## CHAPTER VIII

## THE DISCOVERY OF ECLIPSING STARS

It has long been known that there must be a considerable number of eclipsing systems among the short-period spectroscopic binaries, and the first two stars,  $\beta$  Aurigae and  $\delta$  Orionis, which I tested in 1910, turned out to be eclipsing variables. We now have considerably more evidence from the numerous stars that have since been observed. In his study of spectroscopic binaries Otto Struve has exhibited in several diagrams for different spectral classes the relation between the semi-amplitude K of the velocity-variation and the logarithm of the period. As all of the data in regard to eclipsing stars was not available to Struve, it seems worth while to reconstruct his diagrams for the O, B, and A stars, and to show the relation between the eclipsing and non-eclipsing systems.

To that end there are brought together in Table I the stars which may be considered to have been detected as variable from the tests of spectroscopic binaries. There are included the previously known eclipsing stars brighter than magnitude 6.5, which would presumably have been on the radial-velocity programs independently of their large light variation. Stars south of declination —30° are omitted from this discussion. In addition to the eclipsing stars are several ellipsoidal or continuous variables, and the two so-called Cepheids, \( \beta \) Cephei and 12 Lacertae. variables are of spectrum B or A, with the exception of  $\zeta$  Andromedae which is the only star of later type that I have been able to establish as a regular ellipsoidal variable. The list contains twenty-nine stars, of which eight were discovered visually, one by Hertzsprung from photographic tests, five by Guthnick, while fifteen are the result of the present work. It is believed that no question can be raised as to the variability of any of these stars. I have omitted several objects as insufficiently tested, among them a Virginis<sup>2</sup> for which there is no good comparison star available. Another case is H. R. 8427 which seems to have a continuous variation with range of 0.10, but this needs further study. A star in the list not previously announced as variable is H. R. 2027, 31 Camelopardalis, of which we now have observations on more than thirty nights in 1924-1927. This is an eclipsing system with a primary minimum of 0<sup>M</sup>20, a secondary of 0<sup>M</sup>10, and ellipsoidal variation between minima.

As the list in Table I is used to show the high probability of light-variation among the spectroscopic binaries, the inclusion of any other stars would simply increase the proportions of variables.

<sup>&</sup>lt;sup>1</sup>Monthly Notices, 86, 63, 1925.

<sup>&</sup>lt;sup>2</sup>Astrophysical Journal, 39, 475, 1914.

TABLE I VARIABLE STARS

| Boss | H. R. | Star            | Mag. | Spec.      | P                    | $K_1$           | Remarks                            |  |
|------|-------|-----------------|------|------------|----------------------|-----------------|------------------------------------|--|
| 46   | 65    | Boss 46         | 6.12 | В0         | $d \\ 3.52$          | km/sec.<br>217  | Two spectra. Guthnick              |  |
| 150  | 192   | 21 Cassiop.     | 5.59 | A2         | 4.47                 | 72              | I wo spectra. Gutiffick            |  |
| 164  | 215   | ζ Androm.       | 4.30 | Ko         | 17.77                | 26              | Ellipsoidal                        |  |
|      | 815   | RZ Cassiop.     | 6.4  | AO         | 1.20                 | 69              | Visual                             |  |
| 708  | 936   | β Persei        | 2.1  | B8         | 2.87                 | $\frac{69}{42}$ | Visual                             |  |
| 844  | 1131  | o Persei        | 3.94 | Bi         | 4.42                 | 112             | Two spectra. Continuous, Guthnick  |  |
| 920  | 1239  | λ Tauri         | 3 3  | B3         | 3.95                 | 56              | Two spectra. Visual                |  |
|      |       | H. D. 25833     | 6.61 | B3         | $\frac{3.93}{2.03}$  | 165             | Two spectra.                       |  |
| 986  | 1324  | b Persei        | 4.57 | $^{ m A2}$ | 1.53                 | 42              | Two spectra. Ellipsoidal           |  |
| 1159 | 1567  | $\pi^5$ Orionis | 3.87 | B3         | 3.70                 | 58              | Ellipsoidal                        |  |
| 1301 | 1788  | n Orionis       | 3.44 | Bi         | 7.99                 | 145             | Two spectra                        |  |
| 1339 | 1852  | δ Orionis       | 2.48 | Bo         | 5.73                 | 100             | 1 wo spectra                       |  |
| 1349 | 1868  | VV Orionis      | 5.37 | B2         | 1.48                 | 132             | Photographic, Hertzsprung          |  |
| 1452 | 2027  | 31 Camelop.     | 5.26 | ÃÔ         | 2.93                 | 76              | Two spectra                        |  |
| 1478 | 2088  | β Aurigae       | 2.07 | A0p        | 3.96                 | 109             | Two spectra                        |  |
| 1607 | 2291  | Boss 1607       | 5.50 | A3         | 9.94                 | 67              | Guthnick                           |  |
| 1646 | 2372  | WW Aurigae      | 5.98 | AO         | 2.52                 | 116             | Two spectra. Visual                |  |
| 3371 | 4915  | α Can. Ven.     | 2.90 | A0p        | 5.50                 | 22              | Continuous, Guthnick               |  |
| 3825 | 5586  | δ Librae        | 4.84 | A0P        | $\frac{3.30}{2.33}$  | 76              | Visual                             |  |
| 3961 | 5793  | α Coronae       | 2.31 | A0         | 17.36                | 35              | Visuai                             |  |
| 1    | 6414  | U Ophiuchi      | 5.76 | B8         | 1.68                 | 180             | Visual                             |  |
| 4388 | 6431  | u Herculis      | 4.6  | B3         | $\frac{1.03}{2.05}$  | 100             | Two spectra. Visual                |  |
| 4776 | 7106  | β Lyrae         | 3.36 | B8p        | 12.91                | 181             | Two spectra. Visual                |  |
| 5018 | 7474  | σ Aquilae       | 5.17 | B3         | 1.95                 | 164             | Two spectra. Visual<br>Two spectra |  |
| 5070 | 7567  | Boss 5070       | 5.62 | B2         | 12.43                | 94              | I wo spectra                       |  |
| 5532 | 8238  | β Cephei        | 3.32 | Bi         | 0.190                | 17              | Cepheid, Guthnick                  |  |
| 5856 | 8640  | 12 Lacertae     | 5.18 | B2         | 0.193                | 17              | Cepheid Cepheid                    |  |
| 5996 | 8864  | 9 Androm.       | 5.90 | A3         | $\frac{0.195}{3.22}$ | 74              |                                    |  |
| 6046 | 8926  | 1 H. Cassiop.   | 4.89 | B3         | 6.07                 | 59              |                                    |  |
| 0010 | 0020  | 1 11. Oussiop.  | 1.00 | 23         | 0.01                 | 00              |                                    |  |

In Figure 9 are included the Class-B spectroscopic binaries for which orbits are given in Moore's Third Catalogue, with distinguishing marks for variables, non-variables, and stars not tested photometrically. The boundary curve is the same as drawn by Struve. As he pointed out, the region in the diagram in which to look for eclipsing stars is at the upper left where the components must be near together and the inclination high, unless the mass is unusually great. Actually there are five eclipsing systems in this group, a proportion of 100 per cent for these favorable cases. The two stars above the curve are β Lyrae and Plaskett's massive star; the latter turns out to be constant in light. There are three O stars, all non-variable, which have been included with Class B.

The A stars in Figure 10 show smaller orbital velocities, as is well known, but still in the upper part of the figure are a fair number of variables.

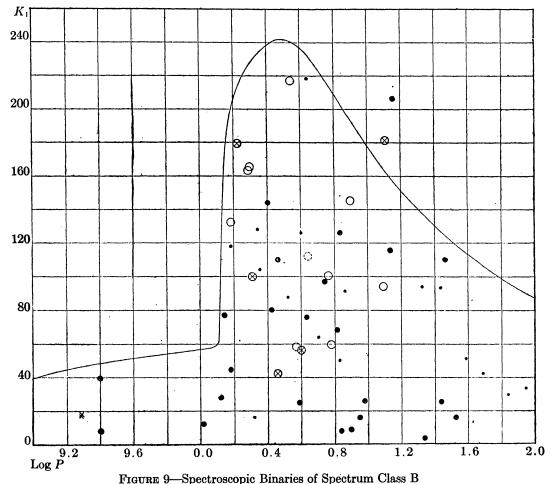



FIGURE 9—Spectroscopic Binaries of Spectrum Class B

Open circles —Eclipsing systems discovered photo-electrically. Crossed circles—Eclipsing systems discovered visually. Broken circles—Ellipsoidal or continuous variables.

Crosses

-Cepheid variables. -Stars tested and found constant in light.

Large dots Small dots -Stars not yet tested.

TABLE II

| T/                                                          | Classes               | B and O               | Class A                               |                                       |
|-------------------------------------------------------------|-----------------------|-----------------------|---------------------------------------|---------------------------------------|
| $K_1$                                                       | Stars Tested          | Variable              | Stars Tested                          | Variable                              |
| km/sec.<br>200-240<br>160-200<br>120-160<br>80-120<br>40-80 | 2<br>4<br>4<br>9<br>8 | 1<br>4<br>2<br>4<br>4 | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |
| Total, 40–240                                               | 27                    | 15                    | 26                                    | 9                                     |
| 0- 40                                                       | 14                    | 2                     | 15                                    | 2                                     |

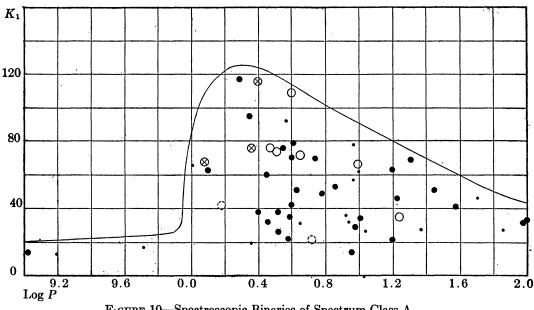



Figure 10—Spectroscopic Binaries of Spectrum Class A (See legend of Figure 9.)

These results are also in Table II where it is seen that for stars with  $K_1$  greater than 40 km/sec. the proportion of variables is over one-half for the B stars, and about one-third for the A's. Of the four variables with  $K_1$  less than 40 km/sec., only  $\alpha$  Coronae with a period of 17.360 days is an eclipsing system, giving one such star out of about thirty tested. This is just what might have been expected; the large and massive companions are easily discovered, first from their gravitational effect, and then because of the probability of eclipses, but a small or distant second body is very difficult of detection.

If the companion of  $\alpha$  Coronae were only half projected on the bright star at greatest eclipse the loss of light could still be measured, and as the radius of the primary is one-twentieth that of the relative orbit it readily follows that the probability of such an eclipse, or of one of greater extent, is also one-twentieth<sup>3</sup>. We should therefore have to test twenty such stars as  $\alpha$  Coronae in order to get one variable, and considering the various factors involved, we may consider the discovery of the eclipses of this star as a rare piece of good fortune.

As stars of long period give small chance of eclipses, the figures and Table I are limited to 100 days. Similarly for F, G, and K spectra the number of stars available for tests is too small for any conclusions to be drawn. It is evident however that the spectroscopic binaries of early spectral class furnish an especially fertile field for the picking up of new variables, and in the cases corresponding to the upper parts of the diagrams the stars which do not vary in light may even be in the minority.

<sup>&</sup>lt;sup>3</sup>Astrophysical Journal, 34, 108, 1911.