now be written in the form 

■ (T-G+xfx+yfv+zfz)dt=o , (9) 

where A indicates a space variation, and where fx, /y, and fz are not 

varied. Equation (9) can be regarded as a condition for a minimum 

of “action” of the “kinetic potential” (T — G), the viscous forces, 

and the pressure gradients, all reduced to unit mass. 

The partial space derivatives of (9) must vanish ; and, since tT and 

t2 are arbitrary quantities, the integrands themselves must vanish. 

Hence 

d{T—G) 
dx 

d(T—G) 
dy 

d(T—G) 
dz 

~fx=0 , 

~fy= 0 7 

~fz=o . 

(10) 
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FORMATION OF GALAXIES, STARS, AND PLANETS 335 

Multiplying (10) by u, v, and w, respectively, we find, using (2) and 

(3), 

~ (T-G) = - (Jxu+fyv+fzw) = ~~=<P ■ (11) 

From (6) and (11), 

DT 
Dt 

DG 

— o 

Dt 
.= —<p 

(12) 

(13) 

In interpreting equations (12) and (13) we must remember several 

things. We have assumed dT/dt and dG/dt to be small compared to 

and to 

dT x dT x u -—\-v ~ \~w 
dx dy 

dT 
dz 

dG { dG dG 
u -—M —Vw — 

dx dy dz 

respectively; hence the equations are valid only when the variations 

in velocity and gravity at any one fixed point are slow. Second, the 

usual conception of the “velocity following an element of the fluid 

in its motion” has in our case a statistical meaning only, since we 

have no means of identifying a “fluid element” in its motion. Con- 

sequently, we cannot say anything about what happens when we 

“follow” an element during an indefinite time. We can only say that 

at any time the instantaneous velocity vector lies in a surface of 

constant scalar velocity (equation 12). The gravitational energy de- 

creases as we follow the local movements (equation 13) ; hence the 

instantaneous velocity vector cuts the surfaces of constant gravita- 

tional potential inward. The surfaces of constant scalar velocity and 

constant gravitational potential are both supposed to form a set of 

closed, non-intersecting surfaces. Since the motions are systemati- 

cally inward, the system contracts, and the surfaces of constant T 
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336 GUSTAF STRÖMBERG 

and G are slowly changing. In the limiting case when <p = o, there is 

no longer any contraction, and the system has dissolved itself into 

a single star or a group of stars, all rotating as solids. 

The loss in gravitational energy is equal to the gain in heat and 

pressure energy; none is converted into kinetic energy after the 

steady state has been established. On account of the rise in tempera- 

ture, the energy carried away at the surface by escaping particles 

may be very considerable. We thus see that viscous forces produce 

at the same time a scattering and a condensation; we confine our 

study to the contracting system. 

It is interesting to note the rapid changes in the moment of inertia 

of the system. We write the virial theorem in the form 

where / is the moment of inertia. Differentiating with regard to 

time, we obtain 

1 IPI 
2 DP 

DT , DG\ 
2 Dt + Dt) 

dm . 

Hence, from (12) and (13), 

m 
DP 

2¡j<p dm = — 2<ï> (14) 

$ is the dissipation function, which is always positive when there is 

internal motion in the system. Dealing, as we are, with the third 

time-derivative, it is clear that the moment of inertia must decrease 

rapidly when $ is finite. Since particles escape at the surface, the 

decrease is still more rapid than equation (14) indicates. 

Since the particles we are considering are built up of electric 

charges, the shake-up of the particles themselves by collisions pro- 

duces, in general, radiation, which may be released immediately, or 

later when atomic readjustments take place. Ionization may also 

take place, resulting in the liberation of electrons. In a particular 

element of the fluid, we have then several forms of energy, parts of 

which are retained in the element, while other parts are transferred 

to adjacent elements or to the surrounding space. We shall still as- 
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FORMATION OF GALAXIES, STARS, AND PLANETS 337 

sume, however, that an approximately steady state of motion like the 

one previously considered will gradually be established. 

Under this condition we find that, if there is no source of energy 

in the interior, fffCdxdydz is negative. B now includes the rate at 

which microscopic forms of energy in general are produced. Since C 

is predominantly negative, <p = (B — C)/p is still positive and numeri- 

cally larger even than in the case previously considered. We can 

still regard the average values of T and G as functions of position, and 

equations (11), (12), and (13) still hold. 

The quantity <p is the rate at which mechanical energy per unit 

mass is dissipated. The difference between the case in which radia- 

tion is produced and lost to the surrounding space and that in which 

no radiation is lost lies in the resultant distribution of temperature, 

density, and pressure, and in the greater speed at which the con- 

traction proceeds in the first case, as compared with the second. For 

the first, (p is positive even after B has reached a zero value, and con- 

traction can hence proceed after rotation as a solid has been reached 

—a fact utilized in Laplace’ theory. 

NEBULA WITH AXIAL SYMMETRY 

Let us now apply these results to the development of a nebula 

in which the density decreases from a center outward in a more or 

less regular fashion. Before a steady state is reached, a general con- 

traction occurs owing to the escape of particles of high velocity and 

to the loss of energy by radiation produced by the colhsions. The 

velocities in the central part increase gradually, and so also do the 

density, temperature, and pressure. 

If the density distribution is such that in the first approximation 

it has axial symmetry and the density decreases outward from a 

single center, viscosity will produce motions which, referred to an 

inertial reference-frame fixed to the center, will ultimately be ap- 

proximately steady. After this state is established, the velocity of 

a moving “element” remains constant (like that of a body freely 

falling in a viscous fluid) and every element has an “inward” 

velocity component. At any particular point in the fluid the velocity 

will, however, change with time. For the simple case considered, in 

which no very large secondary condensations are produced, the 
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338 GUSTAF STRÖMBERG 

system at any single instant will have a shape and a density distribu- 

tion symmetrical about an axis of rotation coinciding in direction 

with the original total angular-momentum vector. There will also be 

a plane of symmetry perpendicular to the axis of rotation. It is also 

clear that surfaces of equal pressure, temperature, viscosity, gravity, 

and scalar velocity will all be symmetrical about the axis of rotation 

and about the equatorial plane. 

If the density gradient is not exactly uniform, the general tend- 

ency toward contraction must also show as a tendency toward local 

condensation. Before the steady state is reached, local condensations 

may form and be dissolved; but after this state has been attained, 

such condensations no longer dissolve but tend to increase in density 

and mass, provided the secondary condensations are so small that 

the disruptive effects of tidal forces can be neglected. The theory 

can hence be applied to the formation of stars, but caution must be 

used when applying it to very extended stellar groups. As long as 

the density around the condensations is everywhere still finite, the 

motion of an element of the fluid is affected by the viscous forces 

and the pressure gradients. During the gradual accretion of the 

condensation, the atmosphere around it receives a net outward 

momentum corresponding to the decrease in the pressure gradient. 

When ultimately the density outside the condensation vanishes and 

the viscous forces and the pressure disappear outside the conden- 

sations, equations (12) and (13) are still valid, with a value of <p 

outside the condensation equal to zero, provided free particle mo- 

tion can take place along surfaces of constant gravitational energy. 

Since condensations formed outside the central plane will gradually 

sink into this plane, the final orbits will all lie in this common 

plane of motion. For a density distribution symmetrical about an 

axis, the final orbits of stars developed from the gas are, hence, cir- 

cles in a common plane perpendicular to the axis of symmetry. 

The angular velocity f at a distance r from the axis of symmetry 

is given by the equation 

2f = 
dv2_L_V2 
dr r ? (iS) 

where v2 is the velocity perpendicular to the radius vector. For the 

limiting case f equal to zero, v2 = c/r, which represents the usual con- 
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FORMATION OF GALAXIES, STARS, AND PLANETS 339 

ditions of motion about a straight vortex core when the fluid is kept 

immovable at “infinity.” But in the present case there are no forces 

acting on the “boundary” of the system, the velocities are not zero 

at the “boundary,” and the rate at which v2 decreases with r is less 

than in the usual case. Putting, approximately, ev2 = c/rn, we have in 

general ^<1, with the result that f is everywhere positive—that is, 

the local rotation is everywhere in the same direction as the general 

rotation. The exponent n decreases with the time, since in the other 

limiting case, namely, that of a motion as a solid, we have n = —1. 

If a star is formed before the steady state has been established, 

it may have any rotation. It may also have a velocity differing 

greatly from circular motion; and it may have a velocity component 

perpendicular to the plane of symmetry. The bodies so formed, as 

explained in Contribution No. 492, are the high-velocity stars in 

the galaxy and the asteroids in the solar system. The steady state 

may never be completely established, but may, nevertheless, serve 

as a useful standard indicating a general tendency. 

It is important to note that the rate at which viscous forces can 

reduce space gradients in the angular velocity depends upon the 

density and the dispersion in velocity of the particles, that is, upon 

the “temperature” of the gas, and also upon the mean free path and 

the dimensions of the system. When the condensations which later 

become stars are formed, the nebula is supposed to be many times 

greater than after the stars are developed; further, the temperature 

is supposed to be very low. The low temperature, coupled with the 

very small density of the system, makes the rate at which viscous 

forces can reduce the velocity gradient very small, in spite of the long 

free path. It is not surprising, therefore, that the nebulae do not 

rotate as solids. The same conclusion applies to the gas forming the 

solar system. According to the present picture, the dimensions of 

this system were originally of about the same order as interstellar 

distances, and the planets were not formed in situ but at much great- 

er distances from the sun than they are now. 

It is very probable that condensations with masses much smaller 

than those of stars or planets are first formed, and that these conden- 

sations later combine into stars, planets, or satellites. If this is so, 

the condensations will tend to sink into the central plane and the 
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340 GUSTAF STRÖMBERG 

system will become very much more flattened than would be the case 

when no small condensations are formed. The small condensations 

may well be identical with the “planetesimals” of Moulton and 

Chamberlin. A great number of these condensations have not yet 

combined with larger bodies; they still exist and are often seen indi- 

vidually as meteors and in groups as comets or showers of meteors. 

Whether the bodies Anally formed will have masses equal to those of 

the particles in Saturn’s ring, or of the order of those of satellites, 

planets, or stars, cannot be predicted. This detail depends upon the 

degree of regularity in the original distribution of density and tem- 

perature and the extent of the regions of uniform motion at the time 

these bodies were formed. 

TWO CONDENSATION CENTERS 

The case involving two condensation centers with masses of the 

same order of magnitude can also be studied, provided their relative 

motion is nearly circular. As long as there is still intervening gas, 

gravitational energy is dissipated and the system contracts. A time 

will come, however, when the two condensations can be regarded as 

separate bodies, which still contract although their mutual distance 

no longer systematically decreases. If a small condensation has been 

formed slowly and has gradually sunk into the equatorial plane, it 

will also move, at least approximately, in the common plane of mo- 

tion. We introduce a co-ordinate system rotating with the constant 

angular velocity w of the two large condensations, the origin being 

at the center of mass of the system. Denoting co-ordinates and 

velocities referred to the rotating system with subscripts, we find as 

before : 

DT1 

Dt o ; — <p<o 
> 

2T1=u2
1-\-v2

ï-\-w2
1 , r2 = xl-\-y\ = x2jry2 . 

(i6) 

These equations determine the changes in the kinetic and gravita- 

tional energies of an element of the gas, reduced to unit mass. The 

velocity vector always lies on a surface of constant scalar velocity. 

The surfaces G — co2/*2/2 = const, are analogous to the surfaces of “zero 
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relative velocity’J in the restricted problem of three bodies. It has 

been shown by Miss Rein10 that the structure of these surfaces, when 

the bodies are surrounded by an attracting mass of gas or dust, is 

completely analogous to Hill’s surfaces. We can say that the motions 

are such that at a particular instant they nearly follow surfaces 

defined by the equation G — oPr'/2 = const., that these surfaces con- 

tract, and that the scalar velocity along any one of these surfaces is 

constant. In the end, all three bodies rotate in the same direc- 

tion as the system, and the two massive bodies move in fixed circles 

about one another. The “satellite,” however, cannot in general move 

along a surface G —a)V/2 = const., since it has now a free-particle 

motion, and the only periodic orbits inclosing one of the attract- 

ing centers are of another type. Motions along the foregoing sur- 

faces are possible only so long as viscous forces and pressure gradi- 

ents are still acting. Close to the planet, however, where the per- 

turbations are small, we may have free-particle motions in direct, 

nearly circular orbits, with no secular changes in the size of the orbit 

—a well-known theorem in the theory of perturbations. Farther out, 

a satellite moving freely in a direct orbit would be so greatly dis- 

turbed by the sun that it would sooner or later come very close to its 

primary and be involved in the gaseous envelope and probably 

drawn in or disrupted. If it moved in a retrograde orbit closely re- 

sembling one of the known periodic orbits, it could keep on moving 

without ever coming too close to its primary. If the orbit were retro- 

grade in the non-rotating system, such a satellite could not have been 

formed after the steady state described had been established, since 

the motions in the layer between direct and retrograde motion do 

not represent minimum action. It would either have been formed be- 

fore a steady state was reached or have been captured by the aid of 

frictional forces in the gas surrounding the primary. But these forces 

must be so adjusted that they would take away just enough kinetic 

energy from the satellite to make the orbit nearly periodic. Since 

so fine an adjustment is improbable—just as circular motions are 

improbable without the aid of viscous forces—and since several 

retrograde outer satellites exist, it seems possible that a locally stable 
10 “On the Masses of Condensations in Dust Nebulae,” Astron. Jour. Soviet Union, 

10, 4, 1933- 
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342 GUSTAF STRÖMBERG 

state of fluid motion exists, corresponding to retrograde motion along 

surfaces of zero relative velocity. For a limited region we can then 

also regard the velocity as a continuous, single-valued function of 

position. 

Nothing is known about periodic orbits with high inclinations to 

the plane of motion of the attracting centers. Hence we cannot say 

anything about the formation of the satellites of Uranus and Nep- 

tune, except that motions parallel to the ecliptic had not yet been 

established when the satellites were formed. 

ROTATION PERIODS IN THE SYSTEM OE SATURN 

The present theory may account for the peculiar fact that the 

inner ring of Saturn has a shorter time of rotation than the surface of 

the planet. The difficulty of explaining this fact from the stand- 

point of Laplace’ theory has been emphasized by Moulton.11 In the 

present picture, when Saturn was greater than at present, its internal 

motion deviated much more from that of a solid than it does now. 

It was also surrounded by a flat disk of gas in the equatorial plane 

before the solid particles in the ring had completely condensed. Dur- 

ing the condensation process an outward gas pressure was active, 

and its disappearance was accompanied by an increase in tte circular 

motion of the ring, which must be retained, according to equations 

(12) and (13), even though the pressure gradually disappears. The 

circular velocity must hence increase until free-particle motion is 

established. This conclusion does not contradict equation (12), since 

the matter in the “element” whose motion we are following is con- 

tained partly in the condensation and partly in the surrounding gas. 

On the surface of the planet when still in a gaseous state, we did 

not have free-particle motion, but a balance between gravitational 

forces on the one hand and centrifugal forces and pressure gradients 

on the other. In the present theory the angular momentum is not 

conserved, since the escape of particles in the atmosphere carries 

away a large part of this momentum. When the surface has become 

more or less solidified, we may well have a velocity at the surface 

considerably smaller than the free circular motion, as is now the case 

on the earth. 
11 Ap. J., ii, in, 1900. 
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CHANGES IN MOTION AFTER THE FORMATION OF THE STARS 

The present study forms a complement to the valuable work of 

Bok12 about the stability of moving star clusters. He has shown that 

such clusters tend to disperse, owing to the effect of tidal forces from 

an attracting central mass in the galaxy. The theory here outlined 

shows that previous to the formation of the stars and the stellar 

groups we have a general tendency toward concentration of matter 

into stars moving in nearly parallel, circular orbits about the center 

of the galaxy. Bok’s theory hence refers to the later changes in the 

motions of the stars after their formation. 

FORMATION OF HEAVY ATOMS AND OF PLANETS 

An interesting phase of the present theory may be mentioned 

here. We are inclined to think that heavy atoms are formed from 

hydrogen, neutrons, and electrons in the hot interior of the stars. 

The matter in the earth and the planets is supposed to have been 

ejected by the sun after the heavier atoms were formed. But in the 

present picture the matter in the earth was never in the melting-pot 

of the sun or of any other star after the steady state of motion had 

been established. But perhaps heavy atoms existed in the primordial 

gas, or were formed by processes not requiring excessive heat; or the 

sun may have exploded like a nova long ago, and what we have been 

studying are the processes following this cataclysm. We have some 

evidence that nova outbursts are normal phenomena among the stars. 

If we admit that heavy atoms can be formed only in the inte- 

rior of stars, the matter of which the planets are built up must have 

been ejected by the sun, either as a nova outburst or as a consequence 

of a close encounter with another star. In the first case, planetary 

systems like that of the sun are very common. In the second case, 

they are extremely rare phenomena in the universe. In whatever 

way the cataclysm happened, it does not affect the present picture 

of development, which deals only with changes occurring after a 

steady state of motion was last established. 

Carnegie Institution of Washington 
Mount Wilson Observatory 

August 1934 . 

12 Harvard Circ., No. 384, 1934. 
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