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A Homogeneous Universe of Constant Mass and Increasing Radius 
accounting for the Radial Velocity of Extra-galactic Nebulœ. By 
Abbé G. Lemaître. 

(Translated by permission from “Annales de la Société scientifique de Bruxelles,” 
Tome XLVII, série A, première partie.) 

i. Introduction. 

According to tbe theory of relativity, a homogeneous universe may 
exist such that all positions in space are completely equivalent ; there 
is no centre of gravity. The radius of space R is constant ; space is 
elliptic, i.e. of uniform positive curvature I/R2 ; straight lines starting 
from a point come back to their origin after having travelled a path of 
length ttR ; the volume of space has a finite value 7t-2R3 ; straight lines 
are closed lines going through the whole space without encountering 
any boundary. 

. Two solutions have been proposed. That of de Sitter ignores the 
existence of matter and supposes its density equal to zero. It leads to 
special difficulties of interpretation which will be referred to later, but 
it is of extreme interest as explaining quite naturally the observed 
receding velocities of extra-galactic nebulæ, as a simple consequence 
of the properties of the gravitational field without having to suppose 
that we are at a point of the universe distinguished by special properties. 

. The other solution is that of Einstein. It pays attention to the 
evident fact that the density of matter is not zero, and it leads to a 
relation between this density and the radius of the universe. This 
relation forecasted the existence of masses enormously greater than any 
known at the time. These have since been discovered, the distances 
and dimensions of extra-galactic nebulæ having become known. From 
Einstein’s formulæ and recent observational data, the radius of the 
universe is found to be some hundred times greater than the most 
distant objects which can be photographed by our telescopes. 

Each theory has its own advantages. One is in agreement with the 
observed radial velocities of nebulæ, the other with the existence of 
matter, giving a satisfactory relation between the radius and the mass 
of the universe. It seems desirable to find an intermediate solution 
which could combine the advantages of both. 

.At first sight, such an intermediate solution does not appear to 
exist. A static gravitational field for a uniform distribution of matter 
without internal stress has only two solutions, that of Einstein and that 
of de Sitter. De Sitter’s universe is empty, that of Einstein has been 
described as “ containing as much matter as it can contain.” It is 
remarkable that the theory can provide no mean between these two 
extremes. 

The solution of the paradox is that de Sitter’s solution does not 
really meet all the requirements of the problem. Space is homogeneous 
with constant positive curvature ; space-time is also homogeneous, for 
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484 Abbé G. Lemaître, A Homogeneous Universe xci. 5, 

all events are perfectly equivalent. But the partition of space-time 
into space and time disturbs the homogeneity. The co-ordinates used 
introduce a centre. A particle at rest at the centre of space describes 
a geodesic of the universe ; a particle at rest otherwhere than at the 
centre does not describe a geodesic. The co-ordinates chosen destroy 
the homogeneity and produce the paradoxical results which appear at 
the so-called “ horizon ” of the centre. When we use co-ordinates and 
a corresponding partition of space and time of such a kind as to preserve 
the homogeneity of the universe, the field is found to be no longer 
static ; the universe becomes of the same form as that of Einstein, with 
a radius no longer constant but varying with the time according to a 
particular law. 

In order to find a solution combining the advantages of those of 
Einstein and de Sitter, we are led to consider an Einstein universe 
where the radius of space or of the universe is allowed to vary in an 
arbitrary way. 

2. Einstein Universe of Variable Radius. Field Equations. 
Conservation of Energy. 

As in Einstein’s solution, we liken the universe to a rarefied gas 
whose molecules are the extra-galactic nebulæ. We suppose them so 
numerous that a volume small in comparison with the universe as 
a whole contains enough nebulæ to allow us to speak of the density 
of matter. We ignore the possible influence of local condensations. 
Furthermore, we suppose that the nebulæ are uniformly distributed so 
that the density does not depend on position. When the radius of the 
universe varies in an arbitrary way, the density, uniform in space, 
varies with time. Furthermore, there are generally interior stresses, 
which, in order to preserve the homogeneity, must reduce to a simple 
pressure, uniform in space and variable with time. The pressure, being 
two-thirds of the kinetic energy of the “ molecules,” is negligible with 
respect to the energy associated with matter ; the same can be said of 
interior stresses in nebulæ or in stars belonging to them. We are thus 
led to put p — o. 

Nevertheless it might be necessary to take into account the radiation- 
pressure of electromagnetic energy travelling through space ; this 
energy is weak but it is evenly distributed through the whole of space 
and might afiord a notable contribution to the mean energy. We shall 
thus keep the pressure p in the general equations as the mean radiation- 
pressure of light, but we shall write p = o when we discuss the applica- 
tion to astronomy. 

We denote the density of total energy by p, the density of radiation 
energy by 3p, and the density of the energy condensed in matter by 
8 = p — ip. We identify p and — p with the components T4

4 and 
Tj1 = T2

2 = T33 of the material energy tensor, and 8 with T. Working 
out the contracted Biemann tensor for a universe with a line-element 
given by 

ds2, = — B.2cfo-2 + dfi, . . . . (1) 
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where da is the elementary distance in a space of radins unity, and R 
is a function of the time t, we find that the field equations can be written 

R'2 3 
3^2 jpi ^ Kp • • ♦ (2) 

and 
R" R'2 i , 

2 R + R2 + R2 ~ ^ ^ ^ 

Accents denote derivatives with respect to t. X is the unknown cosmo- 
logical constant, and k is the Einstein constant whose value is 1 *87 . io~27 

in C.G.S. units (877 in natural units). 
The four identities giving the expression of the conservation of 

momentum and of energy reduce to 

§+^(p+í>) = ° .... (4) 

which is the energy equation. This equation can replace (3). As 
V = 772R3 it can be written 

d(Yp) + pdY = o, . . . . (5) 

showing that the variation of total energy plus the work done hy radiation- 
pressure in the dilatation of the universe is equal to zero. 

3. Universe of Constant Mass. 

If M = VS remains constant, we write, a being a constant, 

As 

we have 
p = S + 3£> 

3d(_pR3) + 3^R2dR = o 

and, ß being a constant of integration, 

ß 
^ = R4 • • 

and therefore 

By substitution in (2) we have 

_ a, 3^ 
Kp R3 + R4 

a 

and 

R'2 _ À i Kp   À I 

R2 = 3 - R2 + 7 ~ 3 ~ R* 3R3 ‘ R4 + ß 

t = 
ÆR 

AR2 , « j8 

3 1 + 3® + R2 

(6) 

(7) 

(8) 

(9) 

(10) 

(ii) 
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486 Abbé G. Lemaître, A Homogeneous Universe xci. 5, 

When a and ß vanish, we obtain the de Sitter solution in Lanczos’s 
form— 

E = (12) 

The Einstein solution is found by making ß = o and E constant. 
Writing E' = E" = o in (2) and (3) we find 

or 

and from (6) 

_3_ 
E2 X+ Kp 

Vx kS R2 

a = k8W = —7=. 
VX 

• (13) 

• (H) 

The Einstein solution does not result from ( 14) alone ; it also supposes, 
that the initial value of E' is zero. If we write 

A = 

we have for ß = o and a = 2E0 

Ko2 ’ 

dH 

« - R0V3jE_ RoVr+2r0 ' 

R 

• (iS> 

• (16) 

For this solution the two equations (13) are of course no longer valid. 
Writing 

we have from (14) and (15) 

k8 Re2 

E3 == Ee2E0 

• (i7> 

. (i8> 

The value of Ee, the radius of the universe computed from the mean 
density by Einstein’s equation (17), has been found by Hubble to be 

re = 8*5 x 1028 cm. = 27 x 1010 parsec. . . (19) 

We shall see later that the value of E0 can be computed from the radial, 
velocities of the nebulæ ; E can then be found from (18). 

Finally, we shall show that a serious departure from (14) would 
lead to consequences not easily acceptable. 

4. Doppler Effect due to the Variation of the Radius of the Universe. 

From (1) we have for a ray of light 

cr2 ~ == 
f1* dt 

L Ë 
(20) 

where oq and a2 relate to spatial co-ordinates. We suppose that the 
light is emitted at the point oq and observed at oq. A ra7 light 
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emitted slightly later starts from cr1 at time t± + 8^ and reaches cr2 at 
time £2 + S¿2. We have therefore 

_ S*i = 8^2 _ _ Rg 

R2 Rx 0, 8*! 1 “ Rx 
(21) 

where Rj and R2 are the values of the radius R at the time of emission 
and at the time of observation ¿2. If 8^ is the period of the emitted 
light, S*2 is the period of the observed light. Now 8*! is also the period 
of light emitted under the same conditions in the neighbourhood of the 
observer, because the period of light emitted under the same physical 
conditions has the same value everywhere when reckoned in proper 
time. Therefore 

v _ S¿2_ _ R2 

c ~ ~ 1 “ R^ 
(22) 

is the apparent Doppler effect due to the variation of the radius of the 
universe. It equals the ratio of the radii of the universe at the instants of 
observation and emission, diminished by unity. 

v is that velocity of the observer which would produce the same 
effect. When the light source is near enough, we have the approximate 
formulæ 

v R2 — Rj R' R' 

C - ~RT~ = IT = Rdi = Rr 

where r is the distance of the source. We have therefore 

1 
R cr ' 

From a discussion of available data, we adopt 

Rr 

— = o*68 x io-27 cm.-1 

xi 
and find from (16) 

R' 

y - R ‘ 

where 

Now from (18) and (26) 

R0
2 = ReY . 

and therefore /R'\2 1 — 3»/2 + z«/3 

3VRyRE =—f— • 

With the adopted numerical data (24) and (19), we have. 

(23> 

(24) 

(25) 

(26) 

(27) 

(28) 

u — 0*0465 
giving 

R = ReVí/ = o*2i5RE = 1*83 x io28 cm. = 6 x xo9 parsecs. 
R0 = Ri/ = Re^ = 8*5 x io26 cm. = 2*7 x io8 parsecs. 

= 9 x io8 light-years. 

34 
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488 Abbé G. Lemaître, A Homogeneous Universe 

Integral (16) can easily be computed. Writing 

x .2 _ E 

it can be written 
E + 2E0 

xci. 5, 

(29) 

t — 
4-x2dx 

x2)(sx2 - 1) 

= R0V 3 log ^ + E0 log 
I — X 

V3Z- 

V~ix + 
+ c (30) 

if a is the fraction of the radius of the universe travelled by light during 
time t, we have also 

dt 

= 'r = 
=log^Hi + C' 

3* - 1 Vix + i 
(31) 

The following table gives values of a and t for different values of 
R/Rq : 

Table.—Values of o and L 

K 
1 

2 

3 
4 

5 
10 

15 
20 

25 
00 

ÏC 

~4'3I 

-3*42 
-2*86 
-2*45 
— I‘2I 
-0*50 

0*00 

°'39 
00 

Badiana 
— 00 

-0*889 
-0-521 

-0*359 
—0*266 
-0*087 
—0*029 

0*000 
0-017 

0-087 

Degrees. 
— 00 

“Si 
-30 
- 21 

“IS 
- 5 
- 1-7 

o-o 

i 

5 

V 
c 

19 
9 

5Í 
4 

3 
I 
1 -5- 

The constants of integration are adjusted to make a and t vanish for 
E/E0 = 20 in place of 21*5. The last column gives the Doppler effect 
computed from (22). The approximate formula (23) would make 
v/c proportional to r and thus to a. The error is only 0*005 for v/c = 1. 
The approximate formula may therefore be used within the limits of 
the visible spectrum. 

5. The-Meaning of Equation (14). 

The relation (14) between the two constants À and a has been 
adopted following Einötein’s solution. It is the necessary condition 
that the quartic under the radical in (11) may have a double root E0 

giving on integration a logarithmic term. For simple roots, integration 
would give a square root, corresponding to a minimum of E as in de 
Sitter’s solution (12). This minimum would generally occur at time 
of the order of E0, say 109 years^.e. quite recently for stellar evolution. 
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Mar. 1931. of Constant Mass and Increasing Radius, 489 

If the positive roots were to become imaginary, the radius would vary 
from zero upwards, the variation slowing down in the neighbourhood 
of the modulus of the imaginary roots. In both cases the time of 
variation of E in the same sense would be of the order of R0 if the 
relation between À and a were seriously different from (14). 

6. Conclusion, 

i 

We have found a solution such that 
(i°) The mass of the universe is a constant related to the cosmo- 

logical constant by Einstein’s relation 

27T2 _ I 

kM R0* 

(20) The radius of the universe increases without limit from an 
asymptotic value R0 for ¿ = — 00. 

(30) The receding velocities of extragalactic nebulæ are a cosmical 
effect of the expansion of the universe. The initial radius R0 

can be computed by formulae (24) and (25) or by the approxi- 
mate formula 

R 0 
rc 

w/3 

’ This solution combines the advantages of the Einstein and de Sitter 
solutions. 

Note that the largest part of the universe is for ever out of our reach. 
' The range of the 100-inch Mount Wilson telescope is estimated by 
. Hubble to be 5 x 107 parsecs, or about R/200. The corresponding 
. Doppler effect is 3000 km./sec. Eor a distance of o-oS/R it is equal to 

unity, and the whole visible spectrum is displaced into the infra-red. It 
is impossible to see ghost-images of nebulæ or suns, as even if there were 

1 no absorption these images would be displaced by several octaves into 
the infra-red and would not be observed.. 

It remains to find the cause of the expansion of the universe. 
; We have seen that the pressure of radiation does work during the 

expansion. This seems to suggest that the expansion has been set up 
by the radiation itself. In a static universe fight emitted by matter 
travels round space, comes back to its starting-point, and accumulates 
indefinitely. It seems that this may be the origin of the velocity of 
expansion R'/R which Einstein assumed to be zero and which in our 

;; interpretation is observed as the radial velocity of extra-galactic 
; nebulæ. '■i' 
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The Expanding Universe. By Abbé G. Lemaître. 

{Communicated by Sir A. S. Eddington.) 

I. Introduction. 

Eddington has suggested that the expansion of a universe in 
equilibrium may be started by the formation of condensations. A 
preliminary investigation by W. H. McCrea and G. C. McVittie seems 
to point out an effect of opposite sense according to the nature of the 
condensations.* I find that the formation of condensations and the 
degree of concentration of these condensations have no effect whatever 
on the equilibrium of the universe. Nevertheless, the expansion of the 
universe is due to an effect very closely related to the formation of 
condensations, which may be named the “ stagnation ” of the universe. 
When there is no condensation, the energy, or at least a notable part 
of it, may be able to wander freely through the universe. When 
condensations are formed this free kinetic energy has a chance to be 
captured by the condensations and then to remain bound to them. 
That is what I mean by a “ stagnation ” of the world—a diminution 
of the exchanges of energy between distant parts of it. 

In order to investigate the effect of condensations in a universe 
homogeneous in the mean, I consider a definite condensation of supposed 
spherical symmetry, and I average the outside condensations so that 
they also may be thought of as having spherical symmetry. The 
condensation under investigation is limited by a spherical shell which 
is the neutral zone between it and neighbouring condensations ; a 
point on this neutral zone is not more within the gravitational influence 
of the interior condensation than of the condensations outside. The 
expansion of the neutral zone gives a measure of the expansion of the 

* Sir A. S. Eddington, M.N., 90, 668, 1930; W. H. McCrea and G. C. McVittie, 
M.N., 91, 128, 1930; G. C. McVittie, M.N., 91, 274, 1931. 
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